Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions
The fracture energy is a substantial material property that measures the ability of materials to resist crack growth. The reinforcement of the epoxy polymers by nanosize fillers improves significantly their toughness. The fracture mechanism of the produced polymeric nanocomposites is influenced by d...
Saved in:
Published in | International journal of fracture Vol. 206; no. 2; pp. 215 - 227 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.08.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The fracture energy is a substantial material property that measures the ability of materials to resist crack growth. The reinforcement of the epoxy polymers by nanosize fillers improves significantly their toughness. The fracture mechanism of the produced polymeric nanocomposites is influenced by different parameters. This paper presents a methodology for stochastic modelling of the fracture in polymer/particle nanocomposites. For this purpose, we generated a 2D finite element model containing an epoxy matrix and rigid nanoparticles surrounded by an interphase zone. The crack propagation was modelled by the phantom node method. The stochastic model is based on six uncertain parameters: the volume fraction and the diameter of the nanoparticles, Young’s modulus and the maximum allowable principal stress of the epoxy matrix, the interphase zone thickness and its Young’s modulus. Considering the uncertainties in input parameters, a polynomial chaos expansion surrogate model is constructed followed by a sensitivity analysis. The variance in the fracture energy was mostly influenced by the maximum allowable principal stress and Young’s modulus of the epoxy matrix. |
---|---|
AbstractList | The fracture energy is a substantial material property that measures the ability of materials to resist crack growth. The reinforcement of the epoxy polymers by nanosize fillers improves significantly their toughness. The fracture mechanism of the produced polymeric nanocomposites is influenced by different parameters. This paper presents a methodology for stochastic modelling of the fracture in polymer/particle nanocomposites. For this purpose, we generated a 2D finite element model containing an epoxy matrix and rigid nanoparticles surrounded by an interphase zone. The crack propagation was modelled by the phantom node method. The stochastic model is based on six uncertain parameters: the volume fraction and the diameter of the nanoparticles, Young’s modulus and the maximum allowable principal stress of the epoxy matrix, the interphase zone thickness and its Young’s modulus. Considering the uncertainties in input parameters, a polynomial chaos expansion surrogate model is constructed followed by a sensitivity analysis. The variance in the fracture energy was mostly influenced by the maximum allowable principal stress and Young’s modulus of the epoxy matrix. |
Author | Hamdia, Khader M. Silani, Mohammad Zhuang, Xiaoying He, Pengfei Rabczuk, Timon |
Author_xml | – sequence: 1 givenname: Khader M. orcidid: 0000-0001-9898-8421 surname: Hamdia fullname: Hamdia, Khader M. organization: Duy Tan University, Institute of Research & Development, Institute of Structural Mechanics, Bauhaus-Universität Weimar – sequence: 2 givenname: Mohammad surname: Silani fullname: Silani, Mohammad organization: Department of Mechanical Engineering, Isfahan University of Technology – sequence: 3 givenname: Xiaoying surname: Zhuang fullname: Zhuang, Xiaoying organization: Tongji University – sequence: 4 givenname: Pengfei surname: He fullname: He, Pengfei organization: Tongji University – sequence: 5 givenname: Timon surname: Rabczuk fullname: Rabczuk, Timon email: timon.rabczuk@uni-weimar.de organization: Duy Tan University, Institute of Research & Development, Institute of Structural Mechanics, Bauhaus-Universität Weimar |
BookMark | eNp9kU1rGzEQhkVwoU7SH9CboOdt9bEraY8lpE3A0EN8F2NZa8uspY1GC_G_r2L3UAo1CHSY59GM5r0li5iiJ-QzZ185Y_obcqZZ2zCuGyY4a9QNWfJOy0YoLRdkyaRWTd-K_iO5RTwwxnpt2iUpLyW5PWAJjkKE8YQBaRpo2Xs6ZHBlzp6WNO_20eO5MqXxdPS58hFimiBXdfTUpeOUMBSPdMYQd2cupmOAkdYGCal_myBiSBHvyYcBRvSf_tx3ZP3jcf3w1Kx-_Xx--L5qXMtZaYyCrpXa-400QteRtdrWAoByTBntBifrcT2AMW4rulZpzYe-A7kZNtDKO_Ll8uyU0-vssdhDmnP9JFohut5IIXh_jeI9bztTF2UqxS-Uywkx-8FOORwhnyxn9j0Be0nA1gTsewJWVUf_47hQoNQNlAxhvGqKi4m1S9z5_NdM_5V-A7p0nm0 |
CitedBy_id | crossref_primary_10_1016_j_enggeo_2018_03_016 crossref_primary_10_1016_j_compositesb_2022_109632 crossref_primary_10_1016_j_enggeo_2019_105373 crossref_primary_10_1016_j_msea_2022_143515 crossref_primary_10_1016_j_compositesb_2019_05_034 crossref_primary_10_1007_s11709_018_0452_z crossref_primary_10_1016_j_aej_2022_09_019 crossref_primary_10_1007_s11709_018_0507_1 crossref_primary_10_1007_s11709_020_0658_8 crossref_primary_10_1016_j_ijimpeng_2019_103331 crossref_primary_10_1016_j_commatsci_2019_05_053 crossref_primary_10_1016_j_ijimpeng_2018_05_006 crossref_primary_10_1016_j_dental_2022_09_009 crossref_primary_10_1016_j_ijimpeng_2019_103336 crossref_primary_10_1016_j_ijimpeng_2020_103598 crossref_primary_10_1080_15397734_2022_2044850 crossref_primary_10_1007_s11709_019_0565_z crossref_primary_10_3390_met9010107 crossref_primary_10_1016_j_ijimpeng_2021_103999 crossref_primary_10_1016_j_compscitech_2018_10_031 crossref_primary_10_1016_j_dt_2019_11_005 crossref_primary_10_1016_j_tafmec_2020_102662 crossref_primary_10_1016_j_undsp_2018_05_001 crossref_primary_10_1007_s11709_019_0591_x crossref_primary_10_1016_j_undsp_2018_05_002 crossref_primary_10_1007_s00339_022_05427_x crossref_primary_10_1007_s11709_019_0552_4 crossref_primary_10_3390_s18124131 crossref_primary_10_1016_j_commatsci_2017_12_022 crossref_primary_10_3390_met9050491 crossref_primary_10_1016_j_polymertesting_2019_04_021 crossref_primary_10_1142_S0219876219500543 crossref_primary_10_1016_j_compositesa_2020_105937 crossref_primary_10_1007_s12665_022_10684_3 crossref_primary_10_1002_adem_202401299 crossref_primary_10_3233_JCM_204379 crossref_primary_10_1016_j_enggeo_2019_105352 crossref_primary_10_1007_s11709_019_0530_x crossref_primary_10_1007_s12205_021_2031_4 crossref_primary_10_1007_s11709_019_0537_3 crossref_primary_10_1016_j_dt_2020_03_010 crossref_primary_10_3390_app9061137 crossref_primary_10_1007_s00366_021_01528_y crossref_primary_10_1016_j_compositesb_2018_06_015 crossref_primary_10_1016_j_istruc_2023_05_032 crossref_primary_10_1016_j_mtcomm_2020_101684 crossref_primary_10_1016_j_jmbbm_2022_105530 crossref_primary_10_1007_s11709_019_0601_z crossref_primary_10_1007_s11709_018_0506_2 crossref_primary_10_1007_s11709_020_0613_8 crossref_primary_10_3390_app8101839 crossref_primary_10_1007_s11709_019_0549_z crossref_primary_10_1002_pc_28121 crossref_primary_10_1007_s11709_018_0496_0 crossref_primary_10_1016_j_compscitech_2021_108845 crossref_primary_10_1080_15376494_2019_1625987 crossref_primary_10_1007_s11709_019_0600_0 crossref_primary_10_1016_j_dt_2020_03_003 crossref_primary_10_1016_j_conbuildmat_2018_08_085 crossref_primary_10_1155_2021_4313755 crossref_primary_10_1007_s11709_021_0738_4 crossref_primary_10_1016_j_ijimpeng_2021_104033 crossref_primary_10_1007_s11709_021_0677_0 crossref_primary_10_1016_j_compstruct_2019_01_078 crossref_primary_10_1016_j_tafmec_2020_102882 crossref_primary_10_1016_j_compstruct_2019_03_100 crossref_primary_10_1007_s00339_022_05670_2 crossref_primary_10_1016_j_conbuildmat_2018_05_201 crossref_primary_10_1111_ffe_13366 crossref_primary_10_1016_j_ijheatmasstransfer_2018_09_057 crossref_primary_10_1007_s11709_018_0484_4 crossref_primary_10_1016_j_compositesb_2019_05_069 crossref_primary_10_1007_s12205_022_0182_6 crossref_primary_10_1016_j_compstruc_2018_09_005 crossref_primary_10_1016_j_istruc_2024_106057 crossref_primary_10_1007_s11051_019_4697_9 crossref_primary_10_1007_s11709_021_0726_8 crossref_primary_10_1016_j_tafmec_2023_103836 crossref_primary_10_52547_nmce_4_1_49 crossref_primary_10_1016_j_jmbbm_2019_04_045 crossref_primary_10_1016_j_tafmec_2022_103415 crossref_primary_10_1007_s10999_020_09501_1 crossref_primary_10_1016_j_measurement_2021_109870 crossref_primary_10_1016_j_euromechsol_2019_103802 crossref_primary_10_1007_s11709_018_0476_4 crossref_primary_10_1016_j_enggeo_2019_04_017 crossref_primary_10_1016_j_ijimpeng_2019_02_001 crossref_primary_10_1016_j_enggeo_2019_105209 crossref_primary_10_1016_j_undsp_2018_04_006 crossref_primary_10_1177_0021998319830777 crossref_primary_10_3390_en11102795 crossref_primary_10_1016_j_undsp_2018_04_002 crossref_primary_10_1016_j_ijimpeng_2018_08_014 crossref_primary_10_1007_s11709_019_0521_y crossref_primary_10_1007_s12205_019_2156_x crossref_primary_10_3389_fphy_2022_1111159 crossref_primary_10_1016_j_ijimpeng_2018_10_009 crossref_primary_10_1007_s11709_019_0554_2 crossref_primary_10_1016_j_cma_2018_03_016 crossref_primary_10_1016_j_compositesb_2022_110432 crossref_primary_10_1016_j_compositesb_2019_107405 crossref_primary_10_1016_j_conbuildmat_2019_116865 crossref_primary_10_1016_j_jmbbm_2020_104171 crossref_primary_10_1080_15397734_2019_1624176 crossref_primary_10_1007_s11709_019_0516_8 crossref_primary_10_1016_j_dt_2020_02_018 crossref_primary_10_1016_j_ijimpeng_2018_08_008 crossref_primary_10_1007_s10999_023_09697_y crossref_primary_10_1016_j_compstruct_2018_10_059 crossref_primary_10_1002_pc_27200 crossref_primary_10_1016_j_compscitech_2021_109242 crossref_primary_10_1007_s11709_019_0539_1 crossref_primary_10_1007_s11709_019_0577_8 crossref_primary_10_1016_j_commatsci_2019_109425 crossref_primary_10_1080_25740881_2020_1744012 crossref_primary_10_1016_j_compstruct_2024_118087 crossref_primary_10_1080_10407782_2018_1538296 crossref_primary_10_2139_ssrn_4103088 crossref_primary_10_1016_j_ijimpeng_2019_01_013 crossref_primary_10_1016_j_tafmec_2021_103143 crossref_primary_10_1007_s11709_020_0641_4 crossref_primary_10_1016_j_compositesa_2025_108882 crossref_primary_10_1016_j_compstruct_2020_113343 crossref_primary_10_1016_j_triboint_2022_107470 crossref_primary_10_1016_j_tws_2018_01_024 crossref_primary_10_1016_j_undsp_2018_08_001 crossref_primary_10_1007_s10999_022_09636_3 crossref_primary_10_1007_s11668_021_01273_w crossref_primary_10_1186_s11671_017_2386_0 crossref_primary_10_1007_s11709_022_0810_8 crossref_primary_10_1016_j_enggeo_2019_105228 crossref_primary_10_1186_s11671_018_2624_0 crossref_primary_10_1016_j_ijmecsci_2019_06_008 crossref_primary_10_1016_j_ijmecsci_2021_106895 crossref_primary_10_1016_j_enggeo_2024_107547 crossref_primary_10_1515_ntrev_2022_0522 crossref_primary_10_1007_s10704_019_00394_6 crossref_primary_10_1007_s11709_019_0542_6 crossref_primary_10_1016_j_engfracmech_2022_108667 crossref_primary_10_3390_met8100836 crossref_primary_10_1016_j_matdes_2022_110973 crossref_primary_10_1177_0021998319868523 crossref_primary_10_1016_j_compositesb_2019_01_047 crossref_primary_10_1016_j_compstruct_2024_118650 crossref_primary_10_1080_07370652_2019_1684594 crossref_primary_10_1016_j_engfracmech_2019_03_031 crossref_primary_10_1016_j_ijimpeng_2018_09_011 crossref_primary_10_32604_cmc_2021_014688 crossref_primary_10_1016_j_compscitech_2023_110360 crossref_primary_10_1016_j_ijsolstr_2019_07_031 crossref_primary_10_1016_j_commatsci_2018_01_058 crossref_primary_10_1016_j_enganabound_2021_02_008 crossref_primary_10_1016_j_compgeo_2022_105000 crossref_primary_10_1007_s12205_022_1534_y crossref_primary_10_1016_j_tafmec_2018_04_010 crossref_primary_10_1016_j_commatsci_2022_111747 crossref_primary_10_1016_j_ijimpeng_2021_103948 crossref_primary_10_1007_s12205_018_0041_7 crossref_primary_10_1016_j_ijimpeng_2019_103445 crossref_primary_10_1007_s10706_022_02232_4 crossref_primary_10_1016_j_euromechsol_2020_104093 crossref_primary_10_1016_j_conbuildmat_2021_125128 crossref_primary_10_1039_C9CP04091A crossref_primary_10_1108_EC_12_2018_0595 crossref_primary_10_3390_jmse12030430 crossref_primary_10_1007_s11709_019_0560_4 crossref_primary_10_1016_j_ijimpeng_2022_104282 crossref_primary_10_1007_s11709_018_0478_2 crossref_primary_10_1371_journal_pone_0275626 crossref_primary_10_1007_s11709_019_0605_8 crossref_primary_10_1007_s11709_020_0627_2 crossref_primary_10_1016_j_ijimpeng_2018_11_006 crossref_primary_10_1039_C9NR05036A crossref_primary_10_1007_s11709_019_0568_9 crossref_primary_10_1007_s11709_022_0834_0 crossref_primary_10_1016_j_compstruct_2018_10_083 crossref_primary_10_1016_j_msea_2021_141325 crossref_primary_10_1007_s00366_019_00803_3 crossref_primary_10_1016_j_mechmat_2021_103886 crossref_primary_10_1002_pc_25358 crossref_primary_10_1016_j_measurement_2023_113266 crossref_primary_10_1177_0731684418804346 crossref_primary_10_1016_j_ijmecsci_2023_108270 crossref_primary_10_1016_j_ijimpeng_2018_11_010 crossref_primary_10_1016_j_jrmge_2020_03_006 crossref_primary_10_1007_s12205_019_1858_4 crossref_primary_10_1016_j_jmrt_2021_03_104 crossref_primary_10_1016_j_compositesb_2017_11_007 crossref_primary_10_1016_j_tust_2025_106372 crossref_primary_10_1016_j_compstruct_2020_112324 crossref_primary_10_1016_j_compositesa_2019_03_012 crossref_primary_10_1016_j_compstruct_2019_111569 crossref_primary_10_1016_j_engstruct_2022_114675 crossref_primary_10_1007_s11709_019_0518_6 crossref_primary_10_1016_j_ifacol_2020_12_556 crossref_primary_10_1177_0954406219888958 crossref_primary_10_1016_j_engfracmech_2020_107301 crossref_primary_10_1016_j_engfracmech_2021_107962 crossref_primary_10_1016_j_compstruct_2018_07_008 crossref_primary_10_1016_j_enggeo_2020_105553 crossref_primary_10_1016_j_triboint_2018_10_036 crossref_primary_10_1016_j_dt_2020_01_003 crossref_primary_10_1002_pc_24725 crossref_primary_10_1016_j_engfracmech_2021_108142 crossref_primary_10_1155_2021_6621530 crossref_primary_10_1016_j_cma_2022_114650 crossref_primary_10_1016_j_compositesb_2021_109534 crossref_primary_10_1002_nag_3292 crossref_primary_10_1007_s11709_020_0628_1 crossref_primary_10_1007_s11709_020_0610_y crossref_primary_10_1007_s11709_020_0617_4 crossref_primary_10_1016_j_engfracmech_2018_11_021 crossref_primary_10_1177_096369351802700505 crossref_primary_10_1007_s11709_018_0492_4 crossref_primary_10_1002_pc_27554 crossref_primary_10_1007_s11709_019_0544_4 crossref_primary_10_1016_j_msea_2021_142435 crossref_primary_10_1016_j_compstruct_2018_06_087 crossref_primary_10_1016_j_enganabound_2023_04_001 crossref_primary_10_1016_j_probengmech_2017_10_003 crossref_primary_10_2174_0929867326666181126113605 crossref_primary_10_1007_s00170_024_13568_x crossref_primary_10_1021_acs_jpclett_8b01416 crossref_primary_10_1007_s11709_019_0570_2 crossref_primary_10_3390_en12020271 crossref_primary_10_1007_s12205_019_0951_z crossref_primary_10_1631_jzus_A1800467 crossref_primary_10_1007_s40868_020_00088_y crossref_primary_10_1016_j_measurement_2022_111368 crossref_primary_10_1016_j_compositesa_2017_07_025 crossref_primary_10_1016_j_polymer_2024_127463 crossref_primary_10_1177_1687814019838353 crossref_primary_10_1016_j_polymer_2019_121682 crossref_primary_10_1016_j_mechmat_2018_09_002 crossref_primary_10_1002_nag_2775 crossref_primary_10_1007_s11709_020_0573_z crossref_primary_10_1016_j_ijimpeng_2019_103403 crossref_primary_10_1038_s41598_018_32452_9 crossref_primary_10_1016_j_ijimpeng_2018_03_008 crossref_primary_10_1021_acsami_4c02797 crossref_primary_10_1177_00219983231185840 crossref_primary_10_1016_j_enggeo_2019_03_014 crossref_primary_10_3390_en12152846 crossref_primary_10_1007_s12205_018_0943_4 crossref_primary_10_1016_j_engfracmech_2019_01_031 crossref_primary_10_1007_s11709_019_0562_2 crossref_primary_10_1016_j_mechmat_2020_103722 crossref_primary_10_1016_j_triboint_2023_108422 crossref_primary_10_1016_j_ijimpeng_2018_12_004 crossref_primary_10_1007_s00603_021_02453_8 crossref_primary_10_1016_j_conbuildmat_2022_128456 crossref_primary_10_1016_j_compositesa_2018_10_010 crossref_primary_10_1016_j_compositesb_2019_03_065 crossref_primary_10_1016_j_conbuildmat_2021_124092 crossref_primary_10_1016_j_infrared_2020_103376 crossref_primary_10_1007_s11709_020_0621_8 crossref_primary_10_1007_s11709_018_0505_3 crossref_primary_10_1016_j_enggeo_2018_10_018 crossref_primary_10_1007_s11709_018_0495_1 crossref_primary_10_1016_j_enggeo_2019_105165 crossref_primary_10_1002_pc_25552 crossref_primary_10_1007_s13369_021_06199_x crossref_primary_10_1007_s10704_018_0277_8 crossref_primary_10_1016_j_conbuildmat_2022_126829 crossref_primary_10_1016_j_jobe_2023_106902 crossref_primary_10_1016_j_enggeo_2018_12_023 crossref_primary_10_1007_s11709_019_0524_8 crossref_primary_10_1016_j_jmbbm_2020_103937 crossref_primary_10_1016_j_ijimpeng_2018_06_004 crossref_primary_10_1016_j_conbuildmat_2021_125199 crossref_primary_10_1016_j_enggeo_2019_105282 crossref_primary_10_1016_j_cma_2023_116102 crossref_primary_10_1016_j_compositesa_2020_105861 crossref_primary_10_3390_en11102818 crossref_primary_10_1016_j_tafmec_2022_103270 crossref_primary_10_1002_pc_26072 crossref_primary_10_1007_s11709_019_0559_x crossref_primary_10_1177_1099636218793979 crossref_primary_10_1016_j_compstruct_2021_114372 crossref_primary_10_1021_acssuschemeng_9b02602 crossref_primary_10_1016_j_enggeo_2019_105278 crossref_primary_10_1007_s12205_022_1723_8 crossref_primary_10_3390_jcs6010031 crossref_primary_10_1016_j_addma_2020_101430 crossref_primary_10_1080_15502287_2020_1808912 crossref_primary_10_1016_j_jsv_2019_115115 crossref_primary_10_1016_j_tafmec_2024_104639 crossref_primary_10_1016_j_compositesb_2020_108400 crossref_primary_10_1016_j_ijimpeng_2019_04_028 crossref_primary_10_1016_j_ijimpeng_2019_04_027 crossref_primary_10_3390_met10091141 crossref_primary_10_1177_07316844211063571 crossref_primary_10_1007_s11709_022_0853_x crossref_primary_10_1016_j_physe_2020_114318 crossref_primary_10_1002_adem_202000963 crossref_primary_10_1007_s00603_024_04136_6 crossref_primary_10_1016_j_compstruct_2021_114003 crossref_primary_10_1016_j_compositesa_2020_105889 crossref_primary_10_1016_j_commatsci_2020_109912 crossref_primary_10_1007_s11709_019_0546_2 crossref_primary_10_1007_s12205_018_0912_y crossref_primary_10_1007_s10237_021_01524_7 crossref_primary_10_1016_j_compscitech_2020_108487 crossref_primary_10_1016_j_engfracmech_2017_12_018 crossref_primary_10_1631_jzus_A1700573 crossref_primary_10_1007_s11709_019_0572_0 crossref_primary_10_1016_j_jclepro_2023_139184 crossref_primary_10_1016_j_cma_2023_116481 crossref_primary_10_1016_j_compositesa_2019_05_024 crossref_primary_10_1016_j_compositesa_2020_106055 crossref_primary_10_1016_j_compgeo_2019_103349 crossref_primary_10_1007_s11440_018_0701_2 crossref_primary_10_1142_S0219876221420020 crossref_primary_10_1007_s00366_021_01566_6 crossref_primary_10_1177_2633366X20954447 crossref_primary_10_1016_j_enggeo_2018_09_009 crossref_primary_10_3390_polym16081161 crossref_primary_10_1016_j_compscitech_2019_107743 |
Cites_doi | 10.1002/nme.2182 10.1016/j.compositesb.2014.09.008 10.1016/j.carbon.2013.01.041 10.1016/j.polymer.2004.11.022 10.1016/j.cma.2003.12.041 10.1007/s10659-012-9396-z 10.1007/BF00540703 10.1016/j.jcp.2010.07.023 10.1016/j.fluid.2007.07.046 10.1016/j.compstruct.2014.07.009 10.1016/j.ijsolstr.2008.12.011 10.1098/rsta.1921.0006 10.1002/nme.2273 10.1016/j.commatsci.2013.06.046 10.1016/S0021-9991(03)00092-5 10.1080/03610918208812265 10.1016/j.polymer.2008.11.054 10.1016/j.cma.2004.05.027 10.1016/j.cma.2015.10.006 10.1016/j.commatsci.2012.11.035 10.3166/remn.15.81-92 10.1016/j.compositesb.2016.02.022 10.1016/j.engfracmech.2012.10.027 10.1016/j.compscitech.2013.11.015 10.1002/nme.1652 10.1201/9781420058215 10.1016/j.ress.2007.04.002 10.1016/j.ress.2014.01.005 10.1016/j.ress.2008.10.008 10.1016/j.polymer.2012.02.052 10.1016/j.compscitech.2016.02.012 10.1016/j.commatsci.2010.08.036 10.1016/j.probengmech.2006.11.004 10.1016/j.polymer.2009.08.014 10.1016/j.compstruct.2012.04.033 10.1016/j.compscitech.2011.09.016 10.1016/j.compositesb.2013.11.014 10.2514/1.2220 10.1137/S1064827501387826 10.1155/2013/978026 10.1016/j.tafmec.2007.10.004 10.1016/j.polymer.2006.11.062 10.1115/1.4011547 10.1016/j.compstruct.2015.09.001 10.1016/j.compscitech.2009.12.024 10.1016/j.compscitech.2007.05.020 10.1007/978-1-4612-3094-6 10.1016/j.eurpolymj.2011.06.010 10.1016/j.carbon.2015.10.058 10.1016/j.jmps.2010.09.015 10.1016/j.compscitech.2008.11.022 10.1016/j.commatsci.2014.04.066 10.1016/j.compstruct.2015.08.051 10.1002/app.21854 10.1016/j.compscitech.2011.03.003 10.1016/S0010-4655(02)00280-1 10.1016/j.commatsci.2014.09.030 10.1016/j.compstruc.2011.10.021 10.1016/j.compscitech.2004.11.003 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media Dordrecht 2017 Copyright Springer Science & Business Media 2017 International Journal of Fracture is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2017 – notice: Copyright Springer Science & Business Media 2017 – notice: International Journal of Fracture is a copyright of Springer, (2017). All Rights Reserved. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s10704-017-0210-6 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection ProQuest Materials Science Database ProQuest Engineering Collection ProQuest Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | ProQuest Materials Science Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-2673 |
EndPage | 227 |
ExternalDocumentID | 10_1007_s10704_017_0210_6 |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: http://dx.doi.org/10.13039/501100001659 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 8WZ 95- 95. 95~ 96X A6W AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PDBOC PF0 PKN PT4 PT5 PTHSS QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SCV SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WH7 WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR ~02 ~8M ~A~ ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c410t-86a5437eeb382700076d410aa6c0687cfc3fc3c9aa88cd2546771f95a3bfba43 |
IEDL.DBID | U2A |
ISSN | 0376-9429 |
IngestDate | Fri Jul 25 11:09:16 EDT 2025 Fri Jul 25 10:52:42 EDT 2025 Tue Jul 01 00:44:05 EDT 2025 Thu Apr 24 23:09:58 EDT 2025 Fri Feb 21 02:34:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Uncertainty quantification Computational mechanics Sensitivity analysis Interphase Polymeric nanoparticle composites Fracture toughness |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-86a5437eeb382700076d410aa6c0687cfc3fc3c9aa88cd2546771f95a3bfba43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9898-8421 |
PQID | 2259832219 |
PQPubID | 2043781 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2259832219 proquest_journals_1914589788 crossref_primary_10_1007_s10704_017_0210_6 crossref_citationtrail_10_1007_s10704_017_0210_6 springer_journals_10_1007_s10704_017_0210_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-01 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | International journal of fracture |
PublicationTitleAbbrev | Int J Fract |
PublicationYear | 2017 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | XiuDKarniadakisGEModeling uncertainty in flow simulations via generalized polynomial chaosJ Comput Phys2003187113716710.1016/S0021-9991(03)00092-5 SudretBGlobal sensitivity analysis using polynomial chaos expansionsReliab Eng Syst Saf200893796497910.1016/j.ress.2007.04.002 IrwinGAnalysis of stresses and strains near the end of a crack traversing a plateJ Appl Mech195724361364 DittanetPPearsonRAEffect of silica nanoparticle size on toughening mechanisms of filled epoxyPolymer20125391890190510.1016/j.polymer.2012.02.052 Vu-Bac N, Nguyen-Xuan H, Chen L, Lee CK, Zi G, Zhuang X, Liu GR, Rabczuk T (2013) A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics. J Appl Math 2013:12. doi:10.1155/2013/978026 WilliamsJParticle toughening of polymers by plastic void growthCompos Sci Technol201070688589110.1016/j.compscitech.2009.12.024 TserpesKPapanikosPLabeasGPantelakisSGMulti-scale modeling of tensile behavior of carbon nanotube-reinforced compositesTheor Appl Fract Mech2008491516010.1016/j.tafmec.2007.10.004 HuangYKinlochAModelling of the toughening mechanisms in rubber-modified epoxy polymers. part II a quantitative description of the microstructure-fracture property relationshipsJ Mater Sci199227102763276910.1007/BF00540703 QiaoRBrinsonLCSimulation of interphase percolation and gradients in polymer nanocompositesCompos Sci Technol200969349149910.1016/j.compscitech.2008.11.022 BoutalebSZaïriFMesbahANaït-AbdelazizMGloaguenJMBoukharoubaTLefebvreJMMicromechanics-based modelling of stiffness and yield stress for silica/polymer nanocompositesInt J Solids Struct20094671716172610.1016/j.ijsolstr.2008.12.011 Chau-DinhTZiGLeePSRabczukTSongJHPhantom-node method for shell models with arbitrary cracksComput Struct20129224225610.1016/j.compstruc.2011.10.021 Xiu D, Karniadakis GE (2002) The wiener–askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644 ChoiSKGrandhiRVCanfieldRAPettitCLPolynomial chaos expansion with latin hypercube sampling for estimating response variabilityAIAA J20044261191119810.2514/1.2220 QuaresiminMSalviatoMZappalortoMA multi-scale and multi-mechanism approach for the fracture toughness assessment of polymer nanocompositesCompos Sci Technol201491162110.1016/j.compscitech.2013.11.015 RabczukTZiGGerstenbergerAWallWAA new crack tip element for the phantom-node method with arbitrary cohesive cracksInt J Numer Method Eng20087557759910.1002/nme.2273 ZappalortoMSalviatoMQuaresiminMInfluence of the interphase zone on the nanoparticle debonding stressCompos Sci Technol2011721495510.1016/j.compscitech.2011.09.016 HamdiaKMMsekhMASilaniMVu-BacNZhuangXNguyen-ThoiTRabczukTUncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modelingCompos Struct20151331177119010.1016/j.compstruct.2015.08.051 AreiasPRabczukTQuasi-static crack propagation in plane and plate structures using set-valued traction-separation lawsInt J Numer Method Eng200874347550510.1002/nme.2182 DominkovicsZHáriJKovácsJFeketeEPukánszkyBEstimation of interphase thickness and properties in pp/layered silicate nanocompositesEur Polymer J20114791765177410.1016/j.eurpolymj.2011.06.010 AndersonTLFracture mechanics: fundamentals and applications20053Boca RatonCRC Press MatthiesHGKeeseAGalerkin methods for linear and nonlinear elliptic stochastic partial differential equationsComput Methods Appl Mech Eng2005194121295133110.1016/j.cma.2004.05.027 HamdiaKMZhuangXHePRabczukTFracture toughness of polymeric particle nanocomposites: evaluation of models performance using Bayesian methodCompos Sci Technol201612612212910.1016/j.compscitech.2016.02.012 HansboAHansboPA finite element method for the simulation of strong and weak discontinuities in solid mechanicsComput Methods Appl Mech Eng2004193333523354010.1016/j.cma.2003.12.041 ZamanianMMortezaeiMSalehniaBJamJFracture toughness of epoxy polymer modified with nanosilica particles: Particle size effectEng Fract Mech20139719320610.1016/j.engfracmech.2012.10.027 ArashBParkHSRabczukTCoarse-grained model of the J-integral of carbon nanotube reinforced polymer compositesCarbon2016961084109210.1016/j.carbon.2015.10.058 ZhaoJJiangJWJiaYGuoWRabczukTA theoretical analysis of cohesive energy between carbon nanotubes, graphene and substratesCarbon20135710811910.1016/j.carbon.2013.01.041 GuilleminotJSoizeCOn the statistical dependence for the components of random elasticity tensors exhibiting material symmetry propertiesJ Elast2013111210913010.1007/s10659-012-9396-z SilaniMTalebiHZiaei-RadSKerfridenPBordasSPRabczukTStochastic modelling of clay/epoxy nanocompositesCompos Struct201411824124910.1016/j.compstruct.2014.07.009 ScocchiGPosoccoPDananiAPriclSFermegliaMTo the nanoscale, and beyond!: multiscale molecular modeling of polymer-clay nanocompositesFluid Phase Equilib2007261136637410.1016/j.fluid.2007.07.046 SaltelliARattoMAndresTCampolongoFCariboniJGatelliDSaisanaMTarantolaSGlobal sensitivity analysis. The primer2008HobokenWiley CrestauxTLe MaıtreOMartinezJMPolynomial chaos expansion for sensitivity analysisReliab Eng Syst Saf20099471161117210.1016/j.ress.2008.10.008 GriffithAAThe phenomena of rupture and flow in solidsPhilos Trans R Soc Lond Ser A Contain Pap Math Phys Charact192122116319810.1098/rsta.1921.0006 ChenJHuangZZhuJSize effect of particles on the damage dissipation in nanocompositesCompos Sci Technol200767142990299610.1016/j.compscitech.2007.05.020 Vu-BacNLahmerTZhangYZhuangXRabczukTStochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs)Compos B Eng201459809510.1016/j.compositesb.2013.11.014 GrigoriuMProbabilistic models for stochastic elliptic partial differential equationsJ Comput Phys2010229228406842910.1016/j.jcp.2010.07.023 OdegardGClancyTGatesTModeling of the mechanical properties of nanoparticle/polymer compositesPolymer200546255356210.1016/j.polymer.2004.11.022 HbaiebKWangQChiaYCotterellBModelling stiffness of polymer/clay nanocompositesPolymer200748390190910.1016/j.polymer.2006.11.062 Vu-BacNSilaniMLahmerTZhuangXRabczukTA unified framework for stochastic predictions of mechanical properties of polymeric nanocompositesComput Mater Sci20159652053510.1016/j.commatsci.2014.04.066 BerveillerMSudretBLemaireMStochastic finite element: a non intrusive approach by regressionEur J Comput Mech/Revue Européenne de Mécanique Numérique2006151–3819210.3166/remn.15.81-92 LiangYPearsonRToughening mechanisms in epoxy-silica nanocomposites (ESNs)Polymer200950204895490510.1016/j.polymer.2009.08.014 Isukapalli SS (1999) Uncertainty analysis of transport-transformation models. PhD thesis, The State University of New Jersey SaltelliAMaking best use of model evaluations to compute sensitivity indicesComput Phys Commun2002145228029710.1016/S0010-4655(02)00280-1 SongJHAreiasPBelytschkoTA method for dynamic crack and shear band propagation with phantom nodesInt J Numer Meth Eng200667686889310.1002/nme.1652 ImanRLConoverWA distribution-free approach to inducing rank correlation among input variablesCommun. Stat Sim Comput198211331133410.1080/03610918208812265 Vu-BacNRafieeRZhuangXLahmerTRabczukTUncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parametersCompos B Eng20156844646410.1016/j.compositesb.2014.09.008 BhuiyanMAPuchaRVWorthyJKarevanMKalaitzidouKUnderstanding the effect of CNT characteristics on the tensile modulus of CNT reinforced polypropylene using finite element analysisComput Mater Sci20137936837610.1016/j.commatsci.2013.06.046 WangHZhouHPengRMishnaevskyLNanoreinforced polymer composites: 3D FEM modeling with effective interface conceptCompos Sci Technol201171798098810.1016/j.compscitech.2011.03.003 ThostensonETLiCChouTWNanocomposites in contextCompos Sci Technol200565349151610.1016/j.compscitech.2004.11.003 LeTTGuilleminotJSoizeCStochastic continuum modeling of random interphases from atomistic simulations. application to a polymer nanocompositeComput Methods Appl Mech Eng201630343044910.1016/j.cma.2015.10.006 Garcia-CabrejoOValocchiAGlobal sensitivity analysis for multivariate output using polynomial chaos expansionReliab Eng Syst Saf2014126253610.1016/j.ress.2014.01.005 ShokriehMMRafieeRStochastic multi-scale modeling of CNT/polymer compositesComput Mater Sci201050243744610.1016/j.commatsci.2010.08.036 YuSYangSChoMMulti-scale modeling of cross-linked epoxy nanocompositesPolymer200950394595210.1016/j.polymer.2008.11.054 HuangSMahadevanSRebbaRCollocation-based stochastic finite element analysis for random field problemsProbab Eng Mech200722219420510.1016/j.probengmech.2006.11.004 GhanemRGSpanosPDStochastic finite elements: a spectral approach1991New YorkSpringer10.1007/978-1-4612-3094-6 PontefissoAZappalortoMQuaresiminMAn efficient RVE formulation for the analysis of the elastic properties of spherical nanoparticle reinforced polymersComput Mater Sci20159631932610.1016/j.commatsci.2014.09.030 MortazaviBBardonJAhziSInterphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element studyComput Mater Sci20136910010610.1016/j.commatsci.2012.11.035 MsekhMASilaniMJamshidianMAreiasPZhuangXZiGHePRabczukTPredictions of J integral and tensile strength of clay/epoxy nanocomposites material using phase field modelCompos Part B Eng2016939710.1016/j.compositesb.2016.02.022 SilaniMZiaei-RadSEsfahanianMTanVOn the experimental and numerical investigation of clay/epoxy nanocompositesCompos Struct201294113142314810.1016/j.compstruct.2012.04.033 ArashBParkHSRabczukTTensile fracture behavior of short carbon nanotube reinforced polymer composites: a coarse-grained modelCompos Struct201513498198810.1016/j.compstruct.2015.09.001 BondioliFCannilloVFabbriEMessoriMEpoxy-silica nanocomposites: preparation, experimental characterization, and modelingJ Appl Polym Sci20059762382238610.1002/app.21854 Sobol’IMOn sensitivity estimation for nonlinear mathematical modelsMatematicheskoe Modelirovanie199021112118 LiYWaasAMArrudaEMA closed-form, hierarchical, multi-interphase mod F Bondioli (210_CR7) 2005; 97 SK Choi (210_CR11) 2004; 42 A Pontefisso (210_CR36) 2015; 96 P Dittanet (210_CR13) 2012; 53 M Grigoriu (210_CR18) 2010; 229 KM Hamdia (210_CR21) 2016; 126 IM Sobol (210_CR46) 1990; 2 JH Song (210_CR47) 2006; 67 A Saltelli (210_CR41) 2008 AA Griffith (210_CR17) 1921; 221 M Zappalorto (210_CR61) 2011; 72 MA Bhuiyan (210_CR6) 2013; 79 Y Liang (210_CR31) 2009; 50 ET Thostenson (210_CR49) 2005; 65 HG Matthies (210_CR32) 2005; 194 Y Huang (210_CR25) 1992; 27 J Guilleminot (210_CR19) 2013; 111 B Sudret (210_CR48) 2008; 93 K Tserpes (210_CR50) 2008; 49 M Berveiller (210_CR5) 2006; 15 H Wang (210_CR55) 2011; 71 210_CR57 D Xiu (210_CR58) 2003; 187 M Silani (210_CR45) 2014; 118 210_CR51 P Areias (210_CR4) 2008; 74 RG Ghanem (210_CR16) 1991 T Crestaux (210_CR12) 2009; 94 O Garcia-Cabrejo (210_CR15) 2014; 126 MM Shokrieh (210_CR43) 2010; 50 A Saltelli (210_CR40) 2002; 145 J Zhao (210_CR62) 2013; 57 N Vu-Bac (210_CR52) 2014; 59 TL Anderson (210_CR1) 2005 T Rabczuk (210_CR39) 2008; 75 J Williams (210_CR56) 2010; 70 M Quaresimin (210_CR38) 2014; 91 A Hansbo (210_CR22) 2004; 193 S Huang (210_CR24) 2007; 22 G Irwin (210_CR27) 1957; 24 MA Msekh (210_CR34) 2016; 93 M Silani (210_CR44) 2012; 94 J Chen (210_CR10) 2007; 67 G Scocchi (210_CR42) 2007; 261 S Boutaleb (210_CR8) 2009; 46 Y Li (210_CR30) 2011; 59 S Yu (210_CR59) 2009; 50 N Vu-Bac (210_CR54) 2015; 96 TT Le (210_CR29) 2016; 303 Z Dominkovics (210_CR14) 2011; 47 R Qiao (210_CR37) 2009; 69 T Chau-Dinh (210_CR9) 2012; 92 G Odegard (210_CR35) 2005; 46 N Vu-Bac (210_CR53) 2015; 68 210_CR28 M Zamanian (210_CR60) 2013; 97 KM Hamdia (210_CR20) 2015; 133 RL Iman (210_CR26) 1982; 11 B Mortazavi (210_CR33) 2013; 69 B Arash (210_CR3) 2016; 96 K Hbaieb (210_CR23) 2007; 48 B Arash (210_CR2) 2015; 134 |
References_xml | – reference: Vu-BacNSilaniMLahmerTZhuangXRabczukTA unified framework for stochastic predictions of mechanical properties of polymeric nanocompositesComput Mater Sci20159652053510.1016/j.commatsci.2014.04.066 – reference: Isukapalli SS (1999) Uncertainty analysis of transport-transformation models. PhD thesis, The State University of New Jersey – reference: DittanetPPearsonRAEffect of silica nanoparticle size on toughening mechanisms of filled epoxyPolymer20125391890190510.1016/j.polymer.2012.02.052 – reference: XiuDKarniadakisGEModeling uncertainty in flow simulations via generalized polynomial chaosJ Comput Phys2003187113716710.1016/S0021-9991(03)00092-5 – reference: HuangYKinlochAModelling of the toughening mechanisms in rubber-modified epoxy polymers. part II a quantitative description of the microstructure-fracture property relationshipsJ Mater Sci199227102763276910.1007/BF00540703 – reference: PontefissoAZappalortoMQuaresiminMAn efficient RVE formulation for the analysis of the elastic properties of spherical nanoparticle reinforced polymersComput Mater Sci20159631932610.1016/j.commatsci.2014.09.030 – reference: Vu-BacNLahmerTZhangYZhuangXRabczukTStochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs)Compos B Eng201459809510.1016/j.compositesb.2013.11.014 – reference: ChoiSKGrandhiRVCanfieldRAPettitCLPolynomial chaos expansion with latin hypercube sampling for estimating response variabilityAIAA J20044261191119810.2514/1.2220 – reference: SaltelliARattoMAndresTCampolongoFCariboniJGatelliDSaisanaMTarantolaSGlobal sensitivity analysis. The primer2008HobokenWiley – reference: DominkovicsZHáriJKovácsJFeketeEPukánszkyBEstimation of interphase thickness and properties in pp/layered silicate nanocompositesEur Polymer J20114791765177410.1016/j.eurpolymj.2011.06.010 – reference: GriffithAAThe phenomena of rupture and flow in solidsPhilos Trans R Soc Lond Ser A Contain Pap Math Phys Charact192122116319810.1098/rsta.1921.0006 – reference: ChenJHuangZZhuJSize effect of particles on the damage dissipation in nanocompositesCompos Sci Technol200767142990299610.1016/j.compscitech.2007.05.020 – reference: GrigoriuMProbabilistic models for stochastic elliptic partial differential equationsJ Comput Phys2010229228406842910.1016/j.jcp.2010.07.023 – reference: LiangYPearsonRToughening mechanisms in epoxy-silica nanocomposites (ESNs)Polymer200950204895490510.1016/j.polymer.2009.08.014 – reference: MatthiesHGKeeseAGalerkin methods for linear and nonlinear elliptic stochastic partial differential equationsComput Methods Appl Mech Eng2005194121295133110.1016/j.cma.2004.05.027 – reference: SudretBGlobal sensitivity analysis using polynomial chaos expansionsReliab Eng Syst Saf200893796497910.1016/j.ress.2007.04.002 – reference: ArashBParkHSRabczukTTensile fracture behavior of short carbon nanotube reinforced polymer composites: a coarse-grained modelCompos Struct201513498198810.1016/j.compstruct.2015.09.001 – reference: HansboAHansboPA finite element method for the simulation of strong and weak discontinuities in solid mechanicsComput Methods Appl Mech Eng2004193333523354010.1016/j.cma.2003.12.041 – reference: Chau-DinhTZiGLeePSRabczukTSongJHPhantom-node method for shell models with arbitrary cracksComput Struct20129224225610.1016/j.compstruc.2011.10.021 – reference: GhanemRGSpanosPDStochastic finite elements: a spectral approach1991New YorkSpringer10.1007/978-1-4612-3094-6 – reference: SilaniMZiaei-RadSEsfahanianMTanVOn the experimental and numerical investigation of clay/epoxy nanocompositesCompos Struct201294113142314810.1016/j.compstruct.2012.04.033 – reference: ScocchiGPosoccoPDananiAPriclSFermegliaMTo the nanoscale, and beyond!: multiscale molecular modeling of polymer-clay nanocompositesFluid Phase Equilib2007261136637410.1016/j.fluid.2007.07.046 – reference: QuaresiminMSalviatoMZappalortoMA multi-scale and multi-mechanism approach for the fracture toughness assessment of polymer nanocompositesCompos Sci Technol201491162110.1016/j.compscitech.2013.11.015 – reference: OdegardGClancyTGatesTModeling of the mechanical properties of nanoparticle/polymer compositesPolymer200546255356210.1016/j.polymer.2004.11.022 – reference: ZappalortoMSalviatoMQuaresiminMInfluence of the interphase zone on the nanoparticle debonding stressCompos Sci Technol2011721495510.1016/j.compscitech.2011.09.016 – reference: GuilleminotJSoizeCOn the statistical dependence for the components of random elasticity tensors exhibiting material symmetry propertiesJ Elast2013111210913010.1007/s10659-012-9396-z – reference: QiaoRBrinsonLCSimulation of interphase percolation and gradients in polymer nanocompositesCompos Sci Technol200969349149910.1016/j.compscitech.2008.11.022 – reference: HuangSMahadevanSRebbaRCollocation-based stochastic finite element analysis for random field problemsProbab Eng Mech200722219420510.1016/j.probengmech.2006.11.004 – reference: IrwinGAnalysis of stresses and strains near the end of a crack traversing a plateJ Appl Mech195724361364 – reference: ZamanianMMortezaeiMSalehniaBJamJFracture toughness of epoxy polymer modified with nanosilica particles: Particle size effectEng Fract Mech20139719320610.1016/j.engfracmech.2012.10.027 – reference: ImanRLConoverWA distribution-free approach to inducing rank correlation among input variablesCommun. Stat Sim Comput198211331133410.1080/03610918208812265 – reference: WilliamsJParticle toughening of polymers by plastic void growthCompos Sci Technol201070688589110.1016/j.compscitech.2009.12.024 – reference: MortazaviBBardonJAhziSInterphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element studyComput Mater Sci20136910010610.1016/j.commatsci.2012.11.035 – reference: SaltelliAMaking best use of model evaluations to compute sensitivity indicesComput Phys Commun2002145228029710.1016/S0010-4655(02)00280-1 – reference: MsekhMASilaniMJamshidianMAreiasPZhuangXZiGHePRabczukTPredictions of J integral and tensile strength of clay/epoxy nanocomposites material using phase field modelCompos Part B Eng2016939710.1016/j.compositesb.2016.02.022 – reference: SongJHAreiasPBelytschkoTA method for dynamic crack and shear band propagation with phantom nodesInt J Numer Meth Eng200667686889310.1002/nme.1652 – reference: Vu-BacNRafieeRZhuangXLahmerTRabczukTUncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parametersCompos B Eng20156844646410.1016/j.compositesb.2014.09.008 – reference: CrestauxTLe MaıtreOMartinezJMPolynomial chaos expansion for sensitivity analysisReliab Eng Syst Saf20099471161117210.1016/j.ress.2008.10.008 – reference: AndersonTLFracture mechanics: fundamentals and applications20053Boca RatonCRC Press – reference: HamdiaKMMsekhMASilaniMVu-BacNZhuangXNguyen-ThoiTRabczukTUncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modelingCompos Struct20151331177119010.1016/j.compstruct.2015.08.051 – reference: YuSYangSChoMMulti-scale modeling of cross-linked epoxy nanocompositesPolymer200950394595210.1016/j.polymer.2008.11.054 – reference: SilaniMTalebiHZiaei-RadSKerfridenPBordasSPRabczukTStochastic modelling of clay/epoxy nanocompositesCompos Struct201411824124910.1016/j.compstruct.2014.07.009 – reference: ZhaoJJiangJWJiaYGuoWRabczukTA theoretical analysis of cohesive energy between carbon nanotubes, graphene and substratesCarbon20135710811910.1016/j.carbon.2013.01.041 – reference: BondioliFCannilloVFabbriEMessoriMEpoxy-silica nanocomposites: preparation, experimental characterization, and modelingJ Appl Polym Sci20059762382238610.1002/app.21854 – reference: BoutalebSZaïriFMesbahANaït-AbdelazizMGloaguenJMBoukharoubaTLefebvreJMMicromechanics-based modelling of stiffness and yield stress for silica/polymer nanocompositesInt J Solids Struct20094671716172610.1016/j.ijsolstr.2008.12.011 – reference: LiYWaasAMArrudaEMA closed-form, hierarchical, multi-interphase model for composites-derivation, verification and application to nanocompositesJ Mech Phys Solids2011591436310.1016/j.jmps.2010.09.015 – reference: RabczukTZiGGerstenbergerAWallWAA new crack tip element for the phantom-node method with arbitrary cohesive cracksInt J Numer Method Eng20087557759910.1002/nme.2273 – reference: Garcia-CabrejoOValocchiAGlobal sensitivity analysis for multivariate output using polynomial chaos expansionReliab Eng Syst Saf2014126253610.1016/j.ress.2014.01.005 – reference: LeTTGuilleminotJSoizeCStochastic continuum modeling of random interphases from atomistic simulations. application to a polymer nanocompositeComput Methods Appl Mech Eng201630343044910.1016/j.cma.2015.10.006 – reference: TserpesKPapanikosPLabeasGPantelakisSGMulti-scale modeling of tensile behavior of carbon nanotube-reinforced compositesTheor Appl Fract Mech2008491516010.1016/j.tafmec.2007.10.004 – reference: Sobol’IMOn sensitivity estimation for nonlinear mathematical modelsMatematicheskoe Modelirovanie199021112118 – reference: WangHZhouHPengRMishnaevskyLNanoreinforced polymer composites: 3D FEM modeling with effective interface conceptCompos Sci Technol201171798098810.1016/j.compscitech.2011.03.003 – reference: ThostensonETLiCChouTWNanocomposites in contextCompos Sci Technol200565349151610.1016/j.compscitech.2004.11.003 – reference: Vu-Bac N, Nguyen-Xuan H, Chen L, Lee CK, Zi G, Zhuang X, Liu GR, Rabczuk T (2013) A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics. J Appl Math 2013:12. doi:10.1155/2013/978026 – reference: ArashBParkHSRabczukTCoarse-grained model of the J-integral of carbon nanotube reinforced polymer compositesCarbon2016961084109210.1016/j.carbon.2015.10.058 – reference: ShokriehMMRafieeRStochastic multi-scale modeling of CNT/polymer compositesComput Mater Sci201050243744610.1016/j.commatsci.2010.08.036 – reference: Xiu D, Karniadakis GE (2002) The wiener–askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644 – reference: BerveillerMSudretBLemaireMStochastic finite element: a non intrusive approach by regressionEur J Comput Mech/Revue Européenne de Mécanique Numérique2006151–3819210.3166/remn.15.81-92 – reference: HamdiaKMZhuangXHePRabczukTFracture toughness of polymeric particle nanocomposites: evaluation of models performance using Bayesian methodCompos Sci Technol201612612212910.1016/j.compscitech.2016.02.012 – reference: AreiasPRabczukTQuasi-static crack propagation in plane and plate structures using set-valued traction-separation lawsInt J Numer Method Eng200874347550510.1002/nme.2182 – reference: BhuiyanMAPuchaRVWorthyJKarevanMKalaitzidouKUnderstanding the effect of CNT characteristics on the tensile modulus of CNT reinforced polypropylene using finite element analysisComput Mater Sci20137936837610.1016/j.commatsci.2013.06.046 – reference: HbaiebKWangQChiaYCotterellBModelling stiffness of polymer/clay nanocompositesPolymer200748390190910.1016/j.polymer.2006.11.062 – volume: 74 start-page: 475 issue: 3 year: 2008 ident: 210_CR4 publication-title: Int J Numer Method Eng doi: 10.1002/nme.2182 – volume: 68 start-page: 446 year: 2015 ident: 210_CR53 publication-title: Compos B Eng doi: 10.1016/j.compositesb.2014.09.008 – volume: 57 start-page: 108 year: 2013 ident: 210_CR62 publication-title: Carbon doi: 10.1016/j.carbon.2013.01.041 – volume: 46 start-page: 553 issue: 2 year: 2005 ident: 210_CR35 publication-title: Polymer doi: 10.1016/j.polymer.2004.11.022 – volume: 193 start-page: 3523 issue: 33 year: 2004 ident: 210_CR22 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2003.12.041 – volume: 111 start-page: 109 issue: 2 year: 2013 ident: 210_CR19 publication-title: J Elast doi: 10.1007/s10659-012-9396-z – volume: 27 start-page: 2763 issue: 10 year: 1992 ident: 210_CR25 publication-title: J Mater Sci doi: 10.1007/BF00540703 – volume: 229 start-page: 8406 issue: 22 year: 2010 ident: 210_CR18 publication-title: J Comput Phys doi: 10.1016/j.jcp.2010.07.023 – volume: 261 start-page: 366 issue: 1 year: 2007 ident: 210_CR42 publication-title: Fluid Phase Equilib doi: 10.1016/j.fluid.2007.07.046 – volume: 118 start-page: 241 year: 2014 ident: 210_CR45 publication-title: Compos Struct doi: 10.1016/j.compstruct.2014.07.009 – volume: 2 start-page: 112 issue: 1 year: 1990 ident: 210_CR46 publication-title: Matematicheskoe Modelirovanie – volume: 46 start-page: 1716 issue: 7 year: 2009 ident: 210_CR8 publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2008.12.011 – volume: 221 start-page: 163 year: 1921 ident: 210_CR17 publication-title: Philos Trans R Soc Lond Ser A Contain Pap Math Phys Charact doi: 10.1098/rsta.1921.0006 – volume: 75 start-page: 577 year: 2008 ident: 210_CR39 publication-title: Int J Numer Method Eng doi: 10.1002/nme.2273 – volume: 79 start-page: 368 year: 2013 ident: 210_CR6 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2013.06.046 – volume: 187 start-page: 137 issue: 1 year: 2003 ident: 210_CR58 publication-title: J Comput Phys doi: 10.1016/S0021-9991(03)00092-5 – volume: 11 start-page: 311 issue: 3 year: 1982 ident: 210_CR26 publication-title: Commun. Stat Sim Comput doi: 10.1080/03610918208812265 – volume: 50 start-page: 945 issue: 3 year: 2009 ident: 210_CR59 publication-title: Polymer doi: 10.1016/j.polymer.2008.11.054 – volume: 194 start-page: 1295 issue: 12 year: 2005 ident: 210_CR32 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2004.05.027 – volume: 303 start-page: 430 year: 2016 ident: 210_CR29 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2015.10.006 – volume: 69 start-page: 100 year: 2013 ident: 210_CR33 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2012.11.035 – volume: 15 start-page: 81 issue: 1–3 year: 2006 ident: 210_CR5 publication-title: Eur J Comput Mech/Revue Européenne de Mécanique Numérique doi: 10.3166/remn.15.81-92 – volume: 93 start-page: 97 year: 2016 ident: 210_CR34 publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2016.02.022 – volume: 97 start-page: 193 year: 2013 ident: 210_CR60 publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2012.10.027 – volume: 91 start-page: 16 year: 2014 ident: 210_CR38 publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2013.11.015 – volume: 67 start-page: 868 issue: 6 year: 2006 ident: 210_CR47 publication-title: Int J Numer Meth Eng doi: 10.1002/nme.1652 – volume-title: Fracture mechanics: fundamentals and applications year: 2005 ident: 210_CR1 doi: 10.1201/9781420058215 – volume: 93 start-page: 964 issue: 7 year: 2008 ident: 210_CR48 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2007.04.002 – volume: 126 start-page: 25 year: 2014 ident: 210_CR15 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2014.01.005 – volume: 94 start-page: 1161 issue: 7 year: 2009 ident: 210_CR12 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2008.10.008 – volume: 53 start-page: 1890 issue: 9 year: 2012 ident: 210_CR13 publication-title: Polymer doi: 10.1016/j.polymer.2012.02.052 – volume: 126 start-page: 122 year: 2016 ident: 210_CR21 publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2016.02.012 – volume: 50 start-page: 437 issue: 2 year: 2010 ident: 210_CR43 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2010.08.036 – volume: 22 start-page: 194 issue: 2 year: 2007 ident: 210_CR24 publication-title: Probab Eng Mech doi: 10.1016/j.probengmech.2006.11.004 – volume: 50 start-page: 4895 issue: 20 year: 2009 ident: 210_CR31 publication-title: Polymer doi: 10.1016/j.polymer.2009.08.014 – volume: 94 start-page: 3142 issue: 11 year: 2012 ident: 210_CR44 publication-title: Compos Struct doi: 10.1016/j.compstruct.2012.04.033 – volume: 72 start-page: 49 issue: 1 year: 2011 ident: 210_CR61 publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2011.09.016 – volume: 59 start-page: 80 year: 2014 ident: 210_CR52 publication-title: Compos B Eng doi: 10.1016/j.compositesb.2013.11.014 – volume: 42 start-page: 1191 issue: 6 year: 2004 ident: 210_CR11 publication-title: AIAA J doi: 10.2514/1.2220 – ident: 210_CR57 doi: 10.1137/S1064827501387826 – ident: 210_CR51 doi: 10.1155/2013/978026 – volume: 49 start-page: 51 issue: 1 year: 2008 ident: 210_CR50 publication-title: Theor Appl Fract Mech doi: 10.1016/j.tafmec.2007.10.004 – volume: 48 start-page: 901 issue: 3 year: 2007 ident: 210_CR23 publication-title: Polymer doi: 10.1016/j.polymer.2006.11.062 – volume: 24 start-page: 361 year: 1957 ident: 210_CR27 publication-title: J Appl Mech doi: 10.1115/1.4011547 – volume: 134 start-page: 981 year: 2015 ident: 210_CR2 publication-title: Compos Struct doi: 10.1016/j.compstruct.2015.09.001 – ident: 210_CR28 – volume: 70 start-page: 885 issue: 6 year: 2010 ident: 210_CR56 publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2009.12.024 – volume-title: Global sensitivity analysis. The primer year: 2008 ident: 210_CR41 – volume: 67 start-page: 2990 issue: 14 year: 2007 ident: 210_CR10 publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2007.05.020 – volume-title: Stochastic finite elements: a spectral approach year: 1991 ident: 210_CR16 doi: 10.1007/978-1-4612-3094-6 – volume: 47 start-page: 1765 issue: 9 year: 2011 ident: 210_CR14 publication-title: Eur Polymer J doi: 10.1016/j.eurpolymj.2011.06.010 – volume: 96 start-page: 1084 year: 2016 ident: 210_CR3 publication-title: Carbon doi: 10.1016/j.carbon.2015.10.058 – volume: 59 start-page: 43 issue: 1 year: 2011 ident: 210_CR30 publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2010.09.015 – volume: 69 start-page: 491 issue: 3 year: 2009 ident: 210_CR37 publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2008.11.022 – volume: 96 start-page: 520 year: 2015 ident: 210_CR54 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2014.04.066 – volume: 133 start-page: 1177 year: 2015 ident: 210_CR20 publication-title: Compos Struct doi: 10.1016/j.compstruct.2015.08.051 – volume: 97 start-page: 2382 issue: 6 year: 2005 ident: 210_CR7 publication-title: J Appl Polym Sci doi: 10.1002/app.21854 – volume: 71 start-page: 980 issue: 7 year: 2011 ident: 210_CR55 publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2011.03.003 – volume: 145 start-page: 280 issue: 2 year: 2002 ident: 210_CR40 publication-title: Comput Phys Commun doi: 10.1016/S0010-4655(02)00280-1 – volume: 96 start-page: 319 year: 2015 ident: 210_CR36 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2014.09.030 – volume: 92 start-page: 242 year: 2012 ident: 210_CR9 publication-title: Comput Struct doi: 10.1016/j.compstruc.2011.10.021 – volume: 65 start-page: 491 issue: 3 year: 2005 ident: 210_CR49 publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2004.11.003 |
SSID | ssj0009784 |
Score | 2.6138818 |
Snippet | The fracture energy is a substantial material property that measures the ability of materials to resist crack growth. The reinforcement of the epoxy polymers... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 215 |
SubjectTerms | Alloys Automotive Engineering Characterization and Evaluation of Materials Chemistry and Materials Science Civil Engineering Classical Mechanics Concentration (composition) Crack propagation Energy consumption Fillers Finite element method Fracture mechanics Fracture toughness Material properties Materials Science Mathematical models Mechanical Engineering Modulus of elasticity Nanocomposites Nanoparticles Original Paper Parameter uncertainty Polymers Polynomials Probability theory Propagation (polymerization) Reinforcement Sensitivity analysis Stochastic models Two dimensional models Variance analysis |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gXOCAeIrxUg6cQBF9JukJAdqEkEAIhrRblaUJHFA71k6Cf4_dpmwgmNRbXpXtOE5sfybkxPrWD0exYVmkAxYlgWHKMxED2z6w6OaRMeYO393zm-fodhgP3YNb6cIqW51YK-qs0PhGfg5yl6D0-cnF-J1h1Sj0rroSGstkBVSwlB2yctW7f3icwe4K2QBICc4SUL2tX7NJnhN1BIZgeO9h_OfJNDM3f3lI64Onv0HWncVILxsWb5Ilk2-RtTkcwW1SPVWFflUIuUyVQxmhhaVg3FGLaVDTiaEV1uNBxYYt4-Lts_bV0FzlcG9uJqcYYI5RXKakGBD_UvfDxGX4AVigKKn5APWBL2zlDhn0e4PrG-bKKTAd-V7FJFdxFAoD12eJ7mZP8AwalOLa41Joq0P4dKKUlDpDnHwhfJvEKhzZkYrCXdLJi9zsEWo5MAIMAa0RjUzHShkwI22sAp0hpFyXeC0lU-2gxrHixVs6A0lG4qdA_BSJn_IuOf0eMm5wNhZ1PmzZk7otV6YIVBdLYLj8s3kmP11y1nJ0bvR_a-0vnuyArAa1CGFI4CHpVJOpOQIzpRodO1n8AoSk5U8 priority: 102 providerName: ProQuest |
Title | Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions |
URI | https://link.springer.com/article/10.1007/s10704-017-0210-6 https://www.proquest.com/docview/1914589788 https://www.proquest.com/docview/2259832219 |
Volume | 206 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB6VcKEHBKVVA2nkQ09Flvblxx4TyEOgRlULUnpaOY5dDmgXsYsE_56ZzS5JESAhreSDX6sZezzjmfkM8N2HPowXwvFlYiOepJHjJnAJR90-8uTm0YJyh3_O5PQyOZuLeZPHXbbR7q1LspbUG8luqo6YUJzsFC63YFug6U5xXJfRYI20q_QKM0pJnqK0bV2ZLw3x_2G01jCfOUXrs2a8B7uNksgGK67uwweXf4KPG9CBB1D9qQp7ZQhlmZkGWIQVnqE-xzxlPt3dOlbREzwky6jmprh-qN0zLDc5msqrwRnFlFPglisZxcD_q9tRrjL-AE5QlMzdo8SgS7XyM1yMRxcnU968oMBtEgYV19KIJFYOLWZNHuZAySVWGCNtILWy3sb42dQYre2SoPGVCn0qTLzwC5PEX6CTF7n7CsxL3Pl49ltLAGRWGONQc_TCRHZJKHJdCFpKZrZBF6dHLq6zNS4yET9D4mdE_Ex24cdTl5sVtMZbjXste7Jml5UZYdMJjQzXL1ajqEpJYIVpF45bjm70fm2uw3e1PoKdqF5RFBTYg051e-e-oaJSLfqwpceTPmwPhqfDMZWTv-cjLIej2a_f_XrZPgJQPeXW |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB6lcKAcUClFhKbgQ7lQWWTf3kNVVUBIyuPSVOJmOV4bDmg3ZDei_Cj-Y2f20QQEuUXam732amZ2POOZ-Qbgq3Ws440CwxNfu9yPXcNV1_gcbXvXUphHBFQ7fHkV9v_4v66D6xY8NbUwlFbZ6MRSUSeZpjvyI5S7mKTPiX-M7zl1jaLoatNCoxKLc_P4gC5b_n1wgvw9cN3e6fC4z-uuAlz7TrfgIlSB70UGvUhBUVd05BMcUCrU3VBE2moPHx0rJYROCC4-ihwbB8ob2ZHyPVz2Haz6Hh7kVJjeO5th_EaiQquKQh6jnm-CqFWlXlSme0ScnCwePj8GZ7bti3Bsecr1PsBGbZ6yn5U8bULLpB9hfQ60cAuK30WmbxXhOzNVQ5qwzDK0JJmlmqvpxLCCmv-QFqWRcXb3WAaGWKpSdNKrxRlls1PKmMkZZd_flPOoSho_ADfIcmb-oq6i67z8EwyXQeVtWEmz1OwAsyFyHa0OrQn6TAdKGbRZbaBcnRB-XRu6DSWlrnHNqb3GnZwhMhPxJRJfEvFl2IbD_6-MK1CPRZM7DXtk_X_nklDxAoEMF68Oz4S1Dd8ajs69_dZeu4sX24e1_vDyQl4Mrs4_w3u3FCfKRezASjGZmi9oHxWjvVIqGcgl_wX_AP3fICg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwQxDA4-QPQgPnF99qAXpbjz7hw8iLr4RlDBW-l2Wj0sM4szov4pf6PJPNxVVPAgzC19kbRpMkm-AmxaxzpeNzA88bXL_dg1XLWNz9G2dy2FeURAtcMXl-HxrX96F9yNwFtTC1NmuzchyaqmgVCa0mK3n9jdocK3qMyeiDj5LDyssyrPzOsz-mz53skhCnjLdTtHNwfHvH5WgGvfaRdchCrwvcigGyko7IqefIIEpULdDkWkrfbw07FSQuiE8OKjyLFxoLyu7Srfw2FHYdyn2mM8P7fu_gDkNxIVXFUU8hgVfRNF_W7Fn-_BgXH7JR5bXnOdGZiu7VO2X22oWRgx6RxMDaEWzkNxXWT6QRHAM1M1pgnLLENTklkqunp6NKyg139IjRKln_Vey8gQS1WKXno1OKN0dsoZMzmj9Pv7sh2VSeMCcIIsZ-YFlRX9z8sX4OY_uLwIY2mWmiVgNkSlg2aH1oR9pgOlDBqtNlCuTgjArgXthpNS18Dm9L5GTw4gmYn5EpkvifkybMH2R5d-herxW-PVRjyyPuC5JFi8QKDAxbdk1JIx6UonbsFOI9Gh3j_Ntfyn1hswcXXYkecnl2crMOmWm4tSE1dhrHh8MmtoLhXd9XKPMpD_fCbeAfoZIOE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+analysis+of+the+fracture+toughness+of+polymeric+nanoparticle+composites+using+polynomial+chaos+expansions&rft.jtitle=International+journal+of+fracture&rft.au=Hamdia%2C+Khader+M.&rft.au=Silani%2C+Mohammad&rft.au=Zhuang%2C+Xiaoying&rft.au=He%2C+Pengfei&rft.date=2017-08-01&rft.issn=0376-9429&rft.eissn=1573-2673&rft.volume=206&rft.issue=2&rft.spage=215&rft.epage=227&rft_id=info:doi/10.1007%2Fs10704-017-0210-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10704_017_0210_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-9429&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-9429&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-9429&client=summon |