Numerical modeling and spatial stability analysis of the wall jet flow of nanofluids with thermophoresis and brownian effects

The present work describes similarity solution to a general scheme for the wall jet flow of nanofluids, accounting both the similarity branches (say upper and lower), allowed with respect to the suction and moving wall conditions in the context of Glauert type e-jets. Before proceeding with this, a...

Full description

Saved in:
Bibliographic Details
Published inPropulsion and Power Research Vol. 8; no. 3; pp. 210 - 220
Main Authors Jafarimoghaddam, Amin, Shafizadeh, Fatemeh
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2019
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text
ISSN2212-540X
2212-540X
DOI10.1016/j.jppr.2019.06.002

Cover

Loading…
Abstract The present work describes similarity solution to a general scheme for the wall jet flow of nanofluids, accounting both the similarity branches (say upper and lower), allowed with respect to the suction and moving wall conditions in the context of Glauert type e-jets. Before proceeding with this, a spatial stability analysis is performed to check the stability of the similarity modes. Results indicated that the upper similarity branch is possibly stable; whilst, the lower branch is not likely to reside in actual physics. The governing transport equations of mass and energy subject to a general two-phase modeling framework were transformed into similarity equations. The involved equations were then solved numerically employing the standard 4th order Runge-Kutta together with shooting technique. The influence of the involved parameters is shown graphically and in a detailed manner. In the last section, it is presented closed-form algebraic solution to the energy equation for the base fluids with a general convective boundary condition.
AbstractList The present work describes similarity solution to a general scheme for the wall jet flow of nanofluids, accounting both the similarity branches (say upper and lower), allowed with respect to the suction and moving wall conditions in the context of Glauert type e-jets. Before proceeding with this, a spatial stability analysis is performed to check the stability of the similarity modes. Results indicated that the upper similarity branch is possibly stable; whilst, the lower branch is not likely to reside in actual physics. The governing transport equations of mass and energy subject to a general two-phase modeling framework were transformed into similarity equations. The involved equations were then solved numerically employing the standard 4th order Runge-Kutta together with shooting technique. The influence of the involved parameters is shown graphically and in a detailed manner. In the last section, it is presented closed-form algebraic solution to the energy equation for the base fluids with a general convective boundary condition.
The present work describes similarity solution to a general scheme for the wall jet flow of nanofluids, accounting both the similarity branches (say upper and lower), allowed with respect to the suction and moving wall conditions in the context of Glauert type e-jets. Before proceeding with this, a spatial stability analysis is performed to check the stability of the similarity modes. Results indicated that the upper similarity branch is possibly stable; whilst, the lower branch is not likely to reside in actual physics. The governing transport equations of mass and energy subject to a general two-phase modeling framework were transformed into similarity equations. The involved equations were then solved numerically employing the standard 4th order Runge-Kutta together with shooting technique. The influence of the involved parameters is shown graphically and in a detailed manner. In the last section, it is presented closed-form algebraic solution to the energy equation for the base fluids with a general convective boundary condition. Keywords: Wall jet flow of nanofluids, Two-phase modeling, Spatial stability analysis, Similarity solution, Numerical modeling
Author Shafizadeh, Fatemeh
Jafarimoghaddam, Amin
Author_xml – sequence: 1
  givenname: Amin
  surname: Jafarimoghaddam
  fullname: Jafarimoghaddam, Amin
  email: a.jafarimoghaddam@gmail.com
  organization: Independent Researcher, Tehran, Iran1
– sequence: 2
  givenname: Fatemeh
  surname: Shafizadeh
  fullname: Shafizadeh, Fatemeh
  organization: Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
BookMark eNp9kc2KHCEUhSVMIJPJvEBWvkBX1KqyLcgmDPkZGCabBLITW6_Tt7C1UCdNL_LusdIJDFnM6urhfgc95zW5iCkCIW856zjj8t3czcuSO8H41DHZMSZekEshuNiMA_tx8eT8ilyXMrO2oUapenlJft0_HiCjNYEekoOA8YGa6GhZTMUmlmp2GLCemmrCqWChydO6B3o0IdAZKvUhHVcxmph8eERX6BHrfl3Kh7TsU4YVW113OR0jmkjBe7C1vCEvvQkFrv_OK_L908dvN182d18_3958uNvYgbO6mfrJ7KRTW8snIXq1E1PfbtyPXDCrpJNqYuBHx8XkvZB-UsKpgY8cVJusvyK3Z1-XzKyXjAeTTzoZ1H-ElB-0yRVtAO3ZINk0jnbwbnBeKcOGrfQMtmbcKumblzp72ZxKyeC1xdrCSrFmg0FzptdW9KzXVvTaimZSt8wbKv5D_z3lWej9GYIW0E-ErItFiBYc5pZh-wE-h_8GJA6qYw
CitedBy_id crossref_primary_10_1016_j_icheatmasstransfer_2021_105683
crossref_primary_10_1166_jon_2022_1845
crossref_primary_10_1016_j_euromechflu_2019_12_001
crossref_primary_10_1016_j_euromechflu_2020_05_004
crossref_primary_10_1166_jon_2020_1747
crossref_primary_10_1080_17455030_2022_2030502
crossref_primary_10_1002_zamm_202200498
crossref_primary_10_1007_s13369_019_04205_x
crossref_primary_10_1007_s41939_025_00749_8
crossref_primary_10_1002_htj_21664
crossref_primary_10_1016_j_euromechflu_2020_11_006
crossref_primary_10_1080_17455030_2022_2128224
crossref_primary_10_3390_lubricants11010022
crossref_primary_10_1016_j_csite_2021_101404
crossref_primary_10_1002_zamm_202100261
Cites_doi 10.1007/BF00127689
10.1016/j.euromechflu.2003.10.003
10.1016/j.euromechflu.2018.04.002
10.1115/1.2150834
10.1017/S0022112068001291
10.1108/EC-03-2016-0087
10.1016/j.tsep.2017.09.006
10.1063/1.858304
10.1098/rspa.1967.0151
10.1016/j.tsep.2018.09.008
10.1007/BF00039320
10.1017/S002211205600041X
10.1016/j.euromechflu.2018.12.007
10.1016/j.euromechflu.2007.07.002
10.1016/j.aej.2016.12.019
10.1016/j.euromechflu.2016.04.007
10.1016/j.applthermaleng.2016.03.086
ContentType Journal Article
Copyright 2019 Beihang University
Copyright_xml – notice: 2019 Beihang University
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jppr.2019.06.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2212-540X
EndPage 220
ExternalDocumentID oai_doaj_org_article_f0460955c4fd4df88a0476f0e7a5786f
10_1016_j_jppr_2019_06_002
S2212540X19300392
GroupedDBID 0R~
0SF
4.4
457
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IXB
KQ8
M~E
NCXOZ
O-L
O9-
OK1
ROL
SSZ
AAYWO
AAYXX
ABJCF
ACVFH
ADCNI
ADVLN
AEUPX
AFKRA
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PIMPY
PTHSS
ID FETCH-LOGICAL-c410t-939ab6d87c192238b293d871f5120c86d6890ef5d129ff26f982d84151e8d8403
IEDL.DBID IXB
ISSN 2212-540X
IngestDate Wed Aug 27 01:27:43 EDT 2025
Tue Jul 01 02:53:19 EDT 2025
Thu Apr 24 23:10:07 EDT 2025
Tue Jul 25 20:52:42 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Wall jet flow of nanofluids
Spatial stability analysis
Numerical modeling
Two-phase modeling
Similarity solution
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-939ab6d87c192238b293d871f5120c86d6890ef5d129ff26f982d84151e8d8403
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2212540X19300392
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_f0460955c4fd4df88a0476f0e7a5786f
crossref_citationtrail_10_1016_j_jppr_2019_06_002
crossref_primary_10_1016_j_jppr_2019_06_002
elsevier_sciencedirect_doi_10_1016_j_jppr_2019_06_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2019
2019-09-00
2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationTitle Propulsion and Power Research
PublicationYear 2019
Publisher Elsevier B.V
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co., Ltd
References Needham, Merkin (bib2) 1987; 21
Jafarimoghaddam (bib16) 2019; 75
Zaidi, Mohyud-Din (bib12) 2016
Glauert (bib3) 1956; 1
Merkin, Needham (bib1) 1986; 20
Jafarimoghaddam (bib18) 2017
Sherin (bib20) 1967; 299
Mohyud-Din, Zaidi (bib11) 2016
Sandeep, Animasaun (bib8) 2017
Jafarimoghaddam, Pop (bib17) 2018
Magyari, Keller (bib4) 2004; 23
Chen, Libby (bib21) 1968; 33
Cohen, Amitay, Bayly (bib5) 1992; 4
Raees, Xu, Raees-ul-Haq (bib7) 2014; 163
Zaidi, Mohyud-Din, Bin-Mohse (bib10) 2017; 34
Jafarimoghaddam (bib14) 2018
Buongiorno (bib19) 2006
Xu, Liao, Wu (bib6) 2008; 27
Durlofsky, Brady (bib22) 1998
Turkyilmazoglu (bib13) 2016
Zaidi, Mohyud-Din (bib9) 2015
Jafarimoghaddam (bib15) 2018
Sandeep (10.1016/j.jppr.2019.06.002_bib8) 2017
Mohyud-Din (10.1016/j.jppr.2019.06.002_bib11) 2016
Xu (10.1016/j.jppr.2019.06.002_bib6) 2008; 27
Jafarimoghaddam (10.1016/j.jppr.2019.06.002_bib18) 2017
Chen (10.1016/j.jppr.2019.06.002_bib21) 1968; 33
Durlofsky (10.1016/j.jppr.2019.06.002_bib22) 1998
Turkyilmazoglu (10.1016/j.jppr.2019.06.002_bib13) 2016
Buongiorno (10.1016/j.jppr.2019.06.002_bib19) 2006
Merkin (10.1016/j.jppr.2019.06.002_bib1) 1986; 20
Needham (10.1016/j.jppr.2019.06.002_bib2) 1987; 21
Jafarimoghaddam (10.1016/j.jppr.2019.06.002_bib14) 2018
Glauert (10.1016/j.jppr.2019.06.002_bib3) 1956; 1
Zaidi (10.1016/j.jppr.2019.06.002_bib9) 2015
Cohen (10.1016/j.jppr.2019.06.002_bib5) 1992; 4
Raees (10.1016/j.jppr.2019.06.002_bib7) 2014; 163
Jafarimoghaddam (10.1016/j.jppr.2019.06.002_bib15) 2018
Sherin (10.1016/j.jppr.2019.06.002_bib20) 1967; 299
Zaidi (10.1016/j.jppr.2019.06.002_bib10) 2017; 34
Zaidi (10.1016/j.jppr.2019.06.002_bib12) 2016
Magyari (10.1016/j.jppr.2019.06.002_bib4) 2004; 23
Jafarimoghaddam (10.1016/j.jppr.2019.06.002_bib16) 2019; 75
Jafarimoghaddam (10.1016/j.jppr.2019.06.002_bib17) 2018
References_xml – volume: 75
  start-page: 44
  year: 2019
  end-page: 57
  ident: bib16
  article-title: The magnetohydrodynamic wall jets: techniques for rendering similar and perturbative non-similar solutions
  publication-title: Eur. J. Mech. B Fluid
– volume: 20
  start-page: 21
  year: 1986
  end-page: 26
  ident: bib1
  article-title: A note on the wall-jet problem
  publication-title: J. Eng. Math.
– year: 1998
  ident: bib22
  article-title: The spatial stability of a class of similarity solutions
  publication-title: Phys. Fluids
– year: 2018
  ident: bib15
  article-title: Two-phase modeling of magnetic nanofluids jets over a stretching/shrinking wall
  publication-title: Therm. Sci. Eng. Prog.
– volume: 1
  start-page: 625
  year: 1956
  end-page: 643
  ident: bib3
  article-title: The wall jet
  publication-title: J. Fluid Mech.
– volume: 4
  start-page: 283
  year: 1992
  end-page: 289
  ident: bib5
  article-title: Laminar-turbulent transition of wall jet flows subjected to blowing and suction
  publication-title: Phys. Fluids
– year: 2016
  ident: bib12
  article-title: Analysis of wall jet flow for Soret, Dufour and chemical reaction effects in the presence of MHD with uniform suction/injection
  publication-title: Appl. Therm. Eng.
– year: 2018
  ident: bib17
  article-title: Numerical modeling of Glauert type exponentially decaying wall jet flows of nanofluids using Tiwari and Das' nanofluid model
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– volume: 21
  start-page: 17
  year: 1987
  end-page: 22
  ident: bib2
  article-title: A note on the wall-jet problem II
  publication-title: J. Eng. Math.
– volume: 27
  start-page: 322
  year: 2008
  end-page: 334
  ident: bib6
  article-title: A family of new solutions on the wall jet
  publication-title: Eur. J. Mech. B Fluid
– year: 2016
  ident: bib11
  article-title: Soret and MHD effects on bioconvection wall jet flow of nanofluid containing gyrotactic microorganisms
  publication-title: Neural Comput. Appl.
– year: 2018
  ident: bib14
  article-title: Wall jet flows of Glauert type: heat transfer characteristics and the thermal instabilities in analytic closed forms
  publication-title: Eur. J. Mech. B Fluid
– volume: 299
  start-page: 491
  year: 1967
  end-page: 507
  ident: bib20
  article-title: Asymptotic behavior of velocity profiles in the Prandt boundary layer theory
  publication-title: Proc. R. Soc. London Ser. A
– year: 2017
  ident: bib8
  article-title: Heat transfer in wall jet flow of magnetic-nanofluids with variable magnetic field
  publication-title: Alexandria Eng. J.
– volume: 34
  start-page: 739
  year: 2017
  end-page: 753
  ident: bib10
  article-title: A comparative study of wall jet flow containing carbon nanotubes with convective heat transfer and MHD
  publication-title: Eng. Comput.
– year: 2017
  ident: bib18
  article-title: Closed form analytic solutions to heat and mass transfer characteristics of wall jet flow of nanofluids
  publication-title: Therm. Sci. Eng. Prog.
– volume: 33
  start-page: 273
  year: 1968
  end-page: 282
  ident: bib21
  article-title: Boundary layers with small departures from the Falkner-Skan profile
  publication-title: J. Fluid Mech.
– volume: 23
  start-page: 601
  year: 2004
  end-page: 605
  ident: bib4
  article-title: The algebraically decaying wall jet
  publication-title: Eur. J. Mech. B Fluid
– year: 2006
  ident: bib19
  article-title: Convective transport in nanofluids
  publication-title: J. Heat Transf.
– year: 2015
  ident: bib9
  article-title: Convective heat transfer and MHD effects on two dimensional wall jet flow of a nanofluid with passive control model
  publication-title: Aero. Sci. Technol.
– volume: 163
  year: 2014
  ident: bib7
  article-title: Explicit solutions of wall jet flow subject to a convective boundary condition
  publication-title: Bound. Value Probl.
– year: 2016
  ident: bib13
  article-title: Flow of nanofluid plane wall jet and heat transfer
  publication-title: Eur. J. Mech. B Fluid
– volume: 163
  year: 2014
  ident: 10.1016/j.jppr.2019.06.002_bib7
  article-title: Explicit solutions of wall jet flow subject to a convective boundary condition
  publication-title: Bound. Value Probl.
– volume: 21
  start-page: 17
  year: 1987
  ident: 10.1016/j.jppr.2019.06.002_bib2
  article-title: A note on the wall-jet problem II
  publication-title: J. Eng. Math.
  doi: 10.1007/BF00127689
– year: 2018
  ident: 10.1016/j.jppr.2019.06.002_bib17
  article-title: Numerical modeling of Glauert type exponentially decaying wall jet flows of nanofluids using Tiwari and Das' nanofluid model
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– year: 2016
  ident: 10.1016/j.jppr.2019.06.002_bib11
  article-title: Soret and MHD effects on bioconvection wall jet flow of nanofluid containing gyrotactic microorganisms
  publication-title: Neural Comput. Appl.
– year: 1998
  ident: 10.1016/j.jppr.2019.06.002_bib22
  article-title: The spatial stability of a class of similarity solutions
  publication-title: Phys. Fluids
– volume: 23
  start-page: 601
  year: 2004
  ident: 10.1016/j.jppr.2019.06.002_bib4
  article-title: The algebraically decaying wall jet
  publication-title: Eur. J. Mech. B Fluid
  doi: 10.1016/j.euromechflu.2003.10.003
– year: 2018
  ident: 10.1016/j.jppr.2019.06.002_bib14
  article-title: Wall jet flows of Glauert type: heat transfer characteristics and the thermal instabilities in analytic closed forms
  publication-title: Eur. J. Mech. B Fluid
  doi: 10.1016/j.euromechflu.2018.04.002
– year: 2006
  ident: 10.1016/j.jppr.2019.06.002_bib19
  article-title: Convective transport in nanofluids
  publication-title: J. Heat Transf.
  doi: 10.1115/1.2150834
– volume: 33
  start-page: 273
  year: 1968
  ident: 10.1016/j.jppr.2019.06.002_bib21
  article-title: Boundary layers with small departures from the Falkner-Skan profile
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112068001291
– volume: 34
  start-page: 739
  issue: 3
  year: 2017
  ident: 10.1016/j.jppr.2019.06.002_bib10
  article-title: A comparative study of wall jet flow containing carbon nanotubes with convective heat transfer and MHD
  publication-title: Eng. Comput.
  doi: 10.1108/EC-03-2016-0087
– year: 2017
  ident: 10.1016/j.jppr.2019.06.002_bib18
  article-title: Closed form analytic solutions to heat and mass transfer characteristics of wall jet flow of nanofluids
  publication-title: Therm. Sci. Eng. Prog.
  doi: 10.1016/j.tsep.2017.09.006
– volume: 4
  start-page: 283
  year: 1992
  ident: 10.1016/j.jppr.2019.06.002_bib5
  article-title: Laminar-turbulent transition of wall jet flows subjected to blowing and suction
  publication-title: Phys. Fluids
  doi: 10.1063/1.858304
– volume: 299
  start-page: 491
  year: 1967
  ident: 10.1016/j.jppr.2019.06.002_bib20
  article-title: Asymptotic behavior of velocity profiles in the Prandt boundary layer theory
  publication-title: Proc. R. Soc. London Ser. A
  doi: 10.1098/rspa.1967.0151
– year: 2018
  ident: 10.1016/j.jppr.2019.06.002_bib15
  article-title: Two-phase modeling of magnetic nanofluids jets over a stretching/shrinking wall
  publication-title: Therm. Sci. Eng. Prog.
  doi: 10.1016/j.tsep.2018.09.008
– volume: 20
  start-page: 21
  year: 1986
  ident: 10.1016/j.jppr.2019.06.002_bib1
  article-title: A note on the wall-jet problem
  publication-title: J. Eng. Math.
  doi: 10.1007/BF00039320
– volume: 1
  start-page: 625
  year: 1956
  ident: 10.1016/j.jppr.2019.06.002_bib3
  article-title: The wall jet
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211205600041X
– volume: 75
  start-page: 44
  year: 2019
  ident: 10.1016/j.jppr.2019.06.002_bib16
  article-title: The magnetohydrodynamic wall jets: techniques for rendering similar and perturbative non-similar solutions
  publication-title: Eur. J. Mech. B Fluid
  doi: 10.1016/j.euromechflu.2018.12.007
– volume: 27
  start-page: 322
  issue: 10
  year: 2008
  ident: 10.1016/j.jppr.2019.06.002_bib6
  article-title: A family of new solutions on the wall jet
  publication-title: Eur. J. Mech. B Fluid
  doi: 10.1016/j.euromechflu.2007.07.002
– year: 2015
  ident: 10.1016/j.jppr.2019.06.002_bib9
  article-title: Convective heat transfer and MHD effects on two dimensional wall jet flow of a nanofluid with passive control model
  publication-title: Aero. Sci. Technol.
– year: 2017
  ident: 10.1016/j.jppr.2019.06.002_bib8
  article-title: Heat transfer in wall jet flow of magnetic-nanofluids with variable magnetic field
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2016.12.019
– year: 2016
  ident: 10.1016/j.jppr.2019.06.002_bib13
  article-title: Flow of nanofluid plane wall jet and heat transfer
  publication-title: Eur. J. Mech. B Fluid
  doi: 10.1016/j.euromechflu.2016.04.007
– year: 2016
  ident: 10.1016/j.jppr.2019.06.002_bib12
  article-title: Analysis of wall jet flow for Soret, Dufour and chemical reaction effects in the presence of MHD with uniform suction/injection
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.03.086
SSID ssj0002856836
Score 2.185173
Snippet The present work describes similarity solution to a general scheme for the wall jet flow of nanofluids, accounting both the similarity branches (say upper and...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 210
SubjectTerms Numerical modeling
Similarity solution
Spatial stability analysis
Two-phase modeling
Wall jet flow of nanofluids
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykxdRVJxf5OBNim2XZOlRxSGCOznYraRNgiu1LVvH8OD_7ntJN3qaF0-lj3yU9x75vSSvv0fIXWTDjOcmCzjTLGAjLQIII5JAaJXFWlqRu2oN71PxOmNvcz7vlfrCnDBPD-wV92Dx5i7hPGdWM22lVCEbCxuasQJnExZXX8C83maqcEdGXEhXHzCOHdl_OO_-mPHJXUXTIBlolDjyzu5MZYtKjry_B049wJkck6MuUqSP_gtPyIGpTsnPdO2vWErqatgA8FBVabrCxGgQQqznsl2_QerZRmhtKQR5dKPKkhampbasNyisVFXbcr3QK4qHsdho-VU3nzVswKEbjprhHh38h3ZZH2dkNnn5eH4NugoKQc6isA2SUaIyoeU4h0AOwDkDcIe3yALMh7kUWsgkNJZrQH1rY2ETCQYCTI-MhGc4OieDqq7MBaGwFlimuDACAC0BCzOex7EaMaS8i5kYkmirwTTv6MWxykWZbvPIihS1nqLWU5dMFw_J_a5P48k19rZ-QsPsWiIxthOAu6Sdu6R_ucuQ8K1Z0y7G8LEDDLXYM_nlf0x-RQ5xSJ-idk0G7XJtbiCmabNb576_vOzzIw
  priority: 102
  providerName: Directory of Open Access Journals
Title Numerical modeling and spatial stability analysis of the wall jet flow of nanofluids with thermophoresis and brownian effects
URI https://dx.doi.org/10.1016/j.jppr.2019.06.002
https://doaj.org/article/f0460955c4fd4df88a0476f0e7a5786f
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLCwIBIjyqDywoahJarvOCBUVAsHAQ2SLnNiGViGJSivEwH_nznEqWBiYIp_OTnS27rvYn-8IOY1smPPC5AFnmgVsqEUAYUQSCK3yWEsrClet4fZOXD2x65Sna2Tc3YVBWqX3_a1Pd97aSwbemoNmOh08xOB1Id5IIQTBG6boh4dMukt86cVqnyWWXEhXKRD1kQeQ-rszLc1r1jSYFjRKXBpPv7vS4ZNL4_8Dpn5Az2SbbPmYkZ63n7VD1ky1S77ulu1hS0ldNRuAIKoqTd-RIg1CiPoc7_UTpG3eEVpbCuEe_VBlSWdmQW1Zf6CwUlVty-VUv1PclkWl-VvdvNbwKw7dcNQc_9ZhJVHP_9gjT5PLx_FV4GspBAWLwkWQDBOVCy1HBYR0ANM5wDy0IguAHxZSaCGT0FiuAf-tjYVNJEwVoHtkJDzD4T5Zr-rKHBAKXsEyxYURAG0JzDXjRRwrsD0PRcxEj0SdBbPCJxrHehdl1jHKZhlaPUOrZ45WF_fI2apP06bZ-FP7AidmpYkpsp2gnr9kfo1kFo98E84LZjXTVkoVspGwoRkp8FLC9gjvpjX7teJgqOkfLz_8Z78jsomtlp92TNYX86U5gYBmkffJxvnN_fNN320I9N36_QaPqPZq
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLYQHLbLBGLTug3wgRuKmqS26xyhoioDehlIuVlObG-tQhKVVogD_533HKeCC4edorzYSWRb7_tsf36PkNPExQUvbRFxZljERkZEQCOySBhdpEY6UfpsDbdzMbtnv3Oe75BJfxYGZZXB93c-3XvrYBmG1hy2i8XwTwpeF_hGDhQET5iCH94DNjDG_A1X-cV2oSWVXEifKhAroBAgD4dnOp3Xsm0xLmiS-TieYXmlBygfx_8NTr3Bnuk--RJIIz3v_uuA7Nj6kLzMN91uS0V9OhvAIKprQx9RIw1GoH1e-PoM1i7wCG0cBb5Hn3RV0aVdU1c1T2isdd24arMwjxTXZbHQ6qFp_zUwF4dq-NYCp-swlGgQgHwl99PLu8ksCskUopIl8TrKRpkuhJHjEjgd4HQBOA93iQPEj0spjJBZbB03QACcS4XLJPQVwHtiJVzj0TeyWze1_U4ouAXHNBdWALZl0NmMl2mqRwyj36VMDEjSt6AqQ6RxTHhRqV5StlTY6gpbXXldXTogZ9s6bRdn48PSF9gx25IYI9sbmtVfFQaJcrjnm3FeMmeYcVLqmI2Fi-1Yg5sSbkB4363q3ZCDVy0--PiP_6x3Qj7N7m5v1M3V_Pon-YxPOrHaL7K7Xm3sEbCbdXHsR-8rbEj28Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+modeling+and+spatial+stability+analysis+of+the+wall+jet+flow+of+nanofluids+with+thermophoresis+and+brownian+effects&rft.jtitle=Propulsion+and+Power+Research&rft.au=Jafarimoghaddam%2C+Amin&rft.au=Shafizadeh%2C+Fatemeh&rft.date=2019-09-01&rft.issn=2212-540X&rft.eissn=2212-540X&rft.volume=8&rft.issue=3&rft.spage=210&rft.epage=220&rft_id=info:doi/10.1016%2Fj.jppr.2019.06.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jppr_2019_06_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-540X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-540X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-540X&client=summon