Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions

The fracture energy is a substantial material property that measures the ability of materials to resist crack growth. The reinforcement of the epoxy polymers by nanosize fillers improves significantly their toughness. The fracture mechanism of the produced polymeric nanocomposites is influenced by d...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fracture Vol. 206; no. 2; pp. 215 - 227
Main Authors Hamdia, Khader M., Silani, Mohammad, Zhuang, Xiaoying, He, Pengfei, Rabczuk, Timon
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.08.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The fracture energy is a substantial material property that measures the ability of materials to resist crack growth. The reinforcement of the epoxy polymers by nanosize fillers improves significantly their toughness. The fracture mechanism of the produced polymeric nanocomposites is influenced by different parameters. This paper presents a methodology for stochastic modelling of the fracture in polymer/particle nanocomposites. For this purpose, we generated a 2D finite element model containing an epoxy matrix and rigid nanoparticles surrounded by an interphase zone. The crack propagation was modelled by the phantom node method. The stochastic model is based on six uncertain parameters: the volume fraction and the diameter of the nanoparticles, Young’s modulus and the maximum allowable principal stress of the epoxy matrix, the interphase zone thickness and its Young’s modulus. Considering the uncertainties in input parameters, a polynomial chaos expansion surrogate model is constructed followed by a sensitivity analysis. The variance in the fracture energy was mostly influenced by the maximum allowable principal stress and Young’s modulus of the epoxy matrix.
AbstractList The fracture energy is a substantial material property that measures the ability of materials to resist crack growth. The reinforcement of the epoxy polymers by nanosize fillers improves significantly their toughness. The fracture mechanism of the produced polymeric nanocomposites is influenced by different parameters. This paper presents a methodology for stochastic modelling of the fracture in polymer/particle nanocomposites. For this purpose, we generated a 2D finite element model containing an epoxy matrix and rigid nanoparticles surrounded by an interphase zone. The crack propagation was modelled by the phantom node method. The stochastic model is based on six uncertain parameters: the volume fraction and the diameter of the nanoparticles, Young’s modulus and the maximum allowable principal stress of the epoxy matrix, the interphase zone thickness and its Young’s modulus. Considering the uncertainties in input parameters, a polynomial chaos expansion surrogate model is constructed followed by a sensitivity analysis. The variance in the fracture energy was mostly influenced by the maximum allowable principal stress and Young’s modulus of the epoxy matrix.
Author Hamdia, Khader M.
Silani, Mohammad
Zhuang, Xiaoying
He, Pengfei
Rabczuk, Timon
Author_xml – sequence: 1
  givenname: Khader M.
  orcidid: 0000-0001-9898-8421
  surname: Hamdia
  fullname: Hamdia, Khader M.
  organization: Duy Tan University, Institute of Research & Development, Institute of Structural Mechanics, Bauhaus-Universität Weimar
– sequence: 2
  givenname: Mohammad
  surname: Silani
  fullname: Silani, Mohammad
  organization: Department of Mechanical Engineering, Isfahan University of Technology
– sequence: 3
  givenname: Xiaoying
  surname: Zhuang
  fullname: Zhuang, Xiaoying
  organization: Tongji University
– sequence: 4
  givenname: Pengfei
  surname: He
  fullname: He, Pengfei
  organization: Tongji University
– sequence: 5
  givenname: Timon
  surname: Rabczuk
  fullname: Rabczuk, Timon
  email: timon.rabczuk@uni-weimar.de
  organization: Duy Tan University, Institute of Research & Development, Institute of Structural Mechanics, Bauhaus-Universität Weimar
BookMark eNp9kU1rGzEQhkVwoU7SH9CboOdt9bEraY8lpE3A0EN8F2NZa8uspY1GC_G_r2L3UAo1CHSY59GM5r0li5iiJ-QzZ185Y_obcqZZ2zCuGyY4a9QNWfJOy0YoLRdkyaRWTd-K_iO5RTwwxnpt2iUpLyW5PWAJjkKE8YQBaRpo2Xs6ZHBlzp6WNO_20eO5MqXxdPS58hFimiBXdfTUpeOUMBSPdMYQd2cupmOAkdYGCal_myBiSBHvyYcBRvSf_tx3ZP3jcf3w1Kx-_Xx--L5qXMtZaYyCrpXa-400QteRtdrWAoByTBntBifrcT2AMW4rulZpzYe-A7kZNtDKO_Ll8uyU0-vssdhDmnP9JFohut5IIXh_jeI9bztTF2UqxS-Uywkx-8FOORwhnyxn9j0Be0nA1gTsewJWVUf_47hQoNQNlAxhvGqKi4m1S9z5_NdM_5V-A7p0nm0
CitedBy_id crossref_primary_10_1016_j_enggeo_2018_03_016
crossref_primary_10_1016_j_compositesb_2022_109632
crossref_primary_10_1016_j_enggeo_2019_105373
crossref_primary_10_1016_j_msea_2022_143515
crossref_primary_10_1016_j_compositesb_2019_05_034
crossref_primary_10_1007_s11709_018_0452_z
crossref_primary_10_1016_j_aej_2022_09_019
crossref_primary_10_1007_s11709_018_0507_1
crossref_primary_10_1007_s11709_020_0658_8
crossref_primary_10_1016_j_ijimpeng_2019_103331
crossref_primary_10_1016_j_commatsci_2019_05_053
crossref_primary_10_1016_j_ijimpeng_2018_05_006
crossref_primary_10_1016_j_dental_2022_09_009
crossref_primary_10_1016_j_ijimpeng_2019_103336
crossref_primary_10_1016_j_ijimpeng_2020_103598
crossref_primary_10_1080_15397734_2022_2044850
crossref_primary_10_1007_s11709_019_0565_z
crossref_primary_10_3390_met9010107
crossref_primary_10_1016_j_ijimpeng_2021_103999
crossref_primary_10_1016_j_compscitech_2018_10_031
crossref_primary_10_1016_j_dt_2019_11_005
crossref_primary_10_1016_j_tafmec_2020_102662
crossref_primary_10_1016_j_undsp_2018_05_001
crossref_primary_10_1007_s11709_019_0591_x
crossref_primary_10_1016_j_undsp_2018_05_002
crossref_primary_10_1007_s00339_022_05427_x
crossref_primary_10_1007_s11709_019_0552_4
crossref_primary_10_3390_s18124131
crossref_primary_10_1016_j_commatsci_2017_12_022
crossref_primary_10_3390_met9050491
crossref_primary_10_1016_j_polymertesting_2019_04_021
crossref_primary_10_1142_S0219876219500543
crossref_primary_10_1016_j_compositesa_2020_105937
crossref_primary_10_1007_s12665_022_10684_3
crossref_primary_10_1002_adem_202401299
crossref_primary_10_3233_JCM_204379
crossref_primary_10_1016_j_enggeo_2019_105352
crossref_primary_10_1007_s11709_019_0530_x
crossref_primary_10_1007_s12205_021_2031_4
crossref_primary_10_1007_s11709_019_0537_3
crossref_primary_10_1016_j_dt_2020_03_010
crossref_primary_10_3390_app9061137
crossref_primary_10_1007_s00366_021_01528_y
crossref_primary_10_1016_j_compositesb_2018_06_015
crossref_primary_10_1016_j_istruc_2023_05_032
crossref_primary_10_1016_j_mtcomm_2020_101684
crossref_primary_10_1016_j_jmbbm_2022_105530
crossref_primary_10_1007_s11709_019_0601_z
crossref_primary_10_1007_s11709_018_0506_2
crossref_primary_10_1007_s11709_020_0613_8
crossref_primary_10_3390_app8101839
crossref_primary_10_1007_s11709_019_0549_z
crossref_primary_10_1002_pc_28121
crossref_primary_10_1007_s11709_018_0496_0
crossref_primary_10_1016_j_compscitech_2021_108845
crossref_primary_10_1080_15376494_2019_1625987
crossref_primary_10_1007_s11709_019_0600_0
crossref_primary_10_1016_j_dt_2020_03_003
crossref_primary_10_1016_j_conbuildmat_2018_08_085
crossref_primary_10_1155_2021_4313755
crossref_primary_10_1007_s11709_021_0738_4
crossref_primary_10_1016_j_ijimpeng_2021_104033
crossref_primary_10_1007_s11709_021_0677_0
crossref_primary_10_1016_j_compstruct_2019_01_078
crossref_primary_10_1016_j_tafmec_2020_102882
crossref_primary_10_1016_j_compstruct_2019_03_100
crossref_primary_10_1007_s00339_022_05670_2
crossref_primary_10_1016_j_conbuildmat_2018_05_201
crossref_primary_10_1111_ffe_13366
crossref_primary_10_1016_j_ijheatmasstransfer_2018_09_057
crossref_primary_10_1007_s11709_018_0484_4
crossref_primary_10_1016_j_compositesb_2019_05_069
crossref_primary_10_1007_s12205_022_0182_6
crossref_primary_10_1016_j_compstruc_2018_09_005
crossref_primary_10_1016_j_istruc_2024_106057
crossref_primary_10_1007_s11051_019_4697_9
crossref_primary_10_1007_s11709_021_0726_8
crossref_primary_10_1016_j_tafmec_2023_103836
crossref_primary_10_52547_nmce_4_1_49
crossref_primary_10_1016_j_jmbbm_2019_04_045
crossref_primary_10_1016_j_tafmec_2022_103415
crossref_primary_10_1007_s10999_020_09501_1
crossref_primary_10_1016_j_measurement_2021_109870
crossref_primary_10_1016_j_euromechsol_2019_103802
crossref_primary_10_1007_s11709_018_0476_4
crossref_primary_10_1016_j_enggeo_2019_04_017
crossref_primary_10_1016_j_ijimpeng_2019_02_001
crossref_primary_10_1016_j_enggeo_2019_105209
crossref_primary_10_1016_j_undsp_2018_04_006
crossref_primary_10_1177_0021998319830777
crossref_primary_10_3390_en11102795
crossref_primary_10_1016_j_undsp_2018_04_002
crossref_primary_10_1016_j_ijimpeng_2018_08_014
crossref_primary_10_1007_s11709_019_0521_y
crossref_primary_10_1007_s12205_019_2156_x
crossref_primary_10_3389_fphy_2022_1111159
crossref_primary_10_1016_j_ijimpeng_2018_10_009
crossref_primary_10_1007_s11709_019_0554_2
crossref_primary_10_1016_j_cma_2018_03_016
crossref_primary_10_1016_j_compositesb_2022_110432
crossref_primary_10_1016_j_compositesb_2019_107405
crossref_primary_10_1016_j_conbuildmat_2019_116865
crossref_primary_10_1016_j_jmbbm_2020_104171
crossref_primary_10_1080_15397734_2019_1624176
crossref_primary_10_1007_s11709_019_0516_8
crossref_primary_10_1016_j_dt_2020_02_018
crossref_primary_10_1016_j_ijimpeng_2018_08_008
crossref_primary_10_1007_s10999_023_09697_y
crossref_primary_10_1016_j_compstruct_2018_10_059
crossref_primary_10_1002_pc_27200
crossref_primary_10_1016_j_compscitech_2021_109242
crossref_primary_10_1007_s11709_019_0539_1
crossref_primary_10_1007_s11709_019_0577_8
crossref_primary_10_1016_j_commatsci_2019_109425
crossref_primary_10_1080_25740881_2020_1744012
crossref_primary_10_1016_j_compstruct_2024_118087
crossref_primary_10_1080_10407782_2018_1538296
crossref_primary_10_2139_ssrn_4103088
crossref_primary_10_1016_j_ijimpeng_2019_01_013
crossref_primary_10_1016_j_tafmec_2021_103143
crossref_primary_10_1007_s11709_020_0641_4
crossref_primary_10_1016_j_compositesa_2025_108882
crossref_primary_10_1016_j_compstruct_2020_113343
crossref_primary_10_1016_j_triboint_2022_107470
crossref_primary_10_1016_j_tws_2018_01_024
crossref_primary_10_1016_j_undsp_2018_08_001
crossref_primary_10_1007_s10999_022_09636_3
crossref_primary_10_1007_s11668_021_01273_w
crossref_primary_10_1186_s11671_017_2386_0
crossref_primary_10_1007_s11709_022_0810_8
crossref_primary_10_1016_j_enggeo_2019_105228
crossref_primary_10_1186_s11671_018_2624_0
crossref_primary_10_1016_j_ijmecsci_2019_06_008
crossref_primary_10_1016_j_ijmecsci_2021_106895
crossref_primary_10_1016_j_enggeo_2024_107547
crossref_primary_10_1515_ntrev_2022_0522
crossref_primary_10_1007_s10704_019_00394_6
crossref_primary_10_1007_s11709_019_0542_6
crossref_primary_10_1016_j_engfracmech_2022_108667
crossref_primary_10_3390_met8100836
crossref_primary_10_1016_j_matdes_2022_110973
crossref_primary_10_1177_0021998319868523
crossref_primary_10_1016_j_compositesb_2019_01_047
crossref_primary_10_1016_j_compstruct_2024_118650
crossref_primary_10_1080_07370652_2019_1684594
crossref_primary_10_1016_j_engfracmech_2019_03_031
crossref_primary_10_1016_j_ijimpeng_2018_09_011
crossref_primary_10_32604_cmc_2021_014688
crossref_primary_10_1016_j_compscitech_2023_110360
crossref_primary_10_1016_j_ijsolstr_2019_07_031
crossref_primary_10_1016_j_commatsci_2018_01_058
crossref_primary_10_1016_j_enganabound_2021_02_008
crossref_primary_10_1016_j_compgeo_2022_105000
crossref_primary_10_1007_s12205_022_1534_y
crossref_primary_10_1016_j_tafmec_2018_04_010
crossref_primary_10_1016_j_commatsci_2022_111747
crossref_primary_10_1016_j_ijimpeng_2021_103948
crossref_primary_10_1007_s12205_018_0041_7
crossref_primary_10_1016_j_ijimpeng_2019_103445
crossref_primary_10_1007_s10706_022_02232_4
crossref_primary_10_1016_j_euromechsol_2020_104093
crossref_primary_10_1016_j_conbuildmat_2021_125128
crossref_primary_10_1039_C9CP04091A
crossref_primary_10_1108_EC_12_2018_0595
crossref_primary_10_3390_jmse12030430
crossref_primary_10_1007_s11709_019_0560_4
crossref_primary_10_1016_j_ijimpeng_2022_104282
crossref_primary_10_1007_s11709_018_0478_2
crossref_primary_10_1371_journal_pone_0275626
crossref_primary_10_1007_s11709_019_0605_8
crossref_primary_10_1007_s11709_020_0627_2
crossref_primary_10_1016_j_ijimpeng_2018_11_006
crossref_primary_10_1039_C9NR05036A
crossref_primary_10_1007_s11709_019_0568_9
crossref_primary_10_1007_s11709_022_0834_0
crossref_primary_10_1016_j_compstruct_2018_10_083
crossref_primary_10_1016_j_msea_2021_141325
crossref_primary_10_1007_s00366_019_00803_3
crossref_primary_10_1016_j_mechmat_2021_103886
crossref_primary_10_1002_pc_25358
crossref_primary_10_1016_j_measurement_2023_113266
crossref_primary_10_1177_0731684418804346
crossref_primary_10_1016_j_ijmecsci_2023_108270
crossref_primary_10_1016_j_ijimpeng_2018_11_010
crossref_primary_10_1016_j_jrmge_2020_03_006
crossref_primary_10_1007_s12205_019_1858_4
crossref_primary_10_1016_j_jmrt_2021_03_104
crossref_primary_10_1016_j_compositesb_2017_11_007
crossref_primary_10_1016_j_tust_2025_106372
crossref_primary_10_1016_j_compstruct_2020_112324
crossref_primary_10_1016_j_compositesa_2019_03_012
crossref_primary_10_1016_j_compstruct_2019_111569
crossref_primary_10_1016_j_engstruct_2022_114675
crossref_primary_10_1007_s11709_019_0518_6
crossref_primary_10_1016_j_ifacol_2020_12_556
crossref_primary_10_1177_0954406219888958
crossref_primary_10_1016_j_engfracmech_2020_107301
crossref_primary_10_1016_j_engfracmech_2021_107962
crossref_primary_10_1016_j_compstruct_2018_07_008
crossref_primary_10_1016_j_enggeo_2020_105553
crossref_primary_10_1016_j_triboint_2018_10_036
crossref_primary_10_1016_j_dt_2020_01_003
crossref_primary_10_1002_pc_24725
crossref_primary_10_1016_j_engfracmech_2021_108142
crossref_primary_10_1155_2021_6621530
crossref_primary_10_1016_j_cma_2022_114650
crossref_primary_10_1016_j_compositesb_2021_109534
crossref_primary_10_1002_nag_3292
crossref_primary_10_1007_s11709_020_0628_1
crossref_primary_10_1007_s11709_020_0610_y
crossref_primary_10_1007_s11709_020_0617_4
crossref_primary_10_1016_j_engfracmech_2018_11_021
crossref_primary_10_1177_096369351802700505
crossref_primary_10_1007_s11709_018_0492_4
crossref_primary_10_1002_pc_27554
crossref_primary_10_1007_s11709_019_0544_4
crossref_primary_10_1016_j_msea_2021_142435
crossref_primary_10_1016_j_compstruct_2018_06_087
crossref_primary_10_1016_j_enganabound_2023_04_001
crossref_primary_10_1016_j_probengmech_2017_10_003
crossref_primary_10_2174_0929867326666181126113605
crossref_primary_10_1007_s00170_024_13568_x
crossref_primary_10_1021_acs_jpclett_8b01416
crossref_primary_10_1007_s11709_019_0570_2
crossref_primary_10_3390_en12020271
crossref_primary_10_1007_s12205_019_0951_z
crossref_primary_10_1631_jzus_A1800467
crossref_primary_10_1007_s40868_020_00088_y
crossref_primary_10_1016_j_measurement_2022_111368
crossref_primary_10_1016_j_compositesa_2017_07_025
crossref_primary_10_1016_j_polymer_2024_127463
crossref_primary_10_1177_1687814019838353
crossref_primary_10_1016_j_polymer_2019_121682
crossref_primary_10_1016_j_mechmat_2018_09_002
crossref_primary_10_1002_nag_2775
crossref_primary_10_1007_s11709_020_0573_z
crossref_primary_10_1016_j_ijimpeng_2019_103403
crossref_primary_10_1038_s41598_018_32452_9
crossref_primary_10_1016_j_ijimpeng_2018_03_008
crossref_primary_10_1021_acsami_4c02797
crossref_primary_10_1177_00219983231185840
crossref_primary_10_1016_j_enggeo_2019_03_014
crossref_primary_10_3390_en12152846
crossref_primary_10_1007_s12205_018_0943_4
crossref_primary_10_1016_j_engfracmech_2019_01_031
crossref_primary_10_1007_s11709_019_0562_2
crossref_primary_10_1016_j_mechmat_2020_103722
crossref_primary_10_1016_j_triboint_2023_108422
crossref_primary_10_1016_j_ijimpeng_2018_12_004
crossref_primary_10_1007_s00603_021_02453_8
crossref_primary_10_1016_j_conbuildmat_2022_128456
crossref_primary_10_1016_j_compositesa_2018_10_010
crossref_primary_10_1016_j_compositesb_2019_03_065
crossref_primary_10_1016_j_conbuildmat_2021_124092
crossref_primary_10_1016_j_infrared_2020_103376
crossref_primary_10_1007_s11709_020_0621_8
crossref_primary_10_1007_s11709_018_0505_3
crossref_primary_10_1016_j_enggeo_2018_10_018
crossref_primary_10_1007_s11709_018_0495_1
crossref_primary_10_1016_j_enggeo_2019_105165
crossref_primary_10_1002_pc_25552
crossref_primary_10_1007_s13369_021_06199_x
crossref_primary_10_1007_s10704_018_0277_8
crossref_primary_10_1016_j_conbuildmat_2022_126829
crossref_primary_10_1016_j_jobe_2023_106902
crossref_primary_10_1016_j_enggeo_2018_12_023
crossref_primary_10_1007_s11709_019_0524_8
crossref_primary_10_1016_j_jmbbm_2020_103937
crossref_primary_10_1016_j_ijimpeng_2018_06_004
crossref_primary_10_1016_j_conbuildmat_2021_125199
crossref_primary_10_1016_j_enggeo_2019_105282
crossref_primary_10_1016_j_cma_2023_116102
crossref_primary_10_1016_j_compositesa_2020_105861
crossref_primary_10_3390_en11102818
crossref_primary_10_1016_j_tafmec_2022_103270
crossref_primary_10_1002_pc_26072
crossref_primary_10_1007_s11709_019_0559_x
crossref_primary_10_1177_1099636218793979
crossref_primary_10_1016_j_compstruct_2021_114372
crossref_primary_10_1021_acssuschemeng_9b02602
crossref_primary_10_1016_j_enggeo_2019_105278
crossref_primary_10_1007_s12205_022_1723_8
crossref_primary_10_3390_jcs6010031
crossref_primary_10_1016_j_addma_2020_101430
crossref_primary_10_1080_15502287_2020_1808912
crossref_primary_10_1016_j_jsv_2019_115115
crossref_primary_10_1016_j_tafmec_2024_104639
crossref_primary_10_1016_j_compositesb_2020_108400
crossref_primary_10_1016_j_ijimpeng_2019_04_028
crossref_primary_10_1016_j_ijimpeng_2019_04_027
crossref_primary_10_3390_met10091141
crossref_primary_10_1177_07316844211063571
crossref_primary_10_1007_s11709_022_0853_x
crossref_primary_10_1016_j_physe_2020_114318
crossref_primary_10_1002_adem_202000963
crossref_primary_10_1007_s00603_024_04136_6
crossref_primary_10_1016_j_compstruct_2021_114003
crossref_primary_10_1016_j_compositesa_2020_105889
crossref_primary_10_1016_j_commatsci_2020_109912
crossref_primary_10_1007_s11709_019_0546_2
crossref_primary_10_1007_s12205_018_0912_y
crossref_primary_10_1007_s10237_021_01524_7
crossref_primary_10_1016_j_compscitech_2020_108487
crossref_primary_10_1016_j_engfracmech_2017_12_018
crossref_primary_10_1631_jzus_A1700573
crossref_primary_10_1007_s11709_019_0572_0
crossref_primary_10_1016_j_jclepro_2023_139184
crossref_primary_10_1016_j_cma_2023_116481
crossref_primary_10_1016_j_compositesa_2019_05_024
crossref_primary_10_1016_j_compositesa_2020_106055
crossref_primary_10_1016_j_compgeo_2019_103349
crossref_primary_10_1007_s11440_018_0701_2
crossref_primary_10_1142_S0219876221420020
crossref_primary_10_1007_s00366_021_01566_6
crossref_primary_10_1177_2633366X20954447
crossref_primary_10_1016_j_enggeo_2018_09_009
crossref_primary_10_3390_polym16081161
crossref_primary_10_1016_j_compscitech_2019_107743
Cites_doi 10.1002/nme.2182
10.1016/j.compositesb.2014.09.008
10.1016/j.carbon.2013.01.041
10.1016/j.polymer.2004.11.022
10.1016/j.cma.2003.12.041
10.1007/s10659-012-9396-z
10.1007/BF00540703
10.1016/j.jcp.2010.07.023
10.1016/j.fluid.2007.07.046
10.1016/j.compstruct.2014.07.009
10.1016/j.ijsolstr.2008.12.011
10.1098/rsta.1921.0006
10.1002/nme.2273
10.1016/j.commatsci.2013.06.046
10.1016/S0021-9991(03)00092-5
10.1080/03610918208812265
10.1016/j.polymer.2008.11.054
10.1016/j.cma.2004.05.027
10.1016/j.cma.2015.10.006
10.1016/j.commatsci.2012.11.035
10.3166/remn.15.81-92
10.1016/j.compositesb.2016.02.022
10.1016/j.engfracmech.2012.10.027
10.1016/j.compscitech.2013.11.015
10.1002/nme.1652
10.1201/9781420058215
10.1016/j.ress.2007.04.002
10.1016/j.ress.2014.01.005
10.1016/j.ress.2008.10.008
10.1016/j.polymer.2012.02.052
10.1016/j.compscitech.2016.02.012
10.1016/j.commatsci.2010.08.036
10.1016/j.probengmech.2006.11.004
10.1016/j.polymer.2009.08.014
10.1016/j.compstruct.2012.04.033
10.1016/j.compscitech.2011.09.016
10.1016/j.compositesb.2013.11.014
10.2514/1.2220
10.1137/S1064827501387826
10.1155/2013/978026
10.1016/j.tafmec.2007.10.004
10.1016/j.polymer.2006.11.062
10.1115/1.4011547
10.1016/j.compstruct.2015.09.001
10.1016/j.compscitech.2009.12.024
10.1016/j.compscitech.2007.05.020
10.1007/978-1-4612-3094-6
10.1016/j.eurpolymj.2011.06.010
10.1016/j.carbon.2015.10.058
10.1016/j.jmps.2010.09.015
10.1016/j.compscitech.2008.11.022
10.1016/j.commatsci.2014.04.066
10.1016/j.compstruct.2015.08.051
10.1002/app.21854
10.1016/j.compscitech.2011.03.003
10.1016/S0010-4655(02)00280-1
10.1016/j.commatsci.2014.09.030
10.1016/j.compstruc.2011.10.021
10.1016/j.compscitech.2004.11.003
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2017
Copyright Springer Science & Business Media 2017
International Journal of Fracture is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2017
– notice: Copyright Springer Science & Business Media 2017
– notice: International Journal of Fracture is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s10704-017-0210-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
ProQuest Materials Science Database
ProQuest Engineering Collection
ProQuest Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
ProQuest Materials Science Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-2673
EndPage 227
ExternalDocumentID 10_1007_s10704_017_0210_6
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: http://dx.doi.org/10.13039/501100001659
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
8WZ
95-
95.
95~
96X
A6W
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PDBOC
PF0
PKN
PT4
PT5
PTHSS
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SCV
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
~02
~8M
~A~
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c410t-86a5437eeb382700076d410aa6c0687cfc3fc3c9aa88cd2546771f95a3bfba43
IEDL.DBID U2A
ISSN 0376-9429
IngestDate Fri Jul 25 11:09:16 EDT 2025
Fri Jul 25 10:52:42 EDT 2025
Tue Jul 01 00:44:05 EDT 2025
Thu Apr 24 23:09:58 EDT 2025
Fri Feb 21 02:34:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Uncertainty quantification
Computational mechanics
Sensitivity analysis
Interphase
Polymeric nanoparticle composites
Fracture toughness
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-86a5437eeb382700076d410aa6c0687cfc3fc3c9aa88cd2546771f95a3bfba43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9898-8421
PQID 2259832219
PQPubID 2043781
PageCount 13
ParticipantIDs proquest_journals_2259832219
proquest_journals_1914589788
crossref_primary_10_1007_s10704_017_0210_6
crossref_citationtrail_10_1007_s10704_017_0210_6
springer_journals_10_1007_s10704_017_0210_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle International journal of fracture
PublicationTitleAbbrev Int J Fract
PublicationYear 2017
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References XiuDKarniadakisGEModeling uncertainty in flow simulations via generalized polynomial chaosJ Comput Phys2003187113716710.1016/S0021-9991(03)00092-5
SudretBGlobal sensitivity analysis using polynomial chaos expansionsReliab Eng Syst Saf200893796497910.1016/j.ress.2007.04.002
IrwinGAnalysis of stresses and strains near the end of a crack traversing a plateJ Appl Mech195724361364
DittanetPPearsonRAEffect of silica nanoparticle size on toughening mechanisms of filled epoxyPolymer20125391890190510.1016/j.polymer.2012.02.052
Vu-Bac N, Nguyen-Xuan H, Chen L, Lee CK, Zi G, Zhuang X, Liu GR, Rabczuk T (2013) A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics. J Appl Math 2013:12. doi:10.1155/2013/978026
WilliamsJParticle toughening of polymers by plastic void growthCompos Sci Technol201070688589110.1016/j.compscitech.2009.12.024
TserpesKPapanikosPLabeasGPantelakisSGMulti-scale modeling of tensile behavior of carbon nanotube-reinforced compositesTheor Appl Fract Mech2008491516010.1016/j.tafmec.2007.10.004
HuangYKinlochAModelling of the toughening mechanisms in rubber-modified epoxy polymers. part II a quantitative description of the microstructure-fracture property relationshipsJ Mater Sci199227102763276910.1007/BF00540703
QiaoRBrinsonLCSimulation of interphase percolation and gradients in polymer nanocompositesCompos Sci Technol200969349149910.1016/j.compscitech.2008.11.022
BoutalebSZaïriFMesbahANaït-AbdelazizMGloaguenJMBoukharoubaTLefebvreJMMicromechanics-based modelling of stiffness and yield stress for silica/polymer nanocompositesInt J Solids Struct20094671716172610.1016/j.ijsolstr.2008.12.011
Chau-DinhTZiGLeePSRabczukTSongJHPhantom-node method for shell models with arbitrary cracksComput Struct20129224225610.1016/j.compstruc.2011.10.021
Xiu D, Karniadakis GE (2002) The wiener–askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644
ChoiSKGrandhiRVCanfieldRAPettitCLPolynomial chaos expansion with latin hypercube sampling for estimating response variabilityAIAA J20044261191119810.2514/1.2220
QuaresiminMSalviatoMZappalortoMA multi-scale and multi-mechanism approach for the fracture toughness assessment of polymer nanocompositesCompos Sci Technol201491162110.1016/j.compscitech.2013.11.015
RabczukTZiGGerstenbergerAWallWAA new crack tip element for the phantom-node method with arbitrary cohesive cracksInt J Numer Method Eng20087557759910.1002/nme.2273
ZappalortoMSalviatoMQuaresiminMInfluence of the interphase zone on the nanoparticle debonding stressCompos Sci Technol2011721495510.1016/j.compscitech.2011.09.016
HamdiaKMMsekhMASilaniMVu-BacNZhuangXNguyen-ThoiTRabczukTUncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modelingCompos Struct20151331177119010.1016/j.compstruct.2015.08.051
AreiasPRabczukTQuasi-static crack propagation in plane and plate structures using set-valued traction-separation lawsInt J Numer Method Eng200874347550510.1002/nme.2182
DominkovicsZHáriJKovácsJFeketeEPukánszkyBEstimation of interphase thickness and properties in pp/layered silicate nanocompositesEur Polymer J20114791765177410.1016/j.eurpolymj.2011.06.010
AndersonTLFracture mechanics: fundamentals and applications20053Boca RatonCRC Press
MatthiesHGKeeseAGalerkin methods for linear and nonlinear elliptic stochastic partial differential equationsComput Methods Appl Mech Eng2005194121295133110.1016/j.cma.2004.05.027
HamdiaKMZhuangXHePRabczukTFracture toughness of polymeric particle nanocomposites: evaluation of models performance using Bayesian methodCompos Sci Technol201612612212910.1016/j.compscitech.2016.02.012
HansboAHansboPA finite element method for the simulation of strong and weak discontinuities in solid mechanicsComput Methods Appl Mech Eng2004193333523354010.1016/j.cma.2003.12.041
ZamanianMMortezaeiMSalehniaBJamJFracture toughness of epoxy polymer modified with nanosilica particles: Particle size effectEng Fract Mech20139719320610.1016/j.engfracmech.2012.10.027
ArashBParkHSRabczukTCoarse-grained model of the J-integral of carbon nanotube reinforced polymer compositesCarbon2016961084109210.1016/j.carbon.2015.10.058
ZhaoJJiangJWJiaYGuoWRabczukTA theoretical analysis of cohesive energy between carbon nanotubes, graphene and substratesCarbon20135710811910.1016/j.carbon.2013.01.041
GuilleminotJSoizeCOn the statistical dependence for the components of random elasticity tensors exhibiting material symmetry propertiesJ Elast2013111210913010.1007/s10659-012-9396-z
SilaniMTalebiHZiaei-RadSKerfridenPBordasSPRabczukTStochastic modelling of clay/epoxy nanocompositesCompos Struct201411824124910.1016/j.compstruct.2014.07.009
ScocchiGPosoccoPDananiAPriclSFermegliaMTo the nanoscale, and beyond!: multiscale molecular modeling of polymer-clay nanocompositesFluid Phase Equilib2007261136637410.1016/j.fluid.2007.07.046
SaltelliARattoMAndresTCampolongoFCariboniJGatelliDSaisanaMTarantolaSGlobal sensitivity analysis. The primer2008HobokenWiley
CrestauxTLe MaıtreOMartinezJMPolynomial chaos expansion for sensitivity analysisReliab Eng Syst Saf20099471161117210.1016/j.ress.2008.10.008
GriffithAAThe phenomena of rupture and flow in solidsPhilos Trans R Soc Lond Ser A Contain Pap Math Phys Charact192122116319810.1098/rsta.1921.0006
ChenJHuangZZhuJSize effect of particles on the damage dissipation in nanocompositesCompos Sci Technol200767142990299610.1016/j.compscitech.2007.05.020
Vu-BacNLahmerTZhangYZhuangXRabczukTStochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs)Compos B Eng201459809510.1016/j.compositesb.2013.11.014
GrigoriuMProbabilistic models for stochastic elliptic partial differential equationsJ Comput Phys2010229228406842910.1016/j.jcp.2010.07.023
OdegardGClancyTGatesTModeling of the mechanical properties of nanoparticle/polymer compositesPolymer200546255356210.1016/j.polymer.2004.11.022
HbaiebKWangQChiaYCotterellBModelling stiffness of polymer/clay nanocompositesPolymer200748390190910.1016/j.polymer.2006.11.062
Vu-BacNSilaniMLahmerTZhuangXRabczukTA unified framework for stochastic predictions of mechanical properties of polymeric nanocompositesComput Mater Sci20159652053510.1016/j.commatsci.2014.04.066
BerveillerMSudretBLemaireMStochastic finite element: a non intrusive approach by regressionEur J Comput Mech/Revue Européenne de Mécanique Numérique2006151–3819210.3166/remn.15.81-92
LiangYPearsonRToughening mechanisms in epoxy-silica nanocomposites (ESNs)Polymer200950204895490510.1016/j.polymer.2009.08.014
Isukapalli SS (1999) Uncertainty analysis of transport-transformation models. PhD thesis, The State University of New Jersey
SaltelliAMaking best use of model evaluations to compute sensitivity indicesComput Phys Commun2002145228029710.1016/S0010-4655(02)00280-1
SongJHAreiasPBelytschkoTA method for dynamic crack and shear band propagation with phantom nodesInt J Numer Meth Eng200667686889310.1002/nme.1652
ImanRLConoverWA distribution-free approach to inducing rank correlation among input variablesCommun. Stat Sim Comput198211331133410.1080/03610918208812265
Vu-BacNRafieeRZhuangXLahmerTRabczukTUncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parametersCompos B Eng20156844646410.1016/j.compositesb.2014.09.008
BhuiyanMAPuchaRVWorthyJKarevanMKalaitzidouKUnderstanding the effect of CNT characteristics on the tensile modulus of CNT reinforced polypropylene using finite element analysisComput Mater Sci20137936837610.1016/j.commatsci.2013.06.046
WangHZhouHPengRMishnaevskyLNanoreinforced polymer composites: 3D FEM modeling with effective interface conceptCompos Sci Technol201171798098810.1016/j.compscitech.2011.03.003
ThostensonETLiCChouTWNanocomposites in contextCompos Sci Technol200565349151610.1016/j.compscitech.2004.11.003
LeTTGuilleminotJSoizeCStochastic continuum modeling of random interphases from atomistic simulations. application to a polymer nanocompositeComput Methods Appl Mech Eng201630343044910.1016/j.cma.2015.10.006
Garcia-CabrejoOValocchiAGlobal sensitivity analysis for multivariate output using polynomial chaos expansionReliab Eng Syst Saf2014126253610.1016/j.ress.2014.01.005
ShokriehMMRafieeRStochastic multi-scale modeling of CNT/polymer compositesComput Mater Sci201050243744610.1016/j.commatsci.2010.08.036
YuSYangSChoMMulti-scale modeling of cross-linked epoxy nanocompositesPolymer200950394595210.1016/j.polymer.2008.11.054
HuangSMahadevanSRebbaRCollocation-based stochastic finite element analysis for random field problemsProbab Eng Mech200722219420510.1016/j.probengmech.2006.11.004
GhanemRGSpanosPDStochastic finite elements: a spectral approach1991New YorkSpringer10.1007/978-1-4612-3094-6
PontefissoAZappalortoMQuaresiminMAn efficient RVE formulation for the analysis of the elastic properties of spherical nanoparticle reinforced polymersComput Mater Sci20159631932610.1016/j.commatsci.2014.09.030
MortazaviBBardonJAhziSInterphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element studyComput Mater Sci20136910010610.1016/j.commatsci.2012.11.035
MsekhMASilaniMJamshidianMAreiasPZhuangXZiGHePRabczukTPredictions of J integral and tensile strength of clay/epoxy nanocomposites material using phase field modelCompos Part B Eng2016939710.1016/j.compositesb.2016.02.022
SilaniMZiaei-RadSEsfahanianMTanVOn the experimental and numerical investigation of clay/epoxy nanocompositesCompos Struct201294113142314810.1016/j.compstruct.2012.04.033
ArashBParkHSRabczukTTensile fracture behavior of short carbon nanotube reinforced polymer composites: a coarse-grained modelCompos Struct201513498198810.1016/j.compstruct.2015.09.001
BondioliFCannilloVFabbriEMessoriMEpoxy-silica nanocomposites: preparation, experimental characterization, and modelingJ Appl Polym Sci20059762382238610.1002/app.21854
Sobol’IMOn sensitivity estimation for nonlinear mathematical modelsMatematicheskoe Modelirovanie199021112118
LiYWaasAMArrudaEMA closed-form, hierarchical, multi-interphase mod
F Bondioli (210_CR7) 2005; 97
SK Choi (210_CR11) 2004; 42
A Pontefisso (210_CR36) 2015; 96
P Dittanet (210_CR13) 2012; 53
M Grigoriu (210_CR18) 2010; 229
KM Hamdia (210_CR21) 2016; 126
IM Sobol (210_CR46) 1990; 2
JH Song (210_CR47) 2006; 67
A Saltelli (210_CR41) 2008
AA Griffith (210_CR17) 1921; 221
M Zappalorto (210_CR61) 2011; 72
MA Bhuiyan (210_CR6) 2013; 79
Y Liang (210_CR31) 2009; 50
ET Thostenson (210_CR49) 2005; 65
HG Matthies (210_CR32) 2005; 194
Y Huang (210_CR25) 1992; 27
J Guilleminot (210_CR19) 2013; 111
B Sudret (210_CR48) 2008; 93
K Tserpes (210_CR50) 2008; 49
M Berveiller (210_CR5) 2006; 15
H Wang (210_CR55) 2011; 71
210_CR57
D Xiu (210_CR58) 2003; 187
M Silani (210_CR45) 2014; 118
210_CR51
P Areias (210_CR4) 2008; 74
RG Ghanem (210_CR16) 1991
T Crestaux (210_CR12) 2009; 94
O Garcia-Cabrejo (210_CR15) 2014; 126
MM Shokrieh (210_CR43) 2010; 50
A Saltelli (210_CR40) 2002; 145
J Zhao (210_CR62) 2013; 57
N Vu-Bac (210_CR52) 2014; 59
TL Anderson (210_CR1) 2005
T Rabczuk (210_CR39) 2008; 75
J Williams (210_CR56) 2010; 70
M Quaresimin (210_CR38) 2014; 91
A Hansbo (210_CR22) 2004; 193
S Huang (210_CR24) 2007; 22
G Irwin (210_CR27) 1957; 24
MA Msekh (210_CR34) 2016; 93
M Silani (210_CR44) 2012; 94
J Chen (210_CR10) 2007; 67
G Scocchi (210_CR42) 2007; 261
S Boutaleb (210_CR8) 2009; 46
Y Li (210_CR30) 2011; 59
S Yu (210_CR59) 2009; 50
N Vu-Bac (210_CR54) 2015; 96
TT Le (210_CR29) 2016; 303
Z Dominkovics (210_CR14) 2011; 47
R Qiao (210_CR37) 2009; 69
T Chau-Dinh (210_CR9) 2012; 92
G Odegard (210_CR35) 2005; 46
N Vu-Bac (210_CR53) 2015; 68
210_CR28
M Zamanian (210_CR60) 2013; 97
KM Hamdia (210_CR20) 2015; 133
RL Iman (210_CR26) 1982; 11
B Mortazavi (210_CR33) 2013; 69
B Arash (210_CR3) 2016; 96
K Hbaieb (210_CR23) 2007; 48
B Arash (210_CR2) 2015; 134
References_xml – reference: Vu-BacNSilaniMLahmerTZhuangXRabczukTA unified framework for stochastic predictions of mechanical properties of polymeric nanocompositesComput Mater Sci20159652053510.1016/j.commatsci.2014.04.066
– reference: Isukapalli SS (1999) Uncertainty analysis of transport-transformation models. PhD thesis, The State University of New Jersey
– reference: DittanetPPearsonRAEffect of silica nanoparticle size on toughening mechanisms of filled epoxyPolymer20125391890190510.1016/j.polymer.2012.02.052
– reference: XiuDKarniadakisGEModeling uncertainty in flow simulations via generalized polynomial chaosJ Comput Phys2003187113716710.1016/S0021-9991(03)00092-5
– reference: HuangYKinlochAModelling of the toughening mechanisms in rubber-modified epoxy polymers. part II a quantitative description of the microstructure-fracture property relationshipsJ Mater Sci199227102763276910.1007/BF00540703
– reference: PontefissoAZappalortoMQuaresiminMAn efficient RVE formulation for the analysis of the elastic properties of spherical nanoparticle reinforced polymersComput Mater Sci20159631932610.1016/j.commatsci.2014.09.030
– reference: Vu-BacNLahmerTZhangYZhuangXRabczukTStochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs)Compos B Eng201459809510.1016/j.compositesb.2013.11.014
– reference: ChoiSKGrandhiRVCanfieldRAPettitCLPolynomial chaos expansion with latin hypercube sampling for estimating response variabilityAIAA J20044261191119810.2514/1.2220
– reference: SaltelliARattoMAndresTCampolongoFCariboniJGatelliDSaisanaMTarantolaSGlobal sensitivity analysis. The primer2008HobokenWiley
– reference: DominkovicsZHáriJKovácsJFeketeEPukánszkyBEstimation of interphase thickness and properties in pp/layered silicate nanocompositesEur Polymer J20114791765177410.1016/j.eurpolymj.2011.06.010
– reference: GriffithAAThe phenomena of rupture and flow in solidsPhilos Trans R Soc Lond Ser A Contain Pap Math Phys Charact192122116319810.1098/rsta.1921.0006
– reference: ChenJHuangZZhuJSize effect of particles on the damage dissipation in nanocompositesCompos Sci Technol200767142990299610.1016/j.compscitech.2007.05.020
– reference: GrigoriuMProbabilistic models for stochastic elliptic partial differential equationsJ Comput Phys2010229228406842910.1016/j.jcp.2010.07.023
– reference: LiangYPearsonRToughening mechanisms in epoxy-silica nanocomposites (ESNs)Polymer200950204895490510.1016/j.polymer.2009.08.014
– reference: MatthiesHGKeeseAGalerkin methods for linear and nonlinear elliptic stochastic partial differential equationsComput Methods Appl Mech Eng2005194121295133110.1016/j.cma.2004.05.027
– reference: SudretBGlobal sensitivity analysis using polynomial chaos expansionsReliab Eng Syst Saf200893796497910.1016/j.ress.2007.04.002
– reference: ArashBParkHSRabczukTTensile fracture behavior of short carbon nanotube reinforced polymer composites: a coarse-grained modelCompos Struct201513498198810.1016/j.compstruct.2015.09.001
– reference: HansboAHansboPA finite element method for the simulation of strong and weak discontinuities in solid mechanicsComput Methods Appl Mech Eng2004193333523354010.1016/j.cma.2003.12.041
– reference: Chau-DinhTZiGLeePSRabczukTSongJHPhantom-node method for shell models with arbitrary cracksComput Struct20129224225610.1016/j.compstruc.2011.10.021
– reference: GhanemRGSpanosPDStochastic finite elements: a spectral approach1991New YorkSpringer10.1007/978-1-4612-3094-6
– reference: SilaniMZiaei-RadSEsfahanianMTanVOn the experimental and numerical investigation of clay/epoxy nanocompositesCompos Struct201294113142314810.1016/j.compstruct.2012.04.033
– reference: ScocchiGPosoccoPDananiAPriclSFermegliaMTo the nanoscale, and beyond!: multiscale molecular modeling of polymer-clay nanocompositesFluid Phase Equilib2007261136637410.1016/j.fluid.2007.07.046
– reference: QuaresiminMSalviatoMZappalortoMA multi-scale and multi-mechanism approach for the fracture toughness assessment of polymer nanocompositesCompos Sci Technol201491162110.1016/j.compscitech.2013.11.015
– reference: OdegardGClancyTGatesTModeling of the mechanical properties of nanoparticle/polymer compositesPolymer200546255356210.1016/j.polymer.2004.11.022
– reference: ZappalortoMSalviatoMQuaresiminMInfluence of the interphase zone on the nanoparticle debonding stressCompos Sci Technol2011721495510.1016/j.compscitech.2011.09.016
– reference: GuilleminotJSoizeCOn the statistical dependence for the components of random elasticity tensors exhibiting material symmetry propertiesJ Elast2013111210913010.1007/s10659-012-9396-z
– reference: QiaoRBrinsonLCSimulation of interphase percolation and gradients in polymer nanocompositesCompos Sci Technol200969349149910.1016/j.compscitech.2008.11.022
– reference: HuangSMahadevanSRebbaRCollocation-based stochastic finite element analysis for random field problemsProbab Eng Mech200722219420510.1016/j.probengmech.2006.11.004
– reference: IrwinGAnalysis of stresses and strains near the end of a crack traversing a plateJ Appl Mech195724361364
– reference: ZamanianMMortezaeiMSalehniaBJamJFracture toughness of epoxy polymer modified with nanosilica particles: Particle size effectEng Fract Mech20139719320610.1016/j.engfracmech.2012.10.027
– reference: ImanRLConoverWA distribution-free approach to inducing rank correlation among input variablesCommun. Stat Sim Comput198211331133410.1080/03610918208812265
– reference: WilliamsJParticle toughening of polymers by plastic void growthCompos Sci Technol201070688589110.1016/j.compscitech.2009.12.024
– reference: MortazaviBBardonJAhziSInterphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element studyComput Mater Sci20136910010610.1016/j.commatsci.2012.11.035
– reference: SaltelliAMaking best use of model evaluations to compute sensitivity indicesComput Phys Commun2002145228029710.1016/S0010-4655(02)00280-1
– reference: MsekhMASilaniMJamshidianMAreiasPZhuangXZiGHePRabczukTPredictions of J integral and tensile strength of clay/epoxy nanocomposites material using phase field modelCompos Part B Eng2016939710.1016/j.compositesb.2016.02.022
– reference: SongJHAreiasPBelytschkoTA method for dynamic crack and shear band propagation with phantom nodesInt J Numer Meth Eng200667686889310.1002/nme.1652
– reference: Vu-BacNRafieeRZhuangXLahmerTRabczukTUncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parametersCompos B Eng20156844646410.1016/j.compositesb.2014.09.008
– reference: CrestauxTLe MaıtreOMartinezJMPolynomial chaos expansion for sensitivity analysisReliab Eng Syst Saf20099471161117210.1016/j.ress.2008.10.008
– reference: AndersonTLFracture mechanics: fundamentals and applications20053Boca RatonCRC Press
– reference: HamdiaKMMsekhMASilaniMVu-BacNZhuangXNguyen-ThoiTRabczukTUncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modelingCompos Struct20151331177119010.1016/j.compstruct.2015.08.051
– reference: YuSYangSChoMMulti-scale modeling of cross-linked epoxy nanocompositesPolymer200950394595210.1016/j.polymer.2008.11.054
– reference: SilaniMTalebiHZiaei-RadSKerfridenPBordasSPRabczukTStochastic modelling of clay/epoxy nanocompositesCompos Struct201411824124910.1016/j.compstruct.2014.07.009
– reference: ZhaoJJiangJWJiaYGuoWRabczukTA theoretical analysis of cohesive energy between carbon nanotubes, graphene and substratesCarbon20135710811910.1016/j.carbon.2013.01.041
– reference: BondioliFCannilloVFabbriEMessoriMEpoxy-silica nanocomposites: preparation, experimental characterization, and modelingJ Appl Polym Sci20059762382238610.1002/app.21854
– reference: BoutalebSZaïriFMesbahANaït-AbdelazizMGloaguenJMBoukharoubaTLefebvreJMMicromechanics-based modelling of stiffness and yield stress for silica/polymer nanocompositesInt J Solids Struct20094671716172610.1016/j.ijsolstr.2008.12.011
– reference: LiYWaasAMArrudaEMA closed-form, hierarchical, multi-interphase model for composites-derivation, verification and application to nanocompositesJ Mech Phys Solids2011591436310.1016/j.jmps.2010.09.015
– reference: RabczukTZiGGerstenbergerAWallWAA new crack tip element for the phantom-node method with arbitrary cohesive cracksInt J Numer Method Eng20087557759910.1002/nme.2273
– reference: Garcia-CabrejoOValocchiAGlobal sensitivity analysis for multivariate output using polynomial chaos expansionReliab Eng Syst Saf2014126253610.1016/j.ress.2014.01.005
– reference: LeTTGuilleminotJSoizeCStochastic continuum modeling of random interphases from atomistic simulations. application to a polymer nanocompositeComput Methods Appl Mech Eng201630343044910.1016/j.cma.2015.10.006
– reference: TserpesKPapanikosPLabeasGPantelakisSGMulti-scale modeling of tensile behavior of carbon nanotube-reinforced compositesTheor Appl Fract Mech2008491516010.1016/j.tafmec.2007.10.004
– reference: Sobol’IMOn sensitivity estimation for nonlinear mathematical modelsMatematicheskoe Modelirovanie199021112118
– reference: WangHZhouHPengRMishnaevskyLNanoreinforced polymer composites: 3D FEM modeling with effective interface conceptCompos Sci Technol201171798098810.1016/j.compscitech.2011.03.003
– reference: ThostensonETLiCChouTWNanocomposites in contextCompos Sci Technol200565349151610.1016/j.compscitech.2004.11.003
– reference: Vu-Bac N, Nguyen-Xuan H, Chen L, Lee CK, Zi G, Zhuang X, Liu GR, Rabczuk T (2013) A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics. J Appl Math 2013:12. doi:10.1155/2013/978026
– reference: ArashBParkHSRabczukTCoarse-grained model of the J-integral of carbon nanotube reinforced polymer compositesCarbon2016961084109210.1016/j.carbon.2015.10.058
– reference: ShokriehMMRafieeRStochastic multi-scale modeling of CNT/polymer compositesComput Mater Sci201050243744610.1016/j.commatsci.2010.08.036
– reference: Xiu D, Karniadakis GE (2002) The wiener–askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644
– reference: BerveillerMSudretBLemaireMStochastic finite element: a non intrusive approach by regressionEur J Comput Mech/Revue Européenne de Mécanique Numérique2006151–3819210.3166/remn.15.81-92
– reference: HamdiaKMZhuangXHePRabczukTFracture toughness of polymeric particle nanocomposites: evaluation of models performance using Bayesian methodCompos Sci Technol201612612212910.1016/j.compscitech.2016.02.012
– reference: AreiasPRabczukTQuasi-static crack propagation in plane and plate structures using set-valued traction-separation lawsInt J Numer Method Eng200874347550510.1002/nme.2182
– reference: BhuiyanMAPuchaRVWorthyJKarevanMKalaitzidouKUnderstanding the effect of CNT characteristics on the tensile modulus of CNT reinforced polypropylene using finite element analysisComput Mater Sci20137936837610.1016/j.commatsci.2013.06.046
– reference: HbaiebKWangQChiaYCotterellBModelling stiffness of polymer/clay nanocompositesPolymer200748390190910.1016/j.polymer.2006.11.062
– volume: 74
  start-page: 475
  issue: 3
  year: 2008
  ident: 210_CR4
  publication-title: Int J Numer Method Eng
  doi: 10.1002/nme.2182
– volume: 68
  start-page: 446
  year: 2015
  ident: 210_CR53
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2014.09.008
– volume: 57
  start-page: 108
  year: 2013
  ident: 210_CR62
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.01.041
– volume: 46
  start-page: 553
  issue: 2
  year: 2005
  ident: 210_CR35
  publication-title: Polymer
  doi: 10.1016/j.polymer.2004.11.022
– volume: 193
  start-page: 3523
  issue: 33
  year: 2004
  ident: 210_CR22
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2003.12.041
– volume: 111
  start-page: 109
  issue: 2
  year: 2013
  ident: 210_CR19
  publication-title: J Elast
  doi: 10.1007/s10659-012-9396-z
– volume: 27
  start-page: 2763
  issue: 10
  year: 1992
  ident: 210_CR25
  publication-title: J Mater Sci
  doi: 10.1007/BF00540703
– volume: 229
  start-page: 8406
  issue: 22
  year: 2010
  ident: 210_CR18
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2010.07.023
– volume: 261
  start-page: 366
  issue: 1
  year: 2007
  ident: 210_CR42
  publication-title: Fluid Phase Equilib
  doi: 10.1016/j.fluid.2007.07.046
– volume: 118
  start-page: 241
  year: 2014
  ident: 210_CR45
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2014.07.009
– volume: 2
  start-page: 112
  issue: 1
  year: 1990
  ident: 210_CR46
  publication-title: Matematicheskoe Modelirovanie
– volume: 46
  start-page: 1716
  issue: 7
  year: 2009
  ident: 210_CR8
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2008.12.011
– volume: 221
  start-page: 163
  year: 1921
  ident: 210_CR17
  publication-title: Philos Trans R Soc Lond Ser A Contain Pap Math Phys Charact
  doi: 10.1098/rsta.1921.0006
– volume: 75
  start-page: 577
  year: 2008
  ident: 210_CR39
  publication-title: Int J Numer Method Eng
  doi: 10.1002/nme.2273
– volume: 79
  start-page: 368
  year: 2013
  ident: 210_CR6
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2013.06.046
– volume: 187
  start-page: 137
  issue: 1
  year: 2003
  ident: 210_CR58
  publication-title: J Comput Phys
  doi: 10.1016/S0021-9991(03)00092-5
– volume: 11
  start-page: 311
  issue: 3
  year: 1982
  ident: 210_CR26
  publication-title: Commun. Stat Sim Comput
  doi: 10.1080/03610918208812265
– volume: 50
  start-page: 945
  issue: 3
  year: 2009
  ident: 210_CR59
  publication-title: Polymer
  doi: 10.1016/j.polymer.2008.11.054
– volume: 194
  start-page: 1295
  issue: 12
  year: 2005
  ident: 210_CR32
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2004.05.027
– volume: 303
  start-page: 430
  year: 2016
  ident: 210_CR29
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2015.10.006
– volume: 69
  start-page: 100
  year: 2013
  ident: 210_CR33
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2012.11.035
– volume: 15
  start-page: 81
  issue: 1–3
  year: 2006
  ident: 210_CR5
  publication-title: Eur J Comput Mech/Revue Européenne de Mécanique Numérique
  doi: 10.3166/remn.15.81-92
– volume: 93
  start-page: 97
  year: 2016
  ident: 210_CR34
  publication-title: Compos Part B Eng
  doi: 10.1016/j.compositesb.2016.02.022
– volume: 97
  start-page: 193
  year: 2013
  ident: 210_CR60
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2012.10.027
– volume: 91
  start-page: 16
  year: 2014
  ident: 210_CR38
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2013.11.015
– volume: 67
  start-page: 868
  issue: 6
  year: 2006
  ident: 210_CR47
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.1652
– volume-title: Fracture mechanics: fundamentals and applications
  year: 2005
  ident: 210_CR1
  doi: 10.1201/9781420058215
– volume: 93
  start-page: 964
  issue: 7
  year: 2008
  ident: 210_CR48
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2007.04.002
– volume: 126
  start-page: 25
  year: 2014
  ident: 210_CR15
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2014.01.005
– volume: 94
  start-page: 1161
  issue: 7
  year: 2009
  ident: 210_CR12
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2008.10.008
– volume: 53
  start-page: 1890
  issue: 9
  year: 2012
  ident: 210_CR13
  publication-title: Polymer
  doi: 10.1016/j.polymer.2012.02.052
– volume: 126
  start-page: 122
  year: 2016
  ident: 210_CR21
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2016.02.012
– volume: 50
  start-page: 437
  issue: 2
  year: 2010
  ident: 210_CR43
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2010.08.036
– volume: 22
  start-page: 194
  issue: 2
  year: 2007
  ident: 210_CR24
  publication-title: Probab Eng Mech
  doi: 10.1016/j.probengmech.2006.11.004
– volume: 50
  start-page: 4895
  issue: 20
  year: 2009
  ident: 210_CR31
  publication-title: Polymer
  doi: 10.1016/j.polymer.2009.08.014
– volume: 94
  start-page: 3142
  issue: 11
  year: 2012
  ident: 210_CR44
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2012.04.033
– volume: 72
  start-page: 49
  issue: 1
  year: 2011
  ident: 210_CR61
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2011.09.016
– volume: 59
  start-page: 80
  year: 2014
  ident: 210_CR52
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2013.11.014
– volume: 42
  start-page: 1191
  issue: 6
  year: 2004
  ident: 210_CR11
  publication-title: AIAA J
  doi: 10.2514/1.2220
– ident: 210_CR57
  doi: 10.1137/S1064827501387826
– ident: 210_CR51
  doi: 10.1155/2013/978026
– volume: 49
  start-page: 51
  issue: 1
  year: 2008
  ident: 210_CR50
  publication-title: Theor Appl Fract Mech
  doi: 10.1016/j.tafmec.2007.10.004
– volume: 48
  start-page: 901
  issue: 3
  year: 2007
  ident: 210_CR23
  publication-title: Polymer
  doi: 10.1016/j.polymer.2006.11.062
– volume: 24
  start-page: 361
  year: 1957
  ident: 210_CR27
  publication-title: J Appl Mech
  doi: 10.1115/1.4011547
– volume: 134
  start-page: 981
  year: 2015
  ident: 210_CR2
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2015.09.001
– ident: 210_CR28
– volume: 70
  start-page: 885
  issue: 6
  year: 2010
  ident: 210_CR56
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2009.12.024
– volume-title: Global sensitivity analysis. The primer
  year: 2008
  ident: 210_CR41
– volume: 67
  start-page: 2990
  issue: 14
  year: 2007
  ident: 210_CR10
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2007.05.020
– volume-title: Stochastic finite elements: a spectral approach
  year: 1991
  ident: 210_CR16
  doi: 10.1007/978-1-4612-3094-6
– volume: 47
  start-page: 1765
  issue: 9
  year: 2011
  ident: 210_CR14
  publication-title: Eur Polymer J
  doi: 10.1016/j.eurpolymj.2011.06.010
– volume: 96
  start-page: 1084
  year: 2016
  ident: 210_CR3
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.10.058
– volume: 59
  start-page: 43
  issue: 1
  year: 2011
  ident: 210_CR30
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2010.09.015
– volume: 69
  start-page: 491
  issue: 3
  year: 2009
  ident: 210_CR37
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2008.11.022
– volume: 96
  start-page: 520
  year: 2015
  ident: 210_CR54
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2014.04.066
– volume: 133
  start-page: 1177
  year: 2015
  ident: 210_CR20
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2015.08.051
– volume: 97
  start-page: 2382
  issue: 6
  year: 2005
  ident: 210_CR7
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.21854
– volume: 71
  start-page: 980
  issue: 7
  year: 2011
  ident: 210_CR55
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2011.03.003
– volume: 145
  start-page: 280
  issue: 2
  year: 2002
  ident: 210_CR40
  publication-title: Comput Phys Commun
  doi: 10.1016/S0010-4655(02)00280-1
– volume: 96
  start-page: 319
  year: 2015
  ident: 210_CR36
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2014.09.030
– volume: 92
  start-page: 242
  year: 2012
  ident: 210_CR9
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2011.10.021
– volume: 65
  start-page: 491
  issue: 3
  year: 2005
  ident: 210_CR49
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2004.11.003
SSID ssj0009784
Score 2.6138818
Snippet The fracture energy is a substantial material property that measures the ability of materials to resist crack growth. The reinforcement of the epoxy polymers...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 215
SubjectTerms Alloys
Automotive Engineering
Characterization and Evaluation of Materials
Chemistry and Materials Science
Civil Engineering
Classical Mechanics
Concentration (composition)
Crack propagation
Energy consumption
Fillers
Finite element method
Fracture mechanics
Fracture toughness
Material properties
Materials Science
Mathematical models
Mechanical Engineering
Modulus of elasticity
Nanocomposites
Nanoparticles
Original Paper
Parameter uncertainty
Polymers
Polynomials
Probability theory
Propagation (polymerization)
Reinforcement
Sensitivity analysis
Stochastic models
Two dimensional models
Variance analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gXOCAeIrxUg6cQBF9JukJAdqEkEAIhrRblaUJHFA71k6Cf4_dpmwgmNRbXpXtOE5sfybkxPrWD0exYVmkAxYlgWHKMxED2z6w6OaRMeYO393zm-fodhgP3YNb6cIqW51YK-qs0PhGfg5yl6D0-cnF-J1h1Sj0rroSGstkBVSwlB2yctW7f3icwe4K2QBICc4SUL2tX7NJnhN1BIZgeO9h_OfJNDM3f3lI64Onv0HWncVILxsWb5Ilk2-RtTkcwW1SPVWFflUIuUyVQxmhhaVg3FGLaVDTiaEV1uNBxYYt4-Lts_bV0FzlcG9uJqcYYI5RXKakGBD_UvfDxGX4AVigKKn5APWBL2zlDhn0e4PrG-bKKTAd-V7FJFdxFAoD12eJ7mZP8AwalOLa41Joq0P4dKKUlDpDnHwhfJvEKhzZkYrCXdLJi9zsEWo5MAIMAa0RjUzHShkwI22sAp0hpFyXeC0lU-2gxrHixVs6A0lG4qdA_BSJn_IuOf0eMm5wNhZ1PmzZk7otV6YIVBdLYLj8s3kmP11y1nJ0bvR_a-0vnuyArAa1CGFI4CHpVJOpOQIzpRodO1n8AoSk5U8
  priority: 102
  providerName: ProQuest
Title Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions
URI https://link.springer.com/article/10.1007/s10704-017-0210-6
https://www.proquest.com/docview/1914589788
https://www.proquest.com/docview/2259832219
Volume 206
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB6VcKEHBKVVA2nkQ09Flvblxx4TyEOgRlULUnpaOY5dDmgXsYsE_56ZzS5JESAhreSDX6sZezzjmfkM8N2HPowXwvFlYiOepJHjJnAJR90-8uTm0YJyh3_O5PQyOZuLeZPHXbbR7q1LspbUG8luqo6YUJzsFC63YFug6U5xXJfRYI20q_QKM0pJnqK0bV2ZLw3x_2G01jCfOUXrs2a8B7uNksgGK67uwweXf4KPG9CBB1D9qQp7ZQhlmZkGWIQVnqE-xzxlPt3dOlbREzwky6jmprh-qN0zLDc5msqrwRnFlFPglisZxcD_q9tRrjL-AE5QlMzdo8SgS7XyM1yMRxcnU968oMBtEgYV19KIJFYOLWZNHuZAySVWGCNtILWy3sb42dQYre2SoPGVCn0qTLzwC5PEX6CTF7n7CsxL3Pl49ltLAGRWGONQc_TCRHZJKHJdCFpKZrZBF6dHLq6zNS4yET9D4mdE_Ex24cdTl5sVtMZbjXste7Jml5UZYdMJjQzXL1ajqEpJYIVpF45bjm70fm2uw3e1PoKdqF5RFBTYg051e-e-oaJSLfqwpceTPmwPhqfDMZWTv-cjLIej2a_f_XrZPgJQPeXW
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB6lcKAcUClFhKbgQ7lQWWTf3kNVVUBIyuPSVOJmOV4bDmg3ZDei_Cj-Y2f20QQEuUXam732amZ2POOZ-Qbgq3Ws440CwxNfu9yPXcNV1_gcbXvXUphHBFQ7fHkV9v_4v66D6xY8NbUwlFbZ6MRSUSeZpjvyI5S7mKTPiX-M7zl1jaLoatNCoxKLc_P4gC5b_n1wgvw9cN3e6fC4z-uuAlz7TrfgIlSB70UGvUhBUVd05BMcUCrU3VBE2moPHx0rJYROCC4-ihwbB8ob2ZHyPVz2Haz6Hh7kVJjeO5th_EaiQquKQh6jnm-CqFWlXlSme0ScnCwePj8GZ7bti3Bsecr1PsBGbZ6yn5U8bULLpB9hfQ60cAuK30WmbxXhOzNVQ5qwzDK0JJmlmqvpxLCCmv-QFqWRcXb3WAaGWKpSdNKrxRlls1PKmMkZZd_flPOoSho_ADfIcmb-oq6i67z8EwyXQeVtWEmz1OwAsyFyHa0OrQn6TAdKGbRZbaBcnRB-XRu6DSWlrnHNqb3GnZwhMhPxJRJfEvFl2IbD_6-MK1CPRZM7DXtk_X_nklDxAoEMF68Oz4S1Dd8ajs69_dZeu4sX24e1_vDyQl4Mrs4_w3u3FCfKRezASjGZmi9oHxWjvVIqGcgl_wX_AP3fICg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwQxDA4-QPQgPnF99qAXpbjz7hw8iLr4RlDBW-l2Wj0sM4szov4pf6PJPNxVVPAgzC19kbRpMkm-AmxaxzpeNzA88bXL_dg1XLWNz9G2dy2FeURAtcMXl-HxrX96F9yNwFtTC1NmuzchyaqmgVCa0mK3n9jdocK3qMyeiDj5LDyssyrPzOsz-mz53skhCnjLdTtHNwfHvH5WgGvfaRdchCrwvcigGyko7IqefIIEpULdDkWkrfbw07FSQuiE8OKjyLFxoLyu7Srfw2FHYdyn2mM8P7fu_gDkNxIVXFUU8hgVfRNF_W7Fn-_BgXH7JR5bXnOdGZiu7VO2X22oWRgx6RxMDaEWzkNxXWT6QRHAM1M1pgnLLENTklkqunp6NKyg139IjRKln_Vey8gQS1WKXno1OKN0dsoZMzmj9Pv7sh2VSeMCcIIsZ-YFlRX9z8sX4OY_uLwIY2mWmiVgNkSlg2aH1oR9pgOlDBqtNlCuTgjArgXthpNS18Dm9L5GTw4gmYn5EpkvifkybMH2R5d-herxW-PVRjyyPuC5JFi8QKDAxbdk1JIx6UonbsFOI9Gh3j_Ntfyn1hswcXXYkecnl2crMOmWm4tSE1dhrHh8MmtoLhXd9XKPMpD_fCbeAfoZIOE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+analysis+of+the+fracture+toughness+of+polymeric+nanoparticle+composites+using+polynomial+chaos+expansions&rft.jtitle=International+journal+of+fracture&rft.au=Hamdia%2C+Khader+M.&rft.au=Silani%2C+Mohammad&rft.au=Zhuang%2C+Xiaoying&rft.au=He%2C+Pengfei&rft.date=2017-08-01&rft.issn=0376-9429&rft.eissn=1573-2673&rft.volume=206&rft.issue=2&rft.spage=215&rft.epage=227&rft_id=info:doi/10.1007%2Fs10704-017-0210-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10704_017_0210_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-9429&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-9429&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-9429&client=summon