Micromagnetic stimulation (µMS) dose-response of the rat sciatic nerve

The objective of this study was to investigate the effects of micromagnetic stimuli strength and frequency from the netic (MagPen) on the rat right sciatic nerve. The nerve's response was measured by recording muscle activity and movement of the right hind limb. The MagPen was custom-built to b...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 20; no. 3; pp. 36022 - 36036
Main Authors Saha, Renata, Sanger, Zachary, Bloom, Robert P, Benally, Onri J, Wu, Kai, Tonini, Denis, Low, Walter C, Keirstead, Susan A, Netoff, Theoden I, Wang, Jian-Ping
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The objective of this study was to investigate the effects of micromagnetic stimuli strength and frequency from the netic (MagPen) on the rat right sciatic nerve. The nerve's response was measured by recording muscle activity and movement of the right hind limb. The MagPen was custom-built to be stably held over the sciatic nerve. Rat leg muscle twitches were captured on video, and movements were extracted using image processing algorithms. EMG recordings were also used to measure muscle activity. The MagPen prototype, when driven by an alternating current, generates a time-varying magnetic field, which, according to Faraday's law of electromagnetic induction, induces an electric field for neuromodulation. The orientation-dependent spatial contour maps of the induced electric field from the MagPen prototype have been numerically simulated. Furthermore, in this work on MS, a dose-response relationship has been reported by experimentally studying how varying the amplitude (Range: 25 m through 6 ) and frequency (range: 100 Hz through 5 kHz) of the MagPen stimuli alters hind limb movement. The primary highlight of this dose-response relationship (repeated over rats, where = 7) is that for a MS stimuli of higher frequency, significantly smaller amplitudes can trigger hind limb muscle twitch. This frequency-dependent activation can be justified by Faraday's Law, which states that the magnitude of the induced electric field is directly proportional to the frequency. This work reports that MS can successfully activate the sciatic nerve in a dose-dependent manner. The impact of this dose-response curve addresses the controversy in this research community about whether the stimulation from these coils arise from a thermal effect or micromagnetic stimulation. MagPen probes do not have a direct electrochemical interface with tissue and therefore do not experience electrode degradation, biofouling, and irreversible redox reactions like traditional direct contact electrodes. Magnetic fields from the coils create more precise activation than electrodes because they apply more focused and localized stimulation. Finally, unique features of MS, such as the orientation dependence, directionality, and spatial specificity, have been discussed.
AbstractList The objective of this study was to investigate the effects of micromagnetic stimuli strength and frequency from the netic (MagPen) on the rat right sciatic nerve. The nerve's response was measured by recording muscle activity and movement of the right hind limb. The MagPen was custom-built to be stably held over the sciatic nerve. Rat leg muscle twitches were captured on video, and movements were extracted using image processing algorithms. EMG recordings were also used to measure muscle activity. The MagPen prototype, when driven by an alternating current, generates a time-varying magnetic field, which, according to Faraday's law of electromagnetic induction, induces an electric field for neuromodulation. The orientation-dependent spatial contour maps of the induced electric field from the MagPen prototype have been numerically simulated. Furthermore, in this work on MS, a dose-response relationship has been reported by experimentally studying how varying the amplitude (Range: 25 m through 6 ) and frequency (range: 100 Hz through 5 kHz) of the MagPen stimuli alters hind limb movement. The primary highlight of this dose-response relationship (repeated over rats, where = 7) is that for a MS stimuli of higher frequency, significantly smaller amplitudes can trigger hind limb muscle twitch. This frequency-dependent activation can be justified by Faraday's Law, which states that the magnitude of the induced electric field is directly proportional to the frequency. This work reports that MS can successfully activate the sciatic nerve in a dose-dependent manner. The impact of this dose-response curve addresses the controversy in this research community about whether the stimulation from these coils arise from a thermal effect or micromagnetic stimulation. MagPen probes do not have a direct electrochemical interface with tissue and therefore do not experience electrode degradation, biofouling, and irreversible redox reactions like traditional direct contact electrodes. Magnetic fields from the coils create more precise activation than electrodes because they apply more focused and localized stimulation. Finally, unique features of MS, such as the orientation dependence, directionality, and spatial specificity, have been discussed.
Abstract Objective. The objective of this study was to investigate the effects of micromagnetic stimuli strength and frequency from the Mag netic Pen (MagPen) on the rat right sciatic nerve. The nerve’s response was measured by recording muscle activity and movement of the right hind limb. Approach. The MagPen was custom-built to be stably held over the sciatic nerve. Rat leg muscle twitches were captured on video, and movements were extracted using image processing algorithms. EMG recordings were also used to measure muscle activity. Main results. The MagPen prototype, when driven by an alternating current, generates a time-varying magnetic field, which, according to Faraday’s law of electromagnetic induction, induces an electric field for neuromodulation. The orientation-dependent spatial contour maps of the induced electric field from the MagPen prototype have been numerically simulated. Furthermore, in this in vivo work on µ MS, a dose-response relationship has been reported by experimentally studying how varying the amplitude (Range: 25 m V p-p through 6 V p-p ) and frequency (range: 100 Hz through 5 kHz) of the MagPen stimuli alters hind limb movement. The primary highlight of this dose-response relationship (repeated over n rats, where n = 7) is that for a µ MS stimuli of higher frequency, significantly smaller amplitudes can trigger hind limb muscle twitch. This frequency-dependent activation can be justified by Faraday’s Law, which states that the magnitude of the induced electric field is directly proportional to the frequency. Significance. This work reports that µ MS can successfully activate the sciatic nerve in a dose-dependent manner. The impact of this dose-response curve addresses the controversy in this research community about whether the stimulation from these μ coils arise from a thermal effect or micromagnetic stimulation. MagPen probes do not have a direct electrochemical interface with tissue and therefore do not experience electrode degradation, biofouling, and irreversible redox reactions like traditional direct contact electrodes. Magnetic fields from the μ coils create more precise activation than electrodes because they apply more focused and localized stimulation. Finally, unique features of µ MS, such as the orientation dependence, directionality, and spatial specificity, have been discussed.
Author Saha, Renata
Sanger, Zachary
Wu, Kai
Bloom, Robert P
Low, Walter C
Tonini, Denis
Keirstead, Susan A
Benally, Onri J
Netoff, Theoden I
Wang, Jian-Ping
Author_xml – sequence: 1
  givenname: Renata
  orcidid: 0000-0002-0389-0083
  surname: Saha
  fullname: Saha, Renata
  organization: University of Minnesota Department of Electrical and Computer Engineering, Minneapolis, MN, United States of America
– sequence: 2
  givenname: Zachary
  orcidid: 0000-0003-2144-1895
  surname: Sanger
  fullname: Sanger, Zachary
  organization: University of Minnesota Department of Biomedical Engineering, Minneapolis, MN, United States of America
– sequence: 3
  givenname: Robert P
  orcidid: 0000-0002-7781-5270
  surname: Bloom
  fullname: Bloom, Robert P
  organization: University of Minnesota Department of Electrical and Computer Engineering, Minneapolis, MN, United States of America
– sequence: 4
  givenname: Onri J
  orcidid: 0000-0002-8391-9105
  surname: Benally
  fullname: Benally, Onri J
  organization: University of Minnesota Department of Electrical and Computer Engineering, Minneapolis, MN, United States of America
– sequence: 5
  givenname: Kai
  orcidid: 0000-0002-9444-6112
  surname: Wu
  fullname: Wu, Kai
  organization: University of Minnesota Department of Electrical and Computer Engineering, Minneapolis, MN, United States of America
– sequence: 6
  givenname: Denis
  orcidid: 0000-0001-5121-5544
  surname: Tonini
  fullname: Tonini, Denis
  organization: University of Minnesota Department of Electrical and Computer Engineering, Minneapolis, MN, United States of America
– sequence: 7
  givenname: Walter C
  orcidid: 0000-0001-8593-0175
  surname: Low
  fullname: Low, Walter C
  organization: University of Minnesota Department of Integrative Biology & Physiology, Minneapolis, MN, United States of America
– sequence: 8
  givenname: Susan A
  orcidid: 0000-0002-7610-678X
  surname: Keirstead
  fullname: Keirstead, Susan A
  organization: University of Minnesota Department of Integrative Biology & Physiology, Minneapolis, MN, United States of America
– sequence: 9
  givenname: Theoden I
  orcidid: 0000-0002-0115-1930
  surname: Netoff
  fullname: Netoff, Theoden I
  organization: University of Minnesota Department of Biomedical Engineering, Minneapolis, MN, United States of America
– sequence: 10
  givenname: Jian-Ping
  orcidid: 0000-0003-2815-6624
  surname: Wang
  fullname: Wang, Jian-Ping
  organization: University of Minnesota Department of Electrical and Computer Engineering, Minneapolis, MN, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37187172$$D View this record in MEDLINE/PubMed
BookMark eNp9kM1KxDAURoMozo_uXUl3jmCdJG2adCmDjsIMLtR1yKS32qFNatIKPpgv4JPZ0nFW4upeLuf74J4JOjTWAEJnBF8TLMSc8JiElDE6Vzpjgh6g8f50uN8TPEIT77cYR4Sn-BiNIk4EJ5yO0XJdaGcr9WqgKXTgm6JqS9UU1gSz76_102WQWQ-hA19b4yGwedC8QeBUE3hdqD5jwH3ACTrKVenhdDen6OXu9nlxH64elw-Lm1WoY4KbMM3iWAkcJQoLpuOc0IhBlAAkGaQZUxxYijkBAA0p2RCdEUFJnFOBucCMRlM0G3prZ99b8I2sCq-hLJUB23pJBYkZZTEXHYoHtHvQewe5rF1RKfcpCZa9Ptn7kb0rOejrIue79nZTQbYP_PrqgKsBKGwtt7Z1pnv2v76LP_CtAUmxjGTnAVMq6yyPfgC7U4dn
CODEN JNEOBH
CitedBy_id crossref_primary_10_1116_6_0003362
crossref_primary_10_1088_2057_1976_ad3968
Cites_doi 10.1016/j.yebeh.2018.06.041
10.3389/fphys.2018.00724
10.1016/S0165-0270(98)00143-5
10.3389/fphys.2022.938101
10.1088/1741-2552/aab4e4
10.1097/AAP.0000000000000819
10.1109/TNSRE.2019.2911054
10.1016/j.ophtha.2011.08.042
10.1016/j.ejpn.2016.07.024
10.1038/s41598-020-74891-3
10.1186/s12906-018-2373-8
10.1109/TMAG.2010.2082556
10.1109/TBME.2017.2748136
10.1007/978-3-7091-6975-9_10
10.3390/chemosensors8030066
10.1038/ncomms1914
10.1109/TBME.2004.827925
10.1088/1741-2552/ab3187
10.1109/TNSRE.2016.2544247
10.1088/1741-2560/8/3/036023
10.3389/fnhum.2020.00053
10.1088/1741-2552/ac4baf
10.1016/S0304-3940(03)00861-9
10.1038/s41598-021-93114-x
10.1002/mds.27996
10.3390/medicina57040378
10.1109/TNSRE.2022.3193342
10.1016/j.bios.2018.08.034
10.1016/j.sna.2011.11.015
10.1016/j.jneumeth.2019.108523
10.1109/TNSRE.2016.2631446
10.3389/fnins.2020.00262
10.1111/j.1526-4637.2006.00118.x
10.1038/s41378-021-00320-8
10.1088/1741-2552/ac9339
10.1016/S0304-3959(99)00097-4
10.1021/acs.analchem.9b05194
10.1109/20.996146
10.1111/ner.13020
10.14309/ctg.0000000000000133
10.1126/sciadv.1600889
10.1109/TBME.2015.2490244
10.3171/2018.4.FOCUS1872
10.1016/j.bios.2010.05.010
ContentType Journal Article
Copyright 2023 The Author(s). Published by IOP Publishing Ltd
Creative Commons Attribution license.
Copyright_xml – notice: 2023 The Author(s). Published by IOP Publishing Ltd
– notice: Creative Commons Attribution license.
DBID O3W
TSCCA
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1088/1741-2552/acd582
DatabaseName IOP Publishing
IOPscience (Open Access)
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: O3W
  name: IOP Publishing
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID 10_1088_1741_2552_acd582
37187172
jneacd582
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Nano Coordinated Infrastructure Network (NNCI)
  grantid: ECCS-2025124
– fundername: Minnesota Partnership for Biotechnology and Medical Genomics under award number
  grantid: ML2020. Chap 64. Art I; Sec 1
– fundername: Robert Hartmann Endowed chair support
– fundername: College of Science and Engineering (CSE)
– fundername: University of Minnesota’s MnDRIVE (Minnesota’s Discovery, Research and Innovation Economy) initiative
– fundername: University of Minnesota’s Institute of Engineering In Medicine (IEM)
– fundername: National Science Foundation
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
O3W
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
TSCCA
W28
XPP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c410t-9d44a8036a085c4f1235e36ee6de9d5a7e59071eeece91b1cd18214f280780523
IEDL.DBID IOP
ISSN 1741-2560
IngestDate Fri Jun 28 07:40:02 EDT 2024
Fri Aug 23 01:47:29 EDT 2024
Sat Sep 28 08:15:56 EDT 2024
Wed Aug 21 03:34:49 EDT 2024
Wed Jun 07 11:19:00 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords microcoils
spatially-selective neuromodulation
induced electric field
micromagnetic neurostimulation
rat sciatic nerve
dose-response relationship
orientation-dependence
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Creative Commons Attribution license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-9d44a8036a085c4f1235e36ee6de9d5a7e59071eeece91b1cd18214f280780523
Notes JNE-106255.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2144-1895
0000-0001-8593-0175
0000-0001-5121-5544
0000-0002-7610-678X
0000-0002-0115-1930
0000-0002-0389-0083
0000-0002-9444-6112
0000-0003-2815-6624
0000-0002-8391-9105
0000-0002-7781-5270
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1741-2552/acd582
PMID 37187172
PQID 2814525478
PQPubID 23479
PageCount 15
ParticipantIDs crossref_primary_10_1088_1741_2552_acd582
pubmed_primary_37187172
iop_journals_10_1088_1741_2552_acd582
proquest_miscellaneous_2814525478
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Kagan (jneacd582bib40) 2019; 27
Gildenberg (jneacd582bib10) 2006; 7
Kim (jneacd582bib36) 2006
Klinger (jneacd582bib4) 2018; 45
Khalifa (jneacd582bib43) 2021; 7
Ren (jneacd582bib48) 2002; 38
Gildenberg (jneacd582bib13) 2006; 7
Jeong (jneacd582bib38) 2022; 13
Wagner (jneacd582bib45) 2004; 51
Minusa (jneacd582bib27) 2017; 65
Hofmeister (jneacd582bib3) 2020; 23
Colella (jneacd582bib29) 2019
Gybels (jneacd582bib1) 1987
Ilfeld (jneacd582bib17) 2018; 43
Greenblatt (jneacd582bib12) 1997
Minusa (jneacd582bib52) 2019; 16
Park (jneacd582bib41) 2015; 63
Badia (jneacd582bib20) 2011; 8
Weiland (jneacd582bib8) 2011; 118
Tong (jneacd582bib9) 2020; 14
Bonmassar (jneacd582bib24) 2020; 14
Saha (jneacd582bib25) 2022; 19
Wagner (jneacd582bib44) 2004; 354
Kaminska (jneacd582bib7) 2017; 21
Sarreal (jneacd582bib30) 2022; 30
Lee (jneacd582bib31) 2016; 25
Lee (jneacd582bib28) 2016; 2
Kim (jneacd582bib35) 2022; 19
Moyer (jneacd582bib39) 1998; 86
Boretius (jneacd582bib19) 2010; 26
Oh (jneacd582bib42) 2018; 121
Golestanirad (jneacd582bib46) 2010; 46
Park (jneacd582bib50) 2013
Martyanov (jneacd582bib47) 2014; 5
Erhardt (jneacd582bib51) 2018; 15
El-sayed (jneacd582bib16) 1999; 83
Xu (jneacd582bib22) 2020; 8
Bonmassar (jneacd582bib26) 2012; 3
Kapural (jneacd582bib2) 2020; 11
Johnson (jneacd582bib14) 2021; 57
Sharma (jneacd582bib21) 2012; 188
Golestanirad (jneacd582bib49) 2018; 9
Skach (jneacd582bib33) 2020; 10
Little (jneacd582bib6) 2020; 35
Fritsch (jneacd582bib11) 1870; 37
Seaton (jneacd582bib23) 2020; 92
Ye (jneacd582bib32) 2021; 11
Kim (jneacd582bib37) 2007
Larson (jneacd582bib18) 2020; 332
Okonkwo (jneacd582bib15) 2018; 18
Kagan (jneacd582bib34) 2016; 24
Salanova (jneacd582bib5) 2018; 88
References_xml – volume: 88
  start-page: 21
  year: 2018
  ident: jneacd582bib5
  article-title: Deep brain stimulation for epilepsy
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2018.06.041
  contributor:
    fullname: Salanova
– volume: 9
  start-page: 724
  year: 2018
  ident: jneacd582bib49
  article-title: Solenoidal micromagnetic stimulation enables activation of axons with specific orientation
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.00724
  contributor:
    fullname: Golestanirad
– volume: 86
  start-page: 35
  year: 1998
  ident: jneacd582bib39
  article-title: Methods for whole-cell recording from visually preselected neurons of perirhinal cortex in brain slices from young and aging rats
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(98)00143-5
  contributor:
    fullname: Moyer
– volume: 13
  year: 2022
  ident: jneacd582bib38
  article-title: Short-pulsed micro-magnetic stimulation of the vagus nerve
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2022.938101
  contributor:
    fullname: Jeong
– volume: 15
  year: 2018
  ident: jneacd582bib51
  article-title: Should patients with brain implants undergo MRI?
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aab4e4
  contributor:
    fullname: Erhardt
– volume: 43
  start-page: 580
  year: 2018
  ident: jneacd582bib17
  article-title: Ultrasound-guided percutaneous peripheral nerve stimulation: neuromodulation of the sciatic nerve for postoperative analgesia following ambulatory foot surgery, a proof-of-concept study
  publication-title: Reg. Anesth. Pain Med.
  doi: 10.1097/AAP.0000000000000819
  contributor:
    fullname: Ilfeld
– volume: 27
  start-page: 937
  year: 2019
  ident: jneacd582bib40
  article-title: Reduced heat generation during magnetic stimulation of rat sciatic nerve using current waveform truncation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2911054
  contributor:
    fullname: Kagan
– volume: 118
  start-page: 2227
  year: 2011
  ident: jneacd582bib8
  article-title: Retinal prostheses: current clinical results and future needs
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2011.08.042
  contributor:
    fullname: Weiland
– volume: 21
  start-page: 168
  year: 2017
  ident: jneacd582bib7
  article-title: Complications of deep brain stimulation (DBS) for dystonia in children–the challenges and 10 year experience in a large paediatric cohort
  publication-title: Eur. J. Paediatr. Neurol.
  doi: 10.1016/j.ejpn.2016.07.024
  contributor:
    fullname: Kaminska
– volume: 10
  start-page: 1
  year: 2020
  ident: jneacd582bib33
  article-title: Axonal blockage with microscopic magnetic stimulation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-74891-3
  contributor:
    fullname: Skach
– volume: 18
  start-page: 1
  year: 2018
  ident: jneacd582bib15
  article-title: Effects of transcutaneous electrical nerve stimulation in the Management of Post-Injection Sciatic Pain in a non-randomized controlled clinical trial in Nnewi, Nigeria
  publication-title: BMC Complement. Altern. Med.
  doi: 10.1186/s12906-018-2373-8
  contributor:
    fullname: Okonkwo
– volume: 46
  start-page: 4046
  year: 2010
  ident: jneacd582bib46
  article-title: Effect of model accuracy on the result of computed current densities in the simulation of transcranial magnetic stimulation
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2010.2082556
  contributor:
    fullname: Golestanirad
– volume: 37
  start-page: 300
  year: 1870
  ident: jneacd582bib11
  article-title: Uber die elektrische Erregbarkeit des Grosshirns
  publication-title: Arch Anat Physiol.
  contributor:
    fullname: Fritsch
– volume: 65
  start-page: 1301
  year: 2017
  ident: jneacd582bib27
  article-title: Micromagnetic stimulation of the mouse auditory cortex in vivo using an implantable solenoid system
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2748136
  contributor:
    fullname: Minusa
– start-page: 64
  year: 1987
  ident: jneacd582bib1
  article-title: Central and peripheral electrical stimulation of the nervous system in the treatment of chronic pain
  doi: 10.1007/978-3-7091-6975-9_10
  contributor:
    fullname: Gybels
– volume: 8
  start-page: 66
  year: 2020
  ident: jneacd582bib22
  article-title: Anti-biofouling strategies for long-term continuous use of implantable biosensors
  publication-title: Chemosensors
  doi: 10.3390/chemosensors8030066
  contributor:
    fullname: Xu
– volume: 3
  start-page: 921
  year: 2012
  ident: jneacd582bib26
  article-title: Microscopic magnetic stimulation of neural tissue
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1914
  contributor:
    fullname: Bonmassar
– volume: 51
  start-page: 1586
  year: 2004
  ident: jneacd582bib45
  article-title: Three-dimensional head model simulation of transcranial magnetic stimulation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827925
  contributor:
    fullname: Wagner
– volume: 16
  year: 2019
  ident: jneacd582bib52
  article-title: A multichannel magnetic stimulation system using submillimeter-sized coils: system development and experimental application to rodent brain in vivo
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab3187
  contributor:
    fullname: Minusa
– volume: 24
  start-page: 1138
  year: 2016
  ident: jneacd582bib34
  article-title: In vivo magnetic stimulation of rat sciatic nerve with centimeter-and millimeter-scale solenoid coils
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2544247
  contributor:
    fullname: Kagan
– volume: 8
  year: 2011
  ident: jneacd582bib20
  article-title: Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/3/036023
  contributor:
    fullname: Badia
– volume: 14
  start-page: 53
  year: 2020
  ident: jneacd582bib24
  article-title: MRI-induced heating of coils for microscopic magnetic stimulation at 1.5 tesla: an initial study
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2020.00053
  contributor:
    fullname: Bonmassar
– volume: 19
  year: 2022
  ident: jneacd582bib25
  article-title: Strength-frequency curve for micromagnetic neurostimulation through excitatory postsynaptic potentials (EPSPs) on rat hippocampal neurons and numerical modeling of magnetic microcoil (μcoil)
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac4baf
  contributor:
    fullname: Saha
– volume: 354
  start-page: 91
  year: 2004
  ident: jneacd582bib44
  article-title: Intracranial measurement of current densities induced by transcranial magnetic stimulation in the human brain
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(03)00861-9
  contributor:
    fullname: Wagner
– start-page: 3987
  year: 2019
  ident: jneacd582bib29
  article-title: Ultra-focal magnetic stimulation using a µTMS coil: a computational study
  contributor:
    fullname: Colella
– volume: 11
  start-page: 1
  year: 2021
  ident: jneacd582bib32
  article-title: Somatic inhibition by microscopic magnetic stimulation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-93114-x
  contributor:
    fullname: Ye
– volume: 35
  start-page: 555
  year: 2020
  ident: jneacd582bib6
  article-title: Debugging adaptive deep brain stimulation for Parkinson’s disease
  publication-title: Mov. Disorders
  doi: 10.1002/mds.27996
  contributor:
    fullname: Little
– volume: 57
  start-page: 378
  year: 2021
  ident: jneacd582bib14
  article-title: Resolving long-standing uncertainty about the clinical efficacy of transcutaneous electrical nerve stimulation (TENS) to relieve pain: a comprehensive review of factors influencing outcome
  publication-title: Medicina
  doi: 10.3390/medicina57040378
  contributor:
    fullname: Johnson
– start-page: 2986
  year: 2006
  ident: jneacd582bib36
  article-title: Preliminary study of the thermal impact of a microelectrode array implanted in the brain
  contributor:
    fullname: Kim
– volume: 30
  start-page: 2116
  year: 2022
  ident: jneacd582bib30
  article-title: Development and characterization of a micromagnetic alternative to cochlear implant electrode arrays
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3193342
  contributor:
    fullname: Sarreal
– volume: 121
  start-page: 174
  year: 2018
  ident: jneacd582bib42
  article-title: Tracking tonic dopamine levels in vivo using multiple cyclic square wave voltammetry
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.08.034
  contributor:
    fullname: Oh
– volume: 188
  start-page: 167
  year: 2012
  ident: jneacd582bib21
  article-title: Evaluation of the packaging and encapsulation reliability in fully integrated, fully wireless 100 channel Utah slant electrode array (USEA): implications for long term functionality
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2011.11.015
  contributor:
    fullname: Sharma
– year: 1997
  ident: jneacd582bib12
  contributor:
    fullname: Greenblatt
– volume: 332
  year: 2020
  ident: jneacd582bib18
  article-title: A review for the peripheral nerve interface designer
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2019.108523
  contributor:
    fullname: Larson
– volume: 25
  start-page: 1375
  year: 2016
  ident: jneacd582bib31
  article-title: Enhanced control of cortical pyramidal neurons with micromagnetic stimulation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2631446
  contributor:
    fullname: Lee
– volume: 14
  start-page: 262
  year: 2020
  ident: jneacd582bib9
  article-title: Stimulation strategies for improving the resolution of retinal prostheses
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00262
  contributor:
    fullname: Tong
– volume: 7
  start-page: S7
  year: 2006
  ident: jneacd582bib13
  article-title: History of electrical neuromodulation for chronic pain
  publication-title: Pain Med.
  doi: 10.1111/j.1526-4637.2006.00118.x
  contributor:
    fullname: Gildenberg
– volume: 7
  start-page: 1
  year: 2021
  ident: jneacd582bib43
  article-title: The development of microfabricated solenoids with magnetic cores for micromagnetic neural stimulation
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-021-00320-8
  contributor:
    fullname: Khalifa
– volume: 19
  year: 2022
  ident: jneacd582bib35
  article-title: Thermal effects on neurons during stimulation of the brain
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac9339
  contributor:
    fullname: Kim
– volume: 7
  start-page: S7
  year: 2006
  ident: jneacd582bib10
  article-title: History of electrical neuromodulation for chronic pain
  publication-title: Pain Med.
  doi: 10.1111/j.1526-4637.2006.00118.x
  contributor:
    fullname: Gildenberg
– volume: 83
  start-page: 193
  year: 1999
  ident: jneacd582bib16
  article-title: Percutaneous electrical nerve stimulation: an alternative to TENS in the management of sciatica
  publication-title: Pain
  doi: 10.1016/S0304-3959(99)00097-4
  contributor:
    fullname: El-sayed
– volume: 92
  start-page: 6334
  year: 2020
  ident: jneacd582bib23
  article-title: Mitigating the effects of electrode biofouling-induced impedance for improved long-term electrochemical measurements in vivo
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b05194
  contributor:
    fullname: Seaton
– volume: 38
  start-page: 557
  year: 2002
  ident: jneacd582bib48
  article-title: T-/spl omega/formulation for eddy-current problems in multiply connected regions
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.996146
  contributor:
    fullname: Ren
– start-page: 163
  year: 2007
  ident: jneacd582bib37
  article-title: In vitro in vivo study of temperature increases in the brain due to a neural implant
  contributor:
    fullname: Kim
– volume: 5
  year: 2014
  ident: jneacd582bib47
  article-title: ANSYS Maxwell software for electromagnetic field calculations
  publication-title: East. Eur. Sci. J.
  contributor:
    fullname: Martyanov
– start-page: 1497
  year: 2013
  ident: jneacd582bib50
  article-title: Computational study on thermal effects of coil-based implantable magnetic stimulation using finite element analysis
  contributor:
    fullname: Park
– volume: 23
  start-page: 150
  year: 2020
  ident: jneacd582bib3
  article-title: Effectiveness of neurostimulation technologies for the management of chronic pain: a systematic review
  publication-title: Neuromodulation
  doi: 10.1111/ner.13020
  contributor:
    fullname: Hofmeister
– volume: 11
  year: 2020
  ident: jneacd582bib2
  article-title: Treatment of chronic abdominal pain with 10 kHz spinal cord stimulation: safety and efficacy results from a 12 month prospective, multicenter, feasibility study
  publication-title: Clin. Transl. Gastroenterol.
  doi: 10.14309/ctg.0000000000000133
  contributor:
    fullname: Kapural
– volume: 2
  year: 2016
  ident: jneacd582bib28
  article-title: Implantable microcoils for intracortical magnetic stimulation
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1600889
  contributor:
    fullname: Lee
– volume: 63
  start-page: 158
  year: 2015
  ident: jneacd582bib41
  article-title: Computational study on the thermal effects of implantable magnetic stimulation based on planar coils
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2490244
  contributor:
    fullname: Park
– volume: 45
  start-page: E4
  year: 2018
  ident: jneacd582bib4
  article-title: Deep brain stimulation for seizure control in drug-resistant epilepsy
  publication-title: Neurosurg. Focus
  doi: 10.3171/2018.4.FOCUS1872
  contributor:
    fullname: Klinger
– volume: 26
  start-page: 62
  year: 2010
  ident: jneacd582bib19
  article-title: A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2010.05.010
  contributor:
    fullname: Boretius
SSID ssj0031790
Score 2.4258907
Snippet The objective of this study was to investigate the effects of micromagnetic stimuli strength and frequency from the netic (MagPen) on the rat right sciatic...
Abstract Objective. The objective of this study was to investigate the effects of micromagnetic stimuli strength and frequency from the Mag netic Pen (MagPen)...
SourceID proquest
crossref
pubmed
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 36022
SubjectTerms Animals
dose-response relationship
Electric Stimulation - methods
Electrodes
induced electric field
microcoils
micromagnetic neurostimulation
Muscle, Skeletal - physiology
orientation-dependence
rat sciatic nerve
Rats
Sciatic Nerve - physiology
spatially-selective neuromodulation
Title Micromagnetic stimulation (µMS) dose-response of the rat sciatic nerve
URI https://iopscience.iop.org/article/10.1088/1741-2552/acd582
https://www.ncbi.nlm.nih.gov/pubmed/37187172
https://search.proquest.com/docview/2814525478
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BvfTCo5R2eVSuRFE5eIljJ3HECaECRdqC1CI4VLIcZ1IJRLJidw_wv_gD_DLGcRaJqq0qLlEOo8QZj2e-ybwANn0LERfJgieYVVxJZ7nNrOM6j5TQPu2w7d05-JYenanji-RiBnafamGaYaf6-3QbGgUHFnYJcXqHMLTghITjHevKRJP-fSXpqHjP6-vJ6VQNS996KlRDeuo06mKUf3rCM5s0S-_9O9xszc7BAvycLjhkm1z1J-Oi7-5-6-X4wi9ahPkOjrK9QLoEM1i_geW9mlzx61u2xdoE0fbP-zIcDtrkPfur9oWPjHTDdTf7i31-uB9832ZlM0J-E7JukTUVI3TJSMTYqJUAx2qfX_kWzg6-_Ng_4t0cBu6UiMY8L5WymkydJXzmVOXLa1GmiGmJeZnYDBNysQUiOsxFIVxJTotQlW-04ycmyBWYq5sa3wNL00SmOq3ivCKgZkudZ7bSmbaFFC4qZA-2pzthhqHdhmnD5FobzyXjuWQCl3rwiRhqujM3-gcde0Z3WaOJIyMNfREhGDMsqx58nO63oePlYya2xmYyMrEWPvKrMt2Dd0EQnhYmya6TNxyv_udC1uC1H1YfEs3WYW58M8ENgjTj4kMrunQ9keePyT_tTQ
link.rule.ids 315,783,787,27936,27937,38877,38902,53854,53880
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB7xI1W9VC20ZSktRoIKDmbj2EmcI2q7_C6tRFG5WY4zqYREsmKXQx-MF-iTMbazlZDailsOTuLM2J5vMt_MAGz7EiIukRXPsGi4ks5yW1jHdZkooT3tMNTuHJ_nR5fq5Cq76vuchlyYbtIf_ft0GQsFRxH2hDg9JAwtOCHhdGhdnel0OKmbRVjOfFkTWtBf5Y_5USx9-amYEenvyJM-Tvm3pzyyS4v07n9DzmB6Ri_hRY8Z2UGc4StYwHYFVg9a8pdvfrGPLLA4w-_xVTgcB4ad_dn67ERGG_imb9DFdn_fjy_2WN1Nkd9GaiyyrmEEARmtAzYNanKs9STI13A5-vL90xHvmyVwp0Qy42WtlNVkjyyBKKcanwOLMkfMayzrzBaYkR8sENFhKSrhavIshGp8NRzf1kC-gaW2a3ENWJ5nMtd5k5YNoSlb67KwjS60raRwSSUHsDcXlZnEmhgmxLK1Nl6sxovVRLEOYIdkafqNMf3POPZo3HWLJk2MNPRFBDMM6XgAW3OFGNoDPrBhW-zupibVwodnVaEH8DZq6s_EJBlfclnT9SdOZBOeffs8MmfH56fv4LlvLh-JYRuwNLu9w_cEQWbVh7DMHgA1aNES
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Micromagnetic+stimulation+%28%C2%B5MS%29+dose-response+of+the+rat+sciatic+nerve&rft.jtitle=Journal+of+neural+engineering&rft.au=Saha%2C+Renata&rft.au=Sanger%2C+Zachary&rft.au=Bloom%2C+Robert+P&rft.au=Benally%2C+Onri+J&rft.date=2023-06-01&rft.issn=1741-2560&rft.eissn=1741-2552&rft.volume=20&rft.issue=3&rft.spage=36022&rft_id=info:doi/10.1088%2F1741-2552%2Facd582&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1741_2552_acd582
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon