Convolutional neural network classifies visual stimuli from cortical response recorded with wide-field imaging in mice
Objective. The optic nerve is a good location for a visual neuroprosthesis. It can be targeted when a subject cannot receive a retinal prosthesis and it is less invasive than a cortical implant. The effectiveness of an electrical neuroprosthesis depends on the combination of the stimulation paramete...
Saved in:
Published in | Journal of neural engineering Vol. 20; no. 2; pp. 26031 - 26045 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1741-2560 1741-2552 1741-2552 |
DOI | 10.1088/1741-2552/acc2e7 |
Cover
Abstract | Objective.
The optic nerve is a good location for a visual neuroprosthesis. It can be targeted when a subject cannot receive a retinal prosthesis and it is less invasive than a cortical implant. The effectiveness of an electrical neuroprosthesis depends on the combination of the stimulation parameters which must be optimized, and an optimization strategy might be performing closed-loop stimulation using the evoked cortical response as feedback. However, it is necessary to identify target cortical activation patterns and to associate the cortical activity with the visual stimuli present in the visual field of the subjects. Visual stimuli decoding should be performed on large areas of the visual cortex, and with a method as translational as possible to shift the study to human subjects in the future. The aim of this work is to develop an algorithm that meets these requirements and can be leveraged to automatically associate a cortical activation pattern with the visual stimulus that generated it.
Approach.
Three mice were presented with ten different visual stimuli, and their primary visual cortex response was recorded using wide-field calcium imaging. Our decoding algorithm relies on a convolutional neural network (CNN), trained to classify the visual stimuli from the correspondent wide-field images. Several experiments were performed to identify the best training strategy and investigate the possibility of generalization.
Main results.
The best classification accuracy was 75.38% ± 4.77%, obtained pre-training the CNN on the MNIST digits dataset and fine-tuning it on our dataset. Generalization was possible pre-training the CNN to classify Mouse 1 dataset and fine-tuning it on Mouse 2 and Mouse 3, with accuracies of 64.14% ± 10.81% and 51.53% ± 6.48% respectively.
Significance.
The combination of wide-field calcium imaging and CNNs can be used to classify the cortical responses to simple visual stimuli and might be a viable alternative to existing decoding methodologies. It also allows us to consider the cortical activation as reliable feedback in future optic nerve stimulation experiments. |
---|---|
AbstractList | Objective.The optic nerve is a good location for a visual neuroprosthesis. It can be targeted when a subject cannot receive a retinal prosthesis and it is less invasive than a cortical implant. The effectiveness of an electrical neuroprosthesis depends on the combination of the stimulation parameters which must be optimized, and an optimization strategy might be performing closed-loop stimulation using the evoked cortical response as feedback. However, it is necessary to identify target cortical activation patterns and to associate the cortical activity with the visual stimuli present in the visual field of the subjects. Visual stimuli decoding should be performed on large areas of the visual cortex, and with a method as translational as possible to shift the study to human subjects in the future. The aim of this work is to develop an algorithm that meets these requirements and can be leveraged to automatically associate a cortical activation pattern with the visual stimulus that generated it.Approach.Three mice were presented with ten different visual stimuli, and their primary visual cortex response was recorded using wide-field calcium imaging. Our decoding algorithm relies on a convolutional neural network (CNN), trained to classify the visual stimuli from the correspondent wide-field images. Several experiments were performed to identify the best training strategy and investigate the possibility of generalization.Main results.The best classification accuracy was 75.38% ± 4.77%, obtained pre-training the CNN on the MNIST digits dataset and fine-tuning it on our dataset. Generalization was possible pre-training the CNN to classify Mouse 1 dataset and fine-tuning it on Mouse 2 and Mouse 3, with accuracies of 64.14% ± 10.81% and 51.53% ± 6.48% respectively.Significance.The combination of wide-field calcium imaging and CNNs can be used to classify the cortical responses to simple visual stimuli and might be a viable alternative to existing decoding methodologies. It also allows us to consider the cortical activation as reliable feedback in future optic nerve stimulation experiments.Objective.The optic nerve is a good location for a visual neuroprosthesis. It can be targeted when a subject cannot receive a retinal prosthesis and it is less invasive than a cortical implant. The effectiveness of an electrical neuroprosthesis depends on the combination of the stimulation parameters which must be optimized, and an optimization strategy might be performing closed-loop stimulation using the evoked cortical response as feedback. However, it is necessary to identify target cortical activation patterns and to associate the cortical activity with the visual stimuli present in the visual field of the subjects. Visual stimuli decoding should be performed on large areas of the visual cortex, and with a method as translational as possible to shift the study to human subjects in the future. The aim of this work is to develop an algorithm that meets these requirements and can be leveraged to automatically associate a cortical activation pattern with the visual stimulus that generated it.Approach.Three mice were presented with ten different visual stimuli, and their primary visual cortex response was recorded using wide-field calcium imaging. Our decoding algorithm relies on a convolutional neural network (CNN), trained to classify the visual stimuli from the correspondent wide-field images. Several experiments were performed to identify the best training strategy and investigate the possibility of generalization.Main results.The best classification accuracy was 75.38% ± 4.77%, obtained pre-training the CNN on the MNIST digits dataset and fine-tuning it on our dataset. Generalization was possible pre-training the CNN to classify Mouse 1 dataset and fine-tuning it on Mouse 2 and Mouse 3, with accuracies of 64.14% ± 10.81% and 51.53% ± 6.48% respectively.Significance.The combination of wide-field calcium imaging and CNNs can be used to classify the cortical responses to simple visual stimuli and might be a viable alternative to existing decoding methodologies. It also allows us to consider the cortical activation as reliable feedback in future optic nerve stimulation experiments. Objective. The optic nerve is a good location for a visual neuroprosthesis. It can be targeted when a subject cannot receive a retinal prosthesis and it is less invasive than a cortical implant. The effectiveness of an electrical neuroprosthesis depends on the combination of the stimulation parameters which must be optimized, and an optimization strategy might be performing closed-loop stimulation using the evoked cortical response as feedback. However, it is necessary to identify target cortical activation patterns and to associate the cortical activity with the visual stimuli present in the visual field of the subjects. Visual stimuli decoding should be performed on large areas of the visual cortex, and with a method as translational as possible to shift the study to human subjects in the future. The aim of this work is to develop an algorithm that meets these requirements and can be leveraged to automatically associate a cortical activation pattern with the visual stimulus that generated it. Approach. Three mice were presented with ten different visual stimuli, and their primary visual cortex response was recorded using wide-field calcium imaging. Our decoding algorithm relies on a convolutional neural network (CNN), trained to classify the visual stimuli from the correspondent wide-field images. Several experiments were performed to identify the best training strategy and investigate the possibility of generalization. Main results. The best classification accuracy was 75.38% ± 4.77%, obtained pre-training the CNN on the MNIST digits dataset and fine-tuning it on our dataset. Generalization was possible pre-training the CNN to classify Mouse 1 dataset and fine-tuning it on Mouse 2 and Mouse 3, with accuracies of 64.14% ± 10.81% and 51.53% ± 6.48% respectively. Significance. The combination of wide-field calcium imaging and CNNs can be used to classify the cortical responses to simple visual stimuli and might be a viable alternative to existing decoding methodologies. It also allows us to consider the cortical activation as reliable feedback in future optic nerve stimulation experiments. The optic nerve is a good location for a visual neuroprosthesis. It can be targeted when a subject cannot receive a retinal prosthesis and it is less invasive than a cortical implant. The effectiveness of an electrical neuroprosthesis depends on the combination of the stimulation parameters which must be optimized, and an optimization strategy might be performing closed-loop stimulation using the evoked cortical response as feedback. However, it is necessary to identify target cortical activation patterns and to associate the cortical activity with the visual stimuli present in the visual field of the subjects. Visual stimuli decoding should be performed on large areas of the visual cortex, and with a method as translational as possible to shift the study to human subjects in the future. The aim of this work is to develop an algorithm that meets these requirements and can be leveraged to automatically associate a cortical activation pattern with the visual stimulus that generated it. Three mice were presented with ten different visual stimuli, and their primary visual cortex response was recorded using wide-field calcium imaging. Our decoding algorithm relies on a convolutional neural network (CNN), trained to classify the visual stimuli from the correspondent wide-field images. Several experiments were performed to identify the best training strategy and investigate the possibility of generalization. The best classification accuracy was 75.38% ± 4.77%, obtained pre-training the CNN on the MNIST digits dataset and fine-tuning it on our dataset. Generalization was possible pre-training the CNN to classify Mouse 1 dataset and fine-tuning it on Mouse 2 and Mouse 3, with accuracies of 64.14% ± 10.81% and 51.53% ± 6.48% respectively. The combination of wide-field calcium imaging and CNNs can be used to classify the cortical responses to simple visual stimuli and might be a viable alternative to existing decoding methodologies. It also allows us to consider the cortical activation as reliable feedback in future optic nerve stimulation experiments. |
Author | De Luca, Daniela Mazziotti, Raffaele Micera, Silvestro Moccia, Sara Lupori, Leonardo Pizzorusso, Tommaso |
Author_xml | – sequence: 1 givenname: Daniela orcidid: 0000-0002-9623-0438 surname: De Luca fullname: De Luca, Daniela organization: The BioRobotics Insistute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna , Pisa, Italy – sequence: 2 givenname: Sara orcidid: 0000-0002-4494-8907 surname: Moccia fullname: Moccia, Sara organization: The BioRobotics Insistute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna , Pisa, Italy – sequence: 3 givenname: Leonardo orcidid: 0000-0003-0458-5635 surname: Lupori fullname: Lupori, Leonardo organization: BIO@SNS Lab, Scuola Normale Superiore , Pisa, Italy – sequence: 4 givenname: Raffaele orcidid: 0000-0001-5344-5079 surname: Mazziotti fullname: Mazziotti, Raffaele organization: Department of Neuroscience Psychology, Drug Research and Child Health, University of Florence , Florence, Italy – sequence: 5 givenname: Tommaso orcidid: 0000-0001-5614-0668 surname: Pizzorusso fullname: Pizzorusso, Tommaso organization: BIO@SNS Lab, Scuola Normale Superiore , Pisa, Italy – sequence: 6 givenname: Silvestro orcidid: 0000-0003-4396-8217 surname: Micera fullname: Micera, Silvestro organization: Bertarelli Foundation Chair in Translational Neuroengineering, EPFL , Geneva, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36893458$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc2PFCEQxYlZ437o3ZPhpgfbLegP6KOZ6GqyiRc9EwaqV0YaWqBn438vs7O7B2M2JFTl8XsVUu-cnIQYkJDXDD4wkPKSiY41vO_5pTaGo3hGzh6lk8d-gFNynvMOoGVihBfktB3k2Ha9PCP7TQz76NfiYtCeBlzTXSm3Mf2ixuuc3eQw073La33Jxc2rd3RKcaYmpuJMVRPmJYaMtamaRUtvXflZL4tNdXtL3axvXLihLtDZGXxJnk_aZ3x1Xy_Ij8-fvm--NNffrr5uPl43pmNQGgnAWwFyy7fa6t4it-OA9VhhuO6M0UMLaCcY0ZpJyG1bKSlYN_R2NFy0F-Tdce6S4u8Vc1Gzywa91wHjmhUXcmDApISKvrlH1-2MVi2p_jn9UQ-7qsBwBEyKOSeclHFFHxZXknZeMVCHUNRh6-qQgDqGUo3wj_Fh9hOW90eLi4vaxTXVcPJT-Nv_4LuAioPiCvhQo1eLndq__G6tSQ |
CODEN | JNEOBH |
CitedBy_id | crossref_primary_10_1016_j_jneumeth_2024_110158 crossref_primary_10_1109_ACCESS_2024_3380839 crossref_primary_10_1109_JSEN_2023_3335613 crossref_primary_10_1038_s42003_025_07711_x |
Cites_doi | 10.1109/TBME.2018.2813015 10.1152/jn.00150.2018 10.1088/1741-2552/abf523 10.1126/science.1063736 10.1609/aaai.v25i1.8090 10.7554/eLife.18372 10.1016/j.neuroimage.2019.06.014 10.1038/nn1444 10.1186/s40537-019-0197-0 10.1523/JNEUROSCI.1124-14.2014 10.1101/300392 10.1523/JNEUROSCI.3003-20.2021 10.1101/359513 10.1523/JNEUROSCI.3585-08.2008 10.1007/s43681-021-00043-6 10.1177/15459683211056656 10.1523/JNEUROSCI.0623-08.2008 10.1016/j.neuron.2020.09.036 10.1109/MSP.2012.2211477 10.1016/s0006-8993(98)00977-9 10.1523/JNEUROSCI.3577-09.2009 10.1016/j.cell.2021.03.042 10.1113/jphysiol.1959.sp006308 10.3389/fncir.2011.00018 10.1038/nmeth.1453 10.1038/nprot.2014.165 10.1002/cne.22321 10.1038/s41467-020-14645-x 10.1016/j.patcog.2022.108757 10.1088/1741-2560/2/1/004 10.1093/cercor/bhab373 10.3390/biology11111601 10.1038/s41551-019-0446-8 10.1016/j.media.2017.07.005 10.1186/s40779-019-0206-9 10.1111/1754-9485.13261 10.1016/j.neuron.2012.01.010 10.1038/535209a 10.1038/ncomms15037 10.1002/cne.903000103 10.1016/j.neuron.2012.02.011 10.1007/s11633-022-1335-2 10.1038/nature21056 10.1088/1741-2552/ac3f6c 10.1523/JNEUROSCI.3339-17.2018 10.1007/s42452-019-1903-4 10.1007/s12021-018-9357-1 10.1016/j.jneumeth.2021.109421 10.1101/745323 10.1016/j.patter.2021.100286 10.1126/scitranslmed.3007399 10.1101/271296 10.1016/j.conb.2018.11.005 10.1186/s40537-016-0043-6 |
ContentType | Journal Article |
Copyright | 2023 The Author(s). Published by IOP Publishing Ltd Creative Commons Attribution license. |
Copyright_xml | – notice: 2023 The Author(s). Published by IOP Publishing Ltd – notice: Creative Commons Attribution license. |
DBID | O3W TSCCA AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1088/1741-2552/acc2e7 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1741-2552 |
ExternalDocumentID | 36893458 10_1088_1741_2552_acc2e7 jneacc2e7 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Fondation Bertarelli funderid: http://dx.doi.org/10.13039/100009152 – fundername: Fondazione Umberto Veronesi funderid: http://dx.doi.org/10.13039/501100004710 – fundername: Sulle Ali Di Un Sogno ONLUS |
GroupedDBID | --- 1JI 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP N5L N9A O3W P2P PJBAE RIN RO9 ROL RPA SY9 TSCCA W28 XPP AAYXX ADEQX CITATION CGR CUY CVF ECM EIF NPM 7X8 AEINN |
ID | FETCH-LOGICAL-c410t-80023708b2bada5de2d96e6e6d7c2a4cca630edf09edcf78b3da5871465d9c273 |
IEDL.DBID | IOP |
ISSN | 1741-2560 1741-2552 |
IngestDate | Thu Sep 04 15:11:23 EDT 2025 Thu Jan 02 22:53:50 EST 2025 Thu Apr 24 22:52:54 EDT 2025 Tue Jul 01 01:48:10 EDT 2025 Wed Aug 21 03:33:42 EDT 2024 Tue Apr 11 22:20:32 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | deep learning wide-field imaging visual stimuli decoding optic nerve visual prostheses |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Creative Commons Attribution license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-80023708b2bada5de2d96e6e6d7c2a4cca630edf09edcf78b3da5871465d9c273 |
Notes | JNE-105940.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4494-8907 0000-0002-9623-0438 0000-0003-4396-8217 0000-0001-5614-0668 0000-0003-0458-5635 0000-0001-5344-5079 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1741-2552/acc2e7 |
PMID | 36893458 |
PQID | 2786101880 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2786101880 iop_journals_10_1088_1741_2552_acc2e7 pubmed_primary_36893458 crossref_primary_10_1088_1741_2552_acc2e7 crossref_citationtrail_10_1088_1741_2552_acc2e7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of neural engineering |
PublicationTitleAbbrev | JNE |
PublicationTitleAlternate | J. Neural Eng |
PublicationYear | 2023 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Brouwer (jneacc2e7bib40) 2009; 29 Conti (jneacc2e7bib18) 2022; 36 Stringer (jneacc2e7bib27) 2021; 184 Jimenez (jneacc2e7bib45) 2018; 120 Hendrycks (jneacc2e7bib65) 2016 Zhang (jneacc2e7bib25) 2022; 19 Litjens (jneacc2e7bib21) 2017; 42 Shaha (jneacc2e7bib59) 2018 Hinton (jneacc2e7bib49) 2012 Zhang (jneacc2e7bib62) 2022; 366 DiCarlo (jneacc2e7bib22) 2012; 73 Hubel (jneacc2e7bib24) 1959; 148 Jiang (jneacc2e7bib56) 2018; vol 31 Garasto (jneacc2e7bib31) 2018 Nietz (jneacc2e7bib15) 2022; 11 Pachitariu (jneacc2e7bib30) 2018; 38 Horikawa (jneacc2e7bib41) 2017; 8 Cai (jneacc2e7bib34) 2018; 16 Garrett (jneacc2e7bib10) 2014; 34 Iqbal (jneacc2e7bib28) 2019 de Vries (jneacc2e7bib35) 2018 Van der Maaten (jneacc2e7bib54) 2008; 9 Stringer (jneacc2e7bib26) 2019; 55 Cramer (jneacc2e7bib20) 2019; 199 Kamitani (jneacc2e7bib39) 2005; 8 Kalafatovich (jneacc2e7bib43) 2020 Ren (jneacc2e7bib12) 2021; 41 van Wynsberghe (jneacc2e7bib61) 2021; 1 Dinstein (jneacc2e7bib38) 2008; 28 Yoshida (jneacc2e7bib36) 2020; 11 Zhu (jneacc2e7bib58) 2011 Zhuang (jneacc2e7bib11) 2017; 6 Conti (jneacc2e7bib17) 2021 Shorten (jneacc2e7bib51) 2019; 6 Veraart (jneacc2e7bib2) 1998; 813 Chlap (jneacc2e7bib50) 2021; 65 Zrenner (jneacc2e7bib1) 2013; 5 Shen (jneacc2e7bib33) 2016; 535 Romeni (jneacc2e7bib6) 2021; 2 Koochaki (jneacc2e7bib63) 2020 Esteva (jneacc2e7bib64) 2017; 542 Grewe (jneacc2e7bib29) 2010; 7 Kampa (jneacc2e7bib9) 2011; 5 Fahey (jneacc2e7bib46) 2019 Ellis (jneacc2e7bib32) 2018 Bagchi (jneacc2e7bib44) 2022; 129 Losanno (jneacc2e7bib7) 2021; 18 West (jneacc2e7bib19) 2021; 32 Mirochnik (jneacc2e7bib57) 2019; 6 Christine (jneacc2e7bib14) 2012; 73 Conti (jneacc2e7bib16) 2020 Sabatini (jneacc2e7bib13) 2020; 108 Goldey (jneacc2e7bib48) 2014; 9 Weiss (jneacc2e7bib52) 2016; 3 Moccia (jneacc2e7bib55) 2018; 65 Gaillet (jneacc2e7bib4) 2020; 4 Deng (jneacc2e7bib53) 2012; 29 Lei (jneacc2e7bib60) 2020; 2 Jiao (jneacc2e7bib42) 2019 Gaillet (jneacc2e7bib8) 2021; 18 Curcio (jneacc2e7bib5) 1990; 300 Van den Bergh (jneacc2e7bib47) 2010; 518 Brelén (jneacc2e7bib3) 2005; 2 Haxby (jneacc2e7bib37) 2001; 293 Niell (jneacc2e7bib23) 2008; 28 |
References_xml | – volume: 65 start-page: 2649 year: 2018 ident: jneacc2e7bib55 article-title: Uncertainty-aware organ classification for surgical data science applications in laparoscopy publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2813015 – volume: 120 start-page: 274 year: 2018 ident: jneacc2e7bib45 article-title: Local tuning biases in mouse primary visual cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.00150.2018 – volume: 18 year: 2021 ident: jneacc2e7bib8 article-title: A machine-learning algorithm correctly classifies cortical evoked potentials from both visual stimulation and electrical stimulation of the optic nerve publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abf523 – volume: 293 start-page: 2425 year: 2001 ident: jneacc2e7bib37 article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex publication-title: Science doi: 10.1126/science.1063736 – year: 2011 ident: jneacc2e7bib58 article-title: Heterogeneous transfer learning for image classification doi: 10.1609/aaai.v25i1.8090 – volume: 6 year: 2017 ident: jneacc2e7bib11 article-title: An extended retinotopic map of mouse cortex publication-title: eLife doi: 10.7554/eLife.18372 – volume: 199 start-page: 570 year: 2019 ident: jneacc2e7bib20 article-title: In vivo widefield calcium imaging of the mouse cortex for analysis of network connectivity in health and brain disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.06.014 – volume: 8 start-page: 679 year: 2005 ident: jneacc2e7bib39 article-title: Decoding the visual and subjective contents of the human brain publication-title: Nat. Neurosci. doi: 10.1038/nn1444 – volume: 6 start-page: 1 year: 2019 ident: jneacc2e7bib51 article-title: A survey on image data augmentation for deep learning publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 – volume: 34 start-page: 12587 year: 2014 ident: jneacc2e7bib10 article-title: Topography and areal organization of mouse visual cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1124-14.2014 – year: 2018 ident: jneacc2e7bib31 article-title: Visual reconstruction from 2-photon calcium imaging suggests linear readout properties of neurons in mouse primary visual cortex doi: 10.1101/300392 – start-page: pp 1387 year: 2019 ident: jneacc2e7bib42 – volume: 41 start-page: 4160 year: 2021 ident: jneacc2e7bib12 article-title: Characterizing cortex-wide dynamics with wide-field calcium imaging publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3003-20.2021 – year: 2018 ident: jneacc2e7bib35 article-title: A large-scale, standardized physiological survey reveals higher order coding throughout the mouse visual cortex doi: 10.1101/359513 – year: 2020 ident: jneacc2e7bib16 article-title: Synergic effect of optogenetic stimulation and motor training boosts recovery of motor functionality after stroke supported by segregation of motor representation – volume: 28 start-page: 11231 year: 2008 ident: jneacc2e7bib38 article-title: Executed and observed movements have different distributed representations in human aIPS publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3585-08.2008 – volume: 1 start-page: 213 year: 2021 ident: jneacc2e7bib61 article-title: Sustainable AI: AI for sustainability and the sustainability of AI publication-title: AI Ethics doi: 10.1007/s43681-021-00043-6 – start-page: 2020 year: 2021 ident: jneacc2e7bib17 article-title: Restoration of motor-evoked cortical activity is a distinguishing feature of the most effective rehabilitation therapy after stroke – volume: 36 start-page: 107 year: 2022 ident: jneacc2e7bib18 article-title: Combining optogenetic stimulation and motor training improves functional recovery and perilesional cortical activity publication-title: Neurorehabil. Neural Repair. doi: 10.1177/15459683211056656 – volume: 28 start-page: 7520 year: 2008 ident: jneacc2e7bib23 article-title: Highly selective receptive fields in mouse visual cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0623-08.2008 – volume: 108 start-page: 17 year: 2020 ident: jneacc2e7bib13 article-title: Imaging neurotransmitter and neuromodulator dynamics in vivo with genetically encoded indicators publication-title: Neuron doi: 10.1016/j.neuron.2020.09.036 – volume: 29 start-page: 141 year: 2012 ident: jneacc2e7bib53 article-title: The mnist database of handwritten digit images for machine learning research publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2211477 – volume: 813 start-page: 181 year: 1998 ident: jneacc2e7bib2 article-title: Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode publication-title: Brain Res. doi: 10.1016/s0006-8993(98)00977-9 – volume: 29 start-page: 13992 year: 2009 ident: jneacc2e7bib40 article-title: Decoding and reconstructing color from responses in human visual cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3577-09.2009 – volume: 184 start-page: 2767 year: 2021 ident: jneacc2e7bib27 article-title: High-precision coding in visual cortex publication-title: Cell doi: 10.1016/j.cell.2021.03.042 – start-page: pp 1 year: 2019 ident: jneacc2e7bib28 article-title: Decoding neural responses in mouse visual cortex through a deep neural network – volume: 148 start-page: 574 year: 1959 ident: jneacc2e7bib24 article-title: Receptive fields of single neurones in the cat’s striate cortex publication-title: J. Physiol. doi: 10.1113/jphysiol.1959.sp006308 – volume: 5 start-page: 18 year: 2011 ident: jneacc2e7bib9 article-title: Representation of visual scenes by local neuronal populations in layer 2/3 of mouse visual cortex publication-title: Front. Neural Circuits doi: 10.3389/fncir.2011.00018 – volume: 7 start-page: 399 year: 2010 ident: jneacc2e7bib29 article-title: High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision publication-title: Nat. Methods doi: 10.1038/nmeth.1453 – volume: 9 start-page: 2515 year: 2014 ident: jneacc2e7bib48 article-title: Removable cranial windows for long-term imaging in awake mice publication-title: Nat. Protocols doi: 10.1038/nprot.2014.165 – start-page: pp 656 year: 2018 ident: jneacc2e7bib59 article-title: Transfer learning for image classification – volume: 518 start-page: 2051 year: 2010 ident: jneacc2e7bib47 article-title: Receptive-field properties of V1 and V2 neurons in mice and macaque monkeys publication-title: J. Comp. Neurol. doi: 10.1002/cne.22321 – volume: 11 start-page: 1 year: 2020 ident: jneacc2e7bib36 article-title: Natural images are reliably represented by sparse and variable populations of neurons in visual cortex publication-title: Nat. Commun. doi: 10.1038/s41467-020-14645-x – volume: 129 year: 2022 ident: jneacc2e7bib44 article-title: EEG-ConvTransformer for single-trial EEG-based visual stimulus classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.108757 – volume: 2 start-page: S22 year: 2005 ident: jneacc2e7bib3 article-title: Creating a meaningful visual perception in blind volunteers by optic nerve stimulation publication-title: J. Neural Eng. doi: 10.1088/1741-2560/2/1/004 – volume: 32 start-page: 2668 year: 2021 ident: jneacc2e7bib19 article-title: Wide-field calcium imaging of dynamic cortical networks during locomotion publication-title: Cerebral Cortex doi: 10.1093/cercor/bhab373 – volume: 11 start-page: 1601 year: 2022 ident: jneacc2e7bib15 article-title: Wide-field calcium imaging of neuronal network dynamics in vivo publication-title: Biology doi: 10.3390/biology11111601 – start-page: pp 2917 year: 2020 ident: jneacc2e7bib63 article-title: Detecting mtbi by learning spatio-temporal characteristics of widefield calcium imaging data using deep learning – volume: 4 start-page: 181 year: 2020 ident: jneacc2e7bib4 article-title: Spatially selective activation of the visual cortex via intraneural stimulation of the optic nerve publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-019-0446-8 – volume: 42 start-page: 60 year: 2017 ident: jneacc2e7bib21 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 – volume: 6 start-page: 1 year: 2019 ident: jneacc2e7bib57 article-title: Contemporary approaches to visual prostheses publication-title: Mil. Med. Res. doi: 10.1186/s40779-019-0206-9 – volume: 65 start-page: 545 year: 2021 ident: jneacc2e7bib50 article-title: A review of medical image data augmentation techniques for deep learning applications publication-title: J. Med. Imaging Radiat. Oncol. doi: 10.1111/1754-9485.13261 – volume: 73 start-page: 415 year: 2012 ident: jneacc2e7bib22 article-title: How does the brain solve visual object recognition? publication-title: Neuron doi: 10.1016/j.neuron.2012.01.010 – volume: 535 start-page: 209 year: 2016 ident: jneacc2e7bib33 article-title: Brain-data gold mine released: massive survey of mouse visual-cortex activity aims to reveal brain’s computational rules publication-title: Nature doi: 10.1038/535209a – volume: 8 start-page: 1 year: 2017 ident: jneacc2e7bib41 article-title: Generic decoding of seen and imagined objects using hierarchical visual features publication-title: Nat. Commun. doi: 10.1038/ncomms15037 – volume: 300 start-page: 5 year: 1990 ident: jneacc2e7bib5 article-title: Topography of ganglion cells in human retina publication-title: J. Comp. Neurol. doi: 10.1002/cne.903000103 – year: 2012 ident: jneacc2e7bib49 article-title: Improving neural networks by preventing co-adaptation of feature detectors – volume: 73 start-page: 862 year: 2012 ident: jneacc2e7bib14 article-title: Imaging calcium in neurons publication-title: Neuron doi: 10.1016/j.neuron.2012.02.011 – volume: 19 start-page: 1 year: 2022 ident: jneacc2e7bib25 article-title: Neural decoding of visual information across different neural recording modalities and approaches publication-title: Mach. Intell. Res. doi: 10.1007/s11633-022-1335-2 – volume: 542 start-page: 115 year: 2017 ident: jneacc2e7bib64 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – volume: 18 year: 2021 ident: jneacc2e7bib7 article-title: Bayesian optimization of peripheral intraneural stimulation protocols to evoke distal limb movements publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ac3f6c – volume: 38 start-page: 7976 year: 2018 ident: jneacc2e7bib30 article-title: Robustness of spike deconvolution for neuronal calcium imaging publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3339-17.2018 – volume: 2 start-page: 1 year: 2020 ident: jneacc2e7bib60 article-title: Shallow convolutional neural network for image classification publication-title: SN Appl. Sci. doi: 10.1007/s42452-019-1903-4 – volume: 16 start-page: 473 year: 2018 ident: jneacc2e7bib34 article-title: Neuronal activities in the mouse visual cortex predict patterns of sensory stimuli publication-title: Neuroinformatics doi: 10.1007/s12021-018-9357-1 – volume: vol 31 year: 2018 ident: jneacc2e7bib56 article-title: To trust or not to trust a classifier – volume: 366 year: 2022 ident: jneacc2e7bib62 article-title: Automated sleep state classification of wide-field calcium imaging data via multiplex visibility graphs and deep learning publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2021.109421 – year: 2019 ident: jneacc2e7bib46 article-title: A global map of orientation tuning in mouse visual cortex doi: 10.1101/745323 – year: 2016 ident: jneacc2e7bib65 article-title: A baseline for detecting misclassified and out-of-distribution examples in neural networks – volume: 2 year: 2021 ident: jneacc2e7bib6 article-title: A machine learning framework to optimize optic nerve electrical stimulation for vision restoration publication-title: Patterns doi: 10.1016/j.patter.2021.100286 – volume: 5 start-page: 210s16 year: 2013 ident: jneacc2e7bib1 article-title: Fighting blindness with microelectronics publication-title: Sci. Trans. Med. doi: 10.1126/scitranslmed.3007399 – year: 2018 ident: jneacc2e7bib32 article-title: High-accuracy decoding of complex visual scenes from neuronal calcium responses doi: 10.1101/271296 – volume: 55 start-page: 22 year: 2019 ident: jneacc2e7bib26 article-title: Computational processing of neural recordings from calcium imaging data publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2018.11.005 – volume: 9 start-page: 2579 year: 2008 ident: jneacc2e7bib54 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – start-page: pp 2985 year: 2020 ident: jneacc2e7bib43 article-title: Decoding visual recognition of objects from eeg signals based on attention-driven convolutional neural network – volume: 3 start-page: 1 year: 2016 ident: jneacc2e7bib52 article-title: A survey of transfer learning publication-title: J. Big Data doi: 10.1186/s40537-016-0043-6 |
SSID | ssj0031790 |
Score | 2.3798823 |
Snippet | Objective.
The optic nerve is a good location for a visual neuroprosthesis. It can be targeted when a subject cannot receive a retinal prosthesis and it is... The optic nerve is a good location for a visual neuroprosthesis. It can be targeted when a subject cannot receive a retinal prosthesis and it is less invasive... Objective.The optic nerve is a good location for a visual neuroprosthesis. It can be targeted when a subject cannot receive a retinal prosthesis and it is less... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 26031 |
SubjectTerms | Algorithms Animals Calcium deep learning Humans Mice Neural Networks, Computer optic nerve Visual Cortex - physiology Visual Fields visual prostheses visual stimuli decoding wide-field imaging |
Title | Convolutional neural network classifies visual stimuli from cortical response recorded with wide-field imaging in mice |
URI | https://iopscience.iop.org/article/10.1088/1741-2552/acc2e7 https://www.ncbi.nlm.nih.gov/pubmed/36893458 https://www.proquest.com/docview/2786101880 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_uzhdfPPX82PODCCr40N1s0qYpPh2Hxyno-eDhPQghTSaw6naX2w_Qv95J0l040UOkkBY6bdPJZPLLZDID8Nx5IXwIonAl8oIUni4s1qpQvubYYEwlHe2Q7z-o0_Py3UV1sQOvt3thZvNe9Q_pMgcKzizsHeL0iDD0uCAkLEbWOYH1LtyIiSujeL89-7hRwzKGnsq7ISO14v0a5Z_ecGVM2qXv_h1upmHnZB--bCqcvU2-DVfLduh-_hbL8T__6Dbc6uEoO8qkd2AHu7twcNTRVHz6g71kyUE0Wd4PYH0869a9pNIzMRJmOiU_cuYiDJ8Emniz9WSxojukPKLvFYs7WBhNcpPVnF1mp1xk2TyEnkVTMBUei-ROxybTlDmJTTo2JTV2D85P3nw6Pi36tA3U3mO-LCIElTXXrWitt5VH4RuFdPjaCVuSyCjJ0QfeoHeh1q0kKpq3laryjSM4dR_2ulmHD4FVjVWubK0L45ZG0aZxQaJurSiDlyR8AxhtGs64PqZ5TK3x3aS1da1NZK2JrDWZtQN4tX1inuN5XEP7glrM9J16cQ0du0L3tUMjuBEmxmuTYzP3YQDPNgJlqP_GRRnb4Wy1MKLWKkZN03wAD7KkbSsmFaHJstKH_1iRR3BTEO-zY9Fj2FtervAJYaZl-zT1DSrP5Odf0ikTGQ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA-2gvgiav241o8IKviwXi7ZzWYfS_WoX9UHi30L2WQCJ3bv6H2A_70zSa5Q0CILuwub7IadSfKbyeQ3jL30QcoQo6x8DaLCAc9UDlpd6dAK6IBSSZMf8suJPj6tP541ZyXPadoLM1-Uof8t3mai4PwLS0CcGSOGnlSIhOXYeS-hHS9C3GE3G6UbIs__qn5sh2JF9FN5RyTV0KKsU_7tLVfmpR389r8hZ5p6pnfZnYIZ-WFu4T12A4b7bO9wQHv5_Dd_zVMUZ3KP77HN0XzYFHXCOkRXmS4p2Jt7wsqziNYx38yWa3yCPZwCpDhtM-FoiSbXNr_IkbPAsw8HAid_LZ4CVCnmjc_OU3ojPhs4JbR_wE6n778fHVcltwIKZSJWFeFE1QrTy94F1wSQodOAR2i9dDXKVSsBIYoOgo-t6RWWQuOq1k3oPGKeh2x3mA_wmPGmc9rXvfNx0uNU13U-KjC9k3UMCjVkxMbbP2t9IR6n_Be_bFoAN8aSLCzJwmZZjNibyxqLTLpxTdlXKCxbet7ymnL8SrmfA1gprLREqqYmFpVoxF5sJW6xk9HKiRtgvl5a2RpN1GZGjNijrAqXDVMaIV_dmP3_bMhzduvbu6n9_OHk0wG7TdnrcyDQE7a7uljDU8Q4q_5Z0uM_PJH2pQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+neural+network+classifies+visual+stimuli+from+cortical+response+recorded+with+wide-field+imaging+in+mice&rft.jtitle=Journal+of+neural+engineering&rft.au=De+Luca%2C+Daniela&rft.au=Moccia%2C+Sara&rft.au=Lupori%2C+Leonardo&rft.au=Mazziotti%2C+Raffaele&rft.date=2023-04-01&rft.eissn=1741-2552&rft.volume=20&rft.issue=2&rft_id=info:doi/10.1088%2F1741-2552%2Facc2e7&rft_id=info%3Apmid%2F36893458&rft.externalDocID=36893458 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |