DFT investigation of H2S adsorption on graphenenanosheets and nanoribbons: Comparative study

Graphenenanosheet (GNS), armchair graphenenanoribbon (AGNR), and zigzag graphenenanoribbon (ZGNR) systems were investigated by first principle calculations using the density functional theory (DFT). The DFT calculations explored the potential of utilization of these materials as gas sensors to detec...

Full description

Saved in:
Bibliographic Details
Published inSuperlattices and microstructures Vol. 146; p. 106650
Main Authors Salih, Ehab, Ayesh, Ahmad I.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphenenanosheet (GNS), armchair graphenenanoribbon (AGNR), and zigzag graphenenanoribbon (ZGNR) systems were investigated by first principle calculations using the density functional theory (DFT). The DFT calculations explored the potential of utilization of these materials as gas sensors to detect hydrogen sulfide (H2S) gas. H2S gas adsorption was explored using: the adsorption energy (Eads), adsorption distance (D), charge transfer (ΔQ), density of states (DOS), and band structure of the generated systems before and after adsorption of H2S. The results showed that Eads of bare ZGNR was the highest of −0.171 eV as compared with GNS and AGNR. The surfaces of GNS, AGNR, and ZGNR have been modified with epoxy and then with a hydroxyl groups. The adsorption capacity of the three systems has been enhanced after the modifications with both the epoxy and hydroxyl groups. Based on the adsorption energy and charge transfer results, hydroxyl modified ZGNR system can be used effectively for detection applications of H2S since it exhibits the highest charge transfer and large adsorption energy. •Graphene nanosheet, armchair nanoribbon, and zigzag nanoribbon were investigated by DFT.•The materials were then used as gas sensors to detect H2S gas.•Adsorption energy, adsorption distance, charge transfer, density of states, and band structure were investigated.•The surfaces of graphene systems were modified with epoxy and hydroxyl groups.•The adsorption capacity of the three systems has been enhanced after the modifications.
AbstractList Graphenenanosheet (GNS), armchair graphenenanoribbon (AGNR), and zigzag graphenenanoribbon (ZGNR) systems were investigated by first principle calculations using the density functional theory (DFT). The DFT calculations explored the potential of utilization of these materials as gas sensors to detect hydrogen sulfide (H2S) gas. H2S gas adsorption was explored using: the adsorption energy (Eads), adsorption distance (D), charge transfer (ΔQ), density of states (DOS), and band structure of the generated systems before and after adsorption of H2S. The results showed that Eads of bare ZGNR was the highest of −0.171 eV as compared with GNS and AGNR. The surfaces of GNS, AGNR, and ZGNR have been modified with epoxy and then with a hydroxyl groups. The adsorption capacity of the three systems has been enhanced after the modifications with both the epoxy and hydroxyl groups. Based on the adsorption energy and charge transfer results, hydroxyl modified ZGNR system can be used effectively for detection applications of H2S since it exhibits the highest charge transfer and large adsorption energy. •Graphene nanosheet, armchair nanoribbon, and zigzag nanoribbon were investigated by DFT.•The materials were then used as gas sensors to detect H2S gas.•Adsorption energy, adsorption distance, charge transfer, density of states, and band structure were investigated.•The surfaces of graphene systems were modified with epoxy and hydroxyl groups.•The adsorption capacity of the three systems has been enhanced after the modifications.
ArticleNumber 106650
Author Salih, Ehab
Ayesh, Ahmad I.
Author_xml – sequence: 1
  givenname: Ehab
  surname: Salih
  fullname: Salih, Ehab
  organization: Department of Mathematics, Statistics and Physics, Qatar University, P. O. Box 2713, Doha, Qatar
– sequence: 2
  givenname: Ahmad I.
  surname: Ayesh
  fullname: Ayesh, Ahmad I.
  email: ayesh@qu.edu.qa
  organization: Department of Mathematics, Statistics and Physics, Qatar University, P. O. Box 2713, Doha, Qatar
BookMark eNp9kNFKwzAUhoNMcJu-gFd5gc6Ttkta8Uamc8LAC-edENLkdMvYkpLUwd7e1nrlhVeH88P3w_9NyMh5h4TcMpgxYPxuP4vN0c5SSPuA8zlckDGDkicZF2JExiDyMuGQ8SsyiXEPAGXOxJh8Pi031LoTxtZuVWu9o76mq_SdKhN9aIbE0W1QzQ4dOuV83CG2kSpnaP8GW1XexXu68MdGha7khDS2X-Z8TS5rdYh483un5GP5vFmskvXby-vicZ3onEGblAzA1CyHvERhCpHxlDMleA5qzhB1UfNUo07BGKVEobOqZrqbWBSZgIqJbEqKoVcHH2PAWmrb_oxpg7IHyUD2luRe9pZkb0kOljo0_YM2wR5VOP8PPQwQdqNOFoOM2qLTaGxA3Urj7X_4NyL7hBg
CitedBy_id crossref_primary_10_1016_j_mtcomm_2020_101823
crossref_primary_10_1016_j_spmi_2021_107098
crossref_primary_10_1016_j_apt_2020_11_010
crossref_primary_10_1007_s11224_023_02265_2
crossref_primary_10_1016_j_physleta_2020_126775
crossref_primary_10_1016_j_comptc_2023_114222
crossref_primary_10_1016_j_chemphys_2022_111624
crossref_primary_10_1016_j_cartre_2024_100362
crossref_primary_10_1007_s00894_021_04787_0
crossref_primary_10_1088_1361_6463_ad3a73
crossref_primary_10_1016_j_apsusc_2022_153234
crossref_primary_10_1016_j_snb_2021_130135
crossref_primary_10_2116_analsci_21P139
crossref_primary_10_1016_j_physleta_2021_127798
crossref_primary_10_1016_j_mssp_2024_108885
crossref_primary_10_1016_j_susc_2022_122178
crossref_primary_10_3390_nano12101757
crossref_primary_10_1038_s41598_023_46153_5
crossref_primary_10_1007_s00894_022_05417_z
crossref_primary_10_1016_j_physe_2021_114844
crossref_primary_10_1007_s00894_022_05255_z
crossref_primary_10_1016_j_seppur_2021_119605
crossref_primary_10_1016_j_apsusc_2020_148386
crossref_primary_10_1021_acsomega_2c04319
crossref_primary_10_1007_s43832_024_00160_3
crossref_primary_10_1016_j_physe_2022_115188
crossref_primary_10_1039_D1TC04671C
crossref_primary_10_1016_j_rinp_2022_105333
crossref_primary_10_1016_j_ijhydene_2024_01_137
crossref_primary_10_1016_j_physleta_2022_128163
Cites_doi 10.1007/s00894-019-3974-y
10.1016/j.apsusc.2017.08.216
10.1016/j.snb.2015.06.075
10.1038/nmat1849
10.1016/j.sna.2018.09.068
10.1016/j.physe.2020.114220
10.1016/j.cplett.2019.07.003
10.1109/JPROC.2013.2261271
10.1039/C3CP53777C
10.1126/science.1102896
10.1016/j.commatsci.2016.01.034
10.1103/PhysRevB.62.R16349
10.1016/j.scitotenv.2006.01.034
10.1016/j.cplett.2020.137280
10.1088/0022-3727/47/25/255301
10.1103/PhysRevB.83.165411
10.1109/TED.2019.2900848
10.1016/j.spmi.2016.08.044
10.1016/j.snb.2015.07.070
10.1039/C6RA21293J
10.1103/PhysRevB.46.16067
10.1080/17415993.2015.1079711
10.1016/j.snb.2016.03.078
10.1016/j.physe.2018.02.022
10.1016/j.physe.2019.113626
10.1017/S1481803500014408
10.1103/PhysRevLett.102.096601
10.1142/S0218625X18501706
10.1016/j.cplett.2019.02.013
10.1016/j.physb.2013.05.019
10.1016/j.physe.2019.01.012
10.1016/j.apsusc.2012.08.083
10.3390/mi11050453
10.1016/j.jiec.2015.03.021
10.1016/j.physe.2019.113794
10.1016/j.apsusc.2018.09.147
10.1016/j.spmi.2019.106248
10.1016/j.spmi.2019.106235
10.1016/j.physe.2019.113691
10.1016/j.spmi.2015.07.069
10.1038/nature04233
10.1039/c2nr33164k
10.1016/j.elspec.2018.11.006
10.1002/qua.24077
10.1016/j.cplett.2015.07.018
10.1039/c1cp21148j
10.1007/s11664-017-5626-2
10.1103/PhysRevLett.77.3865
10.1016/j.apsusc.2016.02.103
10.1021/nl2009058
10.1007/s11783-013-0491-6
10.1063/1.3126451
10.1063/1.1740588
10.1038/nature05180
10.1038/363603a0
10.1016/j.orgel.2015.01.013
10.1002/jcc.20495
10.1186/2228-5326-3-7
10.3390/nano10020299
10.1016/j.susc.2017.10.016
10.1016/j.snb.2017.06.103
10.1039/C4CS00379A
ContentType Journal Article
Copyright 2020 The Authors
Copyright_xml – notice: 2020 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.spmi.2020.106650
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-3677
ExternalDocumentID 10_1016_j_spmi_2020_106650
S0749603620310740
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG5
M24
M37
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c410t-9100df14049e7d8736261a7640a51eec8f62cec20ddaa78c3bf1c65088370b173
IEDL.DBID .~1
ISSN 0749-6036
IngestDate Tue Jul 01 01:35:15 EDT 2025
Thu Apr 24 23:00:15 EDT 2025
Fri Feb 23 02:48:00 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords H2S adsorption
Gas sensor
Nanoribbons
Zigzag
Graphene
Armchair
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-9100df14049e7d8736261a7640a51eec8f62cec20ddaa78c3bf1c65088370b173
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0749603620310740
ParticipantIDs crossref_citationtrail_10_1016_j_spmi_2020_106650
crossref_primary_10_1016_j_spmi_2020_106650
elsevier_sciencedirect_doi_10_1016_j_spmi_2020_106650
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationTitle Superlattices and microstructures
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bagherzadeh-Nobari, Istadeh, Kalantarinejad (bib14) 2020; 115
Jeong, Lee, Shin, Choi, Shin, Kang, Choi (bib31) 2011; 11
Gui, Hao, Li, Tang, Xu (bib36) 2019; 135
Gao, Xiao, Henkelman, Liechti, Huang (bib43) 2014; 47
Mulliken (bib49) 1955; 23
Lambert, Goodwin, Stefani, Strosher (bib3) 2006; 367
Belley, Bernard, Côté, Paquet, Poitras (bib4) 2005; 7
Dresselhaus, Terrones (bib11) 2013; 101
Liu, Gui, Ji, Tang, Zhou, Li, Zhang (bib44) 2019; 465
Neugebauer, Scheffler (bib45) 1992; 46
Manna, Chakrabarti, Guha (bib34) 2019; 66
Ranea, Quiña, Yalet (bib1) 2019; 720
Dutta, Manna, Pati (bib20) 2009; 102
Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos, Grigorieva, Firsov (bib22) 2004; 306
Zhou, Shen, Tian, Wang, Zhang, Chen (bib55) 2013; 5
Khaleghi Abbasabadi, Rashidi, Safaei-Ghomi, Khodabakhshi, Rahighi (bib56) 2015; 36
Oftadeh, Gholamian, Abdallah (bib17) 2013; 3
Rashid, Koel, Rang, Ziko (bib16) 2020; 11
Liu, Zhang, Deng, Fan, Tang (bib29) 2015; 18
Srivastava, Suman, Shrivastava, Srivastava (bib9) 2019; 731
Ayesh, Ahmed, Al-Rashid, Alarrouqi, Saleh, Abdulrehman, Haik, Al-Sulaiti (bib6) 2018; 283
Kawai, Miyamoto, Sugino, Koga (bib53) 2000; 62
Qiu, Nguyen, Skafidas (bib27) 2014; 16
Alaie, Jahangiri, Rashidi, Asl, Izadi (bib57) 2015; 29
El‐Sherbiny, Salih (bib10) 2018
Taluja, SanthiBhushan, Yadav, Srivastava (bib50) 2016; 98
Ayesh, Karam, Awwad, Meetani (bib39) 2015; 221
Qiu, Zhang, Yang (bib30) 2011; 13
Haija, Ayesh, Ahmed, Katsiotis (bib7) 2016; 369
Aghaei, Monshi, Calizo (bib47) 2016; 6
Padilla, de la Cruz, Alvarado, Díaz, García, Cocoletzi (bib51) 2019; 25
Baptista, Belhout, Giordani, Quinn (bib13) 2015; 44
Novoselov, Geim, Morozov, Jiang, Katsnelson, Grigorieva, Dubonos, Firsov (bib23) 2005; 438
Perdew, Burke, Ernzerhof (bib41) 1996; 77
Chatterjee, Chatterjee, Ray, Chakraborty (bib54) 2015; 221
Geim, Novoselov (bib19) 2007; 6
Iijima, Ichihashi (bib12) 1993; 363
Grimme (bib42) 2006; 27
Peng, Li (bib37) 2013; 7
Osouleddini, Rastegar (bib38) 2019; 232
Anasthasiya, Khaneja, Jeyaprakash (bib25) 2017; 46
Ayesh, Abu-Hani, Mahmoud, Haik (bib5) 2016; 231
Son, Cohen, Louie (bib26) 2006; 444
Kroes, Akhukov, Los, Pineau, Fasolino (bib52) 2011; 83
Faye, Eduok, Szpunar, Beye (bib18) 2020; 117
Gupta, Jaiswal (bib24) 2015; 86
Ganji, Sharifi, Ardjmand, Ahangari (bib33) 2012; 261
Faye, Raj, Mittal, Beye (bib61) 2016; 117
Ren, Li, Luo, Yang (bib21) 2009; 94
Borisova, Antonov, Proykova (bib62) 2013; 113
Manna, Raha, Chakrabarti, Guha (bib46) 2018; 65
Bo, Guo, Wei, Yang, Yan, Cen (bib48) 2019; 109
Sharma, Verma (bib32) 2013; 427
Faye, Eduok, Szpunar, Samoura, Beye (bib63) 2018; 668
Yousefian, Ghasemy, Askarieh, Rashidi (bib15) 2019; 114
Wasfi, Awwad, Ayesh (bib28) 2019; 1
Cortés-Arriagada, Villegas-Escobar, Ortega (bib58) 2018; 427
Khodadadi (bib64) 2018; 99
Sriram, Nagarajan, Chandiramouli (bib2) 2015; 636
Suman, Srivastava, Shrivastava, Srivastava, Jacob, Malvi (bib60) 2020
Salih, Ayesh (bib40) 2020
Jia, Zhang, Zhang, An (bib65) 2019; 134
Abu-Hani, Greish, Mahmoud, Awwad, Ayesh (bib8) 2017; 253
Abbasi, Sardroodi (bib35) 2019; 26
Gao, Zhou, Wang, Xu, Zeng (bib59) 2020; 10
Padilla (10.1016/j.spmi.2020.106650_bib51) 2019; 25
Alaie (10.1016/j.spmi.2020.106650_bib57) 2015; 29
Ayesh (10.1016/j.spmi.2020.106650_bib6) 2018; 283
Kawai (10.1016/j.spmi.2020.106650_bib53) 2000; 62
Qiu (10.1016/j.spmi.2020.106650_bib27) 2014; 16
Salih (10.1016/j.spmi.2020.106650_bib40) 2020
Manna (10.1016/j.spmi.2020.106650_bib34) 2019; 66
Rashid (10.1016/j.spmi.2020.106650_bib16) 2020; 11
Dutta (10.1016/j.spmi.2020.106650_bib20) 2009; 102
Chatterjee (10.1016/j.spmi.2020.106650_bib54) 2015; 221
Ganji (10.1016/j.spmi.2020.106650_bib33) 2012; 261
Gupta (10.1016/j.spmi.2020.106650_bib24) 2015; 86
Liu (10.1016/j.spmi.2020.106650_bib44) 2019; 465
Taluja (10.1016/j.spmi.2020.106650_bib50) 2016; 98
Belley (10.1016/j.spmi.2020.106650_bib4) 2005; 7
Novoselov (10.1016/j.spmi.2020.106650_bib23) 2005; 438
Qiu (10.1016/j.spmi.2020.106650_bib30) 2011; 13
Manna (10.1016/j.spmi.2020.106650_bib46) 2018; 65
Suman (10.1016/j.spmi.2020.106650_bib60) 2020
Gao (10.1016/j.spmi.2020.106650_bib59) 2020; 10
Borisova (10.1016/j.spmi.2020.106650_bib62) 2013; 113
Geim (10.1016/j.spmi.2020.106650_bib19) 2007; 6
Dresselhaus (10.1016/j.spmi.2020.106650_bib11) 2013; 101
Gui (10.1016/j.spmi.2020.106650_bib36) 2019; 135
Baptista (10.1016/j.spmi.2020.106650_bib13) 2015; 44
Novoselov (10.1016/j.spmi.2020.106650_bib22) 2004; 306
Cortés-Arriagada (10.1016/j.spmi.2020.106650_bib58) 2018; 427
Bo (10.1016/j.spmi.2020.106650_bib48) 2019; 109
Haija (10.1016/j.spmi.2020.106650_bib7) 2016; 369
Neugebauer (10.1016/j.spmi.2020.106650_bib45) 1992; 46
Khaleghi Abbasabadi (10.1016/j.spmi.2020.106650_bib56) 2015; 36
Jia (10.1016/j.spmi.2020.106650_bib65) 2019; 134
Osouleddini (10.1016/j.spmi.2020.106650_bib38) 2019; 232
Faye (10.1016/j.spmi.2020.106650_bib61) 2016; 117
Ranea (10.1016/j.spmi.2020.106650_bib1) 2019; 720
Sharma (10.1016/j.spmi.2020.106650_bib32) 2013; 427
El‐Sherbiny (10.1016/j.spmi.2020.106650_bib10) 2018
Lambert (10.1016/j.spmi.2020.106650_bib3) 2006; 367
Ren (10.1016/j.spmi.2020.106650_bib21) 2009; 94
Sriram (10.1016/j.spmi.2020.106650_bib2) 2015; 636
Abu-Hani (10.1016/j.spmi.2020.106650_bib8) 2017; 253
Peng (10.1016/j.spmi.2020.106650_bib37) 2013; 7
Aghaei (10.1016/j.spmi.2020.106650_bib47) 2016; 6
Faye (10.1016/j.spmi.2020.106650_bib63) 2018; 668
Bagherzadeh-Nobari (10.1016/j.spmi.2020.106650_bib14) 2020; 115
Mulliken (10.1016/j.spmi.2020.106650_bib49) 1955; 23
Zhou (10.1016/j.spmi.2020.106650_bib55) 2013; 5
Grimme (10.1016/j.spmi.2020.106650_bib42) 2006; 27
Ayesh (10.1016/j.spmi.2020.106650_bib5) 2016; 231
Anasthasiya (10.1016/j.spmi.2020.106650_bib25) 2017; 46
Liu (10.1016/j.spmi.2020.106650_bib29) 2015; 18
Wasfi (10.1016/j.spmi.2020.106650_bib28) 2019; 1
Khodadadi (10.1016/j.spmi.2020.106650_bib64) 2018; 99
Faye (10.1016/j.spmi.2020.106650_bib18) 2020; 117
Abbasi (10.1016/j.spmi.2020.106650_bib35) 2019; 26
Iijima (10.1016/j.spmi.2020.106650_bib12) 1993; 363
Ayesh (10.1016/j.spmi.2020.106650_bib39) 2015; 221
Jeong (10.1016/j.spmi.2020.106650_bib31) 2011; 11
Oftadeh (10.1016/j.spmi.2020.106650_bib17) 2013; 3
Yousefian (10.1016/j.spmi.2020.106650_bib15) 2019; 114
Gao (10.1016/j.spmi.2020.106650_bib43) 2014; 47
Son (10.1016/j.spmi.2020.106650_bib26) 2006; 444
Srivastava (10.1016/j.spmi.2020.106650_bib9) 2019; 731
Kroes (10.1016/j.spmi.2020.106650_bib52) 2011; 83
Perdew (10.1016/j.spmi.2020.106650_bib41) 1996; 77
References_xml – volume: 25
  start-page: 94
  year: 2019
  ident: bib51
  article-title: Studies of hydrogen sulfide and ammonia adsorption on P-and Si-doped graphene: density functional theory calculations
  publication-title: J. Mol. Model.
– volume: 65
  start-page: 5045
  year: 2018
  end-page: 5052
  ident: bib46
  article-title: Selective reduction of oxygen functional groups to improve the response characteristics of graphene oxide-based formaldehyde sensor device: a first principle study
  publication-title: IEEE Trans. Electron. Dev.
– volume: 23
  start-page: 1833
  year: 1955
  end-page: 1840
  ident: bib49
  article-title: Electronic population analysis on LCAO–MO molecular wave functions. I
  publication-title: J. Chem. Phys.
– volume: 231
  start-page: 593
  year: 2016
  end-page: 600
  ident: bib5
  article-title: Selective H
  publication-title: Sensor. Actuator. B Chem.
– volume: 16
  start-page: 1451
  year: 2014
  end-page: 1459
  ident: bib27
  article-title: Graphene nanopores: electronic transport properties and design methodology
  publication-title: Phys. Chem. Chem. Phys.
– volume: 135
  start-page: 106248
  year: 2019
  ident: bib36
  article-title: Gas sensing of graphene and graphene oxide nanoplatelets to ClO
  publication-title: Superlattice. Microst.
– volume: 94
  start-page: 173110
  year: 2009
  ident: bib21
  article-title: Graphene nanoribbon as a negative differential resistance device
  publication-title: Appl. Phys. Lett.
– volume: 27
  start-page: 1787
  year: 2006
  end-page: 1799
  ident: bib42
  article-title: Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction
  publication-title: J. Comput. Chem.
– volume: 438
  start-page: 197
  year: 2005
  ident: bib23
  article-title: Two-dimensional gas of massless Dirac fermions in graphene
  publication-title: Nature
– volume: 261
  start-page: 697
  year: 2012
  end-page: 704
  ident: bib33
  article-title: Pt-decorated graphene as superior media for H2S adsorption: a first-principles study
  publication-title: Appl. Surf. Sci.
– volume: 5
  start-page: 1564
  year: 2013
  end-page: 1569
  ident: bib55
  article-title: Stable Cu
  publication-title: Nanoscale
– volume: 117
  start-page: 110
  year: 2016
  end-page: 119
  ident: bib61
  article-title: H2S adsorption on graphene in the presence of sulfur: a density functional theory study
  publication-title: Comput. Mater. Sci.
– volume: 1
  start-page: 100011
  year: 2019
  ident: bib28
  article-title: Electronic signature of DNA bases via Z-shaped graphene nanoribbon with a nanopore
  publication-title: Biosens. Bioelectron. X
– volume: 113
  start-page: 786
  year: 2013
  end-page: 791
  ident: bib62
  article-title: Hydrogen sulfide adsorption on a defective graphene
  publication-title: Int. J. Quant. Chem.
– volume: 363
  start-page: 603
  year: 1993
  ident: bib12
  article-title: Single-shell carbon nanotubes of 1-nm diameter
  publication-title: Nature
– volume: 114
  start-page: 113626
  year: 2019
  ident: bib15
  article-title: Theoretical studies on B, N, P, S, and Si doped fullerenes toward H2S sensing and adsorption
  publication-title: Phys. E Low-dimens. Syst. Nanostruct.
– volume: 44
  start-page: 4433
  year: 2015
  end-page: 4453
  ident: bib13
  article-title: Recent developments in carbon nanomaterial sensors
  publication-title: Chem. Soc. Rev.
– volume: 283
  start-page: 107
  year: 2018
  end-page: 112
  ident: bib6
  article-title: Selective gas sensors using graphene and CuO nanorods
  publication-title: Sensor Actuator Phys.
– volume: 11
  start-page: 453
  year: 2020
  ident: bib16
  article-title: Simulations of benzene and hydrogen-sulfide gas detector based on single-walled carbon nanotube over intrinsic 4H-SiC substrate
  publication-title: Micromachines
– volume: 427
  start-page: 227
  year: 2018
  end-page: 236
  ident: bib58
  article-title: Fe-doped graphene nanosheet as an adsorption platform of harmful gas molecules (CO, CO
  publication-title: Appl. Surf. Sci.
– volume: 636
  start-page: 51
  year: 2015
  end-page: 57
  ident: bib2
  article-title: H
  publication-title: Chem. Phys. Lett.
– volume: 83
  start-page: 165411
  year: 2011
  ident: bib52
  article-title: Mechanism and free-energy barrier of the type-57 reconstruction of the zigzag edge of graphene
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 299
  year: 2020
  ident: bib59
  article-title: Performance of intrinsic and modified graphene for the adsorption of H2S and CH4: a DFT study
  publication-title: Nanomaterials
– start-page: 137280
  year: 2020
  ident: bib60
  article-title: DFT analysis of H2S adsorbed zigzag and armchair graphene nanoribbons
  publication-title: Chem. Phys. Lett.
– volume: 253
  start-page: 677
  year: 2017
  end-page: 684
  ident: bib8
  article-title: Low-temperature and fast response H
  publication-title: Sensor. Actuator. B Chem.
– volume: 117
  start-page: 113794
  year: 2020
  ident: bib18
  article-title: Two-dimensional carbon nitride (C3N) nanosheets as promising materials for H2S and NH3 elimination: a computational approach
  publication-title: Phys. E Low-dimens. Syst. Nanostruct.
– volume: 7
  start-page: 257
  year: 2005
  end-page: 261
  ident: bib4
  article-title: Hyperbaric oxygen therapy in the management of two cases of hydrogen sulfide toxicity from liquid manure
  publication-title: Can. J. Emerg. Med.
– volume: 731
  start-page: 136575
  year: 2019
  ident: bib9
  article-title: DFT analysis of pristine and functionalized zigzag CNT: a case of H
  publication-title: Chem. Phys. Lett.
– volume: 6
  start-page: 183
  year: 2007
  end-page: 191
  ident: bib19
  article-title: The rise of graphene
  publication-title: Nat. Mater.
– volume: 29
  start-page: 97
  year: 2015
  end-page: 103
  ident: bib57
  article-title: A novel selective H2S sensor using dodecylamine and ethylenediamine functionalized graphene oxide
  publication-title: J. Ind. Eng. Chem.
– volume: 102
  year: 2009
  ident: bib20
  article-title: Intrinsic half-metallicity in modified graphene nanoribbons
  publication-title: Phys. Rev. Lett.
– volume: 221
  start-page: 201
  year: 2015
  end-page: 206
  ident: bib39
  article-title: Conductometric graphene sensors decorated with nanoclusters for selective detection of Hg2+ traces in water
  publication-title: Sensor. Actuator. B Chem.
– volume: 101
  start-page: 1522
  year: 2013
  end-page: 1535
  ident: bib11
  article-title: Carbon-based nanomaterials from a historical perspective
  publication-title: Proc. IEEE
– volume: 46
  start-page: 16067
  year: 1992
  ident: bib45
  article-title: Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al (111)
  publication-title: Phys. Rev. B
– volume: 465
  start-page: 172
  year: 2019
  end-page: 179
  ident: bib44
  article-title: Adsorption of SF6 decomposition components over Pd (1 1 1): a density functional theory study
  publication-title: Appl. Surf. Sci.
– volume: 47
  start-page: 255301
  year: 2014
  ident: bib43
  article-title: Interfacial adhesion between graphene and silicon dioxide by density functional theory with van der Waals corrections
  publication-title: J. Phys. Appl. Phys.
– volume: 3
  start-page: 7
  year: 2013
  ident: bib17
  article-title: Investigation of interaction hydrogen sulfide with (5, 0) and (5, 5) single-wall carbon nanotubes by density functional theory method
  publication-title: Int. Nano Lett.
– volume: 11
  start-page: 2472
  year: 2011
  end-page: 2477
  ident: bib31
  article-title: Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes
  publication-title: Nano Lett.
– volume: 306
  start-page: 666
  year: 2004
  end-page: 669
  ident: bib22
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
– volume: 369
  start-page: 443
  year: 2016
  end-page: 447
  ident: bib7
  article-title: Selective hydrogen gas sensor using CuFe
  publication-title: Appl. Surf. Sci.
– volume: 134
  start-page: 106235
  year: 2019
  ident: bib65
  article-title: First-principles investigation of vacancy-defected graphene and Mn-doped graphene towards adsorption of H
  publication-title: Superlattice. Microst.
– volume: 7
  start-page: 403
  year: 2013
  end-page: 411
  ident: bib37
  article-title: Ammonia adsorption on graphene and graphene oxide: a first-principles study
  publication-title: Front. Environ. Sci. Eng.
– volume: 13
  start-page: 12554
  year: 2011
  end-page: 12558
  ident: bib30
  article-title: High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets
  publication-title: Phys. Chem. Chem. Phys.
– start-page: 293
  year: 2018
  end-page: 319
  ident: bib10
  article-title: Green Synthesis of Metallic Nanoparticles Using Biopolymers and Plant Extracts, Green Metal Nanoparticles: Synthesis, Characterization and Their Applications
– volume: 668
  start-page: 100
  year: 2018
  end-page: 106
  ident: bib63
  article-title: H2S adsorption and dissociation on NH-decorated graphene: a first principles study
  publication-title: Surf. Sci.
– start-page: 114220
  year: 2020
  ident: bib40
  article-title: CO, CO
  publication-title: Phys. E Low-dimens. Syst. Nanostruct.
– volume: 62
  start-page: R16349
  year: 2000
  ident: bib53
  article-title: Graphitic ribbons without hydrogen-termination: electronic structures and stabilities
  publication-title: Phys. Rev. B
– volume: 46
  start-page: 5642
  year: 2017
  end-page: 5656
  ident: bib25
  article-title: Electronic structure calculations of ammonia adsorption on graphene and graphene oxide with epoxide and hydroxyl groups
  publication-title: J. Electron. Mater.
– volume: 99
  start-page: 261
  year: 2018
  end-page: 268
  ident: bib64
  article-title: Evaluation of H2S sensing characteristics of metals–doped graphene and metals-decorated graphene: insights from DFT study
  publication-title: Phys. E Low-dimens. Syst. Nanostruct.
– volume: 720
  start-page: 58
  year: 2019
  end-page: 63
  ident: bib1
  article-title: General adsorption model for H
  publication-title: Chem. Phys. Lett.
– volume: 221
  start-page: 1170
  year: 2015
  end-page: 1181
  ident: bib54
  article-title: Graphene–metal oxide nanohybrids for toxic gas sensor: a review
  publication-title: Sensor. Actuator. B Chem.
– volume: 18
  start-page: 135
  year: 2015
  end-page: 142
  ident: bib29
  article-title: Electronic structures and transport properties of armchair graphene nanoribbons by ordered doping
  publication-title: Org. Electron.
– volume: 232
  start-page: 105
  year: 2019
  end-page: 110
  ident: bib38
  article-title: DFT study of the CO
  publication-title: J. Electron. Spectrosc. Relat. Phenom.
– volume: 109
  start-page: 156
  year: 2019
  end-page: 163
  ident: bib48
  article-title: Density functional theory calculations of NO
  publication-title: Phys. E Low-dimens. Syst. Nanostruct.
– volume: 444
  start-page: 347
  year: 2006
  ident: bib26
  article-title: Half-metallic graphene nanoribbons
  publication-title: Nature
– volume: 367
  start-page: 1
  year: 2006
  end-page: 22
  ident: bib3
  article-title: Hydrogen sulfide (H
  publication-title: Sci. Total Environ.
– volume: 98
  start-page: 306
  year: 2016
  end-page: 315
  ident: bib50
  article-title: Defect and functionalized graphene for supercapacitor electrodes
  publication-title: Superlattice. Microst.
– volume: 36
  start-page: 660
  year: 2015
  end-page: 671
  ident: bib56
  article-title: A new strategy for hydrogen sulfide removal by amido-functionalized reduced graphene oxide as a novel metal-free and highly efficient nanoadsorbent
  publication-title: J. Sulfur Chem.
– volume: 6
  start-page: 94417
  year: 2016
  end-page: 94428
  ident: bib47
  article-title: A theoretical study of gas adsorption on silicene nanoribbons and its application in a highly sensitive molecule sensor
  publication-title: RSC Adv.
– volume: 86
  start-page: 355
  year: 2015
  end-page: 362
  ident: bib24
  article-title: Study of nitrogen terminated doped zigzag GNR FET exhibiting negative differential resistance
  publication-title: Superlattice. Microst.
– volume: 77
  start-page: 3865
  year: 1996
  ident: bib41
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 427
  start-page: 12
  year: 2013
  end-page: 16
  ident: bib32
  article-title: A theoretical study of H2S adsorption on graphene doped with B, Al and Ga
  publication-title: Phys. B Condens. Matter
– volume: 66
  start-page: 1942
  year: 2019
  end-page: 1949
  ident: bib34
  article-title: Platinum nanoparticles decorated graphene oxide based resistive device for enhanced formaldehyde sensing: first-principle study and its experimental correlation
  publication-title: IEEE Trans. Electron. Dev.
– volume: 115
  start-page: 113691
  year: 2020
  ident: bib14
  article-title: Computational modelling of an amide functionalized single-walled carbon nanotube based H2S gas sensor
  publication-title: Phys. E Low-dimens. Syst. Nanostruct.
– volume: 26
  start-page: 1850170
  year: 2019
  ident: bib35
  article-title: TiO
  publication-title: Surf. Rev. Lett.
– volume: 25
  start-page: 94
  year: 2019
  ident: 10.1016/j.spmi.2020.106650_bib51
  article-title: Studies of hydrogen sulfide and ammonia adsorption on P-and Si-doped graphene: density functional theory calculations
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-019-3974-y
– volume: 427
  start-page: 227
  year: 2018
  ident: 10.1016/j.spmi.2020.106650_bib58
  article-title: Fe-doped graphene nanosheet as an adsorption platform of harmful gas molecules (CO, CO2, SO2 and H2S), and the co-adsorption in O2 environments
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.08.216
– volume: 221
  start-page: 201
  year: 2015
  ident: 10.1016/j.spmi.2020.106650_bib39
  article-title: Conductometric graphene sensors decorated with nanoclusters for selective detection of Hg2+ traces in water
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2015.06.075
– volume: 6
  start-page: 183
  year: 2007
  ident: 10.1016/j.spmi.2020.106650_bib19
  article-title: The rise of graphene
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 283
  start-page: 107
  year: 2018
  ident: 10.1016/j.spmi.2020.106650_bib6
  article-title: Selective gas sensors using graphene and CuO nanorods
  publication-title: Sensor Actuator Phys.
  doi: 10.1016/j.sna.2018.09.068
– start-page: 114220
  year: 2020
  ident: 10.1016/j.spmi.2020.106650_bib40
  article-title: CO, CO2, and SO2 detection based on functionalized graphene nanoribbons: first principles study
  publication-title: Phys. E Low-dimens. Syst. Nanostruct.
  doi: 10.1016/j.physe.2020.114220
– volume: 731
  start-page: 136575
  year: 2019
  ident: 10.1016/j.spmi.2020.106650_bib9
  article-title: DFT analysis of pristine and functionalized zigzag CNT: a case of H2S sensing
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2019.07.003
– volume: 101
  start-page: 1522
  year: 2013
  ident: 10.1016/j.spmi.2020.106650_bib11
  article-title: Carbon-based nanomaterials from a historical perspective
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2013.2261271
– volume: 16
  start-page: 1451
  year: 2014
  ident: 10.1016/j.spmi.2020.106650_bib27
  article-title: Graphene nanopores: electronic transport properties and design methodology
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C3CP53777C
– volume: 306
  start-page: 666
  year: 2004
  ident: 10.1016/j.spmi.2020.106650_bib22
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 117
  start-page: 110
  year: 2016
  ident: 10.1016/j.spmi.2020.106650_bib61
  article-title: H2S adsorption on graphene in the presence of sulfur: a density functional theory study
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2016.01.034
– volume: 62
  start-page: R16349
  year: 2000
  ident: 10.1016/j.spmi.2020.106650_bib53
  article-title: Graphitic ribbons without hydrogen-termination: electronic structures and stabilities
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.R16349
– volume: 367
  start-page: 1
  year: 2006
  ident: 10.1016/j.spmi.2020.106650_bib3
  article-title: Hydrogen sulfide (H2S) and sour gas effects on the eye. A historical perspective
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2006.01.034
– start-page: 137280
  year: 2020
  ident: 10.1016/j.spmi.2020.106650_bib60
  article-title: DFT analysis of H2S adsorbed zigzag and armchair graphene nanoribbons
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2020.137280
– volume: 47
  start-page: 255301
  year: 2014
  ident: 10.1016/j.spmi.2020.106650_bib43
  article-title: Interfacial adhesion between graphene and silicon dioxide by density functional theory with van der Waals corrections
  publication-title: J. Phys. Appl. Phys.
  doi: 10.1088/0022-3727/47/25/255301
– volume: 83
  start-page: 165411
  year: 2011
  ident: 10.1016/j.spmi.2020.106650_bib52
  article-title: Mechanism and free-energy barrier of the type-57 reconstruction of the zigzag edge of graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.165411
– volume: 66
  start-page: 1942
  year: 2019
  ident: 10.1016/j.spmi.2020.106650_bib34
  article-title: Platinum nanoparticles decorated graphene oxide based resistive device for enhanced formaldehyde sensing: first-principle study and its experimental correlation
  publication-title: IEEE Trans. Electron. Dev.
  doi: 10.1109/TED.2019.2900848
– volume: 98
  start-page: 306
  year: 2016
  ident: 10.1016/j.spmi.2020.106650_bib50
  article-title: Defect and functionalized graphene for supercapacitor electrodes
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2016.08.044
– volume: 221
  start-page: 1170
  year: 2015
  ident: 10.1016/j.spmi.2020.106650_bib54
  article-title: Graphene–metal oxide nanohybrids for toxic gas sensor: a review
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2015.07.070
– volume: 6
  start-page: 94417
  year: 2016
  ident: 10.1016/j.spmi.2020.106650_bib47
  article-title: A theoretical study of gas adsorption on silicene nanoribbons and its application in a highly sensitive molecule sensor
  publication-title: RSC Adv.
  doi: 10.1039/C6RA21293J
– volume: 46
  start-page: 16067
  year: 1992
  ident: 10.1016/j.spmi.2020.106650_bib45
  article-title: Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al (111)
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.16067
– volume: 36
  start-page: 660
  year: 2015
  ident: 10.1016/j.spmi.2020.106650_bib56
  article-title: A new strategy for hydrogen sulfide removal by amido-functionalized reduced graphene oxide as a novel metal-free and highly efficient nanoadsorbent
  publication-title: J. Sulfur Chem.
  doi: 10.1080/17415993.2015.1079711
– volume: 231
  start-page: 593
  year: 2016
  ident: 10.1016/j.spmi.2020.106650_bib5
  article-title: Selective H2S sensor based on CuO nanoparticles embedded in organic membranes
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2016.03.078
– volume: 99
  start-page: 261
  year: 2018
  ident: 10.1016/j.spmi.2020.106650_bib64
  article-title: Evaluation of H2S sensing characteristics of metals–doped graphene and metals-decorated graphene: insights from DFT study
  publication-title: Phys. E Low-dimens. Syst. Nanostruct.
  doi: 10.1016/j.physe.2018.02.022
– volume: 114
  start-page: 113626
  year: 2019
  ident: 10.1016/j.spmi.2020.106650_bib15
  article-title: Theoretical studies on B, N, P, S, and Si doped fullerenes toward H2S sensing and adsorption
  publication-title: Phys. E Low-dimens. Syst. Nanostruct.
  doi: 10.1016/j.physe.2019.113626
– volume: 7
  start-page: 257
  year: 2005
  ident: 10.1016/j.spmi.2020.106650_bib4
  article-title: Hyperbaric oxygen therapy in the management of two cases of hydrogen sulfide toxicity from liquid manure
  publication-title: Can. J. Emerg. Med.
  doi: 10.1017/S1481803500014408
– volume: 102
  year: 2009
  ident: 10.1016/j.spmi.2020.106650_bib20
  article-title: Intrinsic half-metallicity in modified graphene nanoribbons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.096601
– volume: 26
  start-page: 1850170
  year: 2019
  ident: 10.1016/j.spmi.2020.106650_bib35
  article-title: TiO2/graphene oxide heterostructures for gas-sensing: interaction of nitrogen dioxide with the pristine and nitrogen modified nanostructures investigated by DFT
  publication-title: Surf. Rev. Lett.
  doi: 10.1142/S0218625X18501706
– volume: 720
  start-page: 58
  year: 2019
  ident: 10.1016/j.spmi.2020.106650_bib1
  article-title: General adsorption model for H2S, H2Se, H2Te, NH3, PH3, AsH3 and SbH3 on the V2O5 (0 0 1) surface including the van der Waals interaction
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2019.02.013
– volume: 427
  start-page: 12
  year: 2013
  ident: 10.1016/j.spmi.2020.106650_bib32
  article-title: A theoretical study of H2S adsorption on graphene doped with B, Al and Ga
  publication-title: Phys. B Condens. Matter
  doi: 10.1016/j.physb.2013.05.019
– volume: 109
  start-page: 156
  year: 2019
  ident: 10.1016/j.spmi.2020.106650_bib48
  article-title: Density functional theory calculations of NO2 and H2S adsorption on the group 10 transition metal (Ni, Pd and Pt) decorated graphene
  publication-title: Phys. E Low-dimens. Syst. Nanostruct.
  doi: 10.1016/j.physe.2019.01.012
– volume: 261
  start-page: 697
  year: 2012
  ident: 10.1016/j.spmi.2020.106650_bib33
  article-title: Pt-decorated graphene as superior media for H2S adsorption: a first-principles study
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.08.083
– volume: 11
  start-page: 453
  year: 2020
  ident: 10.1016/j.spmi.2020.106650_bib16
  article-title: Simulations of benzene and hydrogen-sulfide gas detector based on single-walled carbon nanotube over intrinsic 4H-SiC substrate
  publication-title: Micromachines
  doi: 10.3390/mi11050453
– volume: 29
  start-page: 97
  year: 2015
  ident: 10.1016/j.spmi.2020.106650_bib57
  article-title: A novel selective H2S sensor using dodecylamine and ethylenediamine functionalized graphene oxide
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2015.03.021
– start-page: 293
  year: 2018
  ident: 10.1016/j.spmi.2020.106650_bib10
– volume: 117
  start-page: 113794
  year: 2020
  ident: 10.1016/j.spmi.2020.106650_bib18
  article-title: Two-dimensional carbon nitride (C3N) nanosheets as promising materials for H2S and NH3 elimination: a computational approach
  publication-title: Phys. E Low-dimens. Syst. Nanostruct.
  doi: 10.1016/j.physe.2019.113794
– volume: 465
  start-page: 172
  year: 2019
  ident: 10.1016/j.spmi.2020.106650_bib44
  article-title: Adsorption of SF6 decomposition components over Pd (1 1 1): a density functional theory study
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.09.147
– volume: 135
  start-page: 106248
  year: 2019
  ident: 10.1016/j.spmi.2020.106650_bib36
  article-title: Gas sensing of graphene and graphene oxide nanoplatelets to ClO2 and its decomposed species
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2019.106248
– volume: 134
  start-page: 106235
  year: 2019
  ident: 10.1016/j.spmi.2020.106650_bib65
  article-title: First-principles investigation of vacancy-defected graphene and Mn-doped graphene towards adsorption of H2S
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2019.106235
– volume: 115
  start-page: 113691
  year: 2020
  ident: 10.1016/j.spmi.2020.106650_bib14
  article-title: Computational modelling of an amide functionalized single-walled carbon nanotube based H2S gas sensor
  publication-title: Phys. E Low-dimens. Syst. Nanostruct.
  doi: 10.1016/j.physe.2019.113691
– volume: 86
  start-page: 355
  year: 2015
  ident: 10.1016/j.spmi.2020.106650_bib24
  article-title: Study of nitrogen terminated doped zigzag GNR FET exhibiting negative differential resistance
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2015.07.069
– volume: 1
  start-page: 100011
  year: 2019
  ident: 10.1016/j.spmi.2020.106650_bib28
  article-title: Electronic signature of DNA bases via Z-shaped graphene nanoribbon with a nanopore
  publication-title: Biosens. Bioelectron. X
– volume: 438
  start-page: 197
  year: 2005
  ident: 10.1016/j.spmi.2020.106650_bib23
  article-title: Two-dimensional gas of massless Dirac fermions in graphene
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 5
  start-page: 1564
  year: 2013
  ident: 10.1016/j.spmi.2020.106650_bib55
  article-title: Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H 2 S gas sensing with ultrahigh sensitivity
  publication-title: Nanoscale
  doi: 10.1039/c2nr33164k
– volume: 232
  start-page: 105
  year: 2019
  ident: 10.1016/j.spmi.2020.106650_bib38
  article-title: DFT study of the CO2 and CH4 assisted adsorption on the surface of graphene
  publication-title: J. Electron. Spectrosc. Relat. Phenom.
  doi: 10.1016/j.elspec.2018.11.006
– volume: 113
  start-page: 786
  year: 2013
  ident: 10.1016/j.spmi.2020.106650_bib62
  article-title: Hydrogen sulfide adsorption on a defective graphene
  publication-title: Int. J. Quant. Chem.
  doi: 10.1002/qua.24077
– volume: 636
  start-page: 51
  year: 2015
  ident: 10.1016/j.spmi.2020.106650_bib2
  article-title: H2S and NH3 adsorption characteristics on CoO nanowire molecular device–A first-principles study
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2015.07.018
– volume: 13
  start-page: 12554
  year: 2011
  ident: 10.1016/j.spmi.2020.106650_bib30
  article-title: High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp21148j
– volume: 46
  start-page: 5642
  year: 2017
  ident: 10.1016/j.spmi.2020.106650_bib25
  article-title: Electronic structure calculations of ammonia adsorption on graphene and graphene oxide with epoxide and hydroxyl groups
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-017-5626-2
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.spmi.2020.106650_bib41
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 369
  start-page: 443
  year: 2016
  ident: 10.1016/j.spmi.2020.106650_bib7
  article-title: Selective hydrogen gas sensor using CuFe2O4 nanoparticle based thin film
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.02.103
– volume: 11
  start-page: 2472
  year: 2011
  ident: 10.1016/j.spmi.2020.106650_bib31
  article-title: Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes
  publication-title: Nano Lett.
  doi: 10.1021/nl2009058
– volume: 7
  start-page: 403
  year: 2013
  ident: 10.1016/j.spmi.2020.106650_bib37
  article-title: Ammonia adsorption on graphene and graphene oxide: a first-principles study
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-013-0491-6
– volume: 94
  start-page: 173110
  year: 2009
  ident: 10.1016/j.spmi.2020.106650_bib21
  article-title: Graphene nanoribbon as a negative differential resistance device
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3126451
– volume: 23
  start-page: 1833
  year: 1955
  ident: 10.1016/j.spmi.2020.106650_bib49
  article-title: Electronic population analysis on LCAO–MO molecular wave functions. I
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1740588
– volume: 444
  start-page: 347
  year: 2006
  ident: 10.1016/j.spmi.2020.106650_bib26
  article-title: Half-metallic graphene nanoribbons
  publication-title: Nature
  doi: 10.1038/nature05180
– volume: 363
  start-page: 603
  year: 1993
  ident: 10.1016/j.spmi.2020.106650_bib12
  article-title: Single-shell carbon nanotubes of 1-nm diameter
  publication-title: Nature
  doi: 10.1038/363603a0
– volume: 18
  start-page: 135
  year: 2015
  ident: 10.1016/j.spmi.2020.106650_bib29
  article-title: Electronic structures and transport properties of armchair graphene nanoribbons by ordered doping
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2015.01.013
– volume: 27
  start-page: 1787
  year: 2006
  ident: 10.1016/j.spmi.2020.106650_bib42
  article-title: Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 3
  start-page: 7
  year: 2013
  ident: 10.1016/j.spmi.2020.106650_bib17
  article-title: Investigation of interaction hydrogen sulfide with (5, 0) and (5, 5) single-wall carbon nanotubes by density functional theory method
  publication-title: Int. Nano Lett.
  doi: 10.1186/2228-5326-3-7
– volume: 10
  start-page: 299
  year: 2020
  ident: 10.1016/j.spmi.2020.106650_bib59
  article-title: Performance of intrinsic and modified graphene for the adsorption of H2S and CH4: a DFT study
  publication-title: Nanomaterials
  doi: 10.3390/nano10020299
– volume: 668
  start-page: 100
  year: 2018
  ident: 10.1016/j.spmi.2020.106650_bib63
  article-title: H2S adsorption and dissociation on NH-decorated graphene: a first principles study
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2017.10.016
– volume: 253
  start-page: 677
  year: 2017
  ident: 10.1016/j.spmi.2020.106650_bib8
  article-title: Low-temperature and fast response H2S gas sensor using semiconducting chitosan film
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2017.06.103
– volume: 44
  start-page: 4433
  year: 2015
  ident: 10.1016/j.spmi.2020.106650_bib13
  article-title: Recent developments in carbon nanomaterial sensors
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00379A
– volume: 65
  start-page: 5045
  year: 2018
  ident: 10.1016/j.spmi.2020.106650_bib46
  article-title: Selective reduction of oxygen functional groups to improve the response characteristics of graphene oxide-based formaldehyde sensor device: a first principle study
  publication-title: IEEE Trans. Electron. Dev.
SSID ssj0009417
Score 2.084948
Snippet Graphenenanosheet (GNS), armchair graphenenanoribbon (AGNR), and zigzag graphenenanoribbon (ZGNR) systems were investigated by first principle calculations...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106650
SubjectTerms Armchair
Gas sensor
Graphene
H2S adsorption
Nanoribbons
Zigzag
Title DFT investigation of H2S adsorption on graphenenanosheets and nanoribbons: Comparative study
URI https://dx.doi.org/10.1016/j.spmi.2020.106650
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jIvoiOhXnx8iDb1KXNknT-TaqoyruZRvsQShpkmJF27LWV_92k344BdmDjznuoFyO392Vy-8AuCQixojrtoRQKi0isW1FOOYWJoxQTCOds8yvgaepGyzIw5IuO8Bv38KYscoG-2tMr9C6kQwbbw7zJBnOdPLT5bcGYMNuyYjp2wlhJsqvP9djHiNSbd01ypbRbh7O1DNeRf6e6B7RMQLXNW_v_0pOPxLOZB_sNZUiHNcfcwA6Ku2BHb9d0NYD29X0pigOwfPtZA6TNWNGlsIshoEzg1wW2SqvJSms2Kk1uKU8zYoXpcoC8lRCc1wlUaQD8Ab6azpwWHHPHoHF5G7uB1azNsESxEalhi-EZGxoc0aKSY8ZwhmbM5cgTm2lhBe7jlDCQVJyzjyBo9gWVaGGGYpsho9BN81SdQKgJxFm-pbjiLtEurqadBWVitseEgRhrw_s1l-haDjFzWqLt7AdHnsNjY9D4-Ow9nEfXH3b5DWjxkZt2l5D-CsuQg35G-xO_2l3BnbNqR7XOwfdcvWhLnTZUUaDKq4GYGt8_xhMvwAoVtXr
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB6VRWi5ICig3WUBH5YTytaJnThF2sOqpWrp49JW6mGl4NiOCGKTqilCXPhT_MEd50EXCfWA1GOcTGSPJ_OIPn8DcMFVwqjEsoT7vna4Zq4Ts0Q6jAvuMz_GmGV_DUxnwXDJP638VQt-N2dhLKyy9v2VTy-9dT3SqbXZWadpZ47BD9NvdMCW3VJwWiMrx-bnD6zbiqtRHzf5necNPi56Q6duLeAo7tItfuKU6sRSy3SN0KGwpCyuFAGn0neNUWESeMooj2otpQgVixNXlckMEzR2BcP3PoCHuJzQtk24_LXDlXR52ebXzs6x06tP6lSgsmJ9m2JR6tmBILCH_f8VDe9FuMFTeFKnpuS6Wv0zaJmsDce9piNcGx6VcFFVPIeb_mBB0h1FR56RPCFDb06kLvLNuhrJSEmHjd40k1lefDFmWxCZaWIvN2kco8V_IL0d_zgpyW5fwPIgynwJR1memRMgoaZMoFklsQy4DjB9DYyvjXRDqjhl4Sm4jb4iVZOY214a36IGrfY1sjqOrI6jSsen8P6PzLqi8Nj7tN9sQ_SXIUYYY_bInf2n3Fs4Hi6mk2gymo1fwWN7p8IKnsPRdvPdvMacZxu_KW2MwOdDG_UdfvcQfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DFT+investigation+of+H2S+adsorption+on+graphenenanosheets+and+nanoribbons%3A+Comparative+study&rft.jtitle=Superlattices+and+microstructures&rft.au=Salih%2C+Ehab&rft.au=Ayesh%2C+Ahmad+I.&rft.date=2020-10-01&rft.issn=0749-6036&rft.volume=146&rft.spage=106650&rft_id=info:doi/10.1016%2Fj.spmi.2020.106650&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spmi_2020_106650
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon