Convolutional neural network classifies visual stimuli from cortical response recorded with wide-field imaging in mice

Objective. The optic nerve is a good location for a visual neuroprosthesis. It can be targeted when a subject cannot receive a retinal prosthesis and it is less invasive than a cortical implant. The effectiveness of an electrical neuroprosthesis depends on the combination of the stimulation paramete...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 20; no. 2; pp. 26031 - 26045
Main Authors De Luca, Daniela, Moccia, Sara, Lupori, Leonardo, Mazziotti, Raffaele, Pizzorusso, Tommaso, Micera, Silvestro
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.04.2023
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
1741-2552
DOI10.1088/1741-2552/acc2e7

Cover

Abstract Objective. The optic nerve is a good location for a visual neuroprosthesis. It can be targeted when a subject cannot receive a retinal prosthesis and it is less invasive than a cortical implant. The effectiveness of an electrical neuroprosthesis depends on the combination of the stimulation parameters which must be optimized, and an optimization strategy might be performing closed-loop stimulation using the evoked cortical response as feedback. However, it is necessary to identify target cortical activation patterns and to associate the cortical activity with the visual stimuli present in the visual field of the subjects. Visual stimuli decoding should be performed on large areas of the visual cortex, and with a method as translational as possible to shift the study to human subjects in the future. The aim of this work is to develop an algorithm that meets these requirements and can be leveraged to automatically associate a cortical activation pattern with the visual stimulus that generated it. Approach. Three mice were presented with ten different visual stimuli, and their primary visual cortex response was recorded using wide-field calcium imaging. Our decoding algorithm relies on a convolutional neural network (CNN), trained to classify the visual stimuli from the correspondent wide-field images. Several experiments were performed to identify the best training strategy and investigate the possibility of generalization. Main results. The best classification accuracy was 75.38% ± 4.77%, obtained pre-training the CNN on the MNIST digits dataset and fine-tuning it on our dataset. Generalization was possible pre-training the CNN to classify Mouse 1 dataset and fine-tuning it on Mouse 2 and Mouse 3, with accuracies of 64.14% ± 10.81% and 51.53% ± 6.48% respectively. Significance. The combination of wide-field calcium imaging and CNNs can be used to classify the cortical responses to simple visual stimuli and might be a viable alternative to existing decoding methodologies. It also allows us to consider the cortical activation as reliable feedback in future optic nerve stimulation experiments.
AbstractList Objective.The optic nerve is a good location for a visual neuroprosthesis. It can be targeted when a subject cannot receive a retinal prosthesis and it is less invasive than a cortical implant. The effectiveness of an electrical neuroprosthesis depends on the combination of the stimulation parameters which must be optimized, and an optimization strategy might be performing closed-loop stimulation using the evoked cortical response as feedback. However, it is necessary to identify target cortical activation patterns and to associate the cortical activity with the visual stimuli present in the visual field of the subjects. Visual stimuli decoding should be performed on large areas of the visual cortex, and with a method as translational as possible to shift the study to human subjects in the future. The aim of this work is to develop an algorithm that meets these requirements and can be leveraged to automatically associate a cortical activation pattern with the visual stimulus that generated it.Approach.Three mice were presented with ten different visual stimuli, and their primary visual cortex response was recorded using wide-field calcium imaging. Our decoding algorithm relies on a convolutional neural network (CNN), trained to classify the visual stimuli from the correspondent wide-field images. Several experiments were performed to identify the best training strategy and investigate the possibility of generalization.Main results.The best classification accuracy was 75.38% ± 4.77%, obtained pre-training the CNN on the MNIST digits dataset and fine-tuning it on our dataset. Generalization was possible pre-training the CNN to classify Mouse 1 dataset and fine-tuning it on Mouse 2 and Mouse 3, with accuracies of 64.14% ± 10.81% and 51.53% ± 6.48% respectively.Significance.The combination of wide-field calcium imaging and CNNs can be used to classify the cortical responses to simple visual stimuli and might be a viable alternative to existing decoding methodologies. It also allows us to consider the cortical activation as reliable feedback in future optic nerve stimulation experiments.Objective.The optic nerve is a good location for a visual neuroprosthesis. It can be targeted when a subject cannot receive a retinal prosthesis and it is less invasive than a cortical implant. The effectiveness of an electrical neuroprosthesis depends on the combination of the stimulation parameters which must be optimized, and an optimization strategy might be performing closed-loop stimulation using the evoked cortical response as feedback. However, it is necessary to identify target cortical activation patterns and to associate the cortical activity with the visual stimuli present in the visual field of the subjects. Visual stimuli decoding should be performed on large areas of the visual cortex, and with a method as translational as possible to shift the study to human subjects in the future. The aim of this work is to develop an algorithm that meets these requirements and can be leveraged to automatically associate a cortical activation pattern with the visual stimulus that generated it.Approach.Three mice were presented with ten different visual stimuli, and their primary visual cortex response was recorded using wide-field calcium imaging. Our decoding algorithm relies on a convolutional neural network (CNN), trained to classify the visual stimuli from the correspondent wide-field images. Several experiments were performed to identify the best training strategy and investigate the possibility of generalization.Main results.The best classification accuracy was 75.38% ± 4.77%, obtained pre-training the CNN on the MNIST digits dataset and fine-tuning it on our dataset. Generalization was possible pre-training the CNN to classify Mouse 1 dataset and fine-tuning it on Mouse 2 and Mouse 3, with accuracies of 64.14% ± 10.81% and 51.53% ± 6.48% respectively.Significance.The combination of wide-field calcium imaging and CNNs can be used to classify the cortical responses to simple visual stimuli and might be a viable alternative to existing decoding methodologies. It also allows us to consider the cortical activation as reliable feedback in future optic nerve stimulation experiments.
Objective. The optic nerve is a good location for a visual neuroprosthesis. It can be targeted when a subject cannot receive a retinal prosthesis and it is less invasive than a cortical implant. The effectiveness of an electrical neuroprosthesis depends on the combination of the stimulation parameters which must be optimized, and an optimization strategy might be performing closed-loop stimulation using the evoked cortical response as feedback. However, it is necessary to identify target cortical activation patterns and to associate the cortical activity with the visual stimuli present in the visual field of the subjects. Visual stimuli decoding should be performed on large areas of the visual cortex, and with a method as translational as possible to shift the study to human subjects in the future. The aim of this work is to develop an algorithm that meets these requirements and can be leveraged to automatically associate a cortical activation pattern with the visual stimulus that generated it. Approach. Three mice were presented with ten different visual stimuli, and their primary visual cortex response was recorded using wide-field calcium imaging. Our decoding algorithm relies on a convolutional neural network (CNN), trained to classify the visual stimuli from the correspondent wide-field images. Several experiments were performed to identify the best training strategy and investigate the possibility of generalization. Main results. The best classification accuracy was 75.38% ± 4.77%, obtained pre-training the CNN on the MNIST digits dataset and fine-tuning it on our dataset. Generalization was possible pre-training the CNN to classify Mouse 1 dataset and fine-tuning it on Mouse 2 and Mouse 3, with accuracies of 64.14% ± 10.81% and 51.53% ± 6.48% respectively. Significance. The combination of wide-field calcium imaging and CNNs can be used to classify the cortical responses to simple visual stimuli and might be a viable alternative to existing decoding methodologies. It also allows us to consider the cortical activation as reliable feedback in future optic nerve stimulation experiments.
The optic nerve is a good location for a visual neuroprosthesis. It can be targeted when a subject cannot receive a retinal prosthesis and it is less invasive than a cortical implant. The effectiveness of an electrical neuroprosthesis depends on the combination of the stimulation parameters which must be optimized, and an optimization strategy might be performing closed-loop stimulation using the evoked cortical response as feedback. However, it is necessary to identify target cortical activation patterns and to associate the cortical activity with the visual stimuli present in the visual field of the subjects. Visual stimuli decoding should be performed on large areas of the visual cortex, and with a method as translational as possible to shift the study to human subjects in the future. The aim of this work is to develop an algorithm that meets these requirements and can be leveraged to automatically associate a cortical activation pattern with the visual stimulus that generated it. Three mice were presented with ten different visual stimuli, and their primary visual cortex response was recorded using wide-field calcium imaging. Our decoding algorithm relies on a convolutional neural network (CNN), trained to classify the visual stimuli from the correspondent wide-field images. Several experiments were performed to identify the best training strategy and investigate the possibility of generalization. The best classification accuracy was 75.38% ± 4.77%, obtained pre-training the CNN on the MNIST digits dataset and fine-tuning it on our dataset. Generalization was possible pre-training the CNN to classify Mouse 1 dataset and fine-tuning it on Mouse 2 and Mouse 3, with accuracies of 64.14% ± 10.81% and 51.53% ± 6.48% respectively. The combination of wide-field calcium imaging and CNNs can be used to classify the cortical responses to simple visual stimuli and might be a viable alternative to existing decoding methodologies. It also allows us to consider the cortical activation as reliable feedback in future optic nerve stimulation experiments.
Author De Luca, Daniela
Mazziotti, Raffaele
Micera, Silvestro
Moccia, Sara
Lupori, Leonardo
Pizzorusso, Tommaso
Author_xml – sequence: 1
  givenname: Daniela
  orcidid: 0000-0002-9623-0438
  surname: De Luca
  fullname: De Luca, Daniela
  organization: The BioRobotics Insistute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna , Pisa, Italy
– sequence: 2
  givenname: Sara
  orcidid: 0000-0002-4494-8907
  surname: Moccia
  fullname: Moccia, Sara
  organization: The BioRobotics Insistute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna , Pisa, Italy
– sequence: 3
  givenname: Leonardo
  orcidid: 0000-0003-0458-5635
  surname: Lupori
  fullname: Lupori, Leonardo
  organization: BIO@SNS Lab, Scuola Normale Superiore , Pisa, Italy
– sequence: 4
  givenname: Raffaele
  orcidid: 0000-0001-5344-5079
  surname: Mazziotti
  fullname: Mazziotti, Raffaele
  organization: Department of Neuroscience Psychology, Drug Research and Child Health, University of Florence , Florence, Italy
– sequence: 5
  givenname: Tommaso
  orcidid: 0000-0001-5614-0668
  surname: Pizzorusso
  fullname: Pizzorusso, Tommaso
  organization: BIO@SNS Lab, Scuola Normale Superiore , Pisa, Italy
– sequence: 6
  givenname: Silvestro
  orcidid: 0000-0003-4396-8217
  surname: Micera
  fullname: Micera, Silvestro
  organization: Bertarelli Foundation Chair in Translational Neuroengineering, EPFL , Geneva, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36893458$$D View this record in MEDLINE/PubMed
BookMark eNp9kc2PFCEQxYlZ437o3ZPhpgfbLegP6KOZ6GqyiRc9EwaqV0YaWqBn438vs7O7B2M2JFTl8XsVUu-cnIQYkJDXDD4wkPKSiY41vO_5pTaGo3hGzh6lk8d-gFNynvMOoGVihBfktB3k2Ha9PCP7TQz76NfiYtCeBlzTXSm3Mf2ixuuc3eQw073La33Jxc2rd3RKcaYmpuJMVRPmJYaMtamaRUtvXflZL4tNdXtL3axvXLihLtDZGXxJnk_aZ3x1Xy_Ij8-fvm--NNffrr5uPl43pmNQGgnAWwFyy7fa6t4it-OA9VhhuO6M0UMLaCcY0ZpJyG1bKSlYN_R2NFy0F-Tdce6S4u8Vc1Gzywa91wHjmhUXcmDApISKvrlH1-2MVi2p_jn9UQ-7qsBwBEyKOSeclHFFHxZXknZeMVCHUNRh6-qQgDqGUo3wj_Fh9hOW90eLi4vaxTXVcPJT-Nv_4LuAioPiCvhQo1eLndq__G6tSQ
CODEN JNEOBH
CitedBy_id crossref_primary_10_1016_j_jneumeth_2024_110158
crossref_primary_10_1109_ACCESS_2024_3380839
crossref_primary_10_1109_JSEN_2023_3335613
crossref_primary_10_1038_s42003_025_07711_x
Cites_doi 10.1109/TBME.2018.2813015
10.1152/jn.00150.2018
10.1088/1741-2552/abf523
10.1126/science.1063736
10.1609/aaai.v25i1.8090
10.7554/eLife.18372
10.1016/j.neuroimage.2019.06.014
10.1038/nn1444
10.1186/s40537-019-0197-0
10.1523/JNEUROSCI.1124-14.2014
10.1101/300392
10.1523/JNEUROSCI.3003-20.2021
10.1101/359513
10.1523/JNEUROSCI.3585-08.2008
10.1007/s43681-021-00043-6
10.1177/15459683211056656
10.1523/JNEUROSCI.0623-08.2008
10.1016/j.neuron.2020.09.036
10.1109/MSP.2012.2211477
10.1016/s0006-8993(98)00977-9
10.1523/JNEUROSCI.3577-09.2009
10.1016/j.cell.2021.03.042
10.1113/jphysiol.1959.sp006308
10.3389/fncir.2011.00018
10.1038/nmeth.1453
10.1038/nprot.2014.165
10.1002/cne.22321
10.1038/s41467-020-14645-x
10.1016/j.patcog.2022.108757
10.1088/1741-2560/2/1/004
10.1093/cercor/bhab373
10.3390/biology11111601
10.1038/s41551-019-0446-8
10.1016/j.media.2017.07.005
10.1186/s40779-019-0206-9
10.1111/1754-9485.13261
10.1016/j.neuron.2012.01.010
10.1038/535209a
10.1038/ncomms15037
10.1002/cne.903000103
10.1016/j.neuron.2012.02.011
10.1007/s11633-022-1335-2
10.1038/nature21056
10.1088/1741-2552/ac3f6c
10.1523/JNEUROSCI.3339-17.2018
10.1007/s42452-019-1903-4
10.1007/s12021-018-9357-1
10.1016/j.jneumeth.2021.109421
10.1101/745323
10.1016/j.patter.2021.100286
10.1126/scitranslmed.3007399
10.1101/271296
10.1016/j.conb.2018.11.005
10.1186/s40537-016-0043-6
ContentType Journal Article
Copyright 2023 The Author(s). Published by IOP Publishing Ltd
Creative Commons Attribution license.
Copyright_xml – notice: 2023 The Author(s). Published by IOP Publishing Ltd
– notice: Creative Commons Attribution license.
DBID O3W
TSCCA
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1741-2552/acc2e7
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID 36893458
10_1088_1741_2552_acc2e7
jneacc2e7
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fondation Bertarelli
  funderid: http://dx.doi.org/10.13039/100009152
– fundername: Fondazione Umberto Veronesi
  funderid: http://dx.doi.org/10.13039/501100004710
– fundername: Sulle Ali Di Un Sogno ONLUS
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
O3W
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
TSCCA
W28
XPP
AAYXX
ADEQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AEINN
ID FETCH-LOGICAL-c410t-80023708b2bada5de2d96e6e6d7c2a4cca630edf09edcf78b3da5871465d9c273
IEDL.DBID IOP
ISSN 1741-2560
1741-2552
IngestDate Thu Sep 04 15:11:23 EDT 2025
Thu Jan 02 22:53:50 EST 2025
Thu Apr 24 22:52:54 EDT 2025
Tue Jul 01 01:48:10 EDT 2025
Wed Aug 21 03:33:42 EDT 2024
Tue Apr 11 22:20:32 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords deep learning
wide-field imaging
visual stimuli decoding
optic nerve
visual prostheses
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Creative Commons Attribution license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-80023708b2bada5de2d96e6e6d7c2a4cca630edf09edcf78b3da5871465d9c273
Notes JNE-105940.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4494-8907
0000-0002-9623-0438
0000-0003-4396-8217
0000-0001-5614-0668
0000-0003-0458-5635
0000-0001-5344-5079
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1741-2552/acc2e7
PMID 36893458
PQID 2786101880
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2786101880
iop_journals_10_1088_1741_2552_acc2e7
pubmed_primary_36893458
crossref_primary_10_1088_1741_2552_acc2e7
crossref_citationtrail_10_1088_1741_2552_acc2e7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Brouwer (jneacc2e7bib40) 2009; 29
Conti (jneacc2e7bib18) 2022; 36
Stringer (jneacc2e7bib27) 2021; 184
Jimenez (jneacc2e7bib45) 2018; 120
Hendrycks (jneacc2e7bib65) 2016
Zhang (jneacc2e7bib25) 2022; 19
Litjens (jneacc2e7bib21) 2017; 42
Shaha (jneacc2e7bib59) 2018
Hinton (jneacc2e7bib49) 2012
Zhang (jneacc2e7bib62) 2022; 366
DiCarlo (jneacc2e7bib22) 2012; 73
Hubel (jneacc2e7bib24) 1959; 148
Jiang (jneacc2e7bib56) 2018; vol 31
Garasto (jneacc2e7bib31) 2018
Nietz (jneacc2e7bib15) 2022; 11
Pachitariu (jneacc2e7bib30) 2018; 38
Horikawa (jneacc2e7bib41) 2017; 8
Cai (jneacc2e7bib34) 2018; 16
Garrett (jneacc2e7bib10) 2014; 34
Iqbal (jneacc2e7bib28) 2019
de Vries (jneacc2e7bib35) 2018
Van der Maaten (jneacc2e7bib54) 2008; 9
Stringer (jneacc2e7bib26) 2019; 55
Cramer (jneacc2e7bib20) 2019; 199
Kamitani (jneacc2e7bib39) 2005; 8
Kalafatovich (jneacc2e7bib43) 2020
Ren (jneacc2e7bib12) 2021; 41
van Wynsberghe (jneacc2e7bib61) 2021; 1
Dinstein (jneacc2e7bib38) 2008; 28
Yoshida (jneacc2e7bib36) 2020; 11
Zhu (jneacc2e7bib58) 2011
Zhuang (jneacc2e7bib11) 2017; 6
Conti (jneacc2e7bib17) 2021
Shorten (jneacc2e7bib51) 2019; 6
Veraart (jneacc2e7bib2) 1998; 813
Chlap (jneacc2e7bib50) 2021; 65
Zrenner (jneacc2e7bib1) 2013; 5
Shen (jneacc2e7bib33) 2016; 535
Romeni (jneacc2e7bib6) 2021; 2
Koochaki (jneacc2e7bib63) 2020
Esteva (jneacc2e7bib64) 2017; 542
Grewe (jneacc2e7bib29) 2010; 7
Kampa (jneacc2e7bib9) 2011; 5
Fahey (jneacc2e7bib46) 2019
Ellis (jneacc2e7bib32) 2018
Bagchi (jneacc2e7bib44) 2022; 129
Losanno (jneacc2e7bib7) 2021; 18
West (jneacc2e7bib19) 2021; 32
Mirochnik (jneacc2e7bib57) 2019; 6
Christine (jneacc2e7bib14) 2012; 73
Conti (jneacc2e7bib16) 2020
Sabatini (jneacc2e7bib13) 2020; 108
Goldey (jneacc2e7bib48) 2014; 9
Weiss (jneacc2e7bib52) 2016; 3
Moccia (jneacc2e7bib55) 2018; 65
Gaillet (jneacc2e7bib4) 2020; 4
Deng (jneacc2e7bib53) 2012; 29
Lei (jneacc2e7bib60) 2020; 2
Jiao (jneacc2e7bib42) 2019
Gaillet (jneacc2e7bib8) 2021; 18
Curcio (jneacc2e7bib5) 1990; 300
Van den Bergh (jneacc2e7bib47) 2010; 518
Brelén (jneacc2e7bib3) 2005; 2
Haxby (jneacc2e7bib37) 2001; 293
Niell (jneacc2e7bib23) 2008; 28
References_xml – volume: 65
  start-page: 2649
  year: 2018
  ident: jneacc2e7bib55
  article-title: Uncertainty-aware organ classification for surgical data science applications in laparoscopy
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2813015
– volume: 120
  start-page: 274
  year: 2018
  ident: jneacc2e7bib45
  article-title: Local tuning biases in mouse primary visual cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00150.2018
– volume: 18
  year: 2021
  ident: jneacc2e7bib8
  article-title: A machine-learning algorithm correctly classifies cortical evoked potentials from both visual stimulation and electrical stimulation of the optic nerve
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abf523
– volume: 293
  start-page: 2425
  year: 2001
  ident: jneacc2e7bib37
  article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex
  publication-title: Science
  doi: 10.1126/science.1063736
– year: 2011
  ident: jneacc2e7bib58
  article-title: Heterogeneous transfer learning for image classification
  doi: 10.1609/aaai.v25i1.8090
– volume: 6
  year: 2017
  ident: jneacc2e7bib11
  article-title: An extended retinotopic map of mouse cortex
  publication-title: eLife
  doi: 10.7554/eLife.18372
– volume: 199
  start-page: 570
  year: 2019
  ident: jneacc2e7bib20
  article-title: In vivo widefield calcium imaging of the mouse cortex for analysis of network connectivity in health and brain disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.06.014
– volume: 8
  start-page: 679
  year: 2005
  ident: jneacc2e7bib39
  article-title: Decoding the visual and subjective contents of the human brain
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1444
– volume: 6
  start-page: 1
  year: 2019
  ident: jneacc2e7bib51
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 34
  start-page: 12587
  year: 2014
  ident: jneacc2e7bib10
  article-title: Topography and areal organization of mouse visual cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1124-14.2014
– year: 2018
  ident: jneacc2e7bib31
  article-title: Visual reconstruction from 2-photon calcium imaging suggests linear readout properties of neurons in mouse primary visual cortex
  doi: 10.1101/300392
– start-page: pp 1387
  year: 2019
  ident: jneacc2e7bib42
– volume: 41
  start-page: 4160
  year: 2021
  ident: jneacc2e7bib12
  article-title: Characterizing cortex-wide dynamics with wide-field calcium imaging
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3003-20.2021
– year: 2018
  ident: jneacc2e7bib35
  article-title: A large-scale, standardized physiological survey reveals higher order coding throughout the mouse visual cortex
  doi: 10.1101/359513
– year: 2020
  ident: jneacc2e7bib16
  article-title: Synergic effect of optogenetic stimulation and motor training boosts recovery of motor functionality after stroke supported by segregation of motor representation
– volume: 28
  start-page: 11231
  year: 2008
  ident: jneacc2e7bib38
  article-title: Executed and observed movements have different distributed representations in human aIPS
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3585-08.2008
– volume: 1
  start-page: 213
  year: 2021
  ident: jneacc2e7bib61
  article-title: Sustainable AI: AI for sustainability and the sustainability of AI
  publication-title: AI Ethics
  doi: 10.1007/s43681-021-00043-6
– start-page: 2020
  year: 2021
  ident: jneacc2e7bib17
  article-title: Restoration of motor-evoked cortical activity is a distinguishing feature of the most effective rehabilitation therapy after stroke
– volume: 36
  start-page: 107
  year: 2022
  ident: jneacc2e7bib18
  article-title: Combining optogenetic stimulation and motor training improves functional recovery and perilesional cortical activity
  publication-title: Neurorehabil. Neural Repair.
  doi: 10.1177/15459683211056656
– volume: 28
  start-page: 7520
  year: 2008
  ident: jneacc2e7bib23
  article-title: Highly selective receptive fields in mouse visual cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0623-08.2008
– volume: 108
  start-page: 17
  year: 2020
  ident: jneacc2e7bib13
  article-title: Imaging neurotransmitter and neuromodulator dynamics in vivo with genetically encoded indicators
  publication-title: Neuron
  doi: 10.1016/j.neuron.2020.09.036
– volume: 29
  start-page: 141
  year: 2012
  ident: jneacc2e7bib53
  article-title: The mnist database of handwritten digit images for machine learning research
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2211477
– volume: 813
  start-page: 181
  year: 1998
  ident: jneacc2e7bib2
  article-title: Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode
  publication-title: Brain Res.
  doi: 10.1016/s0006-8993(98)00977-9
– volume: 29
  start-page: 13992
  year: 2009
  ident: jneacc2e7bib40
  article-title: Decoding and reconstructing color from responses in human visual cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3577-09.2009
– volume: 184
  start-page: 2767
  year: 2021
  ident: jneacc2e7bib27
  article-title: High-precision coding in visual cortex
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.042
– start-page: pp 1
  year: 2019
  ident: jneacc2e7bib28
  article-title: Decoding neural responses in mouse visual cortex through a deep neural network
– volume: 148
  start-page: 574
  year: 1959
  ident: jneacc2e7bib24
  article-title: Receptive fields of single neurones in the cat’s striate cortex
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1959.sp006308
– volume: 5
  start-page: 18
  year: 2011
  ident: jneacc2e7bib9
  article-title: Representation of visual scenes by local neuronal populations in layer 2/3 of mouse visual cortex
  publication-title: Front. Neural Circuits
  doi: 10.3389/fncir.2011.00018
– volume: 7
  start-page: 399
  year: 2010
  ident: jneacc2e7bib29
  article-title: High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1453
– volume: 9
  start-page: 2515
  year: 2014
  ident: jneacc2e7bib48
  article-title: Removable cranial windows for long-term imaging in awake mice
  publication-title: Nat. Protocols
  doi: 10.1038/nprot.2014.165
– start-page: pp 656
  year: 2018
  ident: jneacc2e7bib59
  article-title: Transfer learning for image classification
– volume: 518
  start-page: 2051
  year: 2010
  ident: jneacc2e7bib47
  article-title: Receptive-field properties of V1 and V2 neurons in mice and macaque monkeys
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.22321
– volume: 11
  start-page: 1
  year: 2020
  ident: jneacc2e7bib36
  article-title: Natural images are reliably represented by sparse and variable populations of neurons in visual cortex
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14645-x
– volume: 129
  year: 2022
  ident: jneacc2e7bib44
  article-title: EEG-ConvTransformer for single-trial EEG-based visual stimulus classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.108757
– volume: 2
  start-page: S22
  year: 2005
  ident: jneacc2e7bib3
  article-title: Creating a meaningful visual perception in blind volunteers by optic nerve stimulation
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/2/1/004
– volume: 32
  start-page: 2668
  year: 2021
  ident: jneacc2e7bib19
  article-title: Wide-field calcium imaging of dynamic cortical networks during locomotion
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhab373
– volume: 11
  start-page: 1601
  year: 2022
  ident: jneacc2e7bib15
  article-title: Wide-field calcium imaging of neuronal network dynamics in vivo
  publication-title: Biology
  doi: 10.3390/biology11111601
– start-page: pp 2917
  year: 2020
  ident: jneacc2e7bib63
  article-title: Detecting mtbi by learning spatio-temporal characteristics of widefield calcium imaging data using deep learning
– volume: 4
  start-page: 181
  year: 2020
  ident: jneacc2e7bib4
  article-title: Spatially selective activation of the visual cortex via intraneural stimulation of the optic nerve
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-019-0446-8
– volume: 42
  start-page: 60
  year: 2017
  ident: jneacc2e7bib21
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– volume: 6
  start-page: 1
  year: 2019
  ident: jneacc2e7bib57
  article-title: Contemporary approaches to visual prostheses
  publication-title: Mil. Med. Res.
  doi: 10.1186/s40779-019-0206-9
– volume: 65
  start-page: 545
  year: 2021
  ident: jneacc2e7bib50
  article-title: A review of medical image data augmentation techniques for deep learning applications
  publication-title: J. Med. Imaging Radiat. Oncol.
  doi: 10.1111/1754-9485.13261
– volume: 73
  start-page: 415
  year: 2012
  ident: jneacc2e7bib22
  article-title: How does the brain solve visual object recognition?
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.01.010
– volume: 535
  start-page: 209
  year: 2016
  ident: jneacc2e7bib33
  article-title: Brain-data gold mine released: massive survey of mouse visual-cortex activity aims to reveal brain’s computational rules
  publication-title: Nature
  doi: 10.1038/535209a
– volume: 8
  start-page: 1
  year: 2017
  ident: jneacc2e7bib41
  article-title: Generic decoding of seen and imagined objects using hierarchical visual features
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15037
– volume: 300
  start-page: 5
  year: 1990
  ident: jneacc2e7bib5
  article-title: Topography of ganglion cells in human retina
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.903000103
– year: 2012
  ident: jneacc2e7bib49
  article-title: Improving neural networks by preventing co-adaptation of feature detectors
– volume: 73
  start-page: 862
  year: 2012
  ident: jneacc2e7bib14
  article-title: Imaging calcium in neurons
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.02.011
– volume: 19
  start-page: 1
  year: 2022
  ident: jneacc2e7bib25
  article-title: Neural decoding of visual information across different neural recording modalities and approaches
  publication-title: Mach. Intell. Res.
  doi: 10.1007/s11633-022-1335-2
– volume: 542
  start-page: 115
  year: 2017
  ident: jneacc2e7bib64
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 18
  year: 2021
  ident: jneacc2e7bib7
  article-title: Bayesian optimization of peripheral intraneural stimulation protocols to evoke distal limb movements
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac3f6c
– volume: 38
  start-page: 7976
  year: 2018
  ident: jneacc2e7bib30
  article-title: Robustness of spike deconvolution for neuronal calcium imaging
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3339-17.2018
– volume: 2
  start-page: 1
  year: 2020
  ident: jneacc2e7bib60
  article-title: Shallow convolutional neural network for image classification
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-019-1903-4
– volume: 16
  start-page: 473
  year: 2018
  ident: jneacc2e7bib34
  article-title: Neuronal activities in the mouse visual cortex predict patterns of sensory stimuli
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-018-9357-1
– volume: vol 31
  year: 2018
  ident: jneacc2e7bib56
  article-title: To trust or not to trust a classifier
– volume: 366
  year: 2022
  ident: jneacc2e7bib62
  article-title: Automated sleep state classification of wide-field calcium imaging data via multiplex visibility graphs and deep learning
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2021.109421
– year: 2019
  ident: jneacc2e7bib46
  article-title: A global map of orientation tuning in mouse visual cortex
  doi: 10.1101/745323
– year: 2016
  ident: jneacc2e7bib65
  article-title: A baseline for detecting misclassified and out-of-distribution examples in neural networks
– volume: 2
  year: 2021
  ident: jneacc2e7bib6
  article-title: A machine learning framework to optimize optic nerve electrical stimulation for vision restoration
  publication-title: Patterns
  doi: 10.1016/j.patter.2021.100286
– volume: 5
  start-page: 210s16
  year: 2013
  ident: jneacc2e7bib1
  article-title: Fighting blindness with microelectronics
  publication-title: Sci. Trans. Med.
  doi: 10.1126/scitranslmed.3007399
– year: 2018
  ident: jneacc2e7bib32
  article-title: High-accuracy decoding of complex visual scenes from neuronal calcium responses
  doi: 10.1101/271296
– volume: 55
  start-page: 22
  year: 2019
  ident: jneacc2e7bib26
  article-title: Computational processing of neural recordings from calcium imaging data
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2018.11.005
– volume: 9
  start-page: 2579
  year: 2008
  ident: jneacc2e7bib54
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– start-page: pp 2985
  year: 2020
  ident: jneacc2e7bib43
  article-title: Decoding visual recognition of objects from eeg signals based on attention-driven convolutional neural network
– volume: 3
  start-page: 1
  year: 2016
  ident: jneacc2e7bib52
  article-title: A survey of transfer learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-016-0043-6
SSID ssj0031790
Score 2.3798823
Snippet Objective. The optic nerve is a good location for a visual neuroprosthesis. It can be targeted when a subject cannot receive a retinal prosthesis and it is...
The optic nerve is a good location for a visual neuroprosthesis. It can be targeted when a subject cannot receive a retinal prosthesis and it is less invasive...
Objective.The optic nerve is a good location for a visual neuroprosthesis. It can be targeted when a subject cannot receive a retinal prosthesis and it is less...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 26031
SubjectTerms Algorithms
Animals
Calcium
deep learning
Humans
Mice
Neural Networks, Computer
optic nerve
Visual Cortex - physiology
Visual Fields
visual prostheses
visual stimuli decoding
wide-field imaging
Title Convolutional neural network classifies visual stimuli from cortical response recorded with wide-field imaging in mice
URI https://iopscience.iop.org/article/10.1088/1741-2552/acc2e7
https://www.ncbi.nlm.nih.gov/pubmed/36893458
https://www.proquest.com/docview/2786101880
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_uzhdfPPX82PODCCr40N1s0qYpPh2Hxyno-eDhPQghTSaw6naX2w_Qv95J0l040UOkkBY6bdPJZPLLZDID8Nx5IXwIonAl8oIUni4s1qpQvubYYEwlHe2Q7z-o0_Py3UV1sQOvt3thZvNe9Q_pMgcKzizsHeL0iDD0uCAkLEbWOYH1LtyIiSujeL89-7hRwzKGnsq7ISO14v0a5Z_ecGVM2qXv_h1upmHnZB--bCqcvU2-DVfLduh-_hbL8T__6Dbc6uEoO8qkd2AHu7twcNTRVHz6g71kyUE0Wd4PYH0869a9pNIzMRJmOiU_cuYiDJ8Emniz9WSxojukPKLvFYs7WBhNcpPVnF1mp1xk2TyEnkVTMBUei-ROxybTlDmJTTo2JTV2D85P3nw6Pi36tA3U3mO-LCIElTXXrWitt5VH4RuFdPjaCVuSyCjJ0QfeoHeh1q0kKpq3laryjSM4dR_2ulmHD4FVjVWubK0L45ZG0aZxQaJurSiDlyR8AxhtGs64PqZ5TK3x3aS1da1NZK2JrDWZtQN4tX1inuN5XEP7glrM9J16cQ0du0L3tUMjuBEmxmuTYzP3YQDPNgJlqP_GRRnb4Wy1MKLWKkZN03wAD7KkbSsmFaHJstKH_1iRR3BTEO-zY9Fj2FtervAJYaZl-zT1DSrP5Odf0ikTGQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA-2gvgiav241o8IKviwXi7ZzWYfS_WoX9UHi30L2WQCJ3bv6H2A_70zSa5Q0CILuwub7IadSfKbyeQ3jL30QcoQo6x8DaLCAc9UDlpd6dAK6IBSSZMf8suJPj6tP541ZyXPadoLM1-Uof8t3mai4PwLS0CcGSOGnlSIhOXYeS-hHS9C3GE3G6UbIs__qn5sh2JF9FN5RyTV0KKsU_7tLVfmpR389r8hZ5p6pnfZnYIZ-WFu4T12A4b7bO9wQHv5_Dd_zVMUZ3KP77HN0XzYFHXCOkRXmS4p2Jt7wsqziNYx38yWa3yCPZwCpDhtM-FoiSbXNr_IkbPAsw8HAid_LZ4CVCnmjc_OU3ojPhs4JbR_wE6n778fHVcltwIKZSJWFeFE1QrTy94F1wSQodOAR2i9dDXKVSsBIYoOgo-t6RWWQuOq1k3oPGKeh2x3mA_wmPGmc9rXvfNx0uNU13U-KjC9k3UMCjVkxMbbP2t9IR6n_Be_bFoAN8aSLCzJwmZZjNibyxqLTLpxTdlXKCxbet7ymnL8SrmfA1gprLREqqYmFpVoxF5sJW6xk9HKiRtgvl5a2RpN1GZGjNijrAqXDVMaIV_dmP3_bMhzduvbu6n9_OHk0wG7TdnrcyDQE7a7uljDU8Q4q_5Z0uM_PJH2pQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+neural+network+classifies+visual+stimuli+from+cortical+response+recorded+with+wide-field+imaging+in+mice&rft.jtitle=Journal+of+neural+engineering&rft.au=De+Luca%2C+Daniela&rft.au=Moccia%2C+Sara&rft.au=Lupori%2C+Leonardo&rft.au=Mazziotti%2C+Raffaele&rft.date=2023-04-01&rft.eissn=1741-2552&rft.volume=20&rft.issue=2&rft_id=info:doi/10.1088%2F1741-2552%2Facc2e7&rft_id=info%3Apmid%2F36893458&rft.externalDocID=36893458
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon