Study of dielectric relaxation and thermally activated a.c. conduction in multicomponent Ge10−xSe60Te30Inx (0 ≤ x ≤ 6) chalcogenide glasses using CBH model
Amorphous Ge10−xSe60Te30Inx (0 ≤ x ≤ 6) chalcogenide glasses were prepared by melt quench technique. Surface morphology with the chemical composition of the prepared glass was examined using SEM and EDS analysis respectively. Dielectric properties and a.c. conductivity of the multicomponent Ge10−xSe...
Saved in:
Published in | Results in physics Vol. 12; pp. 223 - 236 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Amorphous Ge10−xSe60Te30Inx (0 ≤ x ≤ 6) chalcogenide glasses were prepared by melt quench technique. Surface morphology with the chemical composition of the prepared glass was examined using SEM and EDS analysis respectively. Dielectric properties and a.c. conductivity of the multicomponent Ge10−xSe60Te30Inx (0 ≤ x ≤ 6) chalcogenide glasses have been examined in the frequency range 100 Hz–1 MHz and temperature range 303–328 K. It was noticed that dielectric constant and dielectric loss decreases with the increase of frequency and increases with the increase of temperatures. Frequency and temperature dependence of dielectric constant was explained by orientational polarization. The variation of dielectric loss with frequency and temperature was explained by conduction loss and theory of single polaron hopping of charge carriers suggested by Elliot and Shimakawa for chalcogenide glasses. The experimental results show that a.c. conductivity follows the power law ωs where s < 1 and value of s decreases with the increase of temperature. The present findings of a.c. conductivity and variation of s with temperatures are reasonably well interpreted in terms of CBH model. |
---|---|
AbstractList | Amorphous Ge10−xSe60Te30Inx (0 ≤ x ≤ 6) chalcogenide glasses were prepared by melt quench technique. Surface morphology with the chemical composition of the prepared glass was examined using SEM and EDS analysis respectively. Dielectric properties and a.c. conductivity of the multicomponent Ge10−xSe60Te30Inx (0 ≤ x ≤ 6) chalcogenide glasses have been examined in the frequency range 100 Hz–1 MHz and temperature range 303–328 K. It was noticed that dielectric constant and dielectric loss decreases with the increase of frequency and increases with the increase of temperatures. Frequency and temperature dependence of dielectric constant was explained by orientational polarization. The variation of dielectric loss with frequency and temperature was explained by conduction loss and theory of single polaron hopping of charge carriers suggested by Elliot and Shimakawa for chalcogenide glasses. The experimental results show that a.c. conductivity follows the power law ωs where s < 1 and value of s decreases with the increase of temperature. The present findings of a.c. conductivity and variation of s with temperatures are reasonably well interpreted in terms of CBH model. Keywords: Chalcogenide glasses, Ac conductivity, Dielectric relaxation, CBH model, Activation energy Amorphous Ge10−xSe60Te30Inx (0 ≤ x ≤ 6) chalcogenide glasses were prepared by melt quench technique. Surface morphology with the chemical composition of the prepared glass was examined using SEM and EDS analysis respectively. Dielectric properties and a.c. conductivity of the multicomponent Ge10−xSe60Te30Inx (0 ≤ x ≤ 6) chalcogenide glasses have been examined in the frequency range 100 Hz–1 MHz and temperature range 303–328 K. It was noticed that dielectric constant and dielectric loss decreases with the increase of frequency and increases with the increase of temperatures. Frequency and temperature dependence of dielectric constant was explained by orientational polarization. The variation of dielectric loss with frequency and temperature was explained by conduction loss and theory of single polaron hopping of charge carriers suggested by Elliot and Shimakawa for chalcogenide glasses. The experimental results show that a.c. conductivity follows the power law ωs where s < 1 and value of s decreases with the increase of temperature. The present findings of a.c. conductivity and variation of s with temperatures are reasonably well interpreted in terms of CBH model. |
Author | Singh, Pravin Kumar Tripathi, S.K. Sharma, S.K. Dwivedi, D.K. |
Author_xml | – sequence: 1 givenname: Pravin Kumar surname: Singh fullname: Singh, Pravin Kumar organization: Amorphous Semiconductor Research Lab, Department of Applied Science, M. M. M. University of Technology, Gorakhpur 273010, India – sequence: 2 givenname: S.K. surname: Sharma fullname: Sharma, S.K. organization: Department of Physics, Harcourt Butler Technical University, Kanpur 208002, India – sequence: 3 givenname: S.K. surname: Tripathi fullname: Tripathi, S.K. organization: Department of Physics, Punjab University, Chandigarh 160014, India – sequence: 4 givenname: D.K. surname: Dwivedi fullname: Dwivedi, D.K. organization: Amorphous Semiconductor Research Lab, Department of Applied Science, M. M. M. University of Technology, Gorakhpur 273010, India |
BookMark | eNp9kb9uUzEUh69QkSilL8DkEYZcfOz7V2KBCNpIlRhaZsvXPk4dOXZkO1WydYS1z9CFiXfKk3CTAEIMXewjy99P55zvZXHig8eieA20BArNu0UZrV-VjEJXApS06p4Vp4wBTHjbtyf_1C-K85QWlI5UVdcAp8WP67zWWxIM0RYdqhytIhGd3MhsgyfSa5JvMS6lc1siVbZ3MqMmslQlUcHrtTr8s54s1y5bFZarsTufyQUC3X172FxjQ2-Q05nfkDd0d_9z9_1xPDd_q-YtUbfSqTBHbzWSuZMpYSLrZP2cTD9ekmXQ6F4Vz410Cc9_32fF18-fbqaXk6svF7Pph6uJqoDmSd82yPSAjLXUcFVzXSmuJKV1W7dtBZqzlhnWgGbNgH3XDFB1nILsqKx0y_hZMTvm6iAXYhXtUsatCNKKw0OIcyHjOKhD0WONvB-MBG4qrmEwYLSpK66w6btqn9Uds1QMKUU0Qtl8WGyO0joBVOwNioXYGxR7gwJAjAZHlP2H_mnlSej9EcJxQXcWo0jKoleobRzdjhPYp_BfchG_BA |
CitedBy_id | crossref_primary_10_1007_s10854_020_03366_y crossref_primary_10_1016_j_solidstatesciences_2024_107442 crossref_primary_10_1007_s10854_019_02541_0 crossref_primary_10_1140_epjb_e2019_100482_y crossref_primary_10_1039_D2RA02757G crossref_primary_10_1016_j_ceramint_2020_08_156 crossref_primary_10_1007_s10854_022_08196_8 crossref_primary_10_1016_j_jnoncrysol_2019_119729 crossref_primary_10_1016_j_jnoncrysol_2022_121941 crossref_primary_10_1007_s00339_022_05615_9 crossref_primary_10_1016_j_jnoncrysol_2022_121701 crossref_primary_10_1016_j_physe_2023_115794 crossref_primary_10_1016_j_jnoncrysol_2023_122439 crossref_primary_10_1016_j_physb_2022_413794 crossref_primary_10_1088_2053_1591_ab4615 crossref_primary_10_1088_1402_4896_ad86f9 crossref_primary_10_3389_fphy_2023_1151841 crossref_primary_10_1080_00150193_2023_2296289 crossref_primary_10_1007_s10854_023_11238_4 crossref_primary_10_1007_s12648_023_02891_w crossref_primary_10_1039_D3NR01144E crossref_primary_10_1134_S1087659619060178 crossref_primary_10_1016_j_physb_2022_414329 crossref_primary_10_1016_j_rinp_2019_102218 crossref_primary_10_1142_S0218863524300019 crossref_primary_10_1016_j_jnoncrysol_2021_120892 crossref_primary_10_1016_j_mseb_2023_116689 crossref_primary_10_1016_j_matpr_2019_06_438 crossref_primary_10_1007_s42341_024_00518_3 crossref_primary_10_1016_j_physb_2020_412486 crossref_primary_10_1080_01411594_2024_2425607 crossref_primary_10_1016_j_jallcom_2022_167000 crossref_primary_10_1016_j_physb_2020_412082 crossref_primary_10_1088_2053_1591_ac1d17 crossref_primary_10_1016_j_matchemphys_2020_123793 crossref_primary_10_1080_14786435_2021_1984604 crossref_primary_10_1007_s10909_020_02462_x crossref_primary_10_1016_j_ceramint_2024_01_022 crossref_primary_10_1063_10_0028755 crossref_primary_10_1007_s10854_023_11857_x crossref_primary_10_1007_s12034_020_02210_7 crossref_primary_10_1016_j_jnoncrysol_2022_121893 crossref_primary_10_1007_s10854_019_01763_6 crossref_primary_10_1149_2162_8777_ad2b9e crossref_primary_10_1016_j_matchemphys_2020_123207 crossref_primary_10_1088_1757_899X_1300_1_012044 crossref_primary_10_1007_s10854_020_04922_2 crossref_primary_10_1557_s43578_024_01509_z crossref_primary_10_1016_j_ceramint_2019_05_153 crossref_primary_10_1016_j_optmat_2022_112748 crossref_primary_10_1039_D3NJ03026A crossref_primary_10_1007_s00339_024_08132_z crossref_primary_10_1088_1402_4896_abfcf2 crossref_primary_10_1007_s10854_023_11810_y crossref_primary_10_1007_s10854_024_12071_z crossref_primary_10_1016_j_solidstatesciences_2020_106289 crossref_primary_10_1007_s00339_024_07707_0 crossref_primary_10_1016_j_jallcom_2019_153381 crossref_primary_10_1134_S1087659621070038 crossref_primary_10_1016_j_jallcom_2024_174268 crossref_primary_10_1016_j_jallcom_2020_158395 |
Cites_doi | 10.1016/j.jascer.2016.02.003 10.1080/01418637808226448 10.1080/00018738700101971 10.1016/0022-3093(90)90845-D 10.1103/PhysRevB.41.1479 10.1016/S0030-4018(99)00541-6 10.3390/s90907398 10.1016/j.jnoncrysol.2005.09.011 10.1080/13642818208246429 10.1016/j.ijleo.2015.01.029 10.1016/S0022-3093(87)80484-2 10.1016/j.jnoncrysol.2005.11.126 10.1103/PhysRevB.42.5665 10.1364/OE.18.026675 10.1016/j.matlet.2003.11.029 10.1016/0022-3093(81)90089-2 10.1016/j.jnoncrysol.2014.03.002 10.1080/00018738200101418 10.1080/14786437008221061 10.1016/j.optmat.2015.12.008 10.1038/nmat2009 10.1016/j.sna.2007.06.039 10.1016/j.physb.2015.11.002 10.1016/j.jnoncrysol.2003.08.064 10.1007/s00339-015-9180-6 10.1080/00150193.2017.1412187 10.1038/nmat2330 10.1109/JLT.2005.855877 10.1016/S0040-6090(96)08929-8 10.1002/pssa.2211150135 10.1016/S1359-0286(03)00044-5 10.1016/S0022-3093(99)00867-4 10.1016/S0921-4526(97)00669-8 10.1080/00018736900101267 10.1016/j.snb.2004.03.014 10.1039/C7RA00010C 10.3847/0004-637X/832/2/177 10.1103/PhysRevLett.21.1450 10.1016/S0022-3093(03)00464-2 10.1016/j.jallcom.2008.11.129 |
ContentType | Journal Article |
Copyright | 2018 The Authors |
Copyright_xml | – notice: 2018 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rinp.2018.11.048 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2211-3797 |
EndPage | 236 |
ExternalDocumentID | oai_doaj_org_article_9e5e39bfa13f43d1bf1fdf543ce69842 10_1016_j_rinp_2018_11_048 S2211379718324525 |
GroupedDBID | --K 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M48 M~E NCXOZ O-L O9- OK1 RIG ROL SES SSZ XH2 AAFWJ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPKN AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c410t-976e2dbe2270f3c53d4c3ca005757741d3272f261d26be986b148301a80a4d723 |
IEDL.DBID | M48 |
ISSN | 2211-3797 |
IngestDate | Wed Aug 27 01:33:43 EDT 2025 Tue Jul 01 02:27:28 EDT 2025 Thu Apr 24 22:52:41 EDT 2025 Wed May 17 01:59:53 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CBH model Activation energy Chalcogenide glasses Ac conductivity Dielectric relaxation |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-976e2dbe2270f3c53d4c3ca005757741d3272f261d26be986b148301a80a4d723 |
OpenAccessLink | https://doaj.org/article/9e5e39bfa13f43d1bf1fdf543ce69842 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9e5e39bfa13f43d1bf1fdf543ce69842 crossref_citationtrail_10_1016_j_rinp_2018_11_048 crossref_primary_10_1016_j_rinp_2018_11_048 elsevier_sciencedirect_doi_10_1016_j_rinp_2018_11_048 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2019 2019-03-00 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: March 2019 |
PublicationDecade | 2010 |
PublicationTitle | Results in physics |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Shim, Park, Baik (b0165) 1997; 292 Bekheet, Hegab (b0260) 2008; 391 Long (b0190) 1982; 31 Pauling (b0215) 1960 Elliott (b0200) 1978; 36 Lencer, Salinga, Grabowski, Hickel, Neugebauer, Wuttig (b0035) 2008; 7 Austin, Mott (b0025) 1969; 18 Hassan (b0020) 2010 Seo Hyung, Ahn, Sung, Byung, Lee (b0150) 2014; 104 Hegab, Afifi, Atyia, Farid (b0250) 2009; 477 Popescu (b0005) 2006; 352 Arora, Kumar (b0240) 1989; 115 Kushwaha, Kushwaha, Shukla, Kumar (b0170) 2005; 351 Tareev (b0235) 1975 Singh, Dwivedi (b0040) 2017; 520 Ghosh (b0185) 1990; 42 Dwivedi, Tripathi, Pradhan, Kulkarni, Agarwal (b0105) 2000; 266 Anne (b0120) 2009; 9 Sharma, Shukla, Kumar (b0060) 2016; 481 Lyubin, Klebanov, Sfez, Ashkinadze (b0100) 2004; 58 Jain, Jain, Saxena (b0050) 2009; 6 Shimakava (b0210) 1982; 46 Ležal, Kašik, Gotz (b0015) 1987; 90 Shukla, Mehta, Dwivedi (b0270) 2016; 27 Atyia (b0255) 2014; 391 Antipas, Mangiorous, Hristoforou (b0160) 2014; 1 Ahire, Deshpande, Gudage, Sagade, Chavhan, Phase (b0130) 2007; 140 Saitar, Ledru, Hamou, Saffarini (b0175) 1998; 245 Wu, Zhang, Wu, Lv, Nie, Luo (b0125) 2013; 24 Sharma, Mehta (b0265) 2017; 7 Gholipour (b0135) 2015; 3 Bahatnagar, Bhatiam (b0225) 1990; 119 Shukla, Dwivedi (b0145) 2016; 4 Zakery, Elliot (b0075) 2003; 330 Nasir, Zulfequar, DC (b0245) 2012; 2 Lezal, Pedlikova, Zavadil (b0090) 2004; 1 Ovshinsky (b0045) 1986; 21 Dwivedi, Pathak, Shukla, Kumar (b0010) 2015; 126 Toulouse (b0095) 2005; 23 Suzuki (b0115) 2010; 18 Singh, Saxena, Srivastava, Patidar, Sharma (b0055) 2006; 3 Isbi, Sternklar, Garnet, Lyubin, Klebanov, Lewis (b0070) 1999; 171 Elliott (b0220) 1987; 36 Wuttig, Yamada (b0030) 2007; 6 Fouad, El-Bana, Sharma, Sharma (b0155) 2015; 120 Stevels (b0275) 1975 Guintini, Zanchetta, Jullen, Eholle, Hoenou (b0205) 1981; 45 Shukla, Pathak, Rao, Dwivedi (b0065) 2016; 13 Michel, Bureau, Boussard-Plédel, Jouan, Adama, Staubmann (b0110) 2004; 101 Ghosh (b0180) 1990; 41 Zhang, Guimond, Bellec (b0080) 2003; 326–327 Pathak, Shukla, Kumar, Dwivedi (b0140) 2016; 52 Davis, Mott (b0230) 1970; 22 Frumar, Wagner (b0085) 2003; 7 Elliott (b0195) 1978; 37 Anne (10.1016/j.rinp.2018.11.048_b0120) 2009; 9 Elliott (10.1016/j.rinp.2018.11.048_b0195) 1978; 37 Jain (10.1016/j.rinp.2018.11.048_b0050) 2009; 6 Sharma (10.1016/j.rinp.2018.11.048_b0060) 2016; 481 Hegab (10.1016/j.rinp.2018.11.048_b0250) 2009; 477 Saitar (10.1016/j.rinp.2018.11.048_b0175) 1998; 245 Seo Hyung (10.1016/j.rinp.2018.11.048_b0150) 2014; 104 Shim (10.1016/j.rinp.2018.11.048_b0165) 1997; 292 Davis (10.1016/j.rinp.2018.11.048_b0230) 1970; 22 Ležal (10.1016/j.rinp.2018.11.048_b0015) 1987; 90 Bekheet (10.1016/j.rinp.2018.11.048_b0260) 2008; 391 Fouad (10.1016/j.rinp.2018.11.048_b0155) 2015; 120 Elliott (10.1016/j.rinp.2018.11.048_b0200) 1978; 36 Zakery (10.1016/j.rinp.2018.11.048_b0075) 2003; 330 Wu (10.1016/j.rinp.2018.11.048_b0125) 2013; 24 Guintini (10.1016/j.rinp.2018.11.048_b0205) 1981; 45 Singh (10.1016/j.rinp.2018.11.048_b0040) 2017; 520 Wuttig (10.1016/j.rinp.2018.11.048_b0030) 2007; 6 Frumar (10.1016/j.rinp.2018.11.048_b0085) 2003; 7 Lezal (10.1016/j.rinp.2018.11.048_b0090) 2004; 1 Dwivedi (10.1016/j.rinp.2018.11.048_b0105) 2000; 266 Ovshinsky (10.1016/j.rinp.2018.11.048_b0045) 1986; 21 Pathak (10.1016/j.rinp.2018.11.048_b0140) 2016; 52 Arora (10.1016/j.rinp.2018.11.048_b0240) 1989; 115 Toulouse (10.1016/j.rinp.2018.11.048_b0095) 2005; 23 Shukla (10.1016/j.rinp.2018.11.048_b0270) 2016; 27 Popescu (10.1016/j.rinp.2018.11.048_b0005) 2006; 352 Shukla (10.1016/j.rinp.2018.11.048_b0065) 2016; 13 Suzuki (10.1016/j.rinp.2018.11.048_b0115) 2010; 18 Ahire (10.1016/j.rinp.2018.11.048_b0130) 2007; 140 Isbi (10.1016/j.rinp.2018.11.048_b0070) 1999; 171 Lyubin (10.1016/j.rinp.2018.11.048_b0100) 2004; 58 Stevels (10.1016/j.rinp.2018.11.048_b0275) 1975 Singh (10.1016/j.rinp.2018.11.048_b0055) 2006; 3 Sharma (10.1016/j.rinp.2018.11.048_b0265) 2017; 7 Michel (10.1016/j.rinp.2018.11.048_b0110) 2004; 101 Ghosh (10.1016/j.rinp.2018.11.048_b0180) 1990; 41 Austin (10.1016/j.rinp.2018.11.048_b0025) 1969; 18 Nasir (10.1016/j.rinp.2018.11.048_b0245) 2012; 2 Atyia (10.1016/j.rinp.2018.11.048_b0255) 2014; 391 Ghosh (10.1016/j.rinp.2018.11.048_b0185) 1990; 42 Long (10.1016/j.rinp.2018.11.048_b0190) 1982; 31 Zhang (10.1016/j.rinp.2018.11.048_b0080) 2003; 326–327 Pauling (10.1016/j.rinp.2018.11.048_b0215) 1960 Dwivedi (10.1016/j.rinp.2018.11.048_b0010) 2015; 126 Gholipour (10.1016/j.rinp.2018.11.048_b0135) 2015; 3 Antipas (10.1016/j.rinp.2018.11.048_b0160) 2014; 1 Hassan (10.1016/j.rinp.2018.11.048_b0020) 2010 Shukla (10.1016/j.rinp.2018.11.048_b0145) 2016; 4 Bahatnagar (10.1016/j.rinp.2018.11.048_b0225) 1990; 119 Elliott (10.1016/j.rinp.2018.11.048_b0220) 1987; 36 Shimakava (10.1016/j.rinp.2018.11.048_b0210) 1982; 46 Kushwaha (10.1016/j.rinp.2018.11.048_b0170) 2005; 351 Lencer (10.1016/j.rinp.2018.11.048_b0035) 2008; 7 Tareev (10.1016/j.rinp.2018.11.048_b0235) 1975 |
References_xml | – volume: 326–327 start-page: 519 year: 2003 end-page: 523 ident: b0080 article-title: Production of complex chalcogenide glass optics by molding for thermal imaging publication-title: J Non-Cryst Solids – start-page: 350 year: 1975 ident: b0275 publication-title: Hantbuch der Physik – volume: 481 start-page: 144 year: 2016 end-page: 147 ident: b0060 article-title: A.C. conduction in glassy alloys of Se publication-title: Physica B – volume: 6 start-page: 824 year: 2007 end-page: 832 ident: b0030 article-title: Phase-change materials for rewriteable data storage publication-title: Nat Mater – volume: 126 start-page: 635 year: 2015 end-page: 639 ident: b0010 article-title: Effect of thermal annealing on the structural and optical properties of amorphous Se publication-title: Optik Int J Light Electron Opt – volume: 477 start-page: 925 year: 2009 end-page: 930 ident: b0250 article-title: ac conductivity and dielectric properties of amorphous Se publication-title: J Alloys Compd – volume: 171 start-page: 219 year: 1999 end-page: 223 ident: b0070 article-title: Sub-wavelength optical recording on chalcogenide glassy film publication-title: Opt Commun – volume: 42 start-page: 5665 year: 1990 end-page: 5676 ident: b0185 article-title: Transport properties of vanadium germanate glassy semiconductors publication-title: Phys Rev B – volume: 101 start-page: 252 year: 2004 end-page: 259 ident: b0110 publication-title: Sens Actuators, B – volume: 520 start-page: 256 year: 2017 end-page: 273 ident: b0040 article-title: Chalcogenide glass: fabrication techniques, properties and applications publication-title: Ferroelectrics – start-page: 67 year: 1975 ident: b0235 article-title: Physics of dielectric materials – volume: 245 start-page: 256 year: 1998 end-page: 262 ident: b0175 article-title: Crystallization of As publication-title: Physica B – volume: 21 start-page: 1450 year: 1986 end-page: 1455 ident: b0045 article-title: Reversible electrical switching phenomena in disordered structures publication-title: Phys Rev Lett – volume: 36 start-page: 129 year: 1978 ident: b0200 article-title: Errata publication-title: Philos Mag B – volume: 36 start-page: 135 year: 1987 end-page: 217 ident: b0220 article-title: Ac conduction in amorphous chalcogenide and pnictide semiconductors publication-title: Adv Phys – volume: 391 start-page: 83 year: 2008 end-page: 90 ident: b0260 article-title: Ac conductivity and dielectric properties of Ge publication-title: Vacuum – volume: 7 start-page: 19085 year: 2017 end-page: 19097 ident: b0265 article-title: Study of dielectric relaxation and thermally activated ac conduction in lead containing topological glassy semiconductors publication-title: RSC Adv – volume: 7 start-page: 972 year: 2008 end-page: 977 ident: b0035 article-title: A map for phase-change materials publication-title: Nat Mater – volume: 292 start-page: 31 year: 1997 end-page: 39 ident: b0165 article-title: Silicide formation in cobalt/amorphous silicon, amorphous CoSi and bias-induced CoSi films publication-title: Thin Solid Films – volume: 9 start-page: 7398 year: 2009 end-page: 7411 ident: b0120 article-title: Chalcogenide glass optical waveguides for infrared biosensing publication-title: Sensors – volume: 1 start-page: 1 year: 2014 end-page: 16 ident: b0160 article-title: Solute–solvent interactions and atomic cohesion in GeSe publication-title: Mater Res Express – volume: 13 start-page: 177 year: 2016 end-page: 185 ident: b0065 article-title: A.C. conductivity and dielectric properties of Se publication-title: Chalcogenide Lett – volume: 330 start-page: 1 year: 2003 end-page: 12 ident: b0075 article-title: Optical properties and applications of chalcogenide glasses: a review publication-title: J Non-Cryst Solids – volume: 7 start-page: 117 year: 2003 end-page: 126 ident: b0085 article-title: Curr. Opin. Ag doped chalcogenide glasses and their applications publication-title: Solid State Mater Sci – volume: 23 start-page: 3625 year: 2005 end-page: 3635 ident: b0095 article-title: Optical nonlinearities in fibers: review, recent examples, and systems applications publication-title: J Light Technol – year: 2010 ident: b0020 article-title: Second international conference on communication software and networks – volume: 352 start-page: 887 year: 2006 end-page: 891 ident: b0005 article-title: Chalcogenides-past, present, future publication-title: J Non-Cryst Solids – volume: 18 start-page: 41 year: 1969 end-page: 102 ident: b0025 article-title: Polarons in crystalline and non-crystalline materials publication-title: Adv Phys Adv Phys – volume: 1 start-page: 11 year: 2004 end-page: 15 ident: b0090 article-title: Chalcogenide glasses for optical and photonics applications publication-title: Chalcogenide Lett – volume: 37 start-page: 135 year: 1978 ident: b0195 article-title: A theory of ac conduction in chalcogenide glasses publication-title: Philos Mag B – volume: 140 start-page: 207 year: 2007 end-page: 214 ident: b0130 article-title: A comparative study of the physical properties of CdS, Bi publication-title: Sens Actuators, A – volume: 266 start-page: 924 year: 2000 end-page: 928 ident: b0105 article-title: Raman study of ion irradiated GeSe films publication-title: J Non-Cryst Solids – volume: 45 start-page: 57 year: 1981 end-page: 62 ident: b0205 article-title: Temperature dependence of dielectric losses in chalcogenide glasses publication-title: J Non-Cryst Solids – volume: 52 start-page: 69 year: 2016 end-page: 74 ident: b0140 article-title: Structural and optical properties of In doped Se–Te phase-change thin films: a material for optical data storage publication-title: Opt Mater – volume: 104 start-page: 1 year: 2014 end-page: 4 ident: b0150 article-title: Anomalous reduction of the switching voltage of Bi-doped Ge publication-title: Appl Phys Lett – volume: 2 start-page: 11 year: 2012 end-page: 17 ident: b0245 article-title: conductivity and dielectric behaviour of glassy Se publication-title: Open J Inorg Nonmet Mater – volume: 18 start-page: 26675 year: 2010 end-page: 26685 ident: b0115 article-title: Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass publication-title: Opt Express – volume: 31 start-page: 553 year: 1982 end-page: 637 ident: b0190 article-title: Frequency-dependent loss in amorphous semiconductors publication-title: Adv Phys – volume: 3 start-page: 33 year: 2006 end-page: 36 ident: b0055 article-title: Energy band gap of Se publication-title: Chalcogenide Lett – volume: 351 start-page: 3414 year: 2005 end-page: 3420 ident: b0170 article-title: Effect of lead additive on photoconductive properties of Se–Te chalcogenide films publication-title: J Non-Cryst Solids – volume: 22 start-page: 0903 year: 1970 end-page: 0922 ident: b0230 article-title: Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors publication-title: Phil Mag – volume: 24 start-page: 1 year: 2013 end-page: 7 ident: b0125 article-title: Flexible CuS nanotubes–ITO film Schottky junction solar cells with enhanced light harvesting by using an Ag mirror publication-title: Nanotechnology – volume: 41 start-page: 1479 year: 1990 end-page: 1488 ident: b0180 article-title: Frequency-dependent conductivity in bismuth-vanadate glassy semiconductors publication-title: Phys Rev B – year: 1960 ident: b0215 article-title: The nature of the chemical bond – volume: 27 start-page: 12036 year: 2016 end-page: 12049 ident: b0270 article-title: Experimental studies of dielectric relaxation and thermally activated a.c. conduction in Se publication-title: J Mater Sci: Mater Electron – volume: 115 start-page: 307 year: 1989 end-page: 314 ident: b0240 article-title: Dielectric relaxation in glassy Se and Se publication-title: Phys Status Solidi – volume: 4 start-page: 178 year: 2016 end-page: 184 ident: b0145 article-title: Dielectric relaxation and AC conductivity studies of Se publication-title: J Asian Ceram Soc – volume: 90 start-page: 557 year: 1987 end-page: 560 ident: b0015 article-title: Ge publication-title: J Non-Cryst Solids – volume: 6 start-page: 97 year: 2009 end-page: 107 ident: b0050 article-title: Activation energy of crystallization and enthalpy released of Se publication-title: Chalcogenide Lett – volume: 119 start-page: 214 year: 1990 end-page: 231 ident: b0225 article-title: Frequency dependent electrical transport in bismuth-modified amorphous germanium sulfide semiconductors publication-title: J Non-Cryst Solids – volume: 3 start-page: 1 year: 2015 end-page: 7 ident: b0135 article-title: Amorphous metal-sulphide microfibers enable photonic synapses for brain-like computing publication-title: Adv Optical Mater – volume: 46 start-page: 123 year: 1982 end-page: 135 ident: b0210 article-title: On the temperature dependence of ac conduction in chalcogenide glasses publication-title: Philos Mag B – volume: 391 start-page: 83 year: 2014 ident: b0255 article-title: Electrical conductivity and dielectric relaxation of bulk Se publication-title: J Non-Cryst Solids – volume: 120 start-page: 137 year: 2015 end-page: 143 ident: b0155 article-title: Analysis of chemical ordering and fragility for Ge–Se–In glasses publication-title: Appl Phys A – volume: 58 start-page: 1706 year: 2004 end-page: 1708 ident: b0100 article-title: Photoluminescence and photodarkening effect in erbium-doped chalcogenide glassy films publication-title: Mater Lett – start-page: 350 year: 1975 ident: 10.1016/j.rinp.2018.11.048_b0275 publication-title: Hantbuch der Physik – volume: 4 start-page: 178 year: 2016 ident: 10.1016/j.rinp.2018.11.048_b0145 article-title: Dielectric relaxation and AC conductivity studies of Se90Cd10−xInx glassy alloys publication-title: J Asian Ceram Soc doi: 10.1016/j.jascer.2016.02.003 – volume: 3 start-page: 1 year: 2015 ident: 10.1016/j.rinp.2018.11.048_b0135 article-title: Amorphous metal-sulphide microfibers enable photonic synapses for brain-like computing publication-title: Adv Optical Mater – volume: 37 start-page: 135 year: 1978 ident: 10.1016/j.rinp.2018.11.048_b0195 article-title: A theory of ac conduction in chalcogenide glasses publication-title: Philos Mag B doi: 10.1080/01418637808226448 – volume: 24 start-page: 1 issue: 045402 year: 2013 ident: 10.1016/j.rinp.2018.11.048_b0125 article-title: Flexible CuS nanotubes–ITO film Schottky junction solar cells with enhanced light harvesting by using an Ag mirror publication-title: Nanotechnology – volume: 36 start-page: 135 year: 1987 ident: 10.1016/j.rinp.2018.11.048_b0220 article-title: Ac conduction in amorphous chalcogenide and pnictide semiconductors publication-title: Adv Phys doi: 10.1080/00018738700101971 – start-page: 67 year: 1975 ident: 10.1016/j.rinp.2018.11.048_b0235 – volume: 119 start-page: 214 year: 1990 ident: 10.1016/j.rinp.2018.11.048_b0225 article-title: Frequency dependent electrical transport in bismuth-modified amorphous germanium sulfide semiconductors publication-title: J Non-Cryst Solids doi: 10.1016/0022-3093(90)90845-D – volume: 41 start-page: 1479 year: 1990 ident: 10.1016/j.rinp.2018.11.048_b0180 article-title: Frequency-dependent conductivity in bismuth-vanadate glassy semiconductors publication-title: Phys Rev B doi: 10.1103/PhysRevB.41.1479 – year: 1960 ident: 10.1016/j.rinp.2018.11.048_b0215 – volume: 104 start-page: 1 issue: 153503 year: 2014 ident: 10.1016/j.rinp.2018.11.048_b0150 article-title: Anomalous reduction of the switching voltage of Bi-doped Ge0.5Se0.5 ovonic threshold switching devices publication-title: Appl Phys Lett – volume: 171 start-page: 219 year: 1999 ident: 10.1016/j.rinp.2018.11.048_b0070 article-title: Sub-wavelength optical recording on chalcogenide glassy film publication-title: Opt Commun doi: 10.1016/S0030-4018(99)00541-6 – volume: 9 start-page: 7398 year: 2009 ident: 10.1016/j.rinp.2018.11.048_b0120 article-title: Chalcogenide glass optical waveguides for infrared biosensing publication-title: Sensors doi: 10.3390/s90907398 – volume: 351 start-page: 3414 year: 2005 ident: 10.1016/j.rinp.2018.11.048_b0170 article-title: Effect of lead additive on photoconductive properties of Se–Te chalcogenide films publication-title: J Non-Cryst Solids doi: 10.1016/j.jnoncrysol.2005.09.011 – volume: 46 start-page: 123 year: 1982 ident: 10.1016/j.rinp.2018.11.048_b0210 article-title: On the temperature dependence of ac conduction in chalcogenide glasses publication-title: Philos Mag B doi: 10.1080/13642818208246429 – volume: 126 start-page: 635 year: 2015 ident: 10.1016/j.rinp.2018.11.048_b0010 article-title: Effect of thermal annealing on the structural and optical properties of amorphous Se75− xTe25Sbx thin films by thermal evaporation method publication-title: Optik Int J Light Electron Opt doi: 10.1016/j.ijleo.2015.01.029 – volume: 90 start-page: 557 year: 1987 ident: 10.1016/j.rinp.2018.11.048_b0015 article-title: Gex(Se1−yTey)1–x glasses for optical application publication-title: J Non-Cryst Solids doi: 10.1016/S0022-3093(87)80484-2 – volume: 352 start-page: 887 year: 2006 ident: 10.1016/j.rinp.2018.11.048_b0005 article-title: Chalcogenides-past, present, future publication-title: J Non-Cryst Solids doi: 10.1016/j.jnoncrysol.2005.11.126 – volume: 42 start-page: 5665 year: 1990 ident: 10.1016/j.rinp.2018.11.048_b0185 article-title: Transport properties of vanadium germanate glassy semiconductors publication-title: Phys Rev B doi: 10.1103/PhysRevB.42.5665 – volume: 18 start-page: 26675 year: 2010 ident: 10.1016/j.rinp.2018.11.048_b0115 article-title: Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass publication-title: Opt Express doi: 10.1364/OE.18.026675 – volume: 58 start-page: 1706 year: 2004 ident: 10.1016/j.rinp.2018.11.048_b0100 article-title: Photoluminescence and photodarkening effect in erbium-doped chalcogenide glassy films publication-title: Mater Lett doi: 10.1016/j.matlet.2003.11.029 – volume: 45 start-page: 57 year: 1981 ident: 10.1016/j.rinp.2018.11.048_b0205 article-title: Temperature dependence of dielectric losses in chalcogenide glasses publication-title: J Non-Cryst Solids doi: 10.1016/0022-3093(81)90089-2 – volume: 1 start-page: 1 issue: 015202 year: 2014 ident: 10.1016/j.rinp.2018.11.048_b0160 article-title: Solute–solvent interactions and atomic cohesion in GeSe4 and GeSe4In5 metallic glasses publication-title: Mater Res Express – volume: 6 start-page: 97 year: 2009 ident: 10.1016/j.rinp.2018.11.048_b0050 article-title: Activation energy of crystallization and enthalpy released of Se90In10-xSbx (x=0, 2, 4, 6, 8, 10) chalcogenide glasses publication-title: Chalcogenide Lett – volume: 391 start-page: 83 year: 2014 ident: 10.1016/j.rinp.2018.11.048_b0255 article-title: Electrical conductivity and dielectric relaxation of bulk Se70Bi(30–x)Tex, x=(0, 15) chalcogenide glasses publication-title: J Non-Cryst Solids doi: 10.1016/j.jnoncrysol.2014.03.002 – volume: 31 start-page: 553 year: 1982 ident: 10.1016/j.rinp.2018.11.048_b0190 article-title: Frequency-dependent loss in amorphous semiconductors publication-title: Adv Phys doi: 10.1080/00018738200101418 – volume: 22 start-page: 0903 year: 1970 ident: 10.1016/j.rinp.2018.11.048_b0230 article-title: Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors publication-title: Phil Mag doi: 10.1080/14786437008221061 – volume: 52 start-page: 69 year: 2016 ident: 10.1016/j.rinp.2018.11.048_b0140 article-title: Structural and optical properties of In doped Se–Te phase-change thin films: a material for optical data storage publication-title: Opt Mater doi: 10.1016/j.optmat.2015.12.008 – year: 2010 ident: 10.1016/j.rinp.2018.11.048_b0020 – volume: 3 start-page: 33 year: 2006 ident: 10.1016/j.rinp.2018.11.048_b0055 article-title: Energy band gap of Se100-xInx chalcogenide glasses publication-title: Chalcogenide Lett – volume: 6 start-page: 824 year: 2007 ident: 10.1016/j.rinp.2018.11.048_b0030 article-title: Phase-change materials for rewriteable data storage publication-title: Nat Mater doi: 10.1038/nmat2009 – volume: 36 start-page: 129 year: 1978 ident: 10.1016/j.rinp.2018.11.048_b0200 article-title: Errata publication-title: Philos Mag B – volume: 140 start-page: 207 year: 2007 ident: 10.1016/j.rinp.2018.11.048_b0130 article-title: A comparative study of the physical properties of CdS, Bi2S3 and composite CdS–Bi2S3 thin films for photosensor application publication-title: Sens Actuators, A doi: 10.1016/j.sna.2007.06.039 – volume: 27 start-page: 12036 year: 2016 ident: 10.1016/j.rinp.2018.11.048_b0270 article-title: Experimental studies of dielectric relaxation and thermally activated a.c. conduction in Se90Cd10−xSbx (2 ≤ x ≤ 8) chalcogenide glassy alloys using correlated barrier hopping model publication-title: J Mater Sci: Mater Electron – volume: 391 start-page: 83 year: 2008 ident: 10.1016/j.rinp.2018.11.048_b0260 article-title: Ac conductivity and dielectric properties of Ge20Se75In5 films publication-title: Vacuum – volume: 481 start-page: 144 year: 2016 ident: 10.1016/j.rinp.2018.11.048_b0060 article-title: A.C. conduction in glassy alloys of Se90Sb10-xAgx publication-title: Physica B doi: 10.1016/j.physb.2015.11.002 – volume: 330 start-page: 1 year: 2003 ident: 10.1016/j.rinp.2018.11.048_b0075 article-title: Optical properties and applications of chalcogenide glasses: a review publication-title: J Non-Cryst Solids doi: 10.1016/j.jnoncrysol.2003.08.064 – volume: 120 start-page: 137 year: 2015 ident: 10.1016/j.rinp.2018.11.048_b0155 article-title: Analysis of chemical ordering and fragility for Ge–Se–In glasses publication-title: Appl Phys A doi: 10.1007/s00339-015-9180-6 – volume: 520 start-page: 256 year: 2017 ident: 10.1016/j.rinp.2018.11.048_b0040 article-title: Chalcogenide glass: fabrication techniques, properties and applications publication-title: Ferroelectrics doi: 10.1080/00150193.2017.1412187 – volume: 7 start-page: 972 year: 2008 ident: 10.1016/j.rinp.2018.11.048_b0035 article-title: A map for phase-change materials publication-title: Nat Mater doi: 10.1038/nmat2330 – volume: 23 start-page: 3625 year: 2005 ident: 10.1016/j.rinp.2018.11.048_b0095 article-title: Optical nonlinearities in fibers: review, recent examples, and systems applications publication-title: J Light Technol doi: 10.1109/JLT.2005.855877 – volume: 2 start-page: 11 year: 2012 ident: 10.1016/j.rinp.2018.11.048_b0245 article-title: conductivity and dielectric behaviour of glassy Se100xZnx alloy publication-title: Open J Inorg Nonmet Mater – volume: 292 start-page: 31 year: 1997 ident: 10.1016/j.rinp.2018.11.048_b0165 article-title: Silicide formation in cobalt/amorphous silicon, amorphous CoSi and bias-induced CoSi films publication-title: Thin Solid Films doi: 10.1016/S0040-6090(96)08929-8 – volume: 115 start-page: 307 year: 1989 ident: 10.1016/j.rinp.2018.11.048_b0240 article-title: Dielectric relaxation in glassy Se and Se100−xTex alloys publication-title: Phys Status Solidi doi: 10.1002/pssa.2211150135 – volume: 7 start-page: 117 year: 2003 ident: 10.1016/j.rinp.2018.11.048_b0085 article-title: Curr. Opin. Ag doped chalcogenide glasses and their applications publication-title: Solid State Mater Sci doi: 10.1016/S1359-0286(03)00044-5 – volume: 1 start-page: 11 year: 2004 ident: 10.1016/j.rinp.2018.11.048_b0090 article-title: Chalcogenide glasses for optical and photonics applications publication-title: Chalcogenide Lett – volume: 266 start-page: 924 year: 2000 ident: 10.1016/j.rinp.2018.11.048_b0105 article-title: Raman study of ion irradiated GeSe films publication-title: J Non-Cryst Solids doi: 10.1016/S0022-3093(99)00867-4 – volume: 245 start-page: 256 year: 1998 ident: 10.1016/j.rinp.2018.11.048_b0175 article-title: Crystallization of AsxSe1−x from the glassy state (0.005< x< 0.03) publication-title: Physica B doi: 10.1016/S0921-4526(97)00669-8 – volume: 18 start-page: 41 year: 1969 ident: 10.1016/j.rinp.2018.11.048_b0025 article-title: Polarons in crystalline and non-crystalline materials publication-title: Adv Phys Adv Phys doi: 10.1080/00018736900101267 – volume: 101 start-page: 252 year: 2004 ident: 10.1016/j.rinp.2018.11.048_b0110 publication-title: Sens Actuators, B doi: 10.1016/j.snb.2004.03.014 – volume: 7 start-page: 19085 year: 2017 ident: 10.1016/j.rinp.2018.11.048_b0265 article-title: Study of dielectric relaxation and thermally activated ac conduction in lead containing topological glassy semiconductors publication-title: RSC Adv doi: 10.1039/C7RA00010C – volume: 13 start-page: 177 year: 2016 ident: 10.1016/j.rinp.2018.11.048_b0065 article-title: A.C. conductivity and dielectric properties of Se90Cd6Sb4 glassy alloy publication-title: Chalcogenide Lett doi: 10.3847/0004-637X/832/2/177 – volume: 21 start-page: 1450 year: 1986 ident: 10.1016/j.rinp.2018.11.048_b0045 article-title: Reversible electrical switching phenomena in disordered structures publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.21.1450 – volume: 326–327 start-page: 519 year: 2003 ident: 10.1016/j.rinp.2018.11.048_b0080 article-title: Production of complex chalcogenide glass optics by molding for thermal imaging publication-title: J Non-Cryst Solids doi: 10.1016/S0022-3093(03)00464-2 – volume: 477 start-page: 925 year: 2009 ident: 10.1016/j.rinp.2018.11.048_b0250 article-title: ac conductivity and dielectric properties of amorphous Se80Te20− xGex chalcogenide glass film compositions publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2008.11.129 |
SSID | ssj0001645511 |
Score | 2.3830514 |
Snippet | Amorphous Ge10−xSe60Te30Inx (0 ≤ x ≤ 6) chalcogenide glasses were prepared by melt quench technique. Surface morphology with the chemical composition of the... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 223 |
SubjectTerms | Ac conductivity Activation energy CBH model Chalcogenide glasses Dielectric relaxation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwELbQSUg0iKdYXpqCAoSyOLaTbEruxLEgQcOddF008QOCliy6W9BeRwktv4GGiv-0v4QZO7tKdTQ0URQ5juUZeb6JvvlGiEe2dhhMkFnrVZ1xi8KM40ymA7ZYWXKCwIXCb96W82Pz-qQ4GbX6Yk5YkgdOG_es9oXXdRsw18Fol7chDy4URltPE5t4-lLMGyVT8e9KaQgKcLalFOv0VXU1VMwkctdp17NYZT6bsoQnN_8ZRaUo3j8KTqOAc3hNXB2QIjxPK7wuLvn-hrgcGZv27Kb4zQzAc1gGcF3qZdNZ4MqUddxrwN4Bg7tPuFicA5cvfCVY6QCndgqUBLskGwtdD5FUyNzyZU8hCF76XG6-_1y_86U88lq-6tfwWG6-_dn8-EXX9e6ufAL2Ay7skpywcx4iEvdnwFz693CwP4fYZ-eWOD58cXQwz4a-C5k1uVxlhFC8cmQ8VcmgbaGdsdoi160WhBZzp1WlAqVeTpWtr2dlSzkVHRQ4k2hcpfRtsdfTiu8IMEoGZI00HUrjELGtLCqsSmdrKd1sIvLtvjd2ECXn3hiLZss--9iwrRq2FWUrDdlqIp7u3vmcJDkuHL3P5tyNZDnt-ICcrBmcrPmXk01EsXWGZkAmCXHQVN0FH7_7Pz5-T1yhKetEfLsv9lanX_wDQkKr9mF0-r9EEw1O priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free and Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VlZC4IMpDBFo0Bw4g5GS9u34dSUQJSHBpK-VmrfdRjIJTpQGltx7ptb-BS0_9T_klzKydEC49cLFsa9de7YxmvrG_mWHslSms9srzqHKiiKhFYUR-JpJeVzozqASeEoU_f0nHJ-rTJJnssNE6F4ZolZ3tb216sNbdnUG3m4Ozuh4cCYxdZFZkpJT0dw7tsFR5SOKbDP9-Z0kVggKKu2h8RBO63JmW5jWvGypbGed9KuZJbYC2_FMo47_lprZcz-FD9qDDjPCuXdYe23HNI3YvcDfN-WN2Q1zAC5h5sHXb1aY2QDkqy7DroBsLBPO-6-n0AiiR4ScCTAu6b_qA4bBtC8hC3UCgFxLLfNagM4IPLuarX9fLI5fyYyf5x2YJr_nq8nZ19RuPy81Z-gbMVz01M1TH2joImNydA7HqT2E0HEPouPOEnRy-Px6No64DQ2RUzBcRYhUnLIpRZNxLk0irjDSaMlgTxI2xlSITHoMwK9LKFXlaYXSFJkPnXCubCfmU7Ta44mcMlOBeU7U06VNltdZVZrTQWWpNwbnNeyxe73tpuvLk1CVjWq55aN9KklVJssK4pURZ9djbzZyztjjHnaOHJM7NSCqsHW7M5qdlp1ll4RIni8rrWHolbVz52FufKGkc6rESPZaslaH8R0_xUfUdL3_-n_NesPt4VbSst322u5j_cAcIgxbVy6DnfwBvBAze priority: 102 providerName: Elsevier |
Title | Study of dielectric relaxation and thermally activated a.c. conduction in multicomponent Ge10−xSe60Te30Inx (0 ≤ x ≤ 6) chalcogenide glasses using CBH model |
URI | https://dx.doi.org/10.1016/j.rinp.2018.11.048 https://doaj.org/article/9e5e39bfa13f43d1bf1fdf543ce69842 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuFU-xPFY-cAChrBzbeR0Q6laULVU5QFfsLXL8KEEhW3YXlL1xhCu_gQsn_tP-Emac7FKkqhIXK4kcx_KMM99YM98Q8khnRjnpWFBYngVYojBAOxMIpwqVaFACh4nCx6_j0Vi-mkSTLbIud9Qt4PxC1w7rSY1n1aD5tHwOG_7Z31itWVkj92SYDpCRU6ZXyA5YpgQ36nEH9_2ZSywBIKAPxjmy9yVZ0uXRXDzMP7bKU_qfM1nnzNDBdbLb4Ue61wr8Btmy9U1y1cdx6vkt8gvjApd06qgp2wo3paaYr9J4CVBVG4qQ76OqqiXFpIYvADYNVQM9oOAam5ZMlpY19aGGGHE-rcEw0Zc2ZKtvP5q3NmYnVrDDuqGP2err79X3n9A2m6v4CdXvVaWnoJqlsdTjczunGGF_SveHI-qr79wm44MXJ_ujoKvGEGgZskUAuMVyAyLlCXNCR8JILbTCbNYIMGRoBE-4A4fM8LiwWRoX4GnB70OlTEmTcHGHbNcw47uESs6cQuY04WJplFJFohVXSWx0xphJeyRcr3uuO6pyrJhR5euYtA85yipHWYEPk4OseuTp5p2zlqjj0t5DFOemJ5Js-wfT2Wne7dk8s5EVWeFUKJwUJixc6IyLpNAWdFryHonWypB3eKXFITBUecnH7_3XVO-Ta3CXtXFvD8j2YvbZPgQgtCj6ZGfv6M27o74_SID2cDLse43_AxpTEEk |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VIkQvFU-RlsccOICQk_Xu2o6PJKIk0PbSVMrNWu-jGAWnSgNKbz2WK7-BCyf-U34JM7YTwqUHLpZl79qrndHMN_Y3M4y9NKnVXnke5E6kAbUoDMjPBNLrXCcGlcBTovDRcTw4VR_G0XiL9Ve5MESrbGx_bdMra91c6TS72Tkvis6JwNhFJmlCSkl_526x24gGEurfMBz3_n5oiRWiAgq8aEJAM5rkmZrnNStKqlsZdttUzZP6AG04qKqO_4af2vA9B_fYbgMa4W29rvtsy5UP2J2KvGkuHrJfRAa8hKkHW9RtbQoDlKSyqLYddGmBcN4XPZlcAmUyfEOEaUG3TRswHrZ1BVkoSqj4hUQzn5bojeC9C_ny-sfixMV85CQflgt4xZdXv5fff-JxsT6LX4P5pCdmivpYWAcVKHcXQLT6M-j3BlC13HnETg_ejfqDoGnBEBgV8nmAYMUJi3IUCffSRNIqI42mFNYIgWNopUiExyjMijh3aTfOMbxCm6G7XCubCPmYbZe44icMlOBeU7k06WNltdZ5YrTQSWxNyrnttli42vfMNPXJqU3GJFsR0T5nJKuMZIWBS4ayarE36znndXWOG0f3SJzrkVRZu7ownZ1ljWplqYucTHOvQ-mVtGHuQ299pKRxqMhKtFi0UobsH0XFRxU3vHzvP-e9YHcHo6PD7HB4_HGf7eCdtKbAPWXb89lX9wwx0Tx_Xun8H-xZD_0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+dielectric+relaxation+and+thermally+activated+a.c.+conduction+in+multicomponent+Ge10%E2%88%92xSe60Te30Inx+%280%E2%80%AF%E2%89%A4%E2%80%AFx%E2%80%AF%E2%89%A4%E2%80%AF6%29+chalcogenide+glasses+using+CBH+model&rft.jtitle=Results+in+physics&rft.au=Singh%2C+Pravin+Kumar&rft.au=Sharma%2C+S.K.&rft.au=Tripathi%2C+S.K.&rft.au=Dwivedi%2C+D.K.&rft.date=2019-03-01&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=12&rft.spage=223&rft.epage=236&rft_id=info:doi/10.1016%2Fj.rinp.2018.11.048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rinp_2018_11_048 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon |