Adsorption of BiOBr microspheres to rhodamine B and its influence on photocatalytic reaction
Adsorption and its influence are often neglected during photocatalytic degradation of organic pollutants. To call attention to these issues, a novel bismuth oxybromide (BiOBr) microsphere with hierarchical flower-like structure was fabricated through a facile hydrothermal process using polyvinyl pyr...
Saved in:
Published in | Chemosphere (Oxford) Vol. 304; p. 135320 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Adsorption and its influence are often neglected during photocatalytic degradation of organic pollutants. To call attention to these issues, a novel bismuth oxybromide (BiOBr) microsphere with hierarchical flower-like structure was fabricated through a facile hydrothermal process using polyvinyl pyrrolidone (PVP) as additive in this work, and then the adsorption of the BiOBr microspheres to RhB and its influence on the photocatalytic degradation of RhB were investigated in detail. Experimental results show that the BiOBr microspheres have a very strong adsorption capacity to RhB. The adsorption behavior follows the Langmuir model and the quasi second order kinetic equation. Tests of the photocatalytic degradation of RhB under visible irradiation verify that the adsorption of the BiOBr microspheres to RhB greatly boosts the degradation of RhB due to the “enriching effect”, and a complete degradation of 20 mg L−1 RhB only requires 37 min.
[Display omitted]
•The adsorption behavior of photocatalyst was detailedly studied using the synthesized BiOBr microspheres.•The adsorption model and parameters were determined through experiments.•The remarkably improved adsorption capacity of BiOBr microspheres was explained through experiments and DFT calculation.•The strong adsorption of the BiOBr microspheres to RhB was proved to facilitate its photodegradation.•This work provides new insights into adsorption phenomenon during photocatalytic degradation of organic dyes. |
---|---|
AbstractList | Adsorption and its influence are often neglected during photocatalytic degradation of organic pollutants. To call attention to these issues, a novel bismuth oxybromide (BiOBr) microsphere with hierarchical flower-like structure was fabricated through a facile hydrothermal process using polyvinyl pyrrolidone (PVP) as additive in this work, and then the adsorption of the BiOBr microspheres to RhB and its influence on the photocatalytic degradation of RhB were investigated in detail. Experimental results show that the BiOBr microspheres have a very strong adsorption capacity to RhB. The adsorption behavior follows the Langmuir model and the quasi second order kinetic equation. Tests of the photocatalytic degradation of RhB under visible irradiation verify that the adsorption of the BiOBr microspheres to RhB greatly boosts the degradation of RhB due to the “enriching effect”, and a complete degradation of 20 mg L−1 RhB only requires 37 min.
[Display omitted]
•The adsorption behavior of photocatalyst was detailedly studied using the synthesized BiOBr microspheres.•The adsorption model and parameters were determined through experiments.•The remarkably improved adsorption capacity of BiOBr microspheres was explained through experiments and DFT calculation.•The strong adsorption of the BiOBr microspheres to RhB was proved to facilitate its photodegradation.•This work provides new insights into adsorption phenomenon during photocatalytic degradation of organic dyes. Adsorption and its influence are often neglected during photocatalytic degradation of organic pollutants. To call attention to these issues, a novel bismuth oxybromide (BiOBr) microsphere with hierarchical flower-like structure was fabricated through a facile hydrothermal process using polyvinyl pyrrolidone (PVP) as additive in this work, and then the adsorption of the BiOBr microspheres to RhB and its influence on the photocatalytic degradation of RhB were investigated in detail. Experimental results show that the BiOBr microspheres have a very strong adsorption capacity to RhB. The adsorption behavior follows the Langmuir model and the quasi second order kinetic equation. Tests of the photocatalytic degradation of RhB under visible irradiation verify that the adsorption of the BiOBr microspheres to RhB greatly boosts the degradation of RhB due to the "enriching effect", and a complete degradation of 20 mg L RhB only requires 37 min. Adsorption and its influence are often neglected during photocatalytic degradation of organic pollutants. To call attention to these issues, a novel bismuth oxybromide (BiOBr) microsphere with hierarchical flower-like structure was fabricated through a facile hydrothermal process using polyvinyl pyrrolidone (PVP) as additive in this work, and then the adsorption of the BiOBr microspheres to RhB and its influence on the photocatalytic degradation of RhB were investigated in detail. Experimental results show that the BiOBr microspheres have a very strong adsorption capacity to RhB. The adsorption behavior follows the Langmuir model and the quasi second order kinetic equation. Tests of the photocatalytic degradation of RhB under visible irradiation verify that the adsorption of the BiOBr microspheres to RhB greatly boosts the degradation of RhB due to the "enriching effect", and a complete degradation of 20 mg L-1 RhB only requires 37 min.Adsorption and its influence are often neglected during photocatalytic degradation of organic pollutants. To call attention to these issues, a novel bismuth oxybromide (BiOBr) microsphere with hierarchical flower-like structure was fabricated through a facile hydrothermal process using polyvinyl pyrrolidone (PVP) as additive in this work, and then the adsorption of the BiOBr microspheres to RhB and its influence on the photocatalytic degradation of RhB were investigated in detail. Experimental results show that the BiOBr microspheres have a very strong adsorption capacity to RhB. The adsorption behavior follows the Langmuir model and the quasi second order kinetic equation. Tests of the photocatalytic degradation of RhB under visible irradiation verify that the adsorption of the BiOBr microspheres to RhB greatly boosts the degradation of RhB due to the "enriching effect", and a complete degradation of 20 mg L-1 RhB only requires 37 min. Adsorption and its influence are often neglected during photocatalytic degradation of organic pollutants. To call attention to these issues, a novel bismuth oxybromide (BiOBr) microsphere with hierarchical flower-like structure was fabricated through a facile hydrothermal process using polyvinyl pyrrolidone (PVP) as additive in this work, and then the adsorption of the BiOBr microspheres to RhB and its influence on the photocatalytic degradation of RhB were investigated in detail. Experimental results show that the BiOBr microspheres have a very strong adsorption capacity to RhB. The adsorption behavior follows the Langmuir model and the quasi second order kinetic equation. Tests of the photocatalytic degradation of RhB under visible irradiation verify that the adsorption of the BiOBr microspheres to RhB greatly boosts the degradation of RhB due to the “enriching effect”, and a complete degradation of 20 mg L⁻¹ RhB only requires 37 min. |
ArticleNumber | 135320 |
Author | Ma, Jian Cao, Yixi Li, Huaming Liang, Congjie Wu, Yingfeng Wang, Chongtai Yang, Chanyu Hua, Yingjie Xu, Hui Zhang, Taisong |
Author_xml | – sequence: 1 givenname: Congjie surname: Liang fullname: Liang, Congjie organization: School of Chemistry and Chemical Engineering of Hainan Normal University, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Key Laboratory of Electrochemical Energy Storage and Light Energy Conversion Materials of Haikou City, Haikou, 571158, PR China – sequence: 2 givenname: Jian surname: Ma fullname: Ma, Jian organization: School of Chemistry and Chemical Engineering of Hainan Normal University, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Key Laboratory of Electrochemical Energy Storage and Light Energy Conversion Materials of Haikou City, Haikou, 571158, PR China – sequence: 3 givenname: Yixi surname: Cao fullname: Cao, Yixi organization: School of Chemistry and Chemical Engineering of Hainan Normal University, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Key Laboratory of Electrochemical Energy Storage and Light Energy Conversion Materials of Haikou City, Haikou, 571158, PR China – sequence: 4 givenname: Taisong surname: Zhang fullname: Zhang, Taisong organization: School of Chemistry and Chemical Engineering of Hainan Normal University, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Key Laboratory of Electrochemical Energy Storage and Light Energy Conversion Materials of Haikou City, Haikou, 571158, PR China – sequence: 5 givenname: Chanyu surname: Yang fullname: Yang, Chanyu organization: School of Chemistry and Chemical Engineering of Hainan Normal University, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Key Laboratory of Electrochemical Energy Storage and Light Energy Conversion Materials of Haikou City, Haikou, 571158, PR China – sequence: 6 givenname: Yingfeng surname: Wu fullname: Wu, Yingfeng organization: School of Chemistry and Chemical Engineering of Hainan Normal University, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Key Laboratory of Electrochemical Energy Storage and Light Energy Conversion Materials of Haikou City, Haikou, 571158, PR China – sequence: 7 givenname: Huaming surname: Li fullname: Li, Huaming organization: Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China – sequence: 8 givenname: Hui surname: Xu fullname: Xu, Hui organization: Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China – sequence: 9 givenname: Yingjie surname: Hua fullname: Hua, Yingjie email: 521000hua282@sina.com organization: School of Chemistry and Chemical Engineering of Hainan Normal University, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Key Laboratory of Electrochemical Energy Storage and Light Energy Conversion Materials of Haikou City, Haikou, 571158, PR China – sequence: 10 givenname: Chongtai orcidid: 0000-0001-7769-8580 surname: Wang fullname: Wang, Chongtai email: oehy2014@163.com organization: School of Chemistry and Chemical Engineering of Hainan Normal University, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Key Laboratory of Electrochemical Energy Storage and Light Energy Conversion Materials of Haikou City, Haikou, 571158, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35697103$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1q3DAYRUVJaSZpX6Eou2480a9lrUpmSJNAIJt2VxCy9JnRYFuupCnk7WMzEyjdJCtt7j2S7rlAZ2McAaErStaU0Pp6v3Y7GGKedpBgzQhja8olZ-QDWtFG6Yoy3ZyhFSFCVrXk8hxd5LwnZC5L_Qmdc1lrRQlfod83Psc0lRBHHDu8CU-bhIfg0omecYk47aK3QxgBb7AdPQ4l4zB2_QFGB3huTrtYorPF9s8lOJzAuoX4GX3sbJ_hy-m8RL9-3P7c3lePT3cP25vHyglKSjW_uJGdE4x51fqWqpooongLgre19bqxqgPaCOFd65niDTRaE0WtJkLTTvBL9O3InVL8c4BczBCyg763I8RDNkzRhgkiqX47WqtaSsbYQv16ih7aAbyZUhhsejav482B78fAslZO0BkXil0-XpINvaHELLrM3vyjyyy6zFHXTND_EV4veU93e-zCvOzfAMlkFxYhPiRwxfgY3kF5AYDFtk4 |
CitedBy_id | crossref_primary_10_1016_j_envres_2023_116311 crossref_primary_10_1016_j_jes_2023_05_003 crossref_primary_10_5004_dwt_2023_29144 crossref_primary_10_3390_molecules30061286 crossref_primary_10_3390_nano14141234 crossref_primary_10_1016_j_colsurfa_2023_133018 crossref_primary_10_1016_j_apsusc_2024_159675 crossref_primary_10_1016_j_materresbull_2024_112895 crossref_primary_10_1016_j_jece_2025_116319 crossref_primary_10_1016_j_materresbull_2023_112545 crossref_primary_10_1002_cptc_202300135 crossref_primary_10_1007_s10971_024_06436_3 crossref_primary_10_1016_j_molstruc_2024_138041 crossref_primary_10_1016_j_jssc_2023_124490 crossref_primary_10_1016_j_seppur_2023_125365 crossref_primary_10_1016_j_optmat_2024_115676 crossref_primary_10_1016_j_optmat_2024_115218 crossref_primary_10_1016_j_seppur_2023_125775 crossref_primary_10_1039_D3TA07981C crossref_primary_10_1016_j_seppur_2023_124746 crossref_primary_10_1016_j_cjche_2024_07_004 |
Cites_doi | 10.1016/j.cej.2021.130672 10.1021/nl301831h 10.2298/JSC131014011D 10.1016/j.jcis.2019.03.028 10.1016/j.cclet.2021.03.083 10.1021/ja02242a004 10.1016/j.cej.2016.03.145 10.1016/j.molliq.2020.114051 10.1039/C6TA10964K 10.1016/j.jhazmat.2019.121127 10.1016/j.jhazmat.2020.123243 10.1016/j.jhazmat.2021.126183 10.1016/j.cej.2021.130516 10.1016/j.cej.2021.129747 10.1063/1.470005 10.1016/j.apcatb.2015.08.002 10.1039/C7CY00788D 10.1016/j.apsusc.2015.09.069 10.1002/anie.201916510 10.1016/j.apsusc.2020.147233 10.1016/j.apsusc.2015.04.105 10.1016/j.cej.2020.125258 10.1016/j.apcatb.2012.09.009 10.1016/j.cej.2020.125346 10.1002/anie.201914949 10.1016/j.desal.2010.07.047 10.1039/c3ta12589k 10.1016/j.apsusc.2020.145647 10.1016/j.apsusc.2021.149085 10.1142/S0256767908002625 10.1016/j.jcis.2020.05.111 10.1016/j.cej.2019.02.100 10.1016/j.jhazmat.2019.121690 10.1016/j.jcis.2017.06.014 10.1016/j.cclet.2020.12.020 10.1039/c1jm13645c 10.1016/j.cej.2020.126012 10.1103/PhysRevB.68.241402 10.1016/j.cej.2021.130407 10.1016/j.cej.2021.128812 10.3390/molecules21060748 10.1016/j.cattod.2021.04.008 10.1016/j.apcatb.2011.10.016 10.1016/j.cej.2014.07.101 10.1016/j.apcatb.2017.01.034 10.1021/am403214r 10.1016/j.cej.2019.06.019 10.1016/j.cej.2021.129460 10.1016/j.optcom.2010.06.081 10.1016/j.cej.2020.128218 10.1016/j.jcis.2019.11.005 10.1016/j.apcatb.2019.118222 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright © 2022. Published by Elsevier Ltd. Copyright © 2022 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022. Published by Elsevier Ltd. – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.chemosphere.2022.135320 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
ExternalDocumentID | 35697103 10_1016_j_chemosphere_2022_135320 S0045653522018136 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c410t-87985fc422d7bdb17607073be43b6ad98a7fe1844dcbd2738e899071a90491f43 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 1879-1298 |
IngestDate | Fri Jul 11 07:47:54 EDT 2025 Mon Jul 21 11:04:31 EDT 2025 Wed Feb 19 02:25:14 EST 2025 Tue Jul 01 02:08:25 EDT 2025 Thu Apr 24 22:57:17 EDT 2025 Fri Feb 23 02:38:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | BiOBr microspheres Rhodamine B Adsorption Photocatalysis Hierarchical structure |
Language | English |
License | Copyright © 2022. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-87985fc422d7bdb17607073be43b6ad98a7fe1844dcbd2738e899071a90491f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7769-8580 |
PMID | 35697103 |
PQID | 2676552224 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2718240519 proquest_miscellaneous_2676552224 pubmed_primary_35697103 crossref_citationtrail_10_1016_j_chemosphere_2022_135320 crossref_primary_10_1016_j_chemosphere_2022_135320 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2022_135320 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Man, Xu, Li, Chen, Zheng, Ma (bib35) 2020; 512 Yu, Chen, Xu, Fang, Sun, Liu, Chen, Liang, Fang (bib47) 2021; 416 Zhang, Zhang, Kwon, Zhang, Stephen, Kim, Jung, Kwon, Chung, Yang (bib49) 2017; 206 Cao, Ma, Zhou, Xu, Cao, Zhao, Huang (bib2) 2019; 368 Chowdhury, Mishra, Saha, Kushwaha (bib6) 2011; 265 Wu, Hu, Han, Ouyang, Xia, Huang, Hu, Li (bib46) 2021; 425 Linsebigler, Lu, Yates (bib29) 1995; 103 Lei, Zhang, Wang, Yang, Gao (bib22) 2021; 421 Li, Sun, Qian, He, Chen, Zhang, Chen, Ye (bib24) 2016; 297 Hua, Wang, Yang, Tong, He (bib13) 2009; 67 Huo, Zhang, Miao, Jin (bib15) 2012; 111–112 Farag, Yahia (bib10) 2010; 283 Majhi, Das, Mishra, Dhiman, Mishra (bib34) 2020; 260 Fu, Chen, Wang, Liu, Zhang, Zhang, Han, Xu (bib12) 2015; 259 Wang, Cheng, Wang, Li, Li, Li, Zhang (bib42) 2021; 418 Ma, Liang, Li, Xu, Hua, Wang (bib33) 2021; 546 Huang, Zhang, Zhou, Huang, Chen, Tan, Yu (bib14) 2021; 32 Zhang, Zhang, Zhang, Bingham, Li, Kubuki (bib50) 2020; 530 Deng, Luo, Li, Xia, Luo, Luo, Dionysiou (bib7) 2020; 383 Zhang, Zhao, Huang, Hu, Wang, Zhang, He, Du (bib52) 2021; 420 Meng, Qu, Jing (bib36) 2021; 32 Tu, Zuo, Liu (bib40) 2008; 26 Valadi, Ekramipooya, Gholami (bib41) 2020; 318 Li, Chen, Li, Xu, Li, He, Lu (bib27) 2020; 400 Chen, Yu, Xiao (bib3) 2013; 1 Shi, Li, Li, Jin, Tao, Zeng, Pidko, Li, Li (bib37) 2020; 59 Chen, Hong, You, Li, Yu (bib4) 2015; 357 Ji, Zhang, Jia, Zhang, Lv, Pan (bib17) 2021; 414 Senasu, Chankhanittha, Hemavibool, Nanan (bib38) 2022; 384–386 Wu, Selloni, Lazzeri, Nayak (bib44) 2003; 68 Langmuir (bib21) 1918; 40 Zhang, Wang, Zhang, Wang, Kou, Wang, Li, Fan (bib51) 2021; 417 Jia, Wu, Song, Liu, Wang, Qi, He, Qi, Yang, Zhao (bib20) 2020; 396 Domingo, Ríos-Gutiérrez, Pérez (bib8) 2016; 21 Hou, Yang, Wang, Jiao, Zhu (bib16) 2013; 129 Li, Yang, Zhou, Ren, Wu, Lv (bib25) 2019; 546 Jia, Zhou, Huang, Zhang, Zhang, Tan, Yu (bib18) 2019; 6 Zhang, Yu, Jaroniec, Gong (bib48) 2012; 12 Freundlich (bib11) 1906; 57 Li, Wang, Huang, Dai, Zhang, Qin (bib23) 2015; 347 Li, Xiong, Gao, Ma, Chen, Kang, Liu, Li, Feng, Huang (bib26) 2020; 387 Dukali, Radovic, Stojanovic, Sevic, Radojevic, Jocic, Aleksic (bib9) 2014; 79 Chen, Xie, Song, Luo, Ye, Situ (bib5) 2021; 424 Tang, Lv, Xue, Xu, Qiu, Zheng, Chen, Wu (bib39) 2019; 374 Jia, Zhu, Qu, Jing, Yu, Abdelkrim, Hao, Yu (bib19) 2020; 561 Zhou, Cheng, Yu, Liu (bib54) 2011; 21 Lv, Yan, Lam, Ng, Yin, An (bib31) 2020; 401 Liu, Chen, Li, Xu, Li, He, Lu (bib30) 2020; 59 Ling, Dai, Zhou (bib28) 2020; 578 Zhu, Hong, Ke, Rong, Johnson, Ping (bib55) 2016; 181 Ma, Tan, Jiang, Yu (bib32) 2017; 7 Zheng, Zhu, Chen, You, Jiang, Yu (bib53) 2017; 504 Ahmadijokani, Mohammadkhani, Ahmadipouya, Shokrgozar, Rezakazemi, Molavi, Aminabhavi, Arjmand (bib1) 2020; 399 Weng, Pei, Zheng, Hu, Liu (bib43) 2013; 5 Wu, Ng, Wang, Du, Dou, Amal, Scott (bib45) 2017; 5 Zhang (10.1016/j.chemosphere.2022.135320_bib50) 2020; 530 Liu (10.1016/j.chemosphere.2022.135320_bib30) 2020; 59 Li (10.1016/j.chemosphere.2022.135320_bib23) 2015; 347 Tang (10.1016/j.chemosphere.2022.135320_bib39) 2019; 374 Dukali (10.1016/j.chemosphere.2022.135320_bib9) 2014; 79 Li (10.1016/j.chemosphere.2022.135320_bib25) 2019; 546 Shi (10.1016/j.chemosphere.2022.135320_bib37) 2020; 59 Zhang (10.1016/j.chemosphere.2022.135320_bib49) 2017; 206 Farag (10.1016/j.chemosphere.2022.135320_bib10) 2010; 283 Li (10.1016/j.chemosphere.2022.135320_bib24) 2016; 297 Domingo (10.1016/j.chemosphere.2022.135320_bib8) 2016; 21 Zheng (10.1016/j.chemosphere.2022.135320_bib53) 2017; 504 Linsebigler (10.1016/j.chemosphere.2022.135320_bib29) 1995; 103 Majhi (10.1016/j.chemosphere.2022.135320_bib34) 2020; 260 Fu (10.1016/j.chemosphere.2022.135320_bib12) 2015; 259 Chen (10.1016/j.chemosphere.2022.135320_bib5) 2021; 424 Senasu (10.1016/j.chemosphere.2022.135320_bib38) 2022; 384–386 Huo (10.1016/j.chemosphere.2022.135320_bib15) 2012; 111–112 Ma (10.1016/j.chemosphere.2022.135320_bib33) 2021; 546 Zhang (10.1016/j.chemosphere.2022.135320_bib52) 2021; 420 Wu (10.1016/j.chemosphere.2022.135320_bib46) 2021; 425 Ma (10.1016/j.chemosphere.2022.135320_bib32) 2017; 7 Lei (10.1016/j.chemosphere.2022.135320_bib22) 2021; 421 Wu (10.1016/j.chemosphere.2022.135320_bib45) 2017; 5 Wang (10.1016/j.chemosphere.2022.135320_bib42) 2021; 418 Jia (10.1016/j.chemosphere.2022.135320_bib20) 2020; 396 Cao (10.1016/j.chemosphere.2022.135320_bib2) 2019; 368 Ji (10.1016/j.chemosphere.2022.135320_bib17) 2021; 414 Valadi (10.1016/j.chemosphere.2022.135320_bib41) 2020; 318 Tu (10.1016/j.chemosphere.2022.135320_bib40) 2008; 26 Chowdhury (10.1016/j.chemosphere.2022.135320_bib6) 2011; 265 Wu (10.1016/j.chemosphere.2022.135320_bib44) 2003; 68 Zhang (10.1016/j.chemosphere.2022.135320_bib48) 2012; 12 Li (10.1016/j.chemosphere.2022.135320_bib27) 2020; 400 Lv (10.1016/j.chemosphere.2022.135320_bib31) 2020; 401 Yu (10.1016/j.chemosphere.2022.135320_bib47) 2021; 416 Deng (10.1016/j.chemosphere.2022.135320_bib7) 2020; 383 Li (10.1016/j.chemosphere.2022.135320_bib26) 2020; 387 Weng (10.1016/j.chemosphere.2022.135320_bib43) 2013; 5 Hua (10.1016/j.chemosphere.2022.135320_bib13) 2009; 67 Chen (10.1016/j.chemosphere.2022.135320_bib4) 2015; 357 Zhou (10.1016/j.chemosphere.2022.135320_bib54) 2011; 21 Chen (10.1016/j.chemosphere.2022.135320_bib3) 2013; 1 Meng (10.1016/j.chemosphere.2022.135320_bib36) 2021; 32 Jia (10.1016/j.chemosphere.2022.135320_bib18) 2019; 6 Ahmadijokani (10.1016/j.chemosphere.2022.135320_bib1) 2020; 399 Jia (10.1016/j.chemosphere.2022.135320_bib19) 2020; 561 Man (10.1016/j.chemosphere.2022.135320_bib35) 2020; 512 Zhu (10.1016/j.chemosphere.2022.135320_bib55) 2016; 181 Langmuir (10.1016/j.chemosphere.2022.135320_bib21) 1918; 40 Huang (10.1016/j.chemosphere.2022.135320_bib14) 2021; 32 Hou (10.1016/j.chemosphere.2022.135320_bib16) 2013; 129 Freundlich (10.1016/j.chemosphere.2022.135320_bib11) 1906; 57 Zhang (10.1016/j.chemosphere.2022.135320_bib51) 2021; 417 Ling (10.1016/j.chemosphere.2022.135320_bib28) 2020; 578 |
References_xml | – volume: 383 start-page: 121127.1 year: 2020 end-page: 121127.13 ident: bib7 article-title: Efficient toxicity elimination of aqueous Cr(VI) by positively-charged BiOCl publication-title: J. Hazard Mater. – volume: 424 year: 2021 ident: bib5 article-title: Photocatalytic degradation of ethylene in cold storage using the nanocomposite photocatalyst MIL101(Fe)-TiO publication-title: Chem. Eng. J. – volume: 401 year: 2020 ident: bib31 article-title: Solvothermal synthesis of copper-doped BiOBr microflowers with enhanced adsorption and visible-light driven photocatalytic degradation of norfloxacin publication-title: Chem. Eng. J. – volume: 260 year: 2020 ident: bib34 article-title: One pot synthesis of CdS/BiOBr/Bi publication-title: Appl. Catal. B Environ. – volume: 206 start-page: 271 year: 2017 end-page: 281 ident: bib49 article-title: Photocatalytic improvement of Mn-adsorbed g-C publication-title: Appl. Catal. B Environ. – volume: 40 start-page: 1361 year: 1918 end-page: 1403 ident: bib21 article-title: The adsorption of gases on plane surfaces of glass, mica and platinum publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 4584 year: 2012 end-page: 4589 ident: bib48 article-title: Noble metal-free reduced graphene oxide-Zn publication-title: Nano Lett. – volume: 283 start-page: 4310 year: 2010 end-page: 4317 ident: bib10 article-title: Structural, absorption and optical dispersion characteristics of Rhodamine B thin films prepared by drop casting technique publication-title: Opt Commun. – volume: 420 year: 2021 ident: bib52 article-title: Photocatalytic degradation of oxytetracycline under visible light by nanohybrids of CoFe alloy nanoparticles and nitrogen-sulfur-codoped mesoporous carbon publication-title: Chem. Eng. J. – volume: 32 start-page: 3265 year: 2021 end-page: 3276 ident: bib36 article-title: Recent advances in BiOBr-based photocatalysts for environmental remediation publication-title: Chin. Chem. Lett. – volume: 368 start-page: 212 year: 2019 end-page: 222 ident: bib2 article-title: Efficient photocatalytic degradation of herbicide glyphosate in water by magnetically separable and recyclable BiOBr/Fe publication-title: Chem. Eng. J. – volume: 347 start-page: 258 year: 2015 end-page: 264 ident: bib23 article-title: Synthesis of BiOBr-PVP hybrids with enhanced adsorption-photocatalytic properties publication-title: Appl. Surf. Sci. – volume: 399 year: 2020 ident: bib1 article-title: Superior chemical stability of UiO-66 metal-organic frameworks (MOFs) for selective dye adsorption publication-title: Chem. Eng. J. – volume: 416 year: 2021 ident: bib47 article-title: Synergistic adsorption-photocatalytic degradation of different antibiotics in seawater by a porous g-C publication-title: J. Hazard Mater. – volume: 512 year: 2020 ident: bib35 article-title: Oxygen vacancy engineering of Bi publication-title: Appl. Surf. Sci. – volume: 418 year: 2021 ident: bib42 article-title: Carbon dots modified bismuth antimonate for broad spectrum photocatalytic degradation of organic pollutants: boosted charge separation, DFT calculations and mechanism unveiling publication-title: Chem. Eng. J. – volume: 561 start-page: 396 year: 2020 end-page: 407 ident: bib19 article-title: BiOBr/Ag publication-title: J. Colloid Interface Sci. – volume: 59 start-page: 4519 year: 2020 end-page: 4524 ident: bib30 article-title: Surface engineering of g-C publication-title: Angew. Chem., Int. Ed. – volume: 129 start-page: 333 year: 2013 end-page: 341 ident: bib16 article-title: Bi publication-title: Appl. Catal. B Environ. – volume: 265 start-page: 159 year: 2011 end-page: 168 ident: bib6 article-title: Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk publication-title: Desalination – volume: 396 year: 2020 ident: bib20 article-title: In situ self-growing 3D hierarchical BiOBr/BiOIO publication-title: Chem. Eng. J. – volume: 79 start-page: 867 year: 2014 end-page: 880 ident: bib9 article-title: Electrospinning of laser dye Rhodamine B-doped poly(methyl methacrylate) nanofibers publication-title: J. Serb. Chem. Soc. – volume: 297 start-page: 139 year: 2016 end-page: 147 ident: bib24 article-title: The role of adsorption in photocatalytic degradation of ibuprofen under visible light irradiation by BiOBr microspheres publication-title: Chem. Eng. J. – volume: 68 year: 2003 ident: bib44 article-title: Oxygen vacancy mediated adsorption and reactions of molecular oxygen on theTiO publication-title: Phys. Rev. B – volume: 417 year: 2021 ident: bib51 article-title: Millimeter-level nitrogen modified activated carbon spheres assisted Bi publication-title: Chem. Eng. J. – volume: 546 year: 2021 ident: bib33 article-title: A novel composite material based on hydroxylated g-C publication-title: Appl. Surf. Sci. – volume: 59 start-page: 6590 year: 2020 end-page: 6595 ident: bib37 article-title: Intrinsic facet-dependent reactivity of well-defined BiOBr nanosheets on photocatalytic water splitting publication-title: Angew. Chem., Int. Ed. – volume: 504 start-page: 688 year: 2017 end-page: 696 ident: bib53 article-title: Hierarchical flower-like nickel(II) oxide microspheres with high adsorption capacity of Congo red in water publication-title: J. Colloid Interface Sci. – volume: 259 start-page: 53 year: 2015 end-page: 61 ident: bib12 article-title: Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis publication-title: Chem. Eng. J. – volume: 400 year: 2020 ident: bib27 article-title: Efficient reduction of Cr(VI) by a BMO/Bi publication-title: J. Hazard Mater. – volume: 111–112 start-page: 334 year: 2012 end-page: 341 ident: bib15 article-title: Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances publication-title: Appl. Catal. B Environ. – volume: 414 year: 2021 ident: bib17 article-title: Sorption enhancement of nickel(II) from wastewater by ZIF-8 modified with poly (sodium 4-styrenesulfonate): mechanism and kinetic study publication-title: Chem. Eng. J. – volume: 546 start-page: 139 year: 2019 end-page: 151 ident: bib25 article-title: A regularly combined magnetic 3D hierarchical Fe publication-title: J. Colloid Interface Sci. – volume: 318 year: 2020 ident: bib41 article-title: Selective separation of Congo Red from a mixture of anionic and cationic dyes using magnetic-MOF: experimental and DFT study publication-title: J. Mol. Liq. – volume: 6 start-page: 3601 year: 2019 end-page: 3610 ident: bib18 article-title: Enhanced adsorption of Cr(VI) on BiOBr under alkaline conditions: interlayer anion exchange publication-title: Environ. Sci.: Nano – volume: 530 year: 2020 ident: bib50 article-title: PVP surfactant-modified flower-like BiOBr with tunable bandgap structure for efficient photocatalytic decontamination of pollutants publication-title: Appl. Surf. Sci. – volume: 425 year: 2021 ident: bib46 article-title: Mechanism insights into the facet-dependent photocatalytic degradation of perfluorooctanoic acid on BiOCl nanosheets publication-title: Chem. Eng. J. – volume: 103 start-page: 9438 year: 1995 end-page: 9443 ident: bib29 article-title: CO chemisorption on TiO publication-title: J. Chem. Phys. – volume: 1 start-page: 11682 year: 2013 end-page: 11690 ident: bib3 article-title: Hierarchically porous MnO publication-title: J. Mater. Chem. A. – volume: 7 start-page: 3275 year: 2017 end-page: 3282 ident: bib32 article-title: Graphitic C publication-title: Catal. Sci. Technol. – volume: 21 start-page: 19353 year: 2011 ident: bib54 article-title: Hierarchically porous calcined lithium/aluminum layered double hydroxides: facile synthesis and enhanced adsorption towards fluoride in water publication-title: J. Mater. Chem. – volume: 5 start-page: 8117 year: 2017 end-page: 8124 ident: bib45 article-title: Improving the photo-oxidative capability of BiOBr via crystal facet engineering publication-title: J. Mater. Chem. A. – volume: 387 year: 2020 ident: bib26 article-title: Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity publication-title: J. Hazard Mater. – volume: 57 start-page: 385 year: 1906 end-page: 470 ident: bib11 article-title: Über die adsorption in Lösungen publication-title: Ztschrift Fr Physikalische Chem – volume: 26 start-page: 23 year: 2008 end-page: 29 ident: bib40 article-title: Study on the interaction between polyvinylpyrrolidone and platinum metals during the formation of the colloidal metal nanoparticles publication-title: Chin. J. Polym. Sci. – volume: 384–386 start-page: 209 year: 2022 end-page: 227 ident: bib38 article-title: Solvothermal synthesis of BiOBr photocatalyst with an assistant of PVP for visible-light-driven photocatalytic degradation of fluoroquinolone antibiotics publication-title: Catal. Today – volume: 181 start-page: 517 year: 2016 end-page: 523 ident: bib55 article-title: Comparing the degradation of acetochlor to RhB using BiOBr under visible light: a significantly different rate-catalyst dose relationship publication-title: Appl. Catal. B Environ. – volume: 5 start-page: 12380 year: 2013 end-page: 12386 ident: bib43 article-title: Exciton-Free, nonsensitized degradation of 2-naphthol by facet-dependent BiOCl under visible light: novel evidence of surface-state photocatalysis publication-title: ACS Appl. Mater. Interfaces – volume: 21 start-page: 748 year: 2016 ident: bib8 article-title: Applications of the conceptual density functional theory indices to organic chemistry reactivity publication-title: Molecules – volume: 578 start-page: 326 year: 2020 end-page: 337 ident: bib28 article-title: Fabrication and high photoelectrocatalytic activity of scaly BiOBr nanosheet arrays publication-title: J. Colloid Interface Sci. – volume: 67 start-page: 355 year: 2009 end-page: 360 ident: bib13 article-title: Adsorption properties of Keggin-type Fe(III)-substituted heteropolyanion by D301R resin publication-title: Hua Hsueh Hsueh Pao – volume: 374 start-page: 975 year: 2019 end-page: 982 ident: bib39 article-title: MIL-53(Fe) incorporated in the lamellar BiOBr: promoting the visible-light catalytic capability on the degradation of rhodamine B and carbamazepine publication-title: Chem. Eng. J. – volume: 32 start-page: 2797 year: 2021 end-page: 2802 ident: bib14 article-title: Amorphous molybdenum sulfide mediated EDTA with multiple active sites to boost heavy metal ions removal publication-title: Chin. Chem. Lett. – volume: 357 start-page: 856 year: 2015 end-page: 865 ident: bib4 article-title: Simultaneous efficient adsorption of Pb publication-title: Appl. Surf. Sci. – volume: 421 year: 2021 ident: bib22 article-title: Density functional theory investigation of As publication-title: Chem. Eng. J. – volume: 425 year: 2021 ident: 10.1016/j.chemosphere.2022.135320_bib46 article-title: Mechanism insights into the facet-dependent photocatalytic degradation of perfluorooctanoic acid on BiOCl nanosheets publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130672 – volume: 12 start-page: 4584 year: 2012 ident: 10.1016/j.chemosphere.2022.135320_bib48 article-title: Noble metal-free reduced graphene oxide-ZnxCd1–xS nanocomposite with enhanced solar photocatalytic H2-production performance publication-title: Nano Lett. doi: 10.1021/nl301831h – volume: 79 start-page: 867 year: 2014 ident: 10.1016/j.chemosphere.2022.135320_bib9 article-title: Electrospinning of laser dye Rhodamine B-doped poly(methyl methacrylate) nanofibers publication-title: J. Serb. Chem. Soc. doi: 10.2298/JSC131014011D – volume: 546 start-page: 139 year: 2019 ident: 10.1016/j.chemosphere.2022.135320_bib25 article-title: A regularly combined magnetic 3D hierarchical Fe3O4/BiOBr heterostructure: fabrication, visible-light photocatalytic activity and degradation mechanism publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.03.028 – volume: 32 start-page: 3265 year: 2021 ident: 10.1016/j.chemosphere.2022.135320_bib36 article-title: Recent advances in BiOBr-based photocatalysts for environmental remediation publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.03.083 – volume: 40 start-page: 1361 year: 1918 ident: 10.1016/j.chemosphere.2022.135320_bib21 article-title: The adsorption of gases on plane surfaces of glass, mica and platinum publication-title: J. Am. Chem. Soc. doi: 10.1021/ja02242a004 – volume: 297 start-page: 139 year: 2016 ident: 10.1016/j.chemosphere.2022.135320_bib24 article-title: The role of adsorption in photocatalytic degradation of ibuprofen under visible light irradiation by BiOBr microspheres publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.03.145 – volume: 318 year: 2020 ident: 10.1016/j.chemosphere.2022.135320_bib41 article-title: Selective separation of Congo Red from a mixture of anionic and cationic dyes using magnetic-MOF: experimental and DFT study publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.114051 – volume: 5 start-page: 8117 year: 2017 ident: 10.1016/j.chemosphere.2022.135320_bib45 article-title: Improving the photo-oxidative capability of BiOBr via crystal facet engineering publication-title: J. Mater. Chem. A. doi: 10.1039/C6TA10964K – volume: 383 start-page: 121127.1 year: 2020 ident: 10.1016/j.chemosphere.2022.135320_bib7 article-title: Efficient toxicity elimination of aqueous Cr(VI) by positively-charged BiOClxI1-x, BiOBrxI1-x and BiOClxBr1-x solid solution with internal hole-scavenging capacity via the synergy of adsorption and photocatalytic reduction publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2019.121127 – volume: 400 year: 2020 ident: 10.1016/j.chemosphere.2022.135320_bib27 article-title: Efficient reduction of Cr(VI) by a BMO/Bi2S3 heterojunction via synergistic adsorption and photocatalysis under visible light publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.123243 – volume: 416 year: 2021 ident: 10.1016/j.chemosphere.2022.135320_bib47 article-title: Synergistic adsorption-photocatalytic degradation of different antibiotics in seawater by a porous g-C3N4/calcined-LDH and its application in synthetic mariculture wastewater publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2021.126183 – volume: 420 year: 2021 ident: 10.1016/j.chemosphere.2022.135320_bib52 article-title: Photocatalytic degradation of oxytetracycline under visible light by nanohybrids of CoFe alloy nanoparticles and nitrogen-sulfur-codoped mesoporous carbon publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130516 – volume: 421 year: 2021 ident: 10.1016/j.chemosphere.2022.135320_bib22 article-title: Density functional theory investigation of As4, As2 and AsH3 adsorption on Ti-doped graphene publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129747 – volume: 103 start-page: 9438 year: 1995 ident: 10.1016/j.chemosphere.2022.135320_bib29 article-title: CO chemisorption on TiO2 (110): oxygen vacancy site influence on CO adsorption publication-title: J. Chem. Phys. doi: 10.1063/1.470005 – volume: 181 start-page: 517 year: 2016 ident: 10.1016/j.chemosphere.2022.135320_bib55 article-title: Comparing the degradation of acetochlor to RhB using BiOBr under visible light: a significantly different rate-catalyst dose relationship publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.08.002 – volume: 67 start-page: 355 year: 2009 ident: 10.1016/j.chemosphere.2022.135320_bib13 article-title: Adsorption properties of Keggin-type Fe(III)-substituted heteropolyanion by D301R resin publication-title: Hua Hsueh Hsueh Pao – volume: 7 start-page: 3275 year: 2017 ident: 10.1016/j.chemosphere.2022.135320_bib32 article-title: Graphitic C3N4 nanosheet-sensitized brookite TiO2 to achieve photocatalytic hydrogen evolution under visible light publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY00788D – volume: 6 start-page: 3601 year: 2019 ident: 10.1016/j.chemosphere.2022.135320_bib18 article-title: Enhanced adsorption of Cr(VI) on BiOBr under alkaline conditions: interlayer anion exchange publication-title: Environ. Sci.: Nano – volume: 357 start-page: 856 year: 2015 ident: 10.1016/j.chemosphere.2022.135320_bib4 article-title: Simultaneous efficient adsorption of Pb2+ and MnO4− ions by MCM-41 functionalized with amine and nitrilotriacetic acid anhydride publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.09.069 – volume: 59 start-page: 6590 year: 2020 ident: 10.1016/j.chemosphere.2022.135320_bib37 article-title: Intrinsic facet-dependent reactivity of well-defined BiOBr nanosheets on photocatalytic water splitting publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201916510 – volume: 530 year: 2020 ident: 10.1016/j.chemosphere.2022.135320_bib50 article-title: PVP surfactant-modified flower-like BiOBr with tunable bandgap structure for efficient photocatalytic decontamination of pollutants publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147233 – volume: 347 start-page: 258 year: 2015 ident: 10.1016/j.chemosphere.2022.135320_bib23 article-title: Synthesis of BiOBr-PVP hybrids with enhanced adsorption-photocatalytic properties publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.04.105 – volume: 396 year: 2020 ident: 10.1016/j.chemosphere.2022.135320_bib20 article-title: In situ self-growing 3D hierarchical BiOBr/BiOIO3 Z-scheme heterojunction with rich oxygen vacancies and iodine ions as carriers transfer dual-channels for enhanced photocatalytic activity publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125258 – volume: 129 start-page: 333 year: 2013 ident: 10.1016/j.chemosphere.2022.135320_bib16 article-title: Bi2O3 quantum dots decorated anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets for enhanced visible-light photocatalytic performance publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2012.09.009 – volume: 399 year: 2020 ident: 10.1016/j.chemosphere.2022.135320_bib1 article-title: Superior chemical stability of UiO-66 metal-organic frameworks (MOFs) for selective dye adsorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125346 – volume: 59 start-page: 4519 year: 2020 ident: 10.1016/j.chemosphere.2022.135320_bib30 article-title: Surface engineering of g-C3N4 by stacked BiOBr sheets rich in oxygen vacancies for boosting photocatalytic performance publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201914949 – volume: 265 start-page: 159 year: 2011 ident: 10.1016/j.chemosphere.2022.135320_bib6 article-title: Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk publication-title: Desalination doi: 10.1016/j.desal.2010.07.047 – volume: 1 start-page: 11682 year: 2013 ident: 10.1016/j.chemosphere.2022.135320_bib3 article-title: Hierarchically porous MnO2 microspheres with enhanced adsorption performance publication-title: J. Mater. Chem. A. doi: 10.1039/c3ta12589k – volume: 512 year: 2020 ident: 10.1016/j.chemosphere.2022.135320_bib35 article-title: Oxygen vacancy engineering of Bi2O2CO3 hierarchical microspheres for enhanced adsorption of Cd2+ ions and photocatalytic degradation of Rodamine B publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145647 – volume: 546 year: 2021 ident: 10.1016/j.chemosphere.2022.135320_bib33 article-title: A novel composite material based on hydroxylated g-C3N4 and oxygen-vacant TiO2 for improvement of photocatalytic performance publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.149085 – volume: 26 start-page: 23 year: 2008 ident: 10.1016/j.chemosphere.2022.135320_bib40 article-title: Study on the interaction between polyvinylpyrrolidone and platinum metals during the formation of the colloidal metal nanoparticles publication-title: Chin. J. Polym. Sci. doi: 10.1142/S0256767908002625 – volume: 578 start-page: 326 year: 2020 ident: 10.1016/j.chemosphere.2022.135320_bib28 article-title: Fabrication and high photoelectrocatalytic activity of scaly BiOBr nanosheet arrays publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.05.111 – volume: 368 start-page: 212 year: 2019 ident: 10.1016/j.chemosphere.2022.135320_bib2 article-title: Efficient photocatalytic degradation of herbicide glyphosate in water by magnetically separable and recyclable BiOBr/Fe3O4 nanocomposites under visible light irradiation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.02.100 – volume: 57 start-page: 385 year: 1906 ident: 10.1016/j.chemosphere.2022.135320_bib11 article-title: Über die adsorption in Lösungen publication-title: Ztschrift Fr Physikalische Chem – volume: 387 year: 2020 ident: 10.1016/j.chemosphere.2022.135320_bib26 article-title: Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2019.121690 – volume: 504 start-page: 688 year: 2017 ident: 10.1016/j.chemosphere.2022.135320_bib53 article-title: Hierarchical flower-like nickel(II) oxide microspheres with high adsorption capacity of Congo red in water publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.06.014 – volume: 32 start-page: 2797 year: 2021 ident: 10.1016/j.chemosphere.2022.135320_bib14 article-title: Amorphous molybdenum sulfide mediated EDTA with multiple active sites to boost heavy metal ions removal publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.12.020 – volume: 21 start-page: 19353 year: 2011 ident: 10.1016/j.chemosphere.2022.135320_bib54 article-title: Hierarchically porous calcined lithium/aluminum layered double hydroxides: facile synthesis and enhanced adsorption towards fluoride in water publication-title: J. Mater. Chem. doi: 10.1039/c1jm13645c – volume: 401 year: 2020 ident: 10.1016/j.chemosphere.2022.135320_bib31 article-title: Solvothermal synthesis of copper-doped BiOBr microflowers with enhanced adsorption and visible-light driven photocatalytic degradation of norfloxacin publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126012 – volume: 68 year: 2003 ident: 10.1016/j.chemosphere.2022.135320_bib44 article-title: Oxygen vacancy mediated adsorption and reactions of molecular oxygen on theTiO2 (110) surface publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.241402 – volume: 424 year: 2021 ident: 10.1016/j.chemosphere.2022.135320_bib5 article-title: Photocatalytic degradation of ethylene in cold storage using the nanocomposite photocatalyst MIL101(Fe)-TiO2-rGO publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130407 – volume: 414 year: 2021 ident: 10.1016/j.chemosphere.2022.135320_bib17 article-title: Sorption enhancement of nickel(II) from wastewater by ZIF-8 modified with poly (sodium 4-styrenesulfonate): mechanism and kinetic study publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128812 – volume: 21 start-page: 748 year: 2016 ident: 10.1016/j.chemosphere.2022.135320_bib8 article-title: Applications of the conceptual density functional theory indices to organic chemistry reactivity publication-title: Molecules doi: 10.3390/molecules21060748 – volume: 384–386 start-page: 209 year: 2022 ident: 10.1016/j.chemosphere.2022.135320_bib38 article-title: Solvothermal synthesis of BiOBr photocatalyst with an assistant of PVP for visible-light-driven photocatalytic degradation of fluoroquinolone antibiotics publication-title: Catal. Today doi: 10.1016/j.cattod.2021.04.008 – volume: 111–112 start-page: 334 year: 2012 ident: 10.1016/j.chemosphere.2022.135320_bib15 article-title: Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2011.10.016 – volume: 259 start-page: 53 year: 2015 ident: 10.1016/j.chemosphere.2022.135320_bib12 article-title: Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.07.101 – volume: 206 start-page: 271 year: 2017 ident: 10.1016/j.chemosphere.2022.135320_bib49 article-title: Photocatalytic improvement of Mn-adsorbed g-C3N4 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.01.034 – volume: 5 start-page: 12380 year: 2013 ident: 10.1016/j.chemosphere.2022.135320_bib43 article-title: Exciton-Free, nonsensitized degradation of 2-naphthol by facet-dependent BiOCl under visible light: novel evidence of surface-state photocatalysis publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am403214r – volume: 374 start-page: 975 year: 2019 ident: 10.1016/j.chemosphere.2022.135320_bib39 article-title: MIL-53(Fe) incorporated in the lamellar BiOBr: promoting the visible-light catalytic capability on the degradation of rhodamine B and carbamazepine publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.06.019 – volume: 418 year: 2021 ident: 10.1016/j.chemosphere.2022.135320_bib42 article-title: Carbon dots modified bismuth antimonate for broad spectrum photocatalytic degradation of organic pollutants: boosted charge separation, DFT calculations and mechanism unveiling publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129460 – volume: 283 start-page: 4310 year: 2010 ident: 10.1016/j.chemosphere.2022.135320_bib10 article-title: Structural, absorption and optical dispersion characteristics of Rhodamine B thin films prepared by drop casting technique publication-title: Opt Commun. doi: 10.1016/j.optcom.2010.06.081 – volume: 417 year: 2021 ident: 10.1016/j.chemosphere.2022.135320_bib51 article-title: Millimeter-level nitrogen modified activated carbon spheres assisted Bi4Ti3O12 composites for bifunctional adsorption/photoreduction of CO2 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128218 – volume: 561 start-page: 396 year: 2020 ident: 10.1016/j.chemosphere.2022.135320_bib19 article-title: BiOBr/Ag6Si2O7 heterojunctions for enhancing visible light catalytic degradation performances with a sequential selectivity enabled by dual synergistic effects publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.11.005 – volume: 260 year: 2020 ident: 10.1016/j.chemosphere.2022.135320_bib34 article-title: One pot synthesis of CdS/BiOBr/Bi2O2CO3: a novel ternary double Z-scheme heterostructure photocatalyst for efficient degradation of atrazine publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.118222 |
SSID | ssj0001659 |
Score | 2.503019 |
Snippet | Adsorption and its influence are often neglected during photocatalytic degradation of organic pollutants. To call attention to these issues, a novel bismuth... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 135320 |
SubjectTerms | Adsorption BiOBr microspheres bismuth equations Hierarchical structure irradiation microparticles Photocatalysis polyvinylpyrrolidone Rhodamine B rhodamines sorption isotherms |
Title | Adsorption of BiOBr microspheres to rhodamine B and its influence on photocatalytic reaction |
URI | https://dx.doi.org/10.1016/j.chemosphere.2022.135320 https://www.ncbi.nlm.nih.gov/pubmed/35697103 https://www.proquest.com/docview/2676552224 https://www.proquest.com/docview/2718240519 |
Volume | 304 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9xADBYhpY9LadPXNm2YQK9u1vZ47IFedpeEbUvTSwM5FIZ5mTh0PcvaOeTS317JjySFNAR6tBlhIQnp01gPgA--MFPrChlpb3TE7VRGRnIXIdOxKKx1TtOF_rdjsTzhX06z0y1YjL0wVFY5-P7ep3feenhzMEjzYF1V1ONLaIQABA2dSmnsNuc5WfnH39dlHrHIegjMs4hOP4L96xovlMsqNNS_TxMzk6TbAkGrv2-PUf_CoF0sOnoGTwcQyWY9n89hy9c78Hgx7m7bgYeH3TDqyxfwc-aasOn8Agslm1ff5xu2oiq8nqGGtYFtzoLTK8SbbM507VjVNqwat5cwpFyfhTZ0Nz2X-EmGQLNrh3gJJ0eHPxbLaNioEFkeT1t0fbLISsuTxOXGmTgXNO0nNZ6nRmgnC52XHnM-7qxx1LTjMR1DEKIlJhJxydNXsF2H2r8B5qY2y402cSExo5KYt5W5zFMpYq_RafgJFKMMlR3GjdPWi19qrCs7VzfEr0j8qhf_BJIr0nU_c-M-RJ9GRam_DEhhbLgP-f6oXIW6or8muvbholGJyEWGRpbwO85ghEdohGh4Aq97y7jiPM2ERBiXvv0_BnfhCT31dYTvYLvdXPj3iIdas9cZ_B48mH3-ujz-A-37C2U |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9VAEJ4gRuHFKF44eFsSfaycbrfbboIPHIQc5OILJDyYLHtrqPG0J6cl5Lz4p_yDzPYCmqghMby2nXYyM535pp0LwDuX6qGxqQiU0ypgZigCLZgNkOmQp8ZYq_wH_cMjPj5hn0_j0wX42ffC-LLKzve3Pr3x1t2RjU6aG9M89z2-Ho14AOGHTkW8q6zcd_NLzNuqj3ufUMnvKd3dOd4eB91qgcCwcFijDxBpnBlGqU201WHC_dibSDsWaa6sSFWSOUx-mDXa-u4Vh3kJRmMlEFGHGYvwvvfgPkN34dcmfPhxU1cS8rjF3CwOPHsPYf2mqAwVMSkrPzDAj-iktFk74XeN_zko_g30NsFv9zE86lAr2WoF8wQWXLECS9v9srgVeLDTTL-eP4WvW7YqZ40jImVGRvmX0YxMfNlfy1BF6pLMzkurJghwyYiowpK8rkjer0shSDk9L-uy-bQ0x0cSRLZN_8UzOLkTOT-HxaIs3CoQOzRxopUOU4EpnMBEMUtEEgkeOoVeyg0g7WUoTTff3K_Z-C77QrZv8hfxSy9-2Yp_APSadNoO-bgN0WavKPmbxUoMRrchX--VK1FX_jeNKlx5UUnKEx6jVVP2j2sQUiAWQ_g9gBetZVxzHsVcIG6M1v6PwbewND4-PJAHe0f7L2HZn2mLGF_BYj27cK8RjNX6TWP8BM7u-m27Ap_xRdc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+of+BiOBr+microspheres+to+rhodamine+B+and+its+influence+on+photocatalytic+reaction&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Liang%2C+Congjie&rft.au=Ma%2C+Jian&rft.au=Cao%2C+Yixi&rft.au=Zhang%2C+Taisong&rft.date=2022-10-01&rft.eissn=1879-1298&rft.spage=135320&rft_id=info:doi/10.1016%2Fj.chemosphere.2022.135320&rft_id=info%3Apmid%2F35697103&rft.externalDocID=35697103 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |