DFT investigation of H2S adsorption on graphenenanosheets and nanoribbons: Comparative study
Graphenenanosheet (GNS), armchair graphenenanoribbon (AGNR), and zigzag graphenenanoribbon (ZGNR) systems were investigated by first principle calculations using the density functional theory (DFT). The DFT calculations explored the potential of utilization of these materials as gas sensors to detec...
Saved in:
Published in | Superlattices and microstructures Vol. 146; p. 106650 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphenenanosheet (GNS), armchair graphenenanoribbon (AGNR), and zigzag graphenenanoribbon (ZGNR) systems were investigated by first principle calculations using the density functional theory (DFT). The DFT calculations explored the potential of utilization of these materials as gas sensors to detect hydrogen sulfide (H2S) gas. H2S gas adsorption was explored using: the adsorption energy (Eads), adsorption distance (D), charge transfer (ΔQ), density of states (DOS), and band structure of the generated systems before and after adsorption of H2S. The results showed that Eads of bare ZGNR was the highest of −0.171 eV as compared with GNS and AGNR. The surfaces of GNS, AGNR, and ZGNR have been modified with epoxy and then with a hydroxyl groups. The adsorption capacity of the three systems has been enhanced after the modifications with both the epoxy and hydroxyl groups. Based on the adsorption energy and charge transfer results, hydroxyl modified ZGNR system can be used effectively for detection applications of H2S since it exhibits the highest charge transfer and large adsorption energy.
•Graphene nanosheet, armchair nanoribbon, and zigzag nanoribbon were investigated by DFT.•The materials were then used as gas sensors to detect H2S gas.•Adsorption energy, adsorption distance, charge transfer, density of states, and band structure were investigated.•The surfaces of graphene systems were modified with epoxy and hydroxyl groups.•The adsorption capacity of the three systems has been enhanced after the modifications. |
---|---|
AbstractList | Graphenenanosheet (GNS), armchair graphenenanoribbon (AGNR), and zigzag graphenenanoribbon (ZGNR) systems were investigated by first principle calculations using the density functional theory (DFT). The DFT calculations explored the potential of utilization of these materials as gas sensors to detect hydrogen sulfide (H2S) gas. H2S gas adsorption was explored using: the adsorption energy (Eads), adsorption distance (D), charge transfer (ΔQ), density of states (DOS), and band structure of the generated systems before and after adsorption of H2S. The results showed that Eads of bare ZGNR was the highest of −0.171 eV as compared with GNS and AGNR. The surfaces of GNS, AGNR, and ZGNR have been modified with epoxy and then with a hydroxyl groups. The adsorption capacity of the three systems has been enhanced after the modifications with both the epoxy and hydroxyl groups. Based on the adsorption energy and charge transfer results, hydroxyl modified ZGNR system can be used effectively for detection applications of H2S since it exhibits the highest charge transfer and large adsorption energy.
•Graphene nanosheet, armchair nanoribbon, and zigzag nanoribbon were investigated by DFT.•The materials were then used as gas sensors to detect H2S gas.•Adsorption energy, adsorption distance, charge transfer, density of states, and band structure were investigated.•The surfaces of graphene systems were modified with epoxy and hydroxyl groups.•The adsorption capacity of the three systems has been enhanced after the modifications. |
ArticleNumber | 106650 |
Author | Salih, Ehab Ayesh, Ahmad I. |
Author_xml | – sequence: 1 givenname: Ehab surname: Salih fullname: Salih, Ehab organization: Department of Mathematics, Statistics and Physics, Qatar University, P. O. Box 2713, Doha, Qatar – sequence: 2 givenname: Ahmad I. surname: Ayesh fullname: Ayesh, Ahmad I. email: ayesh@qu.edu.qa organization: Department of Mathematics, Statistics and Physics, Qatar University, P. O. Box 2713, Doha, Qatar |
BookMark | eNp9kNFKwzAUhoNMcJu-gFd5gc6Ttkta8Uamc8LAC-edENLkdMvYkpLUwd7e1nrlhVeH88P3w_9NyMh5h4TcMpgxYPxuP4vN0c5SSPuA8zlckDGDkicZF2JExiDyMuGQ8SsyiXEPAGXOxJh8Pi031LoTxtZuVWu9o76mq_SdKhN9aIbE0W1QzQ4dOuV83CG2kSpnaP8GW1XexXu68MdGha7khDS2X-Z8TS5rdYh483un5GP5vFmskvXby-vicZ3onEGblAzA1CyHvERhCpHxlDMleA5qzhB1UfNUo07BGKVEobOqZrqbWBSZgIqJbEqKoVcHH2PAWmrb_oxpg7IHyUD2luRe9pZkb0kOljo0_YM2wR5VOP8PPQwQdqNOFoOM2qLTaGxA3Urj7X_4NyL7hBg |
CitedBy_id | crossref_primary_10_1016_j_mtcomm_2020_101823 crossref_primary_10_1016_j_spmi_2021_107098 crossref_primary_10_1016_j_apt_2020_11_010 crossref_primary_10_1007_s11224_023_02265_2 crossref_primary_10_1016_j_physleta_2020_126775 crossref_primary_10_1016_j_comptc_2023_114222 crossref_primary_10_1016_j_chemphys_2022_111624 crossref_primary_10_1016_j_cartre_2024_100362 crossref_primary_10_1007_s00894_021_04787_0 crossref_primary_10_1088_1361_6463_ad3a73 crossref_primary_10_1016_j_apsusc_2022_153234 crossref_primary_10_1016_j_snb_2021_130135 crossref_primary_10_2116_analsci_21P139 crossref_primary_10_1016_j_physleta_2021_127798 crossref_primary_10_1016_j_mssp_2024_108885 crossref_primary_10_1016_j_susc_2022_122178 crossref_primary_10_3390_nano12101757 crossref_primary_10_1038_s41598_023_46153_5 crossref_primary_10_1007_s00894_022_05417_z crossref_primary_10_1016_j_physe_2021_114844 crossref_primary_10_1007_s00894_022_05255_z crossref_primary_10_1016_j_seppur_2021_119605 crossref_primary_10_1016_j_apsusc_2020_148386 crossref_primary_10_1021_acsomega_2c04319 crossref_primary_10_1007_s43832_024_00160_3 crossref_primary_10_1016_j_physe_2022_115188 crossref_primary_10_1039_D1TC04671C crossref_primary_10_1016_j_rinp_2022_105333 crossref_primary_10_1016_j_ijhydene_2024_01_137 crossref_primary_10_1016_j_physleta_2022_128163 |
Cites_doi | 10.1007/s00894-019-3974-y 10.1016/j.apsusc.2017.08.216 10.1016/j.snb.2015.06.075 10.1038/nmat1849 10.1016/j.sna.2018.09.068 10.1016/j.physe.2020.114220 10.1016/j.cplett.2019.07.003 10.1109/JPROC.2013.2261271 10.1039/C3CP53777C 10.1126/science.1102896 10.1016/j.commatsci.2016.01.034 10.1103/PhysRevB.62.R16349 10.1016/j.scitotenv.2006.01.034 10.1016/j.cplett.2020.137280 10.1088/0022-3727/47/25/255301 10.1103/PhysRevB.83.165411 10.1109/TED.2019.2900848 10.1016/j.spmi.2016.08.044 10.1016/j.snb.2015.07.070 10.1039/C6RA21293J 10.1103/PhysRevB.46.16067 10.1080/17415993.2015.1079711 10.1016/j.snb.2016.03.078 10.1016/j.physe.2018.02.022 10.1016/j.physe.2019.113626 10.1017/S1481803500014408 10.1103/PhysRevLett.102.096601 10.1142/S0218625X18501706 10.1016/j.cplett.2019.02.013 10.1016/j.physb.2013.05.019 10.1016/j.physe.2019.01.012 10.1016/j.apsusc.2012.08.083 10.3390/mi11050453 10.1016/j.jiec.2015.03.021 10.1016/j.physe.2019.113794 10.1016/j.apsusc.2018.09.147 10.1016/j.spmi.2019.106248 10.1016/j.spmi.2019.106235 10.1016/j.physe.2019.113691 10.1016/j.spmi.2015.07.069 10.1038/nature04233 10.1039/c2nr33164k 10.1016/j.elspec.2018.11.006 10.1002/qua.24077 10.1016/j.cplett.2015.07.018 10.1039/c1cp21148j 10.1007/s11664-017-5626-2 10.1103/PhysRevLett.77.3865 10.1016/j.apsusc.2016.02.103 10.1021/nl2009058 10.1007/s11783-013-0491-6 10.1063/1.3126451 10.1063/1.1740588 10.1038/nature05180 10.1038/363603a0 10.1016/j.orgel.2015.01.013 10.1002/jcc.20495 10.1186/2228-5326-3-7 10.3390/nano10020299 10.1016/j.susc.2017.10.016 10.1016/j.snb.2017.06.103 10.1039/C4CS00379A |
ContentType | Journal Article |
Copyright | 2020 The Authors |
Copyright_xml | – notice: 2020 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.spmi.2020.106650 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-3677 |
ExternalDocumentID | 10_1016_j_spmi_2020_106650 S0749603620310740 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LG5 M24 M37 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c410t-9100df14049e7d8736261a7640a51eec8f62cec20ddaa78c3bf1c65088370b173 |
IEDL.DBID | .~1 |
ISSN | 0749-6036 |
IngestDate | Tue Jul 01 01:35:15 EDT 2025 Thu Apr 24 23:00:15 EDT 2025 Fri Feb 23 02:48:00 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | H2S adsorption Gas sensor Nanoribbons Zigzag Graphene Armchair |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-9100df14049e7d8736261a7640a51eec8f62cec20ddaa78c3bf1c65088370b173 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0749603620310740 |
ParticipantIDs | crossref_citationtrail_10_1016_j_spmi_2020_106650 crossref_primary_10_1016_j_spmi_2020_106650 elsevier_sciencedirect_doi_10_1016_j_spmi_2020_106650 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 2020-10-00 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationTitle | Superlattices and microstructures |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Bagherzadeh-Nobari, Istadeh, Kalantarinejad (bib14) 2020; 115 Jeong, Lee, Shin, Choi, Shin, Kang, Choi (bib31) 2011; 11 Gui, Hao, Li, Tang, Xu (bib36) 2019; 135 Gao, Xiao, Henkelman, Liechti, Huang (bib43) 2014; 47 Mulliken (bib49) 1955; 23 Lambert, Goodwin, Stefani, Strosher (bib3) 2006; 367 Belley, Bernard, Côté, Paquet, Poitras (bib4) 2005; 7 Dresselhaus, Terrones (bib11) 2013; 101 Liu, Gui, Ji, Tang, Zhou, Li, Zhang (bib44) 2019; 465 Neugebauer, Scheffler (bib45) 1992; 46 Manna, Chakrabarti, Guha (bib34) 2019; 66 Ranea, Quiña, Yalet (bib1) 2019; 720 Dutta, Manna, Pati (bib20) 2009; 102 Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos, Grigorieva, Firsov (bib22) 2004; 306 Zhou, Shen, Tian, Wang, Zhang, Chen (bib55) 2013; 5 Khaleghi Abbasabadi, Rashidi, Safaei-Ghomi, Khodabakhshi, Rahighi (bib56) 2015; 36 Oftadeh, Gholamian, Abdallah (bib17) 2013; 3 Rashid, Koel, Rang, Ziko (bib16) 2020; 11 Liu, Zhang, Deng, Fan, Tang (bib29) 2015; 18 Srivastava, Suman, Shrivastava, Srivastava (bib9) 2019; 731 Ayesh, Ahmed, Al-Rashid, Alarrouqi, Saleh, Abdulrehman, Haik, Al-Sulaiti (bib6) 2018; 283 Kawai, Miyamoto, Sugino, Koga (bib53) 2000; 62 Qiu, Nguyen, Skafidas (bib27) 2014; 16 Alaie, Jahangiri, Rashidi, Asl, Izadi (bib57) 2015; 29 El‐Sherbiny, Salih (bib10) 2018 Taluja, SanthiBhushan, Yadav, Srivastava (bib50) 2016; 98 Ayesh, Karam, Awwad, Meetani (bib39) 2015; 221 Qiu, Zhang, Yang (bib30) 2011; 13 Haija, Ayesh, Ahmed, Katsiotis (bib7) 2016; 369 Aghaei, Monshi, Calizo (bib47) 2016; 6 Padilla, de la Cruz, Alvarado, Díaz, García, Cocoletzi (bib51) 2019; 25 Baptista, Belhout, Giordani, Quinn (bib13) 2015; 44 Novoselov, Geim, Morozov, Jiang, Katsnelson, Grigorieva, Dubonos, Firsov (bib23) 2005; 438 Perdew, Burke, Ernzerhof (bib41) 1996; 77 Chatterjee, Chatterjee, Ray, Chakraborty (bib54) 2015; 221 Geim, Novoselov (bib19) 2007; 6 Iijima, Ichihashi (bib12) 1993; 363 Grimme (bib42) 2006; 27 Peng, Li (bib37) 2013; 7 Osouleddini, Rastegar (bib38) 2019; 232 Anasthasiya, Khaneja, Jeyaprakash (bib25) 2017; 46 Ayesh, Abu-Hani, Mahmoud, Haik (bib5) 2016; 231 Son, Cohen, Louie (bib26) 2006; 444 Kroes, Akhukov, Los, Pineau, Fasolino (bib52) 2011; 83 Faye, Eduok, Szpunar, Beye (bib18) 2020; 117 Gupta, Jaiswal (bib24) 2015; 86 Ganji, Sharifi, Ardjmand, Ahangari (bib33) 2012; 261 Faye, Raj, Mittal, Beye (bib61) 2016; 117 Ren, Li, Luo, Yang (bib21) 2009; 94 Borisova, Antonov, Proykova (bib62) 2013; 113 Manna, Raha, Chakrabarti, Guha (bib46) 2018; 65 Bo, Guo, Wei, Yang, Yan, Cen (bib48) 2019; 109 Sharma, Verma (bib32) 2013; 427 Faye, Eduok, Szpunar, Samoura, Beye (bib63) 2018; 668 Yousefian, Ghasemy, Askarieh, Rashidi (bib15) 2019; 114 Wasfi, Awwad, Ayesh (bib28) 2019; 1 Cortés-Arriagada, Villegas-Escobar, Ortega (bib58) 2018; 427 Khodadadi (bib64) 2018; 99 Sriram, Nagarajan, Chandiramouli (bib2) 2015; 636 Suman, Srivastava, Shrivastava, Srivastava, Jacob, Malvi (bib60) 2020 Salih, Ayesh (bib40) 2020 Jia, Zhang, Zhang, An (bib65) 2019; 134 Abu-Hani, Greish, Mahmoud, Awwad, Ayesh (bib8) 2017; 253 Abbasi, Sardroodi (bib35) 2019; 26 Gao, Zhou, Wang, Xu, Zeng (bib59) 2020; 10 Padilla (10.1016/j.spmi.2020.106650_bib51) 2019; 25 Alaie (10.1016/j.spmi.2020.106650_bib57) 2015; 29 Ayesh (10.1016/j.spmi.2020.106650_bib6) 2018; 283 Kawai (10.1016/j.spmi.2020.106650_bib53) 2000; 62 Qiu (10.1016/j.spmi.2020.106650_bib27) 2014; 16 Salih (10.1016/j.spmi.2020.106650_bib40) 2020 Manna (10.1016/j.spmi.2020.106650_bib34) 2019; 66 Rashid (10.1016/j.spmi.2020.106650_bib16) 2020; 11 Dutta (10.1016/j.spmi.2020.106650_bib20) 2009; 102 Chatterjee (10.1016/j.spmi.2020.106650_bib54) 2015; 221 Ganji (10.1016/j.spmi.2020.106650_bib33) 2012; 261 Gupta (10.1016/j.spmi.2020.106650_bib24) 2015; 86 Liu (10.1016/j.spmi.2020.106650_bib44) 2019; 465 Taluja (10.1016/j.spmi.2020.106650_bib50) 2016; 98 Belley (10.1016/j.spmi.2020.106650_bib4) 2005; 7 Novoselov (10.1016/j.spmi.2020.106650_bib23) 2005; 438 Qiu (10.1016/j.spmi.2020.106650_bib30) 2011; 13 Manna (10.1016/j.spmi.2020.106650_bib46) 2018; 65 Suman (10.1016/j.spmi.2020.106650_bib60) 2020 Gao (10.1016/j.spmi.2020.106650_bib59) 2020; 10 Borisova (10.1016/j.spmi.2020.106650_bib62) 2013; 113 Geim (10.1016/j.spmi.2020.106650_bib19) 2007; 6 Dresselhaus (10.1016/j.spmi.2020.106650_bib11) 2013; 101 Gui (10.1016/j.spmi.2020.106650_bib36) 2019; 135 Baptista (10.1016/j.spmi.2020.106650_bib13) 2015; 44 Novoselov (10.1016/j.spmi.2020.106650_bib22) 2004; 306 Cortés-Arriagada (10.1016/j.spmi.2020.106650_bib58) 2018; 427 Bo (10.1016/j.spmi.2020.106650_bib48) 2019; 109 Haija (10.1016/j.spmi.2020.106650_bib7) 2016; 369 Neugebauer (10.1016/j.spmi.2020.106650_bib45) 1992; 46 Khaleghi Abbasabadi (10.1016/j.spmi.2020.106650_bib56) 2015; 36 Jia (10.1016/j.spmi.2020.106650_bib65) 2019; 134 Osouleddini (10.1016/j.spmi.2020.106650_bib38) 2019; 232 Faye (10.1016/j.spmi.2020.106650_bib61) 2016; 117 Ranea (10.1016/j.spmi.2020.106650_bib1) 2019; 720 Sharma (10.1016/j.spmi.2020.106650_bib32) 2013; 427 El‐Sherbiny (10.1016/j.spmi.2020.106650_bib10) 2018 Lambert (10.1016/j.spmi.2020.106650_bib3) 2006; 367 Ren (10.1016/j.spmi.2020.106650_bib21) 2009; 94 Sriram (10.1016/j.spmi.2020.106650_bib2) 2015; 636 Abu-Hani (10.1016/j.spmi.2020.106650_bib8) 2017; 253 Peng (10.1016/j.spmi.2020.106650_bib37) 2013; 7 Aghaei (10.1016/j.spmi.2020.106650_bib47) 2016; 6 Faye (10.1016/j.spmi.2020.106650_bib63) 2018; 668 Bagherzadeh-Nobari (10.1016/j.spmi.2020.106650_bib14) 2020; 115 Mulliken (10.1016/j.spmi.2020.106650_bib49) 1955; 23 Zhou (10.1016/j.spmi.2020.106650_bib55) 2013; 5 Grimme (10.1016/j.spmi.2020.106650_bib42) 2006; 27 Ayesh (10.1016/j.spmi.2020.106650_bib5) 2016; 231 Anasthasiya (10.1016/j.spmi.2020.106650_bib25) 2017; 46 Liu (10.1016/j.spmi.2020.106650_bib29) 2015; 18 Wasfi (10.1016/j.spmi.2020.106650_bib28) 2019; 1 Khodadadi (10.1016/j.spmi.2020.106650_bib64) 2018; 99 Faye (10.1016/j.spmi.2020.106650_bib18) 2020; 117 Abbasi (10.1016/j.spmi.2020.106650_bib35) 2019; 26 Iijima (10.1016/j.spmi.2020.106650_bib12) 1993; 363 Ayesh (10.1016/j.spmi.2020.106650_bib39) 2015; 221 Jeong (10.1016/j.spmi.2020.106650_bib31) 2011; 11 Oftadeh (10.1016/j.spmi.2020.106650_bib17) 2013; 3 Yousefian (10.1016/j.spmi.2020.106650_bib15) 2019; 114 Gao (10.1016/j.spmi.2020.106650_bib43) 2014; 47 Son (10.1016/j.spmi.2020.106650_bib26) 2006; 444 Srivastava (10.1016/j.spmi.2020.106650_bib9) 2019; 731 Kroes (10.1016/j.spmi.2020.106650_bib52) 2011; 83 Perdew (10.1016/j.spmi.2020.106650_bib41) 1996; 77 |
References_xml | – volume: 25 start-page: 94 year: 2019 ident: bib51 article-title: Studies of hydrogen sulfide and ammonia adsorption on P-and Si-doped graphene: density functional theory calculations publication-title: J. Mol. Model. – volume: 65 start-page: 5045 year: 2018 end-page: 5052 ident: bib46 article-title: Selective reduction of oxygen functional groups to improve the response characteristics of graphene oxide-based formaldehyde sensor device: a first principle study publication-title: IEEE Trans. Electron. Dev. – volume: 23 start-page: 1833 year: 1955 end-page: 1840 ident: bib49 article-title: Electronic population analysis on LCAO–MO molecular wave functions. I publication-title: J. Chem. Phys. – volume: 231 start-page: 593 year: 2016 end-page: 600 ident: bib5 article-title: Selective H publication-title: Sensor. Actuator. B Chem. – volume: 16 start-page: 1451 year: 2014 end-page: 1459 ident: bib27 article-title: Graphene nanopores: electronic transport properties and design methodology publication-title: Phys. Chem. Chem. Phys. – volume: 135 start-page: 106248 year: 2019 ident: bib36 article-title: Gas sensing of graphene and graphene oxide nanoplatelets to ClO publication-title: Superlattice. Microst. – volume: 94 start-page: 173110 year: 2009 ident: bib21 article-title: Graphene nanoribbon as a negative differential resistance device publication-title: Appl. Phys. Lett. – volume: 27 start-page: 1787 year: 2006 end-page: 1799 ident: bib42 article-title: Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction publication-title: J. Comput. Chem. – volume: 438 start-page: 197 year: 2005 ident: bib23 article-title: Two-dimensional gas of massless Dirac fermions in graphene publication-title: Nature – volume: 261 start-page: 697 year: 2012 end-page: 704 ident: bib33 article-title: Pt-decorated graphene as superior media for H2S adsorption: a first-principles study publication-title: Appl. Surf. Sci. – volume: 5 start-page: 1564 year: 2013 end-page: 1569 ident: bib55 article-title: Stable Cu publication-title: Nanoscale – volume: 117 start-page: 110 year: 2016 end-page: 119 ident: bib61 article-title: H2S adsorption on graphene in the presence of sulfur: a density functional theory study publication-title: Comput. Mater. Sci. – volume: 1 start-page: 100011 year: 2019 ident: bib28 article-title: Electronic signature of DNA bases via Z-shaped graphene nanoribbon with a nanopore publication-title: Biosens. Bioelectron. X – volume: 113 start-page: 786 year: 2013 end-page: 791 ident: bib62 article-title: Hydrogen sulfide adsorption on a defective graphene publication-title: Int. J. Quant. Chem. – volume: 363 start-page: 603 year: 1993 ident: bib12 article-title: Single-shell carbon nanotubes of 1-nm diameter publication-title: Nature – volume: 114 start-page: 113626 year: 2019 ident: bib15 article-title: Theoretical studies on B, N, P, S, and Si doped fullerenes toward H2S sensing and adsorption publication-title: Phys. E Low-dimens. Syst. Nanostruct. – volume: 44 start-page: 4433 year: 2015 end-page: 4453 ident: bib13 article-title: Recent developments in carbon nanomaterial sensors publication-title: Chem. Soc. Rev. – volume: 283 start-page: 107 year: 2018 end-page: 112 ident: bib6 article-title: Selective gas sensors using graphene and CuO nanorods publication-title: Sensor Actuator Phys. – volume: 11 start-page: 453 year: 2020 ident: bib16 article-title: Simulations of benzene and hydrogen-sulfide gas detector based on single-walled carbon nanotube over intrinsic 4H-SiC substrate publication-title: Micromachines – volume: 427 start-page: 227 year: 2018 end-page: 236 ident: bib58 article-title: Fe-doped graphene nanosheet as an adsorption platform of harmful gas molecules (CO, CO publication-title: Appl. Surf. Sci. – volume: 636 start-page: 51 year: 2015 end-page: 57 ident: bib2 article-title: H publication-title: Chem. Phys. Lett. – volume: 83 start-page: 165411 year: 2011 ident: bib52 article-title: Mechanism and free-energy barrier of the type-57 reconstruction of the zigzag edge of graphene publication-title: Phys. Rev. B – volume: 10 start-page: 299 year: 2020 ident: bib59 article-title: Performance of intrinsic and modified graphene for the adsorption of H2S and CH4: a DFT study publication-title: Nanomaterials – start-page: 137280 year: 2020 ident: bib60 article-title: DFT analysis of H2S adsorbed zigzag and armchair graphene nanoribbons publication-title: Chem. Phys. Lett. – volume: 253 start-page: 677 year: 2017 end-page: 684 ident: bib8 article-title: Low-temperature and fast response H publication-title: Sensor. Actuator. B Chem. – volume: 117 start-page: 113794 year: 2020 ident: bib18 article-title: Two-dimensional carbon nitride (C3N) nanosheets as promising materials for H2S and NH3 elimination: a computational approach publication-title: Phys. E Low-dimens. Syst. Nanostruct. – volume: 7 start-page: 257 year: 2005 end-page: 261 ident: bib4 article-title: Hyperbaric oxygen therapy in the management of two cases of hydrogen sulfide toxicity from liquid manure publication-title: Can. J. Emerg. Med. – volume: 731 start-page: 136575 year: 2019 ident: bib9 article-title: DFT analysis of pristine and functionalized zigzag CNT: a case of H publication-title: Chem. Phys. Lett. – volume: 6 start-page: 183 year: 2007 end-page: 191 ident: bib19 article-title: The rise of graphene publication-title: Nat. Mater. – volume: 29 start-page: 97 year: 2015 end-page: 103 ident: bib57 article-title: A novel selective H2S sensor using dodecylamine and ethylenediamine functionalized graphene oxide publication-title: J. Ind. Eng. Chem. – volume: 102 year: 2009 ident: bib20 article-title: Intrinsic half-metallicity in modified graphene nanoribbons publication-title: Phys. Rev. Lett. – volume: 221 start-page: 201 year: 2015 end-page: 206 ident: bib39 article-title: Conductometric graphene sensors decorated with nanoclusters for selective detection of Hg2+ traces in water publication-title: Sensor. Actuator. B Chem. – volume: 101 start-page: 1522 year: 2013 end-page: 1535 ident: bib11 article-title: Carbon-based nanomaterials from a historical perspective publication-title: Proc. IEEE – volume: 46 start-page: 16067 year: 1992 ident: bib45 article-title: Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al (111) publication-title: Phys. Rev. B – volume: 465 start-page: 172 year: 2019 end-page: 179 ident: bib44 article-title: Adsorption of SF6 decomposition components over Pd (1 1 1): a density functional theory study publication-title: Appl. Surf. Sci. – volume: 47 start-page: 255301 year: 2014 ident: bib43 article-title: Interfacial adhesion between graphene and silicon dioxide by density functional theory with van der Waals corrections publication-title: J. Phys. Appl. Phys. – volume: 3 start-page: 7 year: 2013 ident: bib17 article-title: Investigation of interaction hydrogen sulfide with (5, 0) and (5, 5) single-wall carbon nanotubes by density functional theory method publication-title: Int. Nano Lett. – volume: 11 start-page: 2472 year: 2011 end-page: 2477 ident: bib31 article-title: Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes publication-title: Nano Lett. – volume: 306 start-page: 666 year: 2004 end-page: 669 ident: bib22 article-title: Electric field effect in atomically thin carbon films publication-title: Science – volume: 369 start-page: 443 year: 2016 end-page: 447 ident: bib7 article-title: Selective hydrogen gas sensor using CuFe publication-title: Appl. Surf. Sci. – volume: 134 start-page: 106235 year: 2019 ident: bib65 article-title: First-principles investigation of vacancy-defected graphene and Mn-doped graphene towards adsorption of H publication-title: Superlattice. Microst. – volume: 7 start-page: 403 year: 2013 end-page: 411 ident: bib37 article-title: Ammonia adsorption on graphene and graphene oxide: a first-principles study publication-title: Front. Environ. Sci. Eng. – volume: 13 start-page: 12554 year: 2011 end-page: 12558 ident: bib30 article-title: High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets publication-title: Phys. Chem. Chem. Phys. – start-page: 293 year: 2018 end-page: 319 ident: bib10 article-title: Green Synthesis of Metallic Nanoparticles Using Biopolymers and Plant Extracts, Green Metal Nanoparticles: Synthesis, Characterization and Their Applications – volume: 668 start-page: 100 year: 2018 end-page: 106 ident: bib63 article-title: H2S adsorption and dissociation on NH-decorated graphene: a first principles study publication-title: Surf. Sci. – start-page: 114220 year: 2020 ident: bib40 article-title: CO, CO publication-title: Phys. E Low-dimens. Syst. Nanostruct. – volume: 62 start-page: R16349 year: 2000 ident: bib53 article-title: Graphitic ribbons without hydrogen-termination: electronic structures and stabilities publication-title: Phys. Rev. B – volume: 46 start-page: 5642 year: 2017 end-page: 5656 ident: bib25 article-title: Electronic structure calculations of ammonia adsorption on graphene and graphene oxide with epoxide and hydroxyl groups publication-title: J. Electron. Mater. – volume: 99 start-page: 261 year: 2018 end-page: 268 ident: bib64 article-title: Evaluation of H2S sensing characteristics of metals–doped graphene and metals-decorated graphene: insights from DFT study publication-title: Phys. E Low-dimens. Syst. Nanostruct. – volume: 720 start-page: 58 year: 2019 end-page: 63 ident: bib1 article-title: General adsorption model for H publication-title: Chem. Phys. Lett. – volume: 221 start-page: 1170 year: 2015 end-page: 1181 ident: bib54 article-title: Graphene–metal oxide nanohybrids for toxic gas sensor: a review publication-title: Sensor. Actuator. B Chem. – volume: 18 start-page: 135 year: 2015 end-page: 142 ident: bib29 article-title: Electronic structures and transport properties of armchair graphene nanoribbons by ordered doping publication-title: Org. Electron. – volume: 232 start-page: 105 year: 2019 end-page: 110 ident: bib38 article-title: DFT study of the CO publication-title: J. Electron. Spectrosc. Relat. Phenom. – volume: 109 start-page: 156 year: 2019 end-page: 163 ident: bib48 article-title: Density functional theory calculations of NO publication-title: Phys. E Low-dimens. Syst. Nanostruct. – volume: 444 start-page: 347 year: 2006 ident: bib26 article-title: Half-metallic graphene nanoribbons publication-title: Nature – volume: 367 start-page: 1 year: 2006 end-page: 22 ident: bib3 article-title: Hydrogen sulfide (H publication-title: Sci. Total Environ. – volume: 98 start-page: 306 year: 2016 end-page: 315 ident: bib50 article-title: Defect and functionalized graphene for supercapacitor electrodes publication-title: Superlattice. Microst. – volume: 36 start-page: 660 year: 2015 end-page: 671 ident: bib56 article-title: A new strategy for hydrogen sulfide removal by amido-functionalized reduced graphene oxide as a novel metal-free and highly efficient nanoadsorbent publication-title: J. Sulfur Chem. – volume: 6 start-page: 94417 year: 2016 end-page: 94428 ident: bib47 article-title: A theoretical study of gas adsorption on silicene nanoribbons and its application in a highly sensitive molecule sensor publication-title: RSC Adv. – volume: 86 start-page: 355 year: 2015 end-page: 362 ident: bib24 article-title: Study of nitrogen terminated doped zigzag GNR FET exhibiting negative differential resistance publication-title: Superlattice. Microst. – volume: 77 start-page: 3865 year: 1996 ident: bib41 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 427 start-page: 12 year: 2013 end-page: 16 ident: bib32 article-title: A theoretical study of H2S adsorption on graphene doped with B, Al and Ga publication-title: Phys. B Condens. Matter – volume: 66 start-page: 1942 year: 2019 end-page: 1949 ident: bib34 article-title: Platinum nanoparticles decorated graphene oxide based resistive device for enhanced formaldehyde sensing: first-principle study and its experimental correlation publication-title: IEEE Trans. Electron. Dev. – volume: 115 start-page: 113691 year: 2020 ident: bib14 article-title: Computational modelling of an amide functionalized single-walled carbon nanotube based H2S gas sensor publication-title: Phys. E Low-dimens. Syst. Nanostruct. – volume: 26 start-page: 1850170 year: 2019 ident: bib35 article-title: TiO publication-title: Surf. Rev. Lett. – volume: 25 start-page: 94 year: 2019 ident: 10.1016/j.spmi.2020.106650_bib51 article-title: Studies of hydrogen sulfide and ammonia adsorption on P-and Si-doped graphene: density functional theory calculations publication-title: J. Mol. Model. doi: 10.1007/s00894-019-3974-y – volume: 427 start-page: 227 year: 2018 ident: 10.1016/j.spmi.2020.106650_bib58 article-title: Fe-doped graphene nanosheet as an adsorption platform of harmful gas molecules (CO, CO2, SO2 and H2S), and the co-adsorption in O2 environments publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.08.216 – volume: 221 start-page: 201 year: 2015 ident: 10.1016/j.spmi.2020.106650_bib39 article-title: Conductometric graphene sensors decorated with nanoclusters for selective detection of Hg2+ traces in water publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2015.06.075 – volume: 6 start-page: 183 year: 2007 ident: 10.1016/j.spmi.2020.106650_bib19 article-title: The rise of graphene publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 283 start-page: 107 year: 2018 ident: 10.1016/j.spmi.2020.106650_bib6 article-title: Selective gas sensors using graphene and CuO nanorods publication-title: Sensor Actuator Phys. doi: 10.1016/j.sna.2018.09.068 – start-page: 114220 year: 2020 ident: 10.1016/j.spmi.2020.106650_bib40 article-title: CO, CO2, and SO2 detection based on functionalized graphene nanoribbons: first principles study publication-title: Phys. E Low-dimens. Syst. Nanostruct. doi: 10.1016/j.physe.2020.114220 – volume: 731 start-page: 136575 year: 2019 ident: 10.1016/j.spmi.2020.106650_bib9 article-title: DFT analysis of pristine and functionalized zigzag CNT: a case of H2S sensing publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2019.07.003 – volume: 101 start-page: 1522 year: 2013 ident: 10.1016/j.spmi.2020.106650_bib11 article-title: Carbon-based nanomaterials from a historical perspective publication-title: Proc. IEEE doi: 10.1109/JPROC.2013.2261271 – volume: 16 start-page: 1451 year: 2014 ident: 10.1016/j.spmi.2020.106650_bib27 article-title: Graphene nanopores: electronic transport properties and design methodology publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C3CP53777C – volume: 306 start-page: 666 year: 2004 ident: 10.1016/j.spmi.2020.106650_bib22 article-title: Electric field effect in atomically thin carbon films publication-title: Science doi: 10.1126/science.1102896 – volume: 117 start-page: 110 year: 2016 ident: 10.1016/j.spmi.2020.106650_bib61 article-title: H2S adsorption on graphene in the presence of sulfur: a density functional theory study publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2016.01.034 – volume: 62 start-page: R16349 year: 2000 ident: 10.1016/j.spmi.2020.106650_bib53 article-title: Graphitic ribbons without hydrogen-termination: electronic structures and stabilities publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.62.R16349 – volume: 367 start-page: 1 year: 2006 ident: 10.1016/j.spmi.2020.106650_bib3 article-title: Hydrogen sulfide (H2S) and sour gas effects on the eye. A historical perspective publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2006.01.034 – start-page: 137280 year: 2020 ident: 10.1016/j.spmi.2020.106650_bib60 article-title: DFT analysis of H2S adsorbed zigzag and armchair graphene nanoribbons publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2020.137280 – volume: 47 start-page: 255301 year: 2014 ident: 10.1016/j.spmi.2020.106650_bib43 article-title: Interfacial adhesion between graphene and silicon dioxide by density functional theory with van der Waals corrections publication-title: J. Phys. Appl. Phys. doi: 10.1088/0022-3727/47/25/255301 – volume: 83 start-page: 165411 year: 2011 ident: 10.1016/j.spmi.2020.106650_bib52 article-title: Mechanism and free-energy barrier of the type-57 reconstruction of the zigzag edge of graphene publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.165411 – volume: 66 start-page: 1942 year: 2019 ident: 10.1016/j.spmi.2020.106650_bib34 article-title: Platinum nanoparticles decorated graphene oxide based resistive device for enhanced formaldehyde sensing: first-principle study and its experimental correlation publication-title: IEEE Trans. Electron. Dev. doi: 10.1109/TED.2019.2900848 – volume: 98 start-page: 306 year: 2016 ident: 10.1016/j.spmi.2020.106650_bib50 article-title: Defect and functionalized graphene for supercapacitor electrodes publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2016.08.044 – volume: 221 start-page: 1170 year: 2015 ident: 10.1016/j.spmi.2020.106650_bib54 article-title: Graphene–metal oxide nanohybrids for toxic gas sensor: a review publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2015.07.070 – volume: 6 start-page: 94417 year: 2016 ident: 10.1016/j.spmi.2020.106650_bib47 article-title: A theoretical study of gas adsorption on silicene nanoribbons and its application in a highly sensitive molecule sensor publication-title: RSC Adv. doi: 10.1039/C6RA21293J – volume: 46 start-page: 16067 year: 1992 ident: 10.1016/j.spmi.2020.106650_bib45 article-title: Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al (111) publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.16067 – volume: 36 start-page: 660 year: 2015 ident: 10.1016/j.spmi.2020.106650_bib56 article-title: A new strategy for hydrogen sulfide removal by amido-functionalized reduced graphene oxide as a novel metal-free and highly efficient nanoadsorbent publication-title: J. Sulfur Chem. doi: 10.1080/17415993.2015.1079711 – volume: 231 start-page: 593 year: 2016 ident: 10.1016/j.spmi.2020.106650_bib5 article-title: Selective H2S sensor based on CuO nanoparticles embedded in organic membranes publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2016.03.078 – volume: 99 start-page: 261 year: 2018 ident: 10.1016/j.spmi.2020.106650_bib64 article-title: Evaluation of H2S sensing characteristics of metals–doped graphene and metals-decorated graphene: insights from DFT study publication-title: Phys. E Low-dimens. Syst. Nanostruct. doi: 10.1016/j.physe.2018.02.022 – volume: 114 start-page: 113626 year: 2019 ident: 10.1016/j.spmi.2020.106650_bib15 article-title: Theoretical studies on B, N, P, S, and Si doped fullerenes toward H2S sensing and adsorption publication-title: Phys. E Low-dimens. Syst. Nanostruct. doi: 10.1016/j.physe.2019.113626 – volume: 7 start-page: 257 year: 2005 ident: 10.1016/j.spmi.2020.106650_bib4 article-title: Hyperbaric oxygen therapy in the management of two cases of hydrogen sulfide toxicity from liquid manure publication-title: Can. J. Emerg. Med. doi: 10.1017/S1481803500014408 – volume: 102 year: 2009 ident: 10.1016/j.spmi.2020.106650_bib20 article-title: Intrinsic half-metallicity in modified graphene nanoribbons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.096601 – volume: 26 start-page: 1850170 year: 2019 ident: 10.1016/j.spmi.2020.106650_bib35 article-title: TiO2/graphene oxide heterostructures for gas-sensing: interaction of nitrogen dioxide with the pristine and nitrogen modified nanostructures investigated by DFT publication-title: Surf. Rev. Lett. doi: 10.1142/S0218625X18501706 – volume: 720 start-page: 58 year: 2019 ident: 10.1016/j.spmi.2020.106650_bib1 article-title: General adsorption model for H2S, H2Se, H2Te, NH3, PH3, AsH3 and SbH3 on the V2O5 (0 0 1) surface including the van der Waals interaction publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2019.02.013 – volume: 427 start-page: 12 year: 2013 ident: 10.1016/j.spmi.2020.106650_bib32 article-title: A theoretical study of H2S adsorption on graphene doped with B, Al and Ga publication-title: Phys. B Condens. Matter doi: 10.1016/j.physb.2013.05.019 – volume: 109 start-page: 156 year: 2019 ident: 10.1016/j.spmi.2020.106650_bib48 article-title: Density functional theory calculations of NO2 and H2S adsorption on the group 10 transition metal (Ni, Pd and Pt) decorated graphene publication-title: Phys. E Low-dimens. Syst. Nanostruct. doi: 10.1016/j.physe.2019.01.012 – volume: 261 start-page: 697 year: 2012 ident: 10.1016/j.spmi.2020.106650_bib33 article-title: Pt-decorated graphene as superior media for H2S adsorption: a first-principles study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.08.083 – volume: 11 start-page: 453 year: 2020 ident: 10.1016/j.spmi.2020.106650_bib16 article-title: Simulations of benzene and hydrogen-sulfide gas detector based on single-walled carbon nanotube over intrinsic 4H-SiC substrate publication-title: Micromachines doi: 10.3390/mi11050453 – volume: 29 start-page: 97 year: 2015 ident: 10.1016/j.spmi.2020.106650_bib57 article-title: A novel selective H2S sensor using dodecylamine and ethylenediamine functionalized graphene oxide publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2015.03.021 – start-page: 293 year: 2018 ident: 10.1016/j.spmi.2020.106650_bib10 – volume: 117 start-page: 113794 year: 2020 ident: 10.1016/j.spmi.2020.106650_bib18 article-title: Two-dimensional carbon nitride (C3N) nanosheets as promising materials for H2S and NH3 elimination: a computational approach publication-title: Phys. E Low-dimens. Syst. Nanostruct. doi: 10.1016/j.physe.2019.113794 – volume: 465 start-page: 172 year: 2019 ident: 10.1016/j.spmi.2020.106650_bib44 article-title: Adsorption of SF6 decomposition components over Pd (1 1 1): a density functional theory study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.09.147 – volume: 135 start-page: 106248 year: 2019 ident: 10.1016/j.spmi.2020.106650_bib36 article-title: Gas sensing of graphene and graphene oxide nanoplatelets to ClO2 and its decomposed species publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2019.106248 – volume: 134 start-page: 106235 year: 2019 ident: 10.1016/j.spmi.2020.106650_bib65 article-title: First-principles investigation of vacancy-defected graphene and Mn-doped graphene towards adsorption of H2S publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2019.106235 – volume: 115 start-page: 113691 year: 2020 ident: 10.1016/j.spmi.2020.106650_bib14 article-title: Computational modelling of an amide functionalized single-walled carbon nanotube based H2S gas sensor publication-title: Phys. E Low-dimens. Syst. Nanostruct. doi: 10.1016/j.physe.2019.113691 – volume: 86 start-page: 355 year: 2015 ident: 10.1016/j.spmi.2020.106650_bib24 article-title: Study of nitrogen terminated doped zigzag GNR FET exhibiting negative differential resistance publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2015.07.069 – volume: 1 start-page: 100011 year: 2019 ident: 10.1016/j.spmi.2020.106650_bib28 article-title: Electronic signature of DNA bases via Z-shaped graphene nanoribbon with a nanopore publication-title: Biosens. Bioelectron. X – volume: 438 start-page: 197 year: 2005 ident: 10.1016/j.spmi.2020.106650_bib23 article-title: Two-dimensional gas of massless Dirac fermions in graphene publication-title: Nature doi: 10.1038/nature04233 – volume: 5 start-page: 1564 year: 2013 ident: 10.1016/j.spmi.2020.106650_bib55 article-title: Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H 2 S gas sensing with ultrahigh sensitivity publication-title: Nanoscale doi: 10.1039/c2nr33164k – volume: 232 start-page: 105 year: 2019 ident: 10.1016/j.spmi.2020.106650_bib38 article-title: DFT study of the CO2 and CH4 assisted adsorption on the surface of graphene publication-title: J. Electron. Spectrosc. Relat. Phenom. doi: 10.1016/j.elspec.2018.11.006 – volume: 113 start-page: 786 year: 2013 ident: 10.1016/j.spmi.2020.106650_bib62 article-title: Hydrogen sulfide adsorption on a defective graphene publication-title: Int. J. Quant. Chem. doi: 10.1002/qua.24077 – volume: 636 start-page: 51 year: 2015 ident: 10.1016/j.spmi.2020.106650_bib2 article-title: H2S and NH3 adsorption characteristics on CoO nanowire molecular device–A first-principles study publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2015.07.018 – volume: 13 start-page: 12554 year: 2011 ident: 10.1016/j.spmi.2020.106650_bib30 article-title: High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp21148j – volume: 46 start-page: 5642 year: 2017 ident: 10.1016/j.spmi.2020.106650_bib25 article-title: Electronic structure calculations of ammonia adsorption on graphene and graphene oxide with epoxide and hydroxyl groups publication-title: J. Electron. Mater. doi: 10.1007/s11664-017-5626-2 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.spmi.2020.106650_bib41 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 369 start-page: 443 year: 2016 ident: 10.1016/j.spmi.2020.106650_bib7 article-title: Selective hydrogen gas sensor using CuFe2O4 nanoparticle based thin film publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.02.103 – volume: 11 start-page: 2472 year: 2011 ident: 10.1016/j.spmi.2020.106650_bib31 article-title: Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes publication-title: Nano Lett. doi: 10.1021/nl2009058 – volume: 7 start-page: 403 year: 2013 ident: 10.1016/j.spmi.2020.106650_bib37 article-title: Ammonia adsorption on graphene and graphene oxide: a first-principles study publication-title: Front. Environ. Sci. Eng. doi: 10.1007/s11783-013-0491-6 – volume: 94 start-page: 173110 year: 2009 ident: 10.1016/j.spmi.2020.106650_bib21 article-title: Graphene nanoribbon as a negative differential resistance device publication-title: Appl. Phys. Lett. doi: 10.1063/1.3126451 – volume: 23 start-page: 1833 year: 1955 ident: 10.1016/j.spmi.2020.106650_bib49 article-title: Electronic population analysis on LCAO–MO molecular wave functions. I publication-title: J. Chem. Phys. doi: 10.1063/1.1740588 – volume: 444 start-page: 347 year: 2006 ident: 10.1016/j.spmi.2020.106650_bib26 article-title: Half-metallic graphene nanoribbons publication-title: Nature doi: 10.1038/nature05180 – volume: 363 start-page: 603 year: 1993 ident: 10.1016/j.spmi.2020.106650_bib12 article-title: Single-shell carbon nanotubes of 1-nm diameter publication-title: Nature doi: 10.1038/363603a0 – volume: 18 start-page: 135 year: 2015 ident: 10.1016/j.spmi.2020.106650_bib29 article-title: Electronic structures and transport properties of armchair graphene nanoribbons by ordered doping publication-title: Org. Electron. doi: 10.1016/j.orgel.2015.01.013 – volume: 27 start-page: 1787 year: 2006 ident: 10.1016/j.spmi.2020.106650_bib42 article-title: Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 3 start-page: 7 year: 2013 ident: 10.1016/j.spmi.2020.106650_bib17 article-title: Investigation of interaction hydrogen sulfide with (5, 0) and (5, 5) single-wall carbon nanotubes by density functional theory method publication-title: Int. Nano Lett. doi: 10.1186/2228-5326-3-7 – volume: 10 start-page: 299 year: 2020 ident: 10.1016/j.spmi.2020.106650_bib59 article-title: Performance of intrinsic and modified graphene for the adsorption of H2S and CH4: a DFT study publication-title: Nanomaterials doi: 10.3390/nano10020299 – volume: 668 start-page: 100 year: 2018 ident: 10.1016/j.spmi.2020.106650_bib63 article-title: H2S adsorption and dissociation on NH-decorated graphene: a first principles study publication-title: Surf. Sci. doi: 10.1016/j.susc.2017.10.016 – volume: 253 start-page: 677 year: 2017 ident: 10.1016/j.spmi.2020.106650_bib8 article-title: Low-temperature and fast response H2S gas sensor using semiconducting chitosan film publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2017.06.103 – volume: 44 start-page: 4433 year: 2015 ident: 10.1016/j.spmi.2020.106650_bib13 article-title: Recent developments in carbon nanomaterial sensors publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00379A – volume: 65 start-page: 5045 year: 2018 ident: 10.1016/j.spmi.2020.106650_bib46 article-title: Selective reduction of oxygen functional groups to improve the response characteristics of graphene oxide-based formaldehyde sensor device: a first principle study publication-title: IEEE Trans. Electron. Dev. |
SSID | ssj0009417 |
Score | 2.084948 |
Snippet | Graphenenanosheet (GNS), armchair graphenenanoribbon (AGNR), and zigzag graphenenanoribbon (ZGNR) systems were investigated by first principle calculations... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106650 |
SubjectTerms | Armchair Gas sensor Graphene H2S adsorption Nanoribbons Zigzag |
Title | DFT investigation of H2S adsorption on graphenenanosheets and nanoribbons: Comparative study |
URI | https://dx.doi.org/10.1016/j.spmi.2020.106650 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jIvoiOhXnx8iDb1KXNknT-TaqoyruZRvsQShpkmJF27LWV_92k344BdmDjznuoFyO392Vy-8AuCQixojrtoRQKi0isW1FOOYWJoxQTCOds8yvgaepGyzIw5IuO8Bv38KYscoG-2tMr9C6kQwbbw7zJBnOdPLT5bcGYMNuyYjp2wlhJsqvP9djHiNSbd01ypbRbh7O1DNeRf6e6B7RMQLXNW_v_0pOPxLOZB_sNZUiHNcfcwA6Ku2BHb9d0NYD29X0pigOwfPtZA6TNWNGlsIshoEzg1wW2SqvJSms2Kk1uKU8zYoXpcoC8lRCc1wlUaQD8Ab6azpwWHHPHoHF5G7uB1azNsESxEalhi-EZGxoc0aKSY8ZwhmbM5cgTm2lhBe7jlDCQVJyzjyBo9gWVaGGGYpsho9BN81SdQKgJxFm-pbjiLtEurqadBWVitseEgRhrw_s1l-haDjFzWqLt7AdHnsNjY9D4-Ow9nEfXH3b5DWjxkZt2l5D-CsuQg35G-xO_2l3BnbNqR7XOwfdcvWhLnTZUUaDKq4GYGt8_xhMvwAoVtXr |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB6VRWi5ICig3WUBH5YTytaJnThF2sOqpWrp49JW6mGl4NiOCGKTqilCXPhT_MEd50EXCfWA1GOcTGSPJ_OIPn8DcMFVwqjEsoT7vna4Zq4Ts0Q6jAvuMz_GmGV_DUxnwXDJP638VQt-N2dhLKyy9v2VTy-9dT3SqbXZWadpZ47BD9NvdMCW3VJwWiMrx-bnD6zbiqtRHzf5necNPi56Q6duLeAo7tItfuKU6sRSy3SN0KGwpCyuFAGn0neNUWESeMooj2otpQgVixNXlckMEzR2BcP3PoCHuJzQtk24_LXDlXR52ebXzs6x06tP6lSgsmJ9m2JR6tmBILCH_f8VDe9FuMFTeFKnpuS6Wv0zaJmsDce9piNcGx6VcFFVPIeb_mBB0h1FR56RPCFDb06kLvLNuhrJSEmHjd40k1lefDFmWxCZaWIvN2kco8V_IL0d_zgpyW5fwPIgynwJR1memRMgoaZMoFklsQy4DjB9DYyvjXRDqjhl4Sm4jb4iVZOY214a36IGrfY1sjqOrI6jSsen8P6PzLqi8Nj7tN9sQ_SXIUYYY_bInf2n3Fs4Hi6mk2gymo1fwWN7p8IKnsPRdvPdvMacZxu_KW2MwOdDG_UdfvcQfA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DFT+investigation+of+H2S+adsorption+on+graphenenanosheets+and+nanoribbons%3A+Comparative+study&rft.jtitle=Superlattices+and+microstructures&rft.au=Salih%2C+Ehab&rft.au=Ayesh%2C+Ahmad+I.&rft.date=2020-10-01&rft.issn=0749-6036&rft.volume=146&rft.spage=106650&rft_id=info:doi/10.1016%2Fj.spmi.2020.106650&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spmi_2020_106650 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon |