Electrodynamics and Radiation from Rotating Neutron Star Magnetospheres

Neutron stars are compact objects rotating at high speed, up to a substantial fraction of the speed of light (up to 20% for millisecond pulsars) and possessing ultra-strong electromagnetic fields (close to and sometimes above the quantum critical field of 4.4 × 10 9 T ). Moreover, due to copious e ±...

Full description

Saved in:
Bibliographic Details
Published inUniverse (Basel) Vol. 6; no. 1; p. 15
Main Author Pétri, Jérôme
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2020
MDPI
Subjects
Online AccessGet full text
ISSN2218-1997
2218-1997
DOI10.3390/universe6010015

Cover

Abstract Neutron stars are compact objects rotating at high speed, up to a substantial fraction of the speed of light (up to 20% for millisecond pulsars) and possessing ultra-strong electromagnetic fields (close to and sometimes above the quantum critical field of 4.4 × 10 9 T ). Moreover, due to copious e ± pair creation within the magnetosphere, the relativistic plasma surrounding the star is forced into corotation up to the light cylinder where the corotation speed reaches the speed of light. The neutron star electromagnetic activity is powered by its rotation which becomes relativistic in the neighborhood of this light cylinder. These objects naturally induce relativistic rotation on macroscopic scales about several thousands of kilometers, a crucial ingredient to trigger the central engine as observed on Earth. In this paper, we elucidate some of the salient features of this corotating plasma subject to efficient particle acceleration and radiation, emphasizing several problems and limitations concerning current theories of neutron star magnetospheres. Relativistic rotation in these systems is indirectly probed by the radiation produced within the magnetosphere. Depending on the underlying assumptions about particle motion and radiation mechanisms, different signatures on their light curves, spectra, pulse profiles and polarization angles are expected in their broadband electromagnetic emission. We show that these measurements put stringent constraints on the way to describe particle electrodynamics in a rotating neutron star magnetosphere.
AbstractList Neutron stars are compact objects rotating at high speed, up to a substantial fraction of the speed of light (up to 20% for millisecond pulsars) and possessing ultra-strong electromagnetic fields (close to and sometimes above the quantum critical field of 4.4 ×109 T). Moreover, due to copious e± pair creation within the magnetosphere, the relativistic plasma surrounding the star is forced into corotation up to the light cylinder where the corotation speed reaches the speed of light. The neutron star electromagnetic activity is powered by its rotation which becomes relativistic in the neighborhood of this light cylinder. These objects naturally induce relativistic rotation on macroscopic scales about several thousands of kilometers, a crucial ingredient to trigger the central engine as observed on Earth. In this paper, we elucidate some of the salient features of this corotating plasma subject to efficient particle acceleration and radiation, emphasizing several problems and limitations concerning current theories of neutron star magnetospheres. Relativistic rotation in these systems is indirectly probed by the radiation produced within the magnetosphere. Depending on the underlying assumptions about particle motion and radiation mechanisms, different signatures on their light curves, spectra, pulse profiles and polarization angles are expected in their broadband electromagnetic emission. We show that these measurements put stringent constraints on the way to describe particle electrodynamics in a rotating neutron star magnetosphere.
Neutron stars are compact objects rotating at high speed, up to a substantial fraction of the speed of light (up to 20% for millisecond pulsars) and possessing ultra-strong electromagnetic fields (close to and sometimes above the quantum critical field of 4.4 × 10 9 T ). Moreover, due to copious e ± pair creation within the magnetosphere, the relativistic plasma surrounding the star is forced into corotation up to the light cylinder where the corotation speed reaches the speed of light. The neutron star electromagnetic activity is powered by its rotation which becomes relativistic in the neighborhood of this light cylinder. These objects naturally induce relativistic rotation on macroscopic scales about several thousands of kilometers, a crucial ingredient to trigger the central engine as observed on Earth. In this paper, we elucidate some of the salient features of this corotating plasma subject to efficient particle acceleration and radiation, emphasizing several problems and limitations concerning current theories of neutron star magnetospheres. Relativistic rotation in these systems is indirectly probed by the radiation produced within the magnetosphere. Depending on the underlying assumptions about particle motion and radiation mechanisms, different signatures on their light curves, spectra, pulse profiles and polarization angles are expected in their broadband electromagnetic emission. We show that these measurements put stringent constraints on the way to describe particle electrodynamics in a rotating neutron star magnetosphere.
Author Pétri, Jérôme
Author_xml – sequence: 1
  givenname: Jérôme
  surname: Pétri
  fullname: Pétri, Jérôme
BackLink https://hal.science/hal-02467274$$DView record in HAL
BookMark eNp1kU1LXDEUhoNYqLWuu73gqoup-c69SxGrwrQFq-twbu7JmOFOMk0ygv_e6JTSCl2dD573geR8IIcxRSTkE6NfhBjo2S6GR8wFNWWUMnVAjjhn_YINgzn8q39PTkpZ04YY1cb-iFxdzuhqTtNThE1wpYM4dbcwBaghxc7ntOluU21TXHXfcdfQ2P2skLtvsIpYU9k-YMbykbzzMBc8-V2Pyf3Xy7uL68Xyx9XNxfly4SSjdWH8KEetUZiBSS0HNQ6KetNrJ8Ukkbmec0DU4yQY05xrh94YxbwHpz2dxDG52XunBGu7zWED-ckmCPZ1kfLKQq7BzWjBI_Y4UcOEklPvxlEYwUYwgguOCM31ee96gPkf1fX50r7sKJfacCMfWWNP9-w2p187LNWu0y7H9lTLlaJ8kJzpRp3tKZdTKRn9Hy2j9uVQ9s2hWkK9SbhQX_--Zgjzf3PPev-bXQ
CitedBy_id crossref_primary_10_3847_1538_4357_ac3dea
crossref_primary_10_3390_universe6120224
crossref_primary_10_3847_1538_4357_ad1f67
crossref_primary_10_1093_mnras_stac572
crossref_primary_10_3390_universe10030130
crossref_primary_10_1093_mnras_stab615
crossref_primary_10_1088_1538_3873_ac9ad8
crossref_primary_10_1093_mnras_stae933
crossref_primary_10_1140_epjp_s13360_023_03730_x
crossref_primary_10_3390_universe7090351
crossref_primary_10_3390_galaxies12010007
crossref_primary_10_1007_s12036_021_09735_1
crossref_primary_10_1093_mnras_stab2830
crossref_primary_10_3390_universe8120628
crossref_primary_10_1051_0004_6361_202039853
Cites_doi 10.1086/174493
10.1086/154446
10.1088/0004-637X/715/2/1270
10.1093/mnras/97.6.458
10.1006/jcph.1993.1044
10.1086/175076
10.1051/0004-6361/200911778
10.1086/507518
10.1088/0004-637X/749/1/2
10.1088/0067-0049/208/2/17
10.1086/383121
10.1093/mnras/stw1379
10.1086/168340
10.1051/0004-6361:20066985
10.1007/s12036-017-9457-6
10.1093/mnras/stv2613
10.1088/0004-637X/746/1/60
10.1086/143324
10.1111/j.1365-2966.2010.18023.x
10.3847/2041-8213/ab53e7
10.1007/978-3-540-30726-6
10.1111/j.1365-2966.2005.09932.x
10.1086/169850
10.1093/mnras/stz360
10.1063/1.872837
10.1086/431973
10.1111/j.1365-2966.2012.21238.x
10.1086/150119
10.1051/0004-6361:20020599
10.1051/0004-6361:20020044
10.1051/0004-6361:20031239
10.1051/0004-6361:20078442
10.1029/JZ070i019p04951
10.1093/mnras/stz711
10.1007/978-3-642-01290-7
10.1093/mnras/213.1.43P
10.1111/j.1365-2966.2006.10192.x
10.1111/j.1365-2966.2011.19884.x
10.1086/148028
10.1093/mnras/stv2577
10.1016/S0370-1573(99)00002-2
10.1007/978-3-540-76965-1
10.1086/309051
10.1093/mnras/stz2974
10.1086/113078
10.1063/1.2900262
10.1093/mnras/sty620
10.1088/0004-637X/781/1/46
10.1086/379052
10.1103/RevModPhys.71.87
10.1051/0004-6361:20020442
10.1086/190608
10.1093/mnras/stv042
10.1088/0004-637X/715/2/1282
10.1088/2041-8205/785/2/L33
10.1086/306652
10.1086/177734
10.1111/j.1365-2966.2012.20969.x
10.1007/978-94-017-0528-8
10.3847/2041-8213/ab511b
10.1093/mnras/stu2626
ContentType Journal Article
Copyright 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
1XC
VOOES
DOA
DOI 10.3390/universe6010015
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2218-1997
ExternalDocumentID oai_doaj_org_article_afee8ed071354d8cbb3731ba73232eea
oai_HAL_hal_02467274v1
10_3390_universe6010015
GroupedDBID 5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
KQ8
LK5
M7R
MODMG
M~E
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
1XC
ABDBF
IPNFZ
ITC
RIG
VOOES
PUEGO
ID FETCH-LOGICAL-c410t-7fb4b66e379146495b950f786c43d4e1c822aee6bd3116226cef7751ffac6f0d3
IEDL.DBID DOA
ISSN 2218-1997
IngestDate Wed Aug 27 01:32:58 EDT 2025
Thu Jul 10 08:58:44 EDT 2025
Fri Jul 04 22:28:00 EDT 2025
Tue Jul 01 04:33:34 EDT 2025
Thu Apr 24 23:06:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords corotation
magnetosphere
neutron stars
plasma
radiation
electrodynamics
Language English
License https://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-7fb4b66e379146495b950f786c43d4e1c822aee6bd3116226cef7751ffac6f0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3790-8066
OpenAccessLink https://doaj.org/article/afee8ed071354d8cbb3731ba73232eea
PQID 2550294216
PQPubID 2059542
ParticipantIDs doaj_primary_oai_doaj_org_article_afee8ed071354d8cbb3731ba73232eea
hal_primary_oai_HAL_hal_02467274v1
proquest_journals_2550294216
crossref_primary_10_3390_universe6010015
crossref_citationtrail_10_3390_universe6010015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Universe (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Roberts (ref_15) 1979; 41
(ref_76) 2019; 485
Jackson (ref_26) 1976; 206
Heyvaerts (ref_64) 2002; 384
ref_12
Chandrasekhar (ref_1) 1931; 74
ref_11
ref_10
Bai (ref_16) 2010; 715
Cao (ref_39) 2016; 461
Landau (ref_2) 1932; 1
Mitra (ref_74) 2020; 491
Cheng (ref_21) 2000; 537
Coroniti (ref_53) 1990; 349
Li (ref_42) 2012; 746
Kirk (ref_54) 2005; 627
(ref_69) 2007; 469
Timokhin (ref_35) 2006; 368
Abdo (ref_6) 2013; 208
ref_60
Herold (ref_22) 1985; 63
Dubin (ref_61) 1998; 5
(ref_55) 2011; 412
ref_23
Cao (ref_38) 2016; 455
Spruit (ref_4) 2008; 983
Finkbeiner (ref_27) 1989; 225
Contopoulos (ref_32) 1999; 511
(ref_37) 2012; 424
ref_29
Philippov (ref_57) 2014; 785
(ref_70) 2008; 478
Heyvaerts (ref_67) 2003; 411
Deutsch (ref_13) 1955; 18
Bai (ref_17) 2010; 715
ref_71
Contopoulos (ref_56) 2014; 781
(ref_68) 2009; 503
Goldreich (ref_8) 1969; 157
Kirk (ref_51) 2002; 388
Kosloff (ref_46) 1993; 104
Ferraro (ref_59) 1937; 97
ref_75
ref_30
Parfrey (ref_47) 2012; 423
Mitra (ref_72) 2017; 38
Komissarov (ref_34) 2006; 367
Michel (ref_28) 1999; 318
Kalapotharakos (ref_43) 2012; 749
Romani (ref_18) 1995; 438
Moffett (ref_31) 1996; 468
Woltjer (ref_3) 1964; 140
Michel (ref_52) 1994; 431
Lyubarskii (ref_50) 1996; 311
Michel (ref_63) 1985; 213
(ref_24) 2018; 477
Hones (ref_65) 1965; 70
Heyvaerts (ref_66) 2002; 387
Dyks (ref_20) 2004; 606
(ref_25) 2019; 484
ref_45
Dubin (ref_62) 1999; 71
ref_44
Dyks (ref_19) 2003; 598
(ref_40) 2015; 447
Manchester (ref_5) 1981; 86
ref_49
Cerutti (ref_58) 2015; 448
ref_48
ref_9
Kalapotharakos (ref_36) 2012; 420
Belinsky (ref_14) 1994; 283
(ref_41) 2016; 455
Spitkovsky (ref_33) 2006; 648
Blaskiewicz (ref_73) 1991; 370
ref_7
References_xml – ident: ref_49
– volume: 431
  start-page: 397
  year: 1994
  ident: ref_52
  article-title: Magnetic structure of pulsar winds
  publication-title: Astrophys. J.
  doi: 10.1086/174493
– volume: 206
  start-page: 831
  year: 1976
  ident: ref_26
  article-title: A new pulsar atmospheric model. I - Aligned magnetic and rotational axes
  publication-title: Astrophys. J.
  doi: 10.1086/154446
– volume: 715
  start-page: 1270
  year: 2010
  ident: ref_16
  article-title: Uncertainties of Modeling Gamma-ray Pulsar Light Curves Using Vacuum Dipole Magnetic Field
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/715/2/1270
– volume: 97
  start-page: 458
  year: 1937
  ident: ref_59
  article-title: The Non-uniform Rotation of the Sun and its Magnetic Field
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/97.6.458
– volume: 104
  start-page: 457
  year: 1993
  ident: ref_46
  article-title: A Modified Chebyshev Pseudospectral Method with an O(N-1$) Time Step Restriction
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1993.1044
– volume: 438
  start-page: 314
  year: 1995
  ident: ref_18
  article-title: Gamma-ray pulsars: Emission zones and viewing geometries
  publication-title: Astrophys. J.
  doi: 10.1086/175076
– volume: 503
  start-page: 1
  year: 2009
  ident: ref_68
  article-title: Non-linear evolution of the diocotron instability in a pulsar electrosphere: Two-dimensional particle-in-cell simulations
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/200911778
– volume: 648
  start-page: L51
  year: 2006
  ident: ref_33
  article-title: Time-dependent Force-free Pulsar Magnetospheres: Axisymmetric and Oblique Rotators
  publication-title: Astrophys. J.
  doi: 10.1086/507518
– volume: 749
  start-page: 2
  year: 2012
  ident: ref_43
  article-title: Toward a Realistic Pulsar Magnetosphere
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/749/1/2
– volume: 208
  start-page: 17
  year: 2013
  ident: ref_6
  article-title: The Second Fermi Large Area Telescope Catalog of Gamma-Ray Pulsars
  publication-title: Astrophys. J. Suppl. Ser.
  doi: 10.1088/0067-0049/208/2/17
– volume: 606
  start-page: 1125
  year: 2004
  ident: ref_20
  article-title: Relativistic Effects and Polarization in Three High-Energy Pulsar Models
  publication-title: Astrophys. J.
  doi: 10.1086/383121
– ident: ref_23
– volume: 461
  start-page: 1068
  year: 2016
  ident: ref_39
  article-title: An oblique pulsar magnetosphere with a plasma conductivity
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stw1379
– volume: 349
  start-page: 538
  year: 1990
  ident: ref_53
  article-title: Magnetically striped relativistic magnetohydrodynamic winds—The Crab Nebula revisited
  publication-title: Astrophys. J.
  doi: 10.1086/168340
– volume: 469
  start-page: 843
  year: 2007
  ident: ref_69
  article-title: Relativistic stabilisation of the diocotron instability in a pulsar “cylindrical” electrosphere
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20066985
– volume: 38
  start-page: 52
  year: 2017
  ident: ref_72
  article-title: Nature of Coherent Radio Emission from Pulsars
  publication-title: J. Astrophys. Astron.
  doi: 10.1007/s12036-017-9457-6
– volume: 225
  start-page: 479
  year: 1989
  ident: ref_27
  article-title: Effects of radiation damping on particle motion in pulsar vacuum fields
  publication-title: Astron. Astrophys.
– volume: 455
  start-page: 3779
  year: 2016
  ident: ref_41
  article-title: General-relativistic force-free pulsar magnetospheres
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stv2613
– volume: 746
  start-page: 60
  year: 2012
  ident: ref_42
  article-title: Resistive Solutions for Pulsar Magnetospheres
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/746/1/60
– volume: 74
  start-page: 81
  year: 1931
  ident: ref_1
  article-title: The Maximum Mass of Ideal White Dwarfs
  publication-title: Astrophys. J.
  doi: 10.1086/143324
– volume: 412
  start-page: 1870
  year: 2011
  ident: ref_55
  article-title: A unified polar cap/striped wind model for pulsed radio and gamma-ray emission in pulsars
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2010.18023.x
– ident: ref_48
– ident: ref_10
– ident: ref_75
  doi: 10.3847/2041-8213/ab53e7
– ident: ref_44
  doi: 10.1007/978-3-540-30726-6
– volume: 367
  start-page: 19
  year: 2006
  ident: ref_34
  article-title: Simulations of the axisymmetric magnetospheres of neutron stars
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2005.09932.x
– volume: 370
  start-page: 643
  year: 1991
  ident: ref_73
  article-title: A relativistic model of pulsar polarization
  publication-title: Astrophys. J.
  doi: 10.1086/169850
– volume: 484
  start-page: 5669
  year: 2019
  ident: ref_25
  article-title: Pulsar gamma-ray emission in the radiation reaction regime
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stz360
– ident: ref_45
– volume: 63
  start-page: 174
  year: 1985
  ident: ref_22
  article-title: Generation of relativistic particles in pulsar magnetospheres
  publication-title: Mitteilungen Der Astron. Ges. Hambg.
– volume: 18
  start-page: 1
  year: 1955
  ident: ref_13
  article-title: The electromagnetic field of an idealized star in rigid rotation in vacuo
  publication-title: Ann. D’Astrophys.
– volume: 5
  start-page: 1688
  year: 1998
  ident: ref_61
  article-title: Collisional transport in non-neutral plasmas
  publication-title: Phys. Plasmas
  doi: 10.1063/1.872837
– ident: ref_30
– volume: 627
  start-page: L37
  year: 2005
  ident: ref_54
  article-title: The Polarization of High-Energy Pulsar Radiation in the Striped Wind Model
  publication-title: Astrophys. J.
  doi: 10.1086/431973
– volume: 283
  start-page: 1018
  year: 1994
  ident: ref_14
  article-title: Radiation from a relativistic rotating magnetic dipole: Magnetic synchrotron effect
  publication-title: Astron. Astrophys.
– volume: 424
  start-page: 605
  year: 2012
  ident: ref_37
  article-title: The pulsar force-free magnetosphere linked to its striped wind: time-dependent pseudo-spectral simulations
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2012.21238.x
– volume: 157
  start-page: 869
  year: 1969
  ident: ref_8
  article-title: Pulsar Electrodynamics
  publication-title: Astrophys. J.
  doi: 10.1086/150119
– ident: ref_11
– volume: 311
  start-page: 172
  year: 1996
  ident: ref_50
  article-title: A model for the energetic emission from pulsars
  publication-title: Astron. Astrophys.
– volume: 388
  start-page: L29
  year: 2002
  ident: ref_51
  article-title: Pulsed radiation from neutron star winds
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20020599
– volume: 384
  start-page: 414
  year: 2002
  ident: ref_64
  article-title: Global static electrospheres of charged pulsars
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20020044
– volume: 411
  start-page: 203
  year: 2003
  ident: ref_67
  article-title: Cross-field charge transport by the diocotron instability in pulsar magnetospheres with gaps
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20031239
– volume: 478
  start-page: 31
  year: 2008
  ident: ref_70
  article-title: The magnetron instability in a pulsar’s cylindrical electrosphere
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20078442
– volume: 70
  start-page: 4951
  year: 1965
  ident: ref_65
  article-title: Electric field generated by a rotating magnetized sphere
  publication-title: J. Geophys. Res.
  doi: 10.1029/JZ070i019p04951
– volume: 485
  start-page: 4573
  year: 2019
  ident: ref_76
  article-title: The illusion of neutron star magnetic field estimates
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stz711
– ident: ref_12
  doi: 10.1007/978-3-642-01290-7
– volume: 213
  start-page: 43P
  year: 1985
  ident: ref_63
  article-title: Electrosphere of an aligned magnetized neutron star
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/213.1.43P
– volume: 368
  start-page: 1055
  year: 2006
  ident: ref_35
  article-title: On the force-free magnetosphere of an aligned rotator
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2006.10192.x
– volume: 420
  start-page: 2793
  year: 2012
  ident: ref_36
  article-title: The extended pulsar magnetosphere
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2011.19884.x
– volume: 140
  start-page: 1309
  year: 1964
  ident: ref_3
  article-title: X-Rays and Type I Supernova Remnants
  publication-title: Astrophys. J.
  doi: 10.1086/148028
– volume: 1
  start-page: 285
  year: 1932
  ident: ref_2
  article-title: On the theory of Stars
  publication-title: Phys. Z. Der Sowjetunion
– volume: 455
  start-page: 4267
  year: 2016
  ident: ref_38
  article-title: Spectral simulations of an axisymmetric force-free pulsar magnetosphere
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stv2577
– volume: 318
  start-page: 227
  year: 1999
  ident: ref_28
  article-title: Electrodynamics of neutron stars
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(99)00002-2
– ident: ref_71
  doi: 10.1007/978-3-540-76965-1
– volume: 537
  start-page: 964
  year: 2000
  ident: ref_21
  article-title: A Three-dimensional Outer Magnetospheric Gap Model for Gamma-Ray Pulsars: Geometry, Pair Production, Emission Morphologies, and Phase-resolved Spectra
  publication-title: Astrophys. J.
  doi: 10.1086/309051
– ident: ref_29
– volume: 491
  start-page: 80
  year: 2020
  ident: ref_74
  article-title: Joint radio and X-ray modelling of PSR J1136+1551
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stz2974
– volume: 86
  start-page: 1953
  year: 1981
  ident: ref_5
  article-title: Observed and derived parameters for 330 pulsars
  publication-title: Astron. J.
  doi: 10.1086/113078
– volume: 983
  start-page: 391
  year: 2008
  ident: ref_4
  article-title: Origin of neutron star magnetic fields
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.2900262
– volume: 477
  start-page: 1035
  year: 2018
  ident: ref_24
  article-title: General-relativistic pulsar magnetospheric emission
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/sty620
– volume: 781
  start-page: 46
  year: 2014
  ident: ref_56
  article-title: A New Standard Pulsar Magnetosphere
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/781/1/46
– volume: 598
  start-page: 1201
  year: 2003
  ident: ref_19
  article-title: Two-Pole Caustic Model for High-Energy Light Curves of Pulsars
  publication-title: Astrophys. J.
  doi: 10.1086/379052
– volume: 71
  start-page: 87
  year: 1999
  ident: ref_62
  article-title: Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states)
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.71.87
– volume: 387
  start-page: 520
  year: 2002
  ident: ref_66
  article-title: Diocotron instability in pulsar electrospheres. I. Linear analysis
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20020442
– volume: 41
  start-page: 75
  year: 1979
  ident: ref_15
  article-title: Electromagnetic multipole fields of neutron stars
  publication-title: Astrophys. J. Suppl. Ser.
  doi: 10.1086/190608
– volume: 448
  start-page: 606
  year: 2015
  ident: ref_58
  article-title: Particle acceleration in axisymmetric pulsar current sheets
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stv042
– volume: 715
  start-page: 1282
  year: 2010
  ident: ref_17
  article-title: Modeling of Gamma-ray Pulsar Light Curves Using the Force-free Magnetic Field
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/715/2/1282
– volume: 785
  start-page: L33
  year: 2014
  ident: ref_57
  article-title: Ab Initio pulsar magnetosphere: Three-dimensional particle-in-cell simulations of axisymmetric pulsars
  publication-title: Astrophys. J. Lett.
  doi: 10.1088/2041-8205/785/2/L33
– volume: 511
  start-page: 351
  year: 1999
  ident: ref_32
  article-title: The axisymmetric pulsar magnetosphere
  publication-title: Astrophys. J.
  doi: 10.1086/306652
– volume: 468
  start-page: 779
  year: 1996
  ident: ref_31
  article-title: Multifrequency Radio Observations of the Crab Pulsar
  publication-title: Astrophys. J.
  doi: 10.1086/177734
– ident: ref_60
– volume: 423
  start-page: 1416
  year: 2012
  ident: ref_47
  article-title: Introducing PHAEDRA: A new spectral code for simulations of relativistic magnetospheres
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2012.20969.x
– ident: ref_9
  doi: 10.1007/978-94-017-0528-8
– ident: ref_7
  doi: 10.3847/2041-8213/ab511b
– volume: 447
  start-page: 3170
  year: 2015
  ident: ref_40
  article-title: General relativistic monopole magnetosphere of neutron stars: A pseudo-spectral discontinuous Galerkin approach
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stu2626
SSID ssj0001759978
Score 2.261145
Snippet Neutron stars are compact objects rotating at high speed, up to a substantial fraction of the speed of light (up to 20% for millisecond pulsars) and possessing...
SourceID doaj
hal
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 15
SubjectTerms Astrophysics
Coordinate transformations
corotation
electrodynamics
Electromagnetic fields
Electromagnetism
Emission measurements
Magnetic fields
magnetosphere
Neutron stars
Neutrons
Physics
plasma
Radiation
Spacetime
Theory of relativity
Velocity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgFRIXVAqIhbayKg5cQuPYsZNT1VZbVoiu0IpKvUX-GC8HlJTNLr-fmcTbQqVydZwcZsYzb8aTeYx9QMQabGVcVksbMlULlTnhTIbIwSM8UHUYugmv5np2rb7clDep4NantsqtTxwcdeg81chPEPrmRa0KoU9vf2XEGkW3q4lC4ynbRRdcoZ3vnk_n3xb3VRZT1pgnjTN9JOb3J5ux3wEoEcmJDPevcDRM7ccg84N6Ih-45iHeXO6xFwko8rNRsy_ZE2j32bOhYdP3r9jn6chfE0ZG-Z7bNvAFDRogSXP6a4QvOrpnb5d8DhuqeHNElit-ZZctrLue5glA_5pdX06_X8yyRIqQeSXydWaiU05rkAblqjG9cXWZR1Npr2RQIDxGfAugXZBCaARXHqIxpYjReh3zIN-wnbZr4S3juSxqrxCDRV0rX3mrokAVlUU0LmBsm7BPW9k0Pk0MJ-KKnw1mDiTM5oEwJ-zj3Qu347CMx7eek7DvttGU62GhWy2bdGgaGwEqCAONoAqVd04aKZw1EnEggJ2wY1TVP9-YnX1taA2hB90xq99iwg62mmzS-eybe2t69__H79nzgjLsoehywHbWqw0cIgxZu6Nka38AjsfdpA
  priority: 102
  providerName: ProQuest
Title Electrodynamics and Radiation from Rotating Neutron Star Magnetospheres
URI https://www.proquest.com/docview/2550294216
https://hal.science/hal-02467274
https://doaj.org/article/afee8ed071354d8cbb3731ba73232eea
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhJdBLaZuEbpMGEXroxYllyZJ1TMqmS2iWsDSQm9HHKD0Ub4l38_s7IzthEyi99CpkI2Zsz3vS-D3GPiNija4xvrDSxUJZoQovvCkQOQSEB8rG3E14NdezG3V5W99uWH1RT9ggDzwE7tQlgAZitpJTsQneSyOFd0YiFgDI0Ki05QaZyrsrprbIjwYtH4m8_nQ99DkAEZCSTHA3ylBW68fi8pN6IV98knOduXjL3owAkZ8NC3vHtqB7z3Zyo2bod9m36eBbEwcn-Z67LvIFCQxQhDn9LcIXSzpf7-74HNa0080RUd7zK3fXwWrZk44A9Hvs5mL64-usGM0QiqBEuSpM8sprDdJgPDXSGm_rMplGByWjAhGw0jsA7aMUQiOoCpCMqUVKLuhURrnPtrtlBx8YL2Vlg0LslbRVoQlOJYGpqatkfMSaNmEnj7Fpw6gUToYVv1pkDBTM9kUwJ-zL0wW_B5GMv089p2A_TSN16zyAOW_HnLf_yvmEHWOqnt1jdva9pTGEHHS2rB7EhB0-ZrId38u-RQJVVlZVQn_8Hws5YK8r4t95S-aQba_u1_AJQcrKH7FX59P59eIoP5d_AI3I54g
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAguiKcIFFghkLiYer1rr31AqIWUlCYRilqpN7PPcEB2iRMQf4rfyIzttFAJbr2u1ytrZrzzzezsfAAvELE6nSsTFUK7SBZcRoYbFSFysAgPZOHaasLpLBufyI-n6ekW_NrchaGyys2e2G7UrraUI99F6BsnhUx49vbsW0SsUXS6uqHQ6MziyP_8gSFb8-bwPer3ZZIcjI7fjaOeVSCykserSAUjTZZ5ofDDMowPTJHGQeWZlcJJzy26TO19ZpzgPEN0Yn1QKuUhaJuF2Alc9xpsS7rROoDt_dHs0_wiq6PSAuOyroeQEEW8u-7qKzwFPjGR7_7h_lqWAHRqX6gG85IraP3bwW241QNTttdZ0h3Y8tVduN4WiNrmHnwYdXw5rmOwb5iuHJtTYwPSLKNbKmxe07l-tWAzv6YMO0Mku2RTvaj8qm6of4Fv7sPJlYjrAQyquvIPgcUiKaxEzBeyQtrcahk4mkSaBGUc-tIhvN7IprR9h3IiyvhaYqRCwiwvCXMIr85fOOuac_x76j4J-3waddVuB-rloux_0lIH73PvWtpC6XJrjFCCG60E4k7v9RCeo6r-WmO8NylpDKEOnWnL73wIOxtNlv1-0JQX1vvo_4-fwY3x8XRSTg5nR4_hZkLRfZvw2YHBarn2TxACrczT3u4YfL5qU_8N0vUaeg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE-xpYCFQOISNo4dOzkg1NJdtrRdVSsq9Zb6uRxQ0m52Qfw1fh3jPFqoBLdeHceKZiaeb8bj-QBeI2K1KpM6ypmyEc8pjzTVMkLkYBAe8Nw21YRHMzE94Z9P09MN-NXfhQlllf2e2GzUtjIhRz5C6BsnOU-oGPmuLOJ4b_Lh_CIKDFLhpLWn02hN5MD9_IHhW_1-fw91_SZJJuMvH6dRxzAQGU7jVSS95loIxyR-pMBYQedp7GUmDGeWO2rQfSrnhLaMUoFIxTgvZUq9V0b42DJc9xZsSvSKfACbu-PZ8fwqwyPTHGO0tp8QY3k8Wre1Fi4EQXEg4v3DFTaMAejgvoZ6zGtuofF1k_twrwOpZKe1qgew4cqHcLspFjX1I_g0brlzbMtmXxNVWjIPTQ6Clkm4sULmVTjjLxdk5tYh204Q1S7JkVqUblXVoZeBqx_DyY2I6wkMyqp0T4HELMkNR_znRc5NZhT3FM0jTbzUFv3qEN71silM1608kGZ8KzBqCcIsrglzCG8vXzhvG3X8e-puEPbltNBhuxmoloui-2EL5Z3LnG0oDLnNjNZMMqqVZIhBnVNDeIWq-muN6c5hEcYQ9oTzbf6dDmG712TR7Q11cWXJW_9__BLuoIkXh_uzg2dwNwmBfpP72YbBarl2zxENrfSLzuwInN20pf8Gmjcepg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrodynamics+and+Radiation+from+Rotating+Neutron+Star+Magnetospheres&rft.jtitle=Universe+%28Basel%29&rft.au=P%C3%A9tri%2C+J%C3%A9r%C3%B4me&rft.date=2020-01-01&rft.issn=2218-1997&rft.eissn=2218-1997&rft.volume=6&rft.issue=1&rft.spage=15&rft_id=info:doi/10.3390%2Funiverse6010015&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_universe6010015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-1997&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-1997&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-1997&client=summon