Adsorption of BiOBr microspheres to rhodamine B and its influence on photocatalytic reaction

Adsorption and its influence are often neglected during photocatalytic degradation of organic pollutants. To call attention to these issues, a novel bismuth oxybromide (BiOBr) microsphere with hierarchical flower-like structure was fabricated through a facile hydrothermal process using polyvinyl pyr...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 304; p. 135320
Main Authors Liang, Congjie, Ma, Jian, Cao, Yixi, Zhang, Taisong, Yang, Chanyu, Wu, Yingfeng, Li, Huaming, Xu, Hui, Hua, Yingjie, Wang, Chongtai
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Adsorption and its influence are often neglected during photocatalytic degradation of organic pollutants. To call attention to these issues, a novel bismuth oxybromide (BiOBr) microsphere with hierarchical flower-like structure was fabricated through a facile hydrothermal process using polyvinyl pyrrolidone (PVP) as additive in this work, and then the adsorption of the BiOBr microspheres to RhB and its influence on the photocatalytic degradation of RhB were investigated in detail. Experimental results show that the BiOBr microspheres have a very strong adsorption capacity to RhB. The adsorption behavior follows the Langmuir model and the quasi second order kinetic equation. Tests of the photocatalytic degradation of RhB under visible irradiation verify that the adsorption of the BiOBr microspheres to RhB greatly boosts the degradation of RhB due to the “enriching effect”, and a complete degradation of 20 mg L−1 RhB only requires 37 min. [Display omitted] •The adsorption behavior of photocatalyst was detailedly studied using the synthesized BiOBr microspheres.•The adsorption model and parameters were determined through experiments.•The remarkably improved adsorption capacity of BiOBr microspheres was explained through experiments and DFT calculation.•The strong adsorption of the BiOBr microspheres to RhB was proved to facilitate its photodegradation.•This work provides new insights into adsorption phenomenon during photocatalytic degradation of organic dyes.
AbstractList Adsorption and its influence are often neglected during photocatalytic degradation of organic pollutants. To call attention to these issues, a novel bismuth oxybromide (BiOBr) microsphere with hierarchical flower-like structure was fabricated through a facile hydrothermal process using polyvinyl pyrrolidone (PVP) as additive in this work, and then the adsorption of the BiOBr microspheres to RhB and its influence on the photocatalytic degradation of RhB were investigated in detail. Experimental results show that the BiOBr microspheres have a very strong adsorption capacity to RhB. The adsorption behavior follows the Langmuir model and the quasi second order kinetic equation. Tests of the photocatalytic degradation of RhB under visible irradiation verify that the adsorption of the BiOBr microspheres to RhB greatly boosts the degradation of RhB due to the “enriching effect”, and a complete degradation of 20 mg L−1 RhB only requires 37 min. [Display omitted] •The adsorption behavior of photocatalyst was detailedly studied using the synthesized BiOBr microspheres.•The adsorption model and parameters were determined through experiments.•The remarkably improved adsorption capacity of BiOBr microspheres was explained through experiments and DFT calculation.•The strong adsorption of the BiOBr microspheres to RhB was proved to facilitate its photodegradation.•This work provides new insights into adsorption phenomenon during photocatalytic degradation of organic dyes.
Adsorption and its influence are often neglected during photocatalytic degradation of organic pollutants. To call attention to these issues, a novel bismuth oxybromide (BiOBr) microsphere with hierarchical flower-like structure was fabricated through a facile hydrothermal process using polyvinyl pyrrolidone (PVP) as additive in this work, and then the adsorption of the BiOBr microspheres to RhB and its influence on the photocatalytic degradation of RhB were investigated in detail. Experimental results show that the BiOBr microspheres have a very strong adsorption capacity to RhB. The adsorption behavior follows the Langmuir model and the quasi second order kinetic equation. Tests of the photocatalytic degradation of RhB under visible irradiation verify that the adsorption of the BiOBr microspheres to RhB greatly boosts the degradation of RhB due to the "enriching effect", and a complete degradation of 20 mg L RhB only requires 37 min.
Adsorption and its influence are often neglected during photocatalytic degradation of organic pollutants. To call attention to these issues, a novel bismuth oxybromide (BiOBr) microsphere with hierarchical flower-like structure was fabricated through a facile hydrothermal process using polyvinyl pyrrolidone (PVP) as additive in this work, and then the adsorption of the BiOBr microspheres to RhB and its influence on the photocatalytic degradation of RhB were investigated in detail. Experimental results show that the BiOBr microspheres have a very strong adsorption capacity to RhB. The adsorption behavior follows the Langmuir model and the quasi second order kinetic equation. Tests of the photocatalytic degradation of RhB under visible irradiation verify that the adsorption of the BiOBr microspheres to RhB greatly boosts the degradation of RhB due to the "enriching effect", and a complete degradation of 20 mg L-1 RhB only requires 37 min.Adsorption and its influence are often neglected during photocatalytic degradation of organic pollutants. To call attention to these issues, a novel bismuth oxybromide (BiOBr) microsphere with hierarchical flower-like structure was fabricated through a facile hydrothermal process using polyvinyl pyrrolidone (PVP) as additive in this work, and then the adsorption of the BiOBr microspheres to RhB and its influence on the photocatalytic degradation of RhB were investigated in detail. Experimental results show that the BiOBr microspheres have a very strong adsorption capacity to RhB. The adsorption behavior follows the Langmuir model and the quasi second order kinetic equation. Tests of the photocatalytic degradation of RhB under visible irradiation verify that the adsorption of the BiOBr microspheres to RhB greatly boosts the degradation of RhB due to the "enriching effect", and a complete degradation of 20 mg L-1 RhB only requires 37 min.
Adsorption and its influence are often neglected during photocatalytic degradation of organic pollutants. To call attention to these issues, a novel bismuth oxybromide (BiOBr) microsphere with hierarchical flower-like structure was fabricated through a facile hydrothermal process using polyvinyl pyrrolidone (PVP) as additive in this work, and then the adsorption of the BiOBr microspheres to RhB and its influence on the photocatalytic degradation of RhB were investigated in detail. Experimental results show that the BiOBr microspheres have a very strong adsorption capacity to RhB. The adsorption behavior follows the Langmuir model and the quasi second order kinetic equation. Tests of the photocatalytic degradation of RhB under visible irradiation verify that the adsorption of the BiOBr microspheres to RhB greatly boosts the degradation of RhB due to the “enriching effect”, and a complete degradation of 20 mg L⁻¹ RhB only requires 37 min.
ArticleNumber 135320
Author Ma, Jian
Cao, Yixi
Li, Huaming
Liang, Congjie
Wu, Yingfeng
Wang, Chongtai
Yang, Chanyu
Hua, Yingjie
Xu, Hui
Zhang, Taisong
Author_xml – sequence: 1
  givenname: Congjie
  surname: Liang
  fullname: Liang, Congjie
  organization: School of Chemistry and Chemical Engineering of Hainan Normal University, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Key Laboratory of Electrochemical Energy Storage and Light Energy Conversion Materials of Haikou City, Haikou, 571158, PR China
– sequence: 2
  givenname: Jian
  surname: Ma
  fullname: Ma, Jian
  organization: School of Chemistry and Chemical Engineering of Hainan Normal University, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Key Laboratory of Electrochemical Energy Storage and Light Energy Conversion Materials of Haikou City, Haikou, 571158, PR China
– sequence: 3
  givenname: Yixi
  surname: Cao
  fullname: Cao, Yixi
  organization: School of Chemistry and Chemical Engineering of Hainan Normal University, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Key Laboratory of Electrochemical Energy Storage and Light Energy Conversion Materials of Haikou City, Haikou, 571158, PR China
– sequence: 4
  givenname: Taisong
  surname: Zhang
  fullname: Zhang, Taisong
  organization: School of Chemistry and Chemical Engineering of Hainan Normal University, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Key Laboratory of Electrochemical Energy Storage and Light Energy Conversion Materials of Haikou City, Haikou, 571158, PR China
– sequence: 5
  givenname: Chanyu
  surname: Yang
  fullname: Yang, Chanyu
  organization: School of Chemistry and Chemical Engineering of Hainan Normal University, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Key Laboratory of Electrochemical Energy Storage and Light Energy Conversion Materials of Haikou City, Haikou, 571158, PR China
– sequence: 6
  givenname: Yingfeng
  surname: Wu
  fullname: Wu, Yingfeng
  organization: School of Chemistry and Chemical Engineering of Hainan Normal University, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Key Laboratory of Electrochemical Energy Storage and Light Energy Conversion Materials of Haikou City, Haikou, 571158, PR China
– sequence: 7
  givenname: Huaming
  surname: Li
  fullname: Li, Huaming
  organization: Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
– sequence: 8
  givenname: Hui
  surname: Xu
  fullname: Xu, Hui
  organization: Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
– sequence: 9
  givenname: Yingjie
  surname: Hua
  fullname: Hua, Yingjie
  email: 521000hua282@sina.com
  organization: School of Chemistry and Chemical Engineering of Hainan Normal University, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Key Laboratory of Electrochemical Energy Storage and Light Energy Conversion Materials of Haikou City, Haikou, 571158, PR China
– sequence: 10
  givenname: Chongtai
  orcidid: 0000-0001-7769-8580
  surname: Wang
  fullname: Wang, Chongtai
  email: oehy2014@163.com
  organization: School of Chemistry and Chemical Engineering of Hainan Normal University, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Key Laboratory of Electrochemical Energy Storage and Light Energy Conversion Materials of Haikou City, Haikou, 571158, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35697103$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1q3DAYRUVJaSZpX6Eou2480a9lrUpmSJNAIJt2VxCy9JnRYFuupCnk7WMzEyjdJCtt7j2S7rlAZ2McAaErStaU0Pp6v3Y7GGKedpBgzQhja8olZ-QDWtFG6Yoy3ZyhFSFCVrXk8hxd5LwnZC5L_Qmdc1lrRQlfod83Psc0lRBHHDu8CU-bhIfg0omecYk47aK3QxgBb7AdPQ4l4zB2_QFGB3huTrtYorPF9s8lOJzAuoX4GX3sbJ_hy-m8RL9-3P7c3lePT3cP25vHyglKSjW_uJGdE4x51fqWqpooongLgre19bqxqgPaCOFd65niDTRaE0WtJkLTTvBL9O3InVL8c4BczBCyg763I8RDNkzRhgkiqX47WqtaSsbYQv16ih7aAbyZUhhsejav482B78fAslZO0BkXil0-XpINvaHELLrM3vyjyyy6zFHXTND_EV4veU93e-zCvOzfAMlkFxYhPiRwxfgY3kF5AYDFtk4
CitedBy_id crossref_primary_10_1016_j_envres_2023_116311
crossref_primary_10_1016_j_jes_2023_05_003
crossref_primary_10_5004_dwt_2023_29144
crossref_primary_10_3390_molecules30061286
crossref_primary_10_3390_nano14141234
crossref_primary_10_1016_j_colsurfa_2023_133018
crossref_primary_10_1016_j_apsusc_2024_159675
crossref_primary_10_1016_j_materresbull_2024_112895
crossref_primary_10_1016_j_jece_2025_116319
crossref_primary_10_1016_j_materresbull_2023_112545
crossref_primary_10_1002_cptc_202300135
crossref_primary_10_1007_s10971_024_06436_3
crossref_primary_10_1016_j_molstruc_2024_138041
crossref_primary_10_1016_j_jssc_2023_124490
crossref_primary_10_1016_j_seppur_2023_125365
crossref_primary_10_1016_j_optmat_2024_115676
crossref_primary_10_1016_j_optmat_2024_115218
crossref_primary_10_1016_j_seppur_2023_125775
crossref_primary_10_1039_D3TA07981C
crossref_primary_10_1016_j_seppur_2023_124746
crossref_primary_10_1016_j_cjche_2024_07_004
Cites_doi 10.1016/j.cej.2021.130672
10.1021/nl301831h
10.2298/JSC131014011D
10.1016/j.jcis.2019.03.028
10.1016/j.cclet.2021.03.083
10.1021/ja02242a004
10.1016/j.cej.2016.03.145
10.1016/j.molliq.2020.114051
10.1039/C6TA10964K
10.1016/j.jhazmat.2019.121127
10.1016/j.jhazmat.2020.123243
10.1016/j.jhazmat.2021.126183
10.1016/j.cej.2021.130516
10.1016/j.cej.2021.129747
10.1063/1.470005
10.1016/j.apcatb.2015.08.002
10.1039/C7CY00788D
10.1016/j.apsusc.2015.09.069
10.1002/anie.201916510
10.1016/j.apsusc.2020.147233
10.1016/j.apsusc.2015.04.105
10.1016/j.cej.2020.125258
10.1016/j.apcatb.2012.09.009
10.1016/j.cej.2020.125346
10.1002/anie.201914949
10.1016/j.desal.2010.07.047
10.1039/c3ta12589k
10.1016/j.apsusc.2020.145647
10.1016/j.apsusc.2021.149085
10.1142/S0256767908002625
10.1016/j.jcis.2020.05.111
10.1016/j.cej.2019.02.100
10.1016/j.jhazmat.2019.121690
10.1016/j.jcis.2017.06.014
10.1016/j.cclet.2020.12.020
10.1039/c1jm13645c
10.1016/j.cej.2020.126012
10.1103/PhysRevB.68.241402
10.1016/j.cej.2021.130407
10.1016/j.cej.2021.128812
10.3390/molecules21060748
10.1016/j.cattod.2021.04.008
10.1016/j.apcatb.2011.10.016
10.1016/j.cej.2014.07.101
10.1016/j.apcatb.2017.01.034
10.1021/am403214r
10.1016/j.cej.2019.06.019
10.1016/j.cej.2021.129460
10.1016/j.optcom.2010.06.081
10.1016/j.cej.2020.128218
10.1016/j.jcis.2019.11.005
10.1016/j.apcatb.2019.118222
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022. Published by Elsevier Ltd.
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022. Published by Elsevier Ltd.
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.chemosphere.2022.135320
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
ExternalDocumentID 35697103
10_1016_j_chemosphere_2022_135320
S0045653522018136
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c410t-87985fc422d7bdb17607073be43b6ad98a7fe1844dcbd2738e899071a90491f43
IEDL.DBID .~1
ISSN 0045-6535
1879-1298
IngestDate Fri Jul 11 07:47:54 EDT 2025
Mon Jul 21 11:04:31 EDT 2025
Wed Feb 19 02:25:14 EST 2025
Tue Jul 01 02:08:25 EDT 2025
Thu Apr 24 22:57:17 EDT 2025
Fri Feb 23 02:38:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords BiOBr microspheres
Rhodamine B
Adsorption
Photocatalysis
Hierarchical structure
Language English
License Copyright © 2022. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-87985fc422d7bdb17607073be43b6ad98a7fe1844dcbd2738e899071a90491f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7769-8580
PMID 35697103
PQID 2676552224
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2718240519
proquest_miscellaneous_2676552224
pubmed_primary_35697103
crossref_citationtrail_10_1016_j_chemosphere_2022_135320
crossref_primary_10_1016_j_chemosphere_2022_135320
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2022_135320
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Man, Xu, Li, Chen, Zheng, Ma (bib35) 2020; 512
Yu, Chen, Xu, Fang, Sun, Liu, Chen, Liang, Fang (bib47) 2021; 416
Zhang, Zhang, Kwon, Zhang, Stephen, Kim, Jung, Kwon, Chung, Yang (bib49) 2017; 206
Cao, Ma, Zhou, Xu, Cao, Zhao, Huang (bib2) 2019; 368
Chowdhury, Mishra, Saha, Kushwaha (bib6) 2011; 265
Wu, Hu, Han, Ouyang, Xia, Huang, Hu, Li (bib46) 2021; 425
Linsebigler, Lu, Yates (bib29) 1995; 103
Lei, Zhang, Wang, Yang, Gao (bib22) 2021; 421
Li, Sun, Qian, He, Chen, Zhang, Chen, Ye (bib24) 2016; 297
Hua, Wang, Yang, Tong, He (bib13) 2009; 67
Huo, Zhang, Miao, Jin (bib15) 2012; 111–112
Farag, Yahia (bib10) 2010; 283
Majhi, Das, Mishra, Dhiman, Mishra (bib34) 2020; 260
Fu, Chen, Wang, Liu, Zhang, Zhang, Han, Xu (bib12) 2015; 259
Wang, Cheng, Wang, Li, Li, Li, Zhang (bib42) 2021; 418
Ma, Liang, Li, Xu, Hua, Wang (bib33) 2021; 546
Huang, Zhang, Zhou, Huang, Chen, Tan, Yu (bib14) 2021; 32
Zhang, Zhang, Zhang, Bingham, Li, Kubuki (bib50) 2020; 530
Deng, Luo, Li, Xia, Luo, Luo, Dionysiou (bib7) 2020; 383
Zhang, Zhao, Huang, Hu, Wang, Zhang, He, Du (bib52) 2021; 420
Meng, Qu, Jing (bib36) 2021; 32
Tu, Zuo, Liu (bib40) 2008; 26
Valadi, Ekramipooya, Gholami (bib41) 2020; 318
Li, Chen, Li, Xu, Li, He, Lu (bib27) 2020; 400
Chen, Yu, Xiao (bib3) 2013; 1
Shi, Li, Li, Jin, Tao, Zeng, Pidko, Li, Li (bib37) 2020; 59
Chen, Hong, You, Li, Yu (bib4) 2015; 357
Ji, Zhang, Jia, Zhang, Lv, Pan (bib17) 2021; 414
Senasu, Chankhanittha, Hemavibool, Nanan (bib38) 2022; 384–386
Wu, Selloni, Lazzeri, Nayak (bib44) 2003; 68
Langmuir (bib21) 1918; 40
Zhang, Wang, Zhang, Wang, Kou, Wang, Li, Fan (bib51) 2021; 417
Jia, Wu, Song, Liu, Wang, Qi, He, Qi, Yang, Zhao (bib20) 2020; 396
Domingo, Ríos-Gutiérrez, Pérez (bib8) 2016; 21
Hou, Yang, Wang, Jiao, Zhu (bib16) 2013; 129
Li, Yang, Zhou, Ren, Wu, Lv (bib25) 2019; 546
Jia, Zhou, Huang, Zhang, Zhang, Tan, Yu (bib18) 2019; 6
Zhang, Yu, Jaroniec, Gong (bib48) 2012; 12
Freundlich (bib11) 1906; 57
Li, Wang, Huang, Dai, Zhang, Qin (bib23) 2015; 347
Li, Xiong, Gao, Ma, Chen, Kang, Liu, Li, Feng, Huang (bib26) 2020; 387
Dukali, Radovic, Stojanovic, Sevic, Radojevic, Jocic, Aleksic (bib9) 2014; 79
Chen, Xie, Song, Luo, Ye, Situ (bib5) 2021; 424
Tang, Lv, Xue, Xu, Qiu, Zheng, Chen, Wu (bib39) 2019; 374
Jia, Zhu, Qu, Jing, Yu, Abdelkrim, Hao, Yu (bib19) 2020; 561
Zhou, Cheng, Yu, Liu (bib54) 2011; 21
Lv, Yan, Lam, Ng, Yin, An (bib31) 2020; 401
Liu, Chen, Li, Xu, Li, He, Lu (bib30) 2020; 59
Ling, Dai, Zhou (bib28) 2020; 578
Zhu, Hong, Ke, Rong, Johnson, Ping (bib55) 2016; 181
Ma, Tan, Jiang, Yu (bib32) 2017; 7
Zheng, Zhu, Chen, You, Jiang, Yu (bib53) 2017; 504
Ahmadijokani, Mohammadkhani, Ahmadipouya, Shokrgozar, Rezakazemi, Molavi, Aminabhavi, Arjmand (bib1) 2020; 399
Weng, Pei, Zheng, Hu, Liu (bib43) 2013; 5
Wu, Ng, Wang, Du, Dou, Amal, Scott (bib45) 2017; 5
Zhang (10.1016/j.chemosphere.2022.135320_bib50) 2020; 530
Liu (10.1016/j.chemosphere.2022.135320_bib30) 2020; 59
Li (10.1016/j.chemosphere.2022.135320_bib23) 2015; 347
Tang (10.1016/j.chemosphere.2022.135320_bib39) 2019; 374
Dukali (10.1016/j.chemosphere.2022.135320_bib9) 2014; 79
Li (10.1016/j.chemosphere.2022.135320_bib25) 2019; 546
Shi (10.1016/j.chemosphere.2022.135320_bib37) 2020; 59
Zhang (10.1016/j.chemosphere.2022.135320_bib49) 2017; 206
Farag (10.1016/j.chemosphere.2022.135320_bib10) 2010; 283
Li (10.1016/j.chemosphere.2022.135320_bib24) 2016; 297
Domingo (10.1016/j.chemosphere.2022.135320_bib8) 2016; 21
Zheng (10.1016/j.chemosphere.2022.135320_bib53) 2017; 504
Linsebigler (10.1016/j.chemosphere.2022.135320_bib29) 1995; 103
Majhi (10.1016/j.chemosphere.2022.135320_bib34) 2020; 260
Fu (10.1016/j.chemosphere.2022.135320_bib12) 2015; 259
Chen (10.1016/j.chemosphere.2022.135320_bib5) 2021; 424
Senasu (10.1016/j.chemosphere.2022.135320_bib38) 2022; 384–386
Huo (10.1016/j.chemosphere.2022.135320_bib15) 2012; 111–112
Ma (10.1016/j.chemosphere.2022.135320_bib33) 2021; 546
Zhang (10.1016/j.chemosphere.2022.135320_bib52) 2021; 420
Wu (10.1016/j.chemosphere.2022.135320_bib46) 2021; 425
Ma (10.1016/j.chemosphere.2022.135320_bib32) 2017; 7
Lei (10.1016/j.chemosphere.2022.135320_bib22) 2021; 421
Wu (10.1016/j.chemosphere.2022.135320_bib45) 2017; 5
Wang (10.1016/j.chemosphere.2022.135320_bib42) 2021; 418
Jia (10.1016/j.chemosphere.2022.135320_bib20) 2020; 396
Cao (10.1016/j.chemosphere.2022.135320_bib2) 2019; 368
Ji (10.1016/j.chemosphere.2022.135320_bib17) 2021; 414
Valadi (10.1016/j.chemosphere.2022.135320_bib41) 2020; 318
Tu (10.1016/j.chemosphere.2022.135320_bib40) 2008; 26
Chowdhury (10.1016/j.chemosphere.2022.135320_bib6) 2011; 265
Wu (10.1016/j.chemosphere.2022.135320_bib44) 2003; 68
Zhang (10.1016/j.chemosphere.2022.135320_bib48) 2012; 12
Li (10.1016/j.chemosphere.2022.135320_bib27) 2020; 400
Lv (10.1016/j.chemosphere.2022.135320_bib31) 2020; 401
Yu (10.1016/j.chemosphere.2022.135320_bib47) 2021; 416
Deng (10.1016/j.chemosphere.2022.135320_bib7) 2020; 383
Li (10.1016/j.chemosphere.2022.135320_bib26) 2020; 387
Weng (10.1016/j.chemosphere.2022.135320_bib43) 2013; 5
Hua (10.1016/j.chemosphere.2022.135320_bib13) 2009; 67
Chen (10.1016/j.chemosphere.2022.135320_bib4) 2015; 357
Zhou (10.1016/j.chemosphere.2022.135320_bib54) 2011; 21
Chen (10.1016/j.chemosphere.2022.135320_bib3) 2013; 1
Meng (10.1016/j.chemosphere.2022.135320_bib36) 2021; 32
Jia (10.1016/j.chemosphere.2022.135320_bib18) 2019; 6
Ahmadijokani (10.1016/j.chemosphere.2022.135320_bib1) 2020; 399
Jia (10.1016/j.chemosphere.2022.135320_bib19) 2020; 561
Man (10.1016/j.chemosphere.2022.135320_bib35) 2020; 512
Zhu (10.1016/j.chemosphere.2022.135320_bib55) 2016; 181
Langmuir (10.1016/j.chemosphere.2022.135320_bib21) 1918; 40
Huang (10.1016/j.chemosphere.2022.135320_bib14) 2021; 32
Hou (10.1016/j.chemosphere.2022.135320_bib16) 2013; 129
Freundlich (10.1016/j.chemosphere.2022.135320_bib11) 1906; 57
Zhang (10.1016/j.chemosphere.2022.135320_bib51) 2021; 417
Ling (10.1016/j.chemosphere.2022.135320_bib28) 2020; 578
References_xml – volume: 383
  start-page: 121127.1
  year: 2020
  end-page: 121127.13
  ident: bib7
  article-title: Efficient toxicity elimination of aqueous Cr(VI) by positively-charged BiOCl
  publication-title: J. Hazard Mater.
– volume: 424
  year: 2021
  ident: bib5
  article-title: Photocatalytic degradation of ethylene in cold storage using the nanocomposite photocatalyst MIL101(Fe)-TiO
  publication-title: Chem. Eng. J.
– volume: 401
  year: 2020
  ident: bib31
  article-title: Solvothermal synthesis of copper-doped BiOBr microflowers with enhanced adsorption and visible-light driven photocatalytic degradation of norfloxacin
  publication-title: Chem. Eng. J.
– volume: 260
  year: 2020
  ident: bib34
  article-title: One pot synthesis of CdS/BiOBr/Bi
  publication-title: Appl. Catal. B Environ.
– volume: 206
  start-page: 271
  year: 2017
  end-page: 281
  ident: bib49
  article-title: Photocatalytic improvement of Mn-adsorbed g-C
  publication-title: Appl. Catal. B Environ.
– volume: 40
  start-page: 1361
  year: 1918
  end-page: 1403
  ident: bib21
  article-title: The adsorption of gases on plane surfaces of glass, mica and platinum
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 4584
  year: 2012
  end-page: 4589
  ident: bib48
  article-title: Noble metal-free reduced graphene oxide-Zn
  publication-title: Nano Lett.
– volume: 283
  start-page: 4310
  year: 2010
  end-page: 4317
  ident: bib10
  article-title: Structural, absorption and optical dispersion characteristics of Rhodamine B thin films prepared by drop casting technique
  publication-title: Opt Commun.
– volume: 420
  year: 2021
  ident: bib52
  article-title: Photocatalytic degradation of oxytetracycline under visible light by nanohybrids of CoFe alloy nanoparticles and nitrogen-sulfur-codoped mesoporous carbon
  publication-title: Chem. Eng. J.
– volume: 32
  start-page: 3265
  year: 2021
  end-page: 3276
  ident: bib36
  article-title: Recent advances in BiOBr-based photocatalysts for environmental remediation
  publication-title: Chin. Chem. Lett.
– volume: 368
  start-page: 212
  year: 2019
  end-page: 222
  ident: bib2
  article-title: Efficient photocatalytic degradation of herbicide glyphosate in water by magnetically separable and recyclable BiOBr/Fe
  publication-title: Chem. Eng. J.
– volume: 347
  start-page: 258
  year: 2015
  end-page: 264
  ident: bib23
  article-title: Synthesis of BiOBr-PVP hybrids with enhanced adsorption-photocatalytic properties
  publication-title: Appl. Surf. Sci.
– volume: 399
  year: 2020
  ident: bib1
  article-title: Superior chemical stability of UiO-66 metal-organic frameworks (MOFs) for selective dye adsorption
  publication-title: Chem. Eng. J.
– volume: 416
  year: 2021
  ident: bib47
  article-title: Synergistic adsorption-photocatalytic degradation of different antibiotics in seawater by a porous g-C
  publication-title: J. Hazard Mater.
– volume: 512
  year: 2020
  ident: bib35
  article-title: Oxygen vacancy engineering of Bi
  publication-title: Appl. Surf. Sci.
– volume: 418
  year: 2021
  ident: bib42
  article-title: Carbon dots modified bismuth antimonate for broad spectrum photocatalytic degradation of organic pollutants: boosted charge separation, DFT calculations and mechanism unveiling
  publication-title: Chem. Eng. J.
– volume: 561
  start-page: 396
  year: 2020
  end-page: 407
  ident: bib19
  article-title: BiOBr/Ag
  publication-title: J. Colloid Interface Sci.
– volume: 59
  start-page: 4519
  year: 2020
  end-page: 4524
  ident: bib30
  article-title: Surface engineering of g-C
  publication-title: Angew. Chem., Int. Ed.
– volume: 129
  start-page: 333
  year: 2013
  end-page: 341
  ident: bib16
  article-title: Bi
  publication-title: Appl. Catal. B Environ.
– volume: 265
  start-page: 159
  year: 2011
  end-page: 168
  ident: bib6
  article-title: Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk
  publication-title: Desalination
– volume: 396
  year: 2020
  ident: bib20
  article-title: In situ self-growing 3D hierarchical BiOBr/BiOIO
  publication-title: Chem. Eng. J.
– volume: 79
  start-page: 867
  year: 2014
  end-page: 880
  ident: bib9
  article-title: Electrospinning of laser dye Rhodamine B-doped poly(methyl methacrylate) nanofibers
  publication-title: J. Serb. Chem. Soc.
– volume: 297
  start-page: 139
  year: 2016
  end-page: 147
  ident: bib24
  article-title: The role of adsorption in photocatalytic degradation of ibuprofen under visible light irradiation by BiOBr microspheres
  publication-title: Chem. Eng. J.
– volume: 68
  year: 2003
  ident: bib44
  article-title: Oxygen vacancy mediated adsorption and reactions of molecular oxygen on theTiO
  publication-title: Phys. Rev. B
– volume: 417
  year: 2021
  ident: bib51
  article-title: Millimeter-level nitrogen modified activated carbon spheres assisted Bi
  publication-title: Chem. Eng. J.
– volume: 546
  year: 2021
  ident: bib33
  article-title: A novel composite material based on hydroxylated g-C
  publication-title: Appl. Surf. Sci.
– volume: 59
  start-page: 6590
  year: 2020
  end-page: 6595
  ident: bib37
  article-title: Intrinsic facet-dependent reactivity of well-defined BiOBr nanosheets on photocatalytic water splitting
  publication-title: Angew. Chem., Int. Ed.
– volume: 504
  start-page: 688
  year: 2017
  end-page: 696
  ident: bib53
  article-title: Hierarchical flower-like nickel(II) oxide microspheres with high adsorption capacity of Congo red in water
  publication-title: J. Colloid Interface Sci.
– volume: 259
  start-page: 53
  year: 2015
  end-page: 61
  ident: bib12
  article-title: Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis
  publication-title: Chem. Eng. J.
– volume: 400
  year: 2020
  ident: bib27
  article-title: Efficient reduction of Cr(VI) by a BMO/Bi
  publication-title: J. Hazard Mater.
– volume: 111–112
  start-page: 334
  year: 2012
  end-page: 341
  ident: bib15
  article-title: Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances
  publication-title: Appl. Catal. B Environ.
– volume: 414
  year: 2021
  ident: bib17
  article-title: Sorption enhancement of nickel(II) from wastewater by ZIF-8 modified with poly (sodium 4-styrenesulfonate): mechanism and kinetic study
  publication-title: Chem. Eng. J.
– volume: 546
  start-page: 139
  year: 2019
  end-page: 151
  ident: bib25
  article-title: A regularly combined magnetic 3D hierarchical Fe
  publication-title: J. Colloid Interface Sci.
– volume: 318
  year: 2020
  ident: bib41
  article-title: Selective separation of Congo Red from a mixture of anionic and cationic dyes using magnetic-MOF: experimental and DFT study
  publication-title: J. Mol. Liq.
– volume: 6
  start-page: 3601
  year: 2019
  end-page: 3610
  ident: bib18
  article-title: Enhanced adsorption of Cr(VI) on BiOBr under alkaline conditions: interlayer anion exchange
  publication-title: Environ. Sci.: Nano
– volume: 530
  year: 2020
  ident: bib50
  article-title: PVP surfactant-modified flower-like BiOBr with tunable bandgap structure for efficient photocatalytic decontamination of pollutants
  publication-title: Appl. Surf. Sci.
– volume: 425
  year: 2021
  ident: bib46
  article-title: Mechanism insights into the facet-dependent photocatalytic degradation of perfluorooctanoic acid on BiOCl nanosheets
  publication-title: Chem. Eng. J.
– volume: 103
  start-page: 9438
  year: 1995
  end-page: 9443
  ident: bib29
  article-title: CO chemisorption on TiO
  publication-title: J. Chem. Phys.
– volume: 1
  start-page: 11682
  year: 2013
  end-page: 11690
  ident: bib3
  article-title: Hierarchically porous MnO
  publication-title: J. Mater. Chem. A.
– volume: 7
  start-page: 3275
  year: 2017
  end-page: 3282
  ident: bib32
  article-title: Graphitic C
  publication-title: Catal. Sci. Technol.
– volume: 21
  start-page: 19353
  year: 2011
  ident: bib54
  article-title: Hierarchically porous calcined lithium/aluminum layered double hydroxides: facile synthesis and enhanced adsorption towards fluoride in water
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 8117
  year: 2017
  end-page: 8124
  ident: bib45
  article-title: Improving the photo-oxidative capability of BiOBr via crystal facet engineering
  publication-title: J. Mater. Chem. A.
– volume: 387
  year: 2020
  ident: bib26
  article-title: Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity
  publication-title: J. Hazard Mater.
– volume: 57
  start-page: 385
  year: 1906
  end-page: 470
  ident: bib11
  article-title: Über die adsorption in Lösungen
  publication-title: Ztschrift Fr Physikalische Chem
– volume: 26
  start-page: 23
  year: 2008
  end-page: 29
  ident: bib40
  article-title: Study on the interaction between polyvinylpyrrolidone and platinum metals during the formation of the colloidal metal nanoparticles
  publication-title: Chin. J. Polym. Sci.
– volume: 384–386
  start-page: 209
  year: 2022
  end-page: 227
  ident: bib38
  article-title: Solvothermal synthesis of BiOBr photocatalyst with an assistant of PVP for visible-light-driven photocatalytic degradation of fluoroquinolone antibiotics
  publication-title: Catal. Today
– volume: 181
  start-page: 517
  year: 2016
  end-page: 523
  ident: bib55
  article-title: Comparing the degradation of acetochlor to RhB using BiOBr under visible light: a significantly different rate-catalyst dose relationship
  publication-title: Appl. Catal. B Environ.
– volume: 5
  start-page: 12380
  year: 2013
  end-page: 12386
  ident: bib43
  article-title: Exciton-Free, nonsensitized degradation of 2-naphthol by facet-dependent BiOCl under visible light: novel evidence of surface-state photocatalysis
  publication-title: ACS Appl. Mater. Interfaces
– volume: 21
  start-page: 748
  year: 2016
  ident: bib8
  article-title: Applications of the conceptual density functional theory indices to organic chemistry reactivity
  publication-title: Molecules
– volume: 578
  start-page: 326
  year: 2020
  end-page: 337
  ident: bib28
  article-title: Fabrication and high photoelectrocatalytic activity of scaly BiOBr nanosheet arrays
  publication-title: J. Colloid Interface Sci.
– volume: 67
  start-page: 355
  year: 2009
  end-page: 360
  ident: bib13
  article-title: Adsorption properties of Keggin-type Fe(III)-substituted heteropolyanion by D301R resin
  publication-title: Hua Hsueh Hsueh Pao
– volume: 374
  start-page: 975
  year: 2019
  end-page: 982
  ident: bib39
  article-title: MIL-53(Fe) incorporated in the lamellar BiOBr: promoting the visible-light catalytic capability on the degradation of rhodamine B and carbamazepine
  publication-title: Chem. Eng. J.
– volume: 32
  start-page: 2797
  year: 2021
  end-page: 2802
  ident: bib14
  article-title: Amorphous molybdenum sulfide mediated EDTA with multiple active sites to boost heavy metal ions removal
  publication-title: Chin. Chem. Lett.
– volume: 357
  start-page: 856
  year: 2015
  end-page: 865
  ident: bib4
  article-title: Simultaneous efficient adsorption of Pb
  publication-title: Appl. Surf. Sci.
– volume: 421
  year: 2021
  ident: bib22
  article-title: Density functional theory investigation of As
  publication-title: Chem. Eng. J.
– volume: 425
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135320_bib46
  article-title: Mechanism insights into the facet-dependent photocatalytic degradation of perfluorooctanoic acid on BiOCl nanosheets
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130672
– volume: 12
  start-page: 4584
  year: 2012
  ident: 10.1016/j.chemosphere.2022.135320_bib48
  article-title: Noble metal-free reduced graphene oxide-ZnxCd1–xS nanocomposite with enhanced solar photocatalytic H2-production performance
  publication-title: Nano Lett.
  doi: 10.1021/nl301831h
– volume: 79
  start-page: 867
  year: 2014
  ident: 10.1016/j.chemosphere.2022.135320_bib9
  article-title: Electrospinning of laser dye Rhodamine B-doped poly(methyl methacrylate) nanofibers
  publication-title: J. Serb. Chem. Soc.
  doi: 10.2298/JSC131014011D
– volume: 546
  start-page: 139
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135320_bib25
  article-title: A regularly combined magnetic 3D hierarchical Fe3O4/BiOBr heterostructure: fabrication, visible-light photocatalytic activity and degradation mechanism
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.03.028
– volume: 32
  start-page: 3265
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135320_bib36
  article-title: Recent advances in BiOBr-based photocatalysts for environmental remediation
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2021.03.083
– volume: 40
  start-page: 1361
  year: 1918
  ident: 10.1016/j.chemosphere.2022.135320_bib21
  article-title: The adsorption of gases on plane surfaces of glass, mica and platinum
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja02242a004
– volume: 297
  start-page: 139
  year: 2016
  ident: 10.1016/j.chemosphere.2022.135320_bib24
  article-title: The role of adsorption in photocatalytic degradation of ibuprofen under visible light irradiation by BiOBr microspheres
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.03.145
– volume: 318
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135320_bib41
  article-title: Selective separation of Congo Red from a mixture of anionic and cationic dyes using magnetic-MOF: experimental and DFT study
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.114051
– volume: 5
  start-page: 8117
  year: 2017
  ident: 10.1016/j.chemosphere.2022.135320_bib45
  article-title: Improving the photo-oxidative capability of BiOBr via crystal facet engineering
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C6TA10964K
– volume: 383
  start-page: 121127.1
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135320_bib7
  article-title: Efficient toxicity elimination of aqueous Cr(VI) by positively-charged BiOClxI1-x, BiOBrxI1-x and BiOClxBr1-x solid solution with internal hole-scavenging capacity via the synergy of adsorption and photocatalytic reduction
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2019.121127
– volume: 400
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135320_bib27
  article-title: Efficient reduction of Cr(VI) by a BMO/Bi2S3 heterojunction via synergistic adsorption and photocatalysis under visible light
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.123243
– volume: 416
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135320_bib47
  article-title: Synergistic adsorption-photocatalytic degradation of different antibiotics in seawater by a porous g-C3N4/calcined-LDH and its application in synthetic mariculture wastewater
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2021.126183
– volume: 420
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135320_bib52
  article-title: Photocatalytic degradation of oxytetracycline under visible light by nanohybrids of CoFe alloy nanoparticles and nitrogen-sulfur-codoped mesoporous carbon
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130516
– volume: 421
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135320_bib22
  article-title: Density functional theory investigation of As4, As2 and AsH3 adsorption on Ti-doped graphene
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129747
– volume: 103
  start-page: 9438
  year: 1995
  ident: 10.1016/j.chemosphere.2022.135320_bib29
  article-title: CO chemisorption on TiO2 (110): oxygen vacancy site influence on CO adsorption
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470005
– volume: 181
  start-page: 517
  year: 2016
  ident: 10.1016/j.chemosphere.2022.135320_bib55
  article-title: Comparing the degradation of acetochlor to RhB using BiOBr under visible light: a significantly different rate-catalyst dose relationship
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2015.08.002
– volume: 67
  start-page: 355
  year: 2009
  ident: 10.1016/j.chemosphere.2022.135320_bib13
  article-title: Adsorption properties of Keggin-type Fe(III)-substituted heteropolyanion by D301R resin
  publication-title: Hua Hsueh Hsueh Pao
– volume: 7
  start-page: 3275
  year: 2017
  ident: 10.1016/j.chemosphere.2022.135320_bib32
  article-title: Graphitic C3N4 nanosheet-sensitized brookite TiO2 to achieve photocatalytic hydrogen evolution under visible light
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C7CY00788D
– volume: 6
  start-page: 3601
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135320_bib18
  article-title: Enhanced adsorption of Cr(VI) on BiOBr under alkaline conditions: interlayer anion exchange
  publication-title: Environ. Sci.: Nano
– volume: 357
  start-page: 856
  year: 2015
  ident: 10.1016/j.chemosphere.2022.135320_bib4
  article-title: Simultaneous efficient adsorption of Pb2+ and MnO4− ions by MCM-41 functionalized with amine and nitrilotriacetic acid anhydride
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.09.069
– volume: 59
  start-page: 6590
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135320_bib37
  article-title: Intrinsic facet-dependent reactivity of well-defined BiOBr nanosheets on photocatalytic water splitting
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201916510
– volume: 530
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135320_bib50
  article-title: PVP surfactant-modified flower-like BiOBr with tunable bandgap structure for efficient photocatalytic decontamination of pollutants
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147233
– volume: 347
  start-page: 258
  year: 2015
  ident: 10.1016/j.chemosphere.2022.135320_bib23
  article-title: Synthesis of BiOBr-PVP hybrids with enhanced adsorption-photocatalytic properties
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.04.105
– volume: 396
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135320_bib20
  article-title: In situ self-growing 3D hierarchical BiOBr/BiOIO3 Z-scheme heterojunction with rich oxygen vacancies and iodine ions as carriers transfer dual-channels for enhanced photocatalytic activity
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125258
– volume: 129
  start-page: 333
  year: 2013
  ident: 10.1016/j.chemosphere.2022.135320_bib16
  article-title: Bi2O3 quantum dots decorated anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets for enhanced visible-light photocatalytic performance
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2012.09.009
– volume: 399
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135320_bib1
  article-title: Superior chemical stability of UiO-66 metal-organic frameworks (MOFs) for selective dye adsorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125346
– volume: 59
  start-page: 4519
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135320_bib30
  article-title: Surface engineering of g-C3N4 by stacked BiOBr sheets rich in oxygen vacancies for boosting photocatalytic performance
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201914949
– volume: 265
  start-page: 159
  year: 2011
  ident: 10.1016/j.chemosphere.2022.135320_bib6
  article-title: Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk
  publication-title: Desalination
  doi: 10.1016/j.desal.2010.07.047
– volume: 1
  start-page: 11682
  year: 2013
  ident: 10.1016/j.chemosphere.2022.135320_bib3
  article-title: Hierarchically porous MnO2 microspheres with enhanced adsorption performance
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/c3ta12589k
– volume: 512
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135320_bib35
  article-title: Oxygen vacancy engineering of Bi2O2CO3 hierarchical microspheres for enhanced adsorption of Cd2+ ions and photocatalytic degradation of Rodamine B
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.145647
– volume: 546
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135320_bib33
  article-title: A novel composite material based on hydroxylated g-C3N4 and oxygen-vacant TiO2 for improvement of photocatalytic performance
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.149085
– volume: 26
  start-page: 23
  year: 2008
  ident: 10.1016/j.chemosphere.2022.135320_bib40
  article-title: Study on the interaction between polyvinylpyrrolidone and platinum metals during the formation of the colloidal metal nanoparticles
  publication-title: Chin. J. Polym. Sci.
  doi: 10.1142/S0256767908002625
– volume: 578
  start-page: 326
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135320_bib28
  article-title: Fabrication and high photoelectrocatalytic activity of scaly BiOBr nanosheet arrays
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.05.111
– volume: 368
  start-page: 212
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135320_bib2
  article-title: Efficient photocatalytic degradation of herbicide glyphosate in water by magnetically separable and recyclable BiOBr/Fe3O4 nanocomposites under visible light irradiation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.02.100
– volume: 57
  start-page: 385
  year: 1906
  ident: 10.1016/j.chemosphere.2022.135320_bib11
  article-title: Über die adsorption in Lösungen
  publication-title: Ztschrift Fr Physikalische Chem
– volume: 387
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135320_bib26
  article-title: Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2019.121690
– volume: 504
  start-page: 688
  year: 2017
  ident: 10.1016/j.chemosphere.2022.135320_bib53
  article-title: Hierarchical flower-like nickel(II) oxide microspheres with high adsorption capacity of Congo red in water
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.06.014
– volume: 32
  start-page: 2797
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135320_bib14
  article-title: Amorphous molybdenum sulfide mediated EDTA with multiple active sites to boost heavy metal ions removal
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2020.12.020
– volume: 21
  start-page: 19353
  year: 2011
  ident: 10.1016/j.chemosphere.2022.135320_bib54
  article-title: Hierarchically porous calcined lithium/aluminum layered double hydroxides: facile synthesis and enhanced adsorption towards fluoride in water
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm13645c
– volume: 401
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135320_bib31
  article-title: Solvothermal synthesis of copper-doped BiOBr microflowers with enhanced adsorption and visible-light driven photocatalytic degradation of norfloxacin
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126012
– volume: 68
  year: 2003
  ident: 10.1016/j.chemosphere.2022.135320_bib44
  article-title: Oxygen vacancy mediated adsorption and reactions of molecular oxygen on theTiO2 (110) surface
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.68.241402
– volume: 424
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135320_bib5
  article-title: Photocatalytic degradation of ethylene in cold storage using the nanocomposite photocatalyst MIL101(Fe)-TiO2-rGO
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130407
– volume: 414
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135320_bib17
  article-title: Sorption enhancement of nickel(II) from wastewater by ZIF-8 modified with poly (sodium 4-styrenesulfonate): mechanism and kinetic study
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128812
– volume: 21
  start-page: 748
  year: 2016
  ident: 10.1016/j.chemosphere.2022.135320_bib8
  article-title: Applications of the conceptual density functional theory indices to organic chemistry reactivity
  publication-title: Molecules
  doi: 10.3390/molecules21060748
– volume: 384–386
  start-page: 209
  year: 2022
  ident: 10.1016/j.chemosphere.2022.135320_bib38
  article-title: Solvothermal synthesis of BiOBr photocatalyst with an assistant of PVP for visible-light-driven photocatalytic degradation of fluoroquinolone antibiotics
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2021.04.008
– volume: 111–112
  start-page: 334
  year: 2012
  ident: 10.1016/j.chemosphere.2022.135320_bib15
  article-title: Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2011.10.016
– volume: 259
  start-page: 53
  year: 2015
  ident: 10.1016/j.chemosphere.2022.135320_bib12
  article-title: Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.07.101
– volume: 206
  start-page: 271
  year: 2017
  ident: 10.1016/j.chemosphere.2022.135320_bib49
  article-title: Photocatalytic improvement of Mn-adsorbed g-C3N4
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.01.034
– volume: 5
  start-page: 12380
  year: 2013
  ident: 10.1016/j.chemosphere.2022.135320_bib43
  article-title: Exciton-Free, nonsensitized degradation of 2-naphthol by facet-dependent BiOCl under visible light: novel evidence of surface-state photocatalysis
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am403214r
– volume: 374
  start-page: 975
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135320_bib39
  article-title: MIL-53(Fe) incorporated in the lamellar BiOBr: promoting the visible-light catalytic capability on the degradation of rhodamine B and carbamazepine
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.06.019
– volume: 418
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135320_bib42
  article-title: Carbon dots modified bismuth antimonate for broad spectrum photocatalytic degradation of organic pollutants: boosted charge separation, DFT calculations and mechanism unveiling
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129460
– volume: 283
  start-page: 4310
  year: 2010
  ident: 10.1016/j.chemosphere.2022.135320_bib10
  article-title: Structural, absorption and optical dispersion characteristics of Rhodamine B thin films prepared by drop casting technique
  publication-title: Opt Commun.
  doi: 10.1016/j.optcom.2010.06.081
– volume: 417
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135320_bib51
  article-title: Millimeter-level nitrogen modified activated carbon spheres assisted Bi4Ti3O12 composites for bifunctional adsorption/photoreduction of CO2
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.128218
– volume: 561
  start-page: 396
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135320_bib19
  article-title: BiOBr/Ag6Si2O7 heterojunctions for enhancing visible light catalytic degradation performances with a sequential selectivity enabled by dual synergistic effects
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.11.005
– volume: 260
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135320_bib34
  article-title: One pot synthesis of CdS/BiOBr/Bi2O2CO3: a novel ternary double Z-scheme heterostructure photocatalyst for efficient degradation of atrazine
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118222
SSID ssj0001659
Score 2.503019
Snippet Adsorption and its influence are often neglected during photocatalytic degradation of organic pollutants. To call attention to these issues, a novel bismuth...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 135320
SubjectTerms Adsorption
BiOBr microspheres
bismuth
equations
Hierarchical structure
irradiation
microparticles
Photocatalysis
polyvinylpyrrolidone
Rhodamine B
rhodamines
sorption isotherms
Title Adsorption of BiOBr microspheres to rhodamine B and its influence on photocatalytic reaction
URI https://dx.doi.org/10.1016/j.chemosphere.2022.135320
https://www.ncbi.nlm.nih.gov/pubmed/35697103
https://www.proquest.com/docview/2676552224
https://www.proquest.com/docview/2718240519
Volume 304
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9xADBYhpY9LadPXNm2YQK9u1vZ47IFedpeEbUvTSwM5FIZ5mTh0PcvaOeTS317JjySFNAR6tBlhIQnp01gPgA--MFPrChlpb3TE7VRGRnIXIdOxKKx1TtOF_rdjsTzhX06z0y1YjL0wVFY5-P7ep3feenhzMEjzYF1V1ONLaIQABA2dSmnsNuc5WfnH39dlHrHIegjMs4hOP4L96xovlMsqNNS_TxMzk6TbAkGrv2-PUf_CoF0sOnoGTwcQyWY9n89hy9c78Hgx7m7bgYeH3TDqyxfwc-aasOn8Agslm1ff5xu2oiq8nqGGtYFtzoLTK8SbbM507VjVNqwat5cwpFyfhTZ0Nz2X-EmGQLNrh3gJJ0eHPxbLaNioEFkeT1t0fbLISsuTxOXGmTgXNO0nNZ6nRmgnC52XHnM-7qxx1LTjMR1DEKIlJhJxydNXsF2H2r8B5qY2y402cSExo5KYt5W5zFMpYq_RafgJFKMMlR3GjdPWi19qrCs7VzfEr0j8qhf_BJIr0nU_c-M-RJ9GRam_DEhhbLgP-f6oXIW6or8muvbholGJyEWGRpbwO85ghEdohGh4Aq97y7jiPM2ERBiXvv0_BnfhCT31dYTvYLvdXPj3iIdas9cZ_B48mH3-ujz-A-37C2U
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9VAEJ4gRuHFKF44eFsSfaycbrfbboIPHIQc5OILJDyYLHtrqPG0J6cl5Lz4p_yDzPYCmqghMby2nXYyM535pp0LwDuX6qGxqQiU0ypgZigCLZgNkOmQp8ZYq_wH_cMjPj5hn0_j0wX42ffC-LLKzve3Pr3x1t2RjU6aG9M89z2-Ho14AOGHTkW8q6zcd_NLzNuqj3ufUMnvKd3dOd4eB91qgcCwcFijDxBpnBlGqU201WHC_dibSDsWaa6sSFWSOUx-mDXa-u4Vh3kJRmMlEFGHGYvwvvfgPkN34dcmfPhxU1cS8rjF3CwOPHsPYf2mqAwVMSkrPzDAj-iktFk74XeN_zko_g30NsFv9zE86lAr2WoF8wQWXLECS9v9srgVeLDTTL-eP4WvW7YqZ40jImVGRvmX0YxMfNlfy1BF6pLMzkurJghwyYiowpK8rkjer0shSDk9L-uy-bQ0x0cSRLZN_8UzOLkTOT-HxaIs3CoQOzRxopUOU4EpnMBEMUtEEgkeOoVeyg0g7WUoTTff3K_Z-C77QrZv8hfxSy9-2Yp_APSadNoO-bgN0WavKPmbxUoMRrchX--VK1FX_jeNKlx5UUnKEx6jVVP2j2sQUiAWQ_g9gBetZVxzHsVcIG6M1v6PwbewND4-PJAHe0f7L2HZn2mLGF_BYj27cK8RjNX6TWP8BM7u-m27Ap_xRdc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+of+BiOBr+microspheres+to+rhodamine+B+and+its+influence+on+photocatalytic+reaction&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Liang%2C+Congjie&rft.au=Ma%2C+Jian&rft.au=Cao%2C+Yixi&rft.au=Zhang%2C+Taisong&rft.date=2022-10-01&rft.eissn=1879-1298&rft.spage=135320&rft_id=info:doi/10.1016%2Fj.chemosphere.2022.135320&rft_id=info%3Apmid%2F35697103&rft.externalDocID=35697103
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon