A Scalable Readout for Microwave SQUID Multiplexing of Transition-Edge Sensors

The readout requirements for instruments based on transition-edge sensors (TESs) have dramatically increased over the last decade as demand for systems with larger arrays and faster sensors has grown. Emerging systems are expected to contain many thousands of sensors and/or sensors with time constan...

Full description

Saved in:
Bibliographic Details
Published inJournal of low temperature physics Vol. 193; no. 3-4; pp. 485 - 497
Main Authors Gard, J. D., Becker, D. T., Bennett, D. A., Fowler, J. W., Hilton, G. C., Mates, J. A. B., Reintsema, C. D., Schmidt, D. R., Swetz, D. S., Ullom, J. N.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The readout requirements for instruments based on transition-edge sensors (TESs) have dramatically increased over the last decade as demand for systems with larger arrays and faster sensors has grown. Emerging systems are expected to contain many thousands of sensors and/or sensors with time constants as short as 100 ms. These requirements must be satisfied while maintaining low noise, high dynamic range, and low crosstalk. A promising readout candidate for future TES arrays is the microwave SQUID multiplexer, which offers several gigahertz of readout bandwidth per pair of coaxial cables. In microwave SQUID multiplexing, sensor signals are coupled to RF-SQUIDs embedded in superconducting microwave resonators, which are probed via a common microwave feedline and read out using gigahertz signals. This form of SQUID multiplexing moves complexity from the cryogenic stages to room temperature hardware and digital signal processing firmware which must synthesize the microwave tones and process the information contained within them. To demultiplex signals from the microwave SQUID multiplexer, we have implemented an FPGA-based firmware architecture that is flexible enough to read out a variety of differently optimized TESs. A gamma-ray spectrometer targeted at nuclear materials accounting applications, known as SLEDGEHAMMER, is an early adopter of microwave SQUID multiplexing and is driving our current firmware development effort. This instrument utilizes 300 kHz full-width half-maximum resonators with 256 channels in a one gigahertz wide band. We have recently demonstrated undegraded readout of 128 channels using two ROACH2s on a single pair of coaxial cables. This manuscript describes the firmware implementation for the readout electronics of these early array-scale demonstrations.
AbstractList The readout requirements for instruments based on transition-edge sensors (TESs) have dramatically increased over the last decade as demand for systems with larger arrays and faster sensors has grown. Emerging systems are expected to contain many thousands of sensors and/or sensors with time constants as short as 100 ms. These requirements must be satisfied while maintaining low noise, high dynamic range, and low crosstalk. A promising readout candidate for future TES arrays is the microwave SQUID multiplexer, which offers several gigahertz of readout bandwidth per pair of coaxial cables. In microwave SQUID multiplexing, sensor signals are coupled to RF-SQUIDs embedded in superconducting microwave resonators, which are probed via a common microwave feedline and read out using gigahertz signals. This form of SQUID multiplexing moves complexity from the cryogenic stages to room temperature hardware and digital signal processing firmware which must synthesize the microwave tones and process the information contained within them. To demultiplex signals from the microwave SQUID multiplexer, we have implemented an FPGA-based firmware architecture that is flexible enough to read out a variety of differently optimized TESs. A gamma-ray spectrometer targeted at nuclear materials accounting applications, known as SLEDGEHAMMER, is an early adopter of microwave SQUID multiplexing and is driving our current firmware development effort. This instrument utilizes 300 kHz full-width half-maximum resonators with 256 channels in a one gigahertz wide band. We have recently demonstrated undegraded readout of 128 channels using two ROACH2s on a single pair of coaxial cables. This manuscript describes the firmware implementation for the readout electronics of these early array-scale demonstrations.
The readout requirements for instruments based on transition-edge sensors (TESs) have dramatically increased over the last decade as demand for systems with larger arrays and faster sensors has grown. Emerging systems are expected to contain many thousands of sensors and/or sensors with time constants as short as 100 ms. These requirements must be satisfied while maintaining low noise, high dynamic range, and low crosstalk. A promising readout candidate for future TES arrays is the microwave SQUID multiplexer, which offers several gigahertz of readout bandwidth per pair of coaxial cables. In microwave SQUID multiplexing, sensor signals are coupled to RF-SQUIDs embedded in superconducting microwave resonators, which are probed via a common microwave feedline and read out using gigahertz signals. This form of SQUID multiplexing moves complexity from the cryogenic stages to room temperature hardware and digital signal processing firmware which must synthesize the microwave tones and process the information contained within them. To demultiplex signals from the microwave SQUID multiplexer, we have implemented an FPGA-based firmware architecture that is flexible enough to read out a variety of differently optimized TESs. A gamma-ray spectrometer targeted at nuclear materials accounting applications, known as SLEDGEHAMMER, is an early adopter of microwave SQUID multiplexing and is driving our current firmware development effort. This instrument utilizes 300 kHz full-width half-maximum resonators with 256 channels in a one gigahertz wide band. We have recently demonstrated undegraded readout of 128 channels using two ROACH2s on a single pair of coaxial cables. This manuscript describes the firmware implementation for the readout electronics of these early array-scale demonstrations.
Author Ullom, J. N.
Reintsema, C. D.
Gard, J. D.
Bennett, D. A.
Fowler, J. W.
Mates, J. A. B.
Swetz, D. S.
Hilton, G. C.
Schmidt, D. R.
Becker, D. T.
Author_xml – sequence: 1
  givenname: J. D.
  orcidid: 0000-0003-4195-9544
  surname: Gard
  fullname: Gard, J. D.
  email: johnathon.gard@colorado.edu
  organization: Department of Physics, University of Colorado
– sequence: 2
  givenname: D. T.
  surname: Becker
  fullname: Becker, D. T.
  organization: Department of Physics, University of Colorado
– sequence: 3
  givenname: D. A.
  surname: Bennett
  fullname: Bennett, D. A.
  organization: Quantum Sensors Group, National Institute of Standards and Technology
– sequence: 4
  givenname: J. W.
  surname: Fowler
  fullname: Fowler, J. W.
  organization: Department of Physics, University of Colorado, Quantum Sensors Group, National Institute of Standards and Technology
– sequence: 5
  givenname: G. C.
  surname: Hilton
  fullname: Hilton, G. C.
  organization: Quantum Sensors Group, National Institute of Standards and Technology
– sequence: 6
  givenname: J. A. B.
  surname: Mates
  fullname: Mates, J. A. B.
  organization: Department of Physics, University of Colorado
– sequence: 7
  givenname: C. D.
  surname: Reintsema
  fullname: Reintsema, C. D.
  organization: Quantum Sensors Group, National Institute of Standards and Technology
– sequence: 8
  givenname: D. R.
  surname: Schmidt
  fullname: Schmidt, D. R.
  organization: Quantum Sensors Group, National Institute of Standards and Technology
– sequence: 9
  givenname: D. S.
  surname: Swetz
  fullname: Swetz, D. S.
  organization: Quantum Sensors Group, National Institute of Standards and Technology
– sequence: 10
  givenname: J. N.
  surname: Ullom
  fullname: Ullom, J. N.
  organization: Department of Physics, University of Colorado, Quantum Sensors Group, National Institute of Standards and Technology
BackLink https://www.osti.gov/biblio/22809851$$D View this record in Osti.gov
BookMark eNp1kE9PAjEQxRuDiYB-AG-beF6d6W7Z7pEgKgloFDg33baLS9YW28U_394STDx5msnk917mvQHpWWcNIZcI1whQ3ASEEsoUkKcUkKb0hPSRFVlaZKzokT4AjUda4hkZhLAFgJKPsj55HCdLJVtZtSZ5MVK7fZfUzieLRnn3KT9Msnxez26Txb7tml1rvhq7SVydrLy0oekaZ9Op3kTK2OB8OCentWyDufidQ7K-m64mD-n86X42Gc9TlSN0KQc0iEpXuuZ5IbWSZQ4gGSt0XmlWy0zTTEmuqpHMKa_YaGQ0o6B5HrdKZ0NydfR1oWtEUE1n1Kty1hrVCUp5TMfwj9p59743oRNbt_c2PiYoIs8YUigjhUcqJg7Bm1rsfPMm_bdAEIdyxbFcEcsVh3IFjRp61ITI2o3xf87_i34A-HJ9Aw
CitedBy_id crossref_primary_10_1007_s10909_020_02456_9
crossref_primary_10_1117_1_JATIS_5_2_021013
crossref_primary_10_1007_s10909_024_03153_7
crossref_primary_10_1109_TASC_2021_3059972
crossref_primary_10_1109_TNS_2019_2953650
crossref_primary_10_1007_s10909_022_02858_x
crossref_primary_10_1016_j_nima_2020_164056
crossref_primary_10_1109_TASC_2021_3067246
crossref_primary_10_1017_S1431927620013690
crossref_primary_10_1088_1674_1056_ac693c
crossref_primary_10_1109_TASC_2021_3052723
crossref_primary_10_1007_s10909_024_03049_6
crossref_primary_10_1088_1742_6596_1559_1_012018
crossref_primary_10_1109_TASC_2021_3051104
crossref_primary_10_1007_s10909_023_02993_z
crossref_primary_10_1109_TASC_2023_3256343
crossref_primary_10_1007_s10909_020_02463_w
crossref_primary_10_1063_1_5119155
crossref_primary_10_1007_s10909_024_03126_w
crossref_primary_10_1063_5_0125084
Cites_doi 10.1109/TASC.2014.2381878
10.1007/s10909-012-0518-6
10.1109/TASC.2017.2650903
10.1063/1.3700812
10.1142/S2251171716410014
10.1007/s10909-016-1570-4
10.1063/1.2711770
10.1063/1.4829156
10.1063/1.4986222
ContentType Journal Article
Copyright This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
OTOTI
DOI 10.1007/s10909-018-2012-2
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Physics
Engineering
EISSN 1573-7357
EndPage 497
ExternalDocumentID 22809851
10_1007_s10909_018_2012_2
GroupedDBID -54
-5F
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
06D
0R~
0VY
186
199
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAGAY
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADJSZ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYGD
AFEXP
AFFNX
AFGCZ
AFGFF
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MQGED
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UPT
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
W4F
WH7
WJK
WK8
XJT
XOL
XSW
YLTOR
YQT
Z45
Z7R
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8M
Z8R
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
OTOTI
ID FETCH-LOGICAL-c410t-801e11cdbdf847adca9400a557d4bd5fa3d23ca8cb6a428b566ed520d8466ebd3
IEDL.DBID U2A
ISSN 0022-2291
IngestDate Thu May 18 22:32:02 EDT 2023
Thu Oct 10 20:03:42 EDT 2024
Thu Sep 12 17:08:22 EDT 2024
Sat Dec 16 11:59:36 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords Transition-edge sensors
Multiplexing
Firmware
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-801e11cdbdf847adca9400a557d4bd5fa3d23ca8cb6a428b566ed520d8466ebd3
ORCID 0000-0003-4195-9544
PQID 2118351209
PQPubID 2043553
PageCount 13
ParticipantIDs osti_scitechconnect_22809851
proquest_journals_2118351209
crossref_primary_10_1007_s10909_018_2012_2
springer_journals_10_1007_s10909_018_2012_2
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of low temperature physics
PublicationTitleAbbrev J Low Temp Phys
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References GaoJZmuidzinasJMazinBALeDucHGDayPKAppl. Phys. Lett.2007901025072007ApPhL..90j2507G10.1063/1.2711770
R. Duan, S. McHugh, B. Serfass, B.A. Mazin, A. Merrill, S.R. Golwala, T.P. Downes, N.G. Czakon, P.K. Day, J. Gao et al., Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V 7741, 77411V (2010)
HickishJAbdurashidovaZAliZBuchKDChaudhariSCChenHDexterMDomagalskiRSFordJFosterGJ. Astron. Instrum.20165164100110.1142/S2251171716410014
E. Nash, AN-1039, Application Note, Analog Devices (2009)
MaddenTJCecilTWGadesLMQuarantaOYanDMiceliABeckerDTBennettDAHays-WehleJPHiltonGCIEEE Trans. Appl. Supercond.201727110.1109/TASC.2017.2650903
NoroozianOMatesJABennettDABrevikJAFowlerJWGaoJHiltonGCHoranskyRDIrwinKDKangZAppl. Phys. Lett.20131032026022013ApPhL.103t2602N10.1063/1.4829156
VolderJETransIREElectron. Comput.19593330
D.C. Price, arXiv preprint arXiv:1607.03579 (2016)
MatesJBeckerDBennettDDoberBGardJHays-WehleJFowlerJHiltonGReintsemaCSchmidtDAppl. Phys. Lett.20171110626012017ApPhL.111f2601M10.1063/1.4986222
MatesJIrwinKValeLHiltonGGaoJLehnertKJ. Low Temp. Phys.20121677072012JLTP..167..707M10.1007/s10909-012-0518-6
BennettDAMatesJAGardJDHooverASRabinMWReintsemaCDSchmidtDRValeLRUllomJNIEEE Trans. Appl. Supercond.201525110.1109/TASC.2014.2381878
J.A.B. Mates, The Microwave SQUID Multiplexer, Ph.D. thesis, School University of Colorado (2011)
McHughSMazinBASerfassBMeekerSO’BrienKDuanRRaffantiRWerthimerDRev. Sci. Instrum.2012830447022012RScI...83d4702M10.1063/1.3700812
StanchfieldSAdePAguirreJBrevikJChoHDattaRDevlinMDickerSDoberBEganDJ. Low Temp. Phys.20161844602016JLTP..184..460S10.1007/s10909-016-1570-4
TJ Madden (2012_CR8) 2017; 27
J Mates (2012_CR7) 2012; 167
2012_CR12
S Stanchfield (2012_CR5) 2016; 184
2012_CR13
JE Volder (2012_CR14) 1959; 3
J Hickish (2012_CR11) 2016; 5
2012_CR2
O Noroozian (2012_CR1) 2013; 103
J Gao (2012_CR6) 2007; 90
DA Bennett (2012_CR4) 2015; 25
2012_CR9
J Mates (2012_CR3) 2017; 111
S McHugh (2012_CR10) 2012; 83
References_xml – ident: 2012_CR2
– volume: 25
  start-page: 1
  year: 2015
  ident: 2012_CR4
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/TASC.2014.2381878
  contributor:
    fullname: DA Bennett
– ident: 2012_CR12
– volume: 167
  start-page: 707
  year: 2012
  ident: 2012_CR7
  publication-title: J. Low Temp. Phys.
  doi: 10.1007/s10909-012-0518-6
  contributor:
    fullname: J Mates
– volume: 27
  start-page: 1
  year: 2017
  ident: 2012_CR8
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/TASC.2017.2650903
  contributor:
    fullname: TJ Madden
– ident: 2012_CR13
– volume: 3
  start-page: 330
  year: 1959
  ident: 2012_CR14
  publication-title: Electron. Comput.
  contributor:
    fullname: JE Volder
– volume: 83
  start-page: 044702
  year: 2012
  ident: 2012_CR10
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3700812
  contributor:
    fullname: S McHugh
– volume: 5
  start-page: 1641001
  year: 2016
  ident: 2012_CR11
  publication-title: J. Astron. Instrum.
  doi: 10.1142/S2251171716410014
  contributor:
    fullname: J Hickish
– volume: 184
  start-page: 460
  year: 2016
  ident: 2012_CR5
  publication-title: J. Low Temp. Phys.
  doi: 10.1007/s10909-016-1570-4
  contributor:
    fullname: S Stanchfield
– volume: 90
  start-page: 102507
  year: 2007
  ident: 2012_CR6
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2711770
  contributor:
    fullname: J Gao
– ident: 2012_CR9
– volume: 103
  start-page: 202602
  year: 2013
  ident: 2012_CR1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4829156
  contributor:
    fullname: O Noroozian
– volume: 111
  start-page: 062601
  year: 2017
  ident: 2012_CR3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4986222
  contributor:
    fullname: J Mates
SSID ssj0009863
Score 2.3468401
Snippet The readout requirements for instruments based on transition-edge sensors (TESs) have dramatically increased over the last decade as demand for systems with...
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 485
SubjectTerms Bandwidths
Channels
Characterization and Evaluation of Materials
COAXIAL CABLES
Condensed Matter Physics
Crosstalk
Cryoforming
Cryogenic temperature
Digital signal processing
ENGINEERING
Firmware
Gamma rays
GAMMA SPECTROMETERS
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
Low noise
Low temperature physics
Magnetic Materials
Magnetism
MICROWAVE RADIATION
MULTIPLEXERS
Multiplexing
NOISE
Nuclear engineering
Physics
Physics and Astronomy
PROBES
PROCESSING
READOUT SYSTEMS
RESONATORS
Sensor arrays
SENSORS
Signal processing
SIGNALS
SQUID DEVICES
Superconducting quantum interference devices
TEMPERATURE RANGE 0273-0400 K
Title A Scalable Readout for Microwave SQUID Multiplexing of Transition-Edge Sensors
URI https://link.springer.com/article/10.1007/s10909-018-2012-2
https://www.proquest.com/docview/2118351209
https://www.osti.gov/biblio/22809851
Volume 193
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4IxMSL8WdEkfTgSTPDunWyIyiIGkgMLsFT01_zYMIMDPXP972yiRg9eNqhzZp8r-37Xvu9V0JOreGx5jL22pxbLwxY7CmrQk-nrUixSPvSnXcMR9EgCe8mfFIh7OvoYvpyUd5Iuo36W65b7KQ9aFifebDt1oA7hBhwJayzKrTbLl5PgyCLsdgvbzJ_-8WaL6pmsKbWeOaPq1HncfrbZKugirSztO0OqdjpLtlwkk093yOjDh0DwJj6RFEKny1yCgyUDlFi9y7fLB0_JLfXdFhIBj9gEJql1HknJ9TyeuYZekEgm83m-yTp9x6vBl7xOoKnQ7-Vo2uxvq-NMil4GGm0xDfOJeeXJlSGpzIwLNCyrVUkIcZQwNvAMKxlgHFEVpnggFSn2dQeEqo4dE4ji7XlwjSGECxFZgOGA3aYKr9OzkqcxOuyCIZYlTtGUAWAKhBUweqkgUgK8OBYhlajXkfnAsvuxEDvoLlEWBTLZS4gCgUmiGm8dXJeor5q_nOso3_1PiabDI3vMgkbpJrPFvYEKEWumqTW6Xe7I_zePN33mm5OfQI6c8O3
link.rule.ids 230,315,783,787,888,27937,27938,41094,41536,42163,42605,52124,52247
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF2kInoRP7FadQ-elECzycbmWLSl1aYgbaC3Zb_irZEmVX--M9uEWtGD5x2y8GZ35032zSwhN9bwWHMZex3OrRcGLPaUVaGns3akWKR96f53JONokIZPMz6r6riLWu1eX0m6k_pbsVvstD3oWZ95cO5uY3t11PGlrLvutNupnk-DLIux2K-vMn_7xEYwauSwqTaI5o-7URdy-gdkv-KKtLty7iHZsvMjsuM0m7o4JuMunQDCWPtEUQufL0sKFJQmqLH7kO-WTl7S4SNNKs3gJ0xC84y68OSUWl7PvIIVZLL5ojghab83fRh41fMIng79domxxfq-NspkEGKk0RIfOZec35tQGZ7JwLBAy45WkYQkQwFxA8-wtgHKEVllglPSmOdze0ao4mCcRRaby4VZDDlYhtQGPAf0MFN-k9zWOIm3VRcMse53jKAKAFUgqII1SQuRFBDCsQ-tRsGOLgX23YmB38FwjbCo9kshIA0FKoh1vE1yV6O-Hv5zrvN_WV-T3cE0GYnRcPx8QfYYLgRXVtgijXKxtJfAL0p15dbTF28MxAI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbQEIgLb8R45sAJVKBZU9bjBBvPTSCYBKeQJwekFbEOEL8eu2s1QHBAXJuoTW2n_tx8tgG2nBWJESoJ6kK4IKrxJNBOR4Hx-7HmsQlV_r-j3YlPutHZrbgt-pz2S7Z7eSQ5zGmgKk29bO_J-r1PiW9JzvMhLYc8wG_weITXogqMN47vzpujurv1opkaxlycJ2F5sPnTTb64pkqKW-wL7Px2Upo7oNYM3JdLH_JOHncHmd4179-qOv7j3WZhugCnrDG0pjkYc715mMhJoqa_AJ0Gu0aVUrIVI_J9OsgYYl7WJlLfq3px7Pqqe3rE2gVJ8Q2XwFLPcn-YU8OCpn3AWRg6p8_9Rei2mjeHJ0HRjyEwKNyMnJkLQ2O19ejTlDWKuqorIQ5spK3wqmZ5zai60bHCqEYjUkRT4PsWMU7stK0tQaWX9twyMC1wso8dVbOLfIJBnycshaaCeNTrsArbpSrk07DshhwVWCYBSRSQJAFJXoU1UpZEzECFbw0xhEwmqdBPgoASh0slymKD9iXGvYg9KXG4CjulTkbDvz5r5U-zN2Hy8qglL04756swxUmneRrjGlSy54FbRzyT6Y3CZj8AuWPpoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Scalable+Readout+for+Microwave+SQUID+Multiplexing+of+Transition-Edge+Sensors&rft.jtitle=Journal+of+low+temperature+physics&rft.au=Gard%2C+J.+D.&rft.au=Becker%2C+D.+T.&rft.au=Bennett%2C+D.+A.&rft.au=Fowler%2C+J.+W.&rft.date=2018-11-01&rft.issn=0022-2291&rft.eissn=1573-7357&rft.volume=193&rft.issue=3-4&rft.spage=485&rft.epage=497&rft_id=info:doi/10.1007%2Fs10909-018-2012-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10909_018_2012_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2291&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2291&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2291&client=summon