Information content and analysis methods for Multi-Modal High-Throughput Biomedical Data
The spectrum of modern molecular high-throughput assaying includes diverse technologies such as microarray gene expression, miRNA expression, proteomics, DNA methylation, among many others. Now that these technologies have matured and become increasingly accessible, the next frontier is to collect “...
Saved in:
Published in | Scientific reports Vol. 4; no. 1; p. 4411 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
21.03.2014
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/srep04411 |
Cover
Loading…
Abstract | The spectrum of modern molecular high-throughput assaying includes diverse technologies such as microarray gene expression, miRNA expression, proteomics, DNA methylation, among many others. Now that these technologies have matured and become increasingly accessible, the next frontier is to collect “multi-modal” data for the same set of subjects and conduct integrative, multi-level analyses. While multi-modal data does contain distinct biological information that can be useful for answering complex biology questions, its value for predicting clinical phenotypes and contributions of each type of input remain unknown. We obtained 47 datasets/predictive tasks that in total span over 9 data modalities and executed analytic experiments for predicting various clinical phenotypes and outcomes. First, we analyzed each modality separately using uni-modal approaches based on several state-of-the-art supervised classification and feature selection methods. Then, we applied integrative multi-modal classification techniques. We have found that gene expression is the most predictively informative modality. Other modalities such as protein expression, miRNA expression and DNA methylation also provide highly predictive results, which are often statistically comparable but not superior to gene expression data. Integrative multi-modal analyses generally do not increase predictive signal compared to gene expression data. |
---|---|
AbstractList | The spectrum of modern molecular high-throughput assaying includes diverse technologies such as microarray gene expression, miRNA expression, proteomics, DNA methylation, among many others. Now that these technologies have matured and become increasingly accessible, the next frontier is to collect “multi-modal” data for the same set of subjects and conduct integrative, multi-level analyses. While multi-modal data does contain distinct biological information that can be useful for answering complex biology questions, its value for predicting clinical phenotypes and contributions of each type of input remain unknown. We obtained 47 datasets/predictive tasks that in total span over 9 data modalities and executed analytic experiments for predicting various clinical phenotypes and outcomes. First, we analyzed each modality separately using uni-modal approaches based on several state-of-the-art supervised classification and feature selection methods. Then, we applied integrative multi-modal classification techniques. We have found that gene expression is the most predictively informative modality. Other modalities such as protein expression, miRNA expression, and DNA methylation also provide highly predictive results, which are often statistically comparable but not superior to gene expression data. Integrative multi-modal analyses generally do not increase predictive signal compared to gene expression data. The spectrum of modern molecular high-throughput assaying includes diverse technologies such as microarray gene expression, miRNA expression, proteomics, DNA methylation, among many others. Now that these technologies have matured and become increasingly accessible, the next frontier is to collect "multi-modal" data for the same set of subjects and conduct integrative, multi-level analyses. While multi-modal data does contain distinct biological information that can be useful for answering complex biology questions, its value for predicting clinical phenotypes and contributions of each type of input remain unknown. We obtained 47 datasets/predictive tasks that in total span over 9 data modalities and executed analytic experiments for predicting various clinical phenotypes and outcomes. First, we analyzed each modality separately using uni-modal approaches based on several state-of-the-art supervised classification and feature selection methods. Then, we applied integrative multi-modal classification techniques. We have found that gene expression is the most predictively informative modality. Other modalities such as protein expression, miRNA expression, and DNA methylation also provide highly predictive results, which are often statistically comparable but not superior to gene expression data. Integrative multi-modal analyses generally do not increase predictive signal compared to gene expression data.The spectrum of modern molecular high-throughput assaying includes diverse technologies such as microarray gene expression, miRNA expression, proteomics, DNA methylation, among many others. Now that these technologies have matured and become increasingly accessible, the next frontier is to collect "multi-modal" data for the same set of subjects and conduct integrative, multi-level analyses. While multi-modal data does contain distinct biological information that can be useful for answering complex biology questions, its value for predicting clinical phenotypes and contributions of each type of input remain unknown. We obtained 47 datasets/predictive tasks that in total span over 9 data modalities and executed analytic experiments for predicting various clinical phenotypes and outcomes. First, we analyzed each modality separately using uni-modal approaches based on several state-of-the-art supervised classification and feature selection methods. Then, we applied integrative multi-modal classification techniques. We have found that gene expression is the most predictively informative modality. Other modalities such as protein expression, miRNA expression, and DNA methylation also provide highly predictive results, which are often statistically comparable but not superior to gene expression data. Integrative multi-modal analyses generally do not increase predictive signal compared to gene expression data. |
ArticleNumber | 4411 |
Author | Statnikov, Alexander Ma, Sisi Efstathiadis, Efstratios Peskin, Eric R. Aliferis, Constantin F. Picone, Marco Ray, Bisakha Poli, Tito Henaff, Mikael |
Author_xml | – sequence: 1 givenname: Bisakha surname: Ray fullname: Ray, Bisakha organization: Center for Health Informatics and Bioinformatics, New York University Langone Medical Center – sequence: 2 givenname: Mikael surname: Henaff fullname: Henaff, Mikael organization: Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, Department of Computer Science, New York University – sequence: 3 givenname: Sisi surname: Ma fullname: Ma, Sisi organization: Center for Health Informatics and Bioinformatics, New York University Langone Medical Center – sequence: 4 givenname: Efstratios surname: Efstathiadis fullname: Efstathiadis, Efstratios organization: Center for Health Informatics and Bioinformatics, New York University Langone Medical Center – sequence: 5 givenname: Eric R. surname: Peskin fullname: Peskin, Eric R. organization: Center for Health Informatics and Bioinformatics, New York University Langone Medical Center – sequence: 6 givenname: Marco surname: Picone fullname: Picone, Marco organization: Department of Information Engineering, University of Parma, MultiMed Srl – sequence: 7 givenname: Tito surname: Poli fullname: Poli, Tito organization: Maxillofacial Surgery Section of the Head and Neck Department, University Hospital of Parma – sequence: 8 givenname: Constantin F. surname: Aliferis fullname: Aliferis, Constantin F. organization: Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, Department of Pathology, New York University School of Medicine – sequence: 9 givenname: Alexander surname: Statnikov fullname: Statnikov, Alexander organization: Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, Department of Medicine, New York University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24651673$$D View this record in MEDLINE/PubMed |
BookMark | eNptkVtLJDEQhcOirJedh_0D0o-u0Jpbp6dfhF1vIzj44sK-hUy6Mh3pTsYkveC_NzoqoxgIKaivzgl19tCW8w4Q-knwMcFsehIDrDDnhHxDuxTzqqSM0q2NegdNYrzH-VS04aT5jnYoFxURNdtF_66d8WFQyXpXaO8SuFQo1-ar-sdoYzFA6nwbi4wV87FPtpz7VvXFzC678q4Lflx2qzEVf6wfoLU6t85VUj_QtlF9hMnru4_-Xl7cnc3Km9ur67PfN6XmBKeyNoIZQxfCaGiIoWBALzQxhtVYAzRUCNYAVUDNoq40V-2UM6GJwFOmG-BsH52udVfjIvvr_P-gerkKdlDhUXpl5ceOs51c-v-SNYLUHGeBw1eB4B9GiEkONmroe-XAj1GSCuetVZyLjB5ser2bvK0zAydrQAcfczBGaptedputbS8Jls-ZyffM8sSvTxNvol-xR2s2ZsYtIch7P4acU_wCfgINdKfx |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2955958 crossref_primary_10_1038_tp_2017_38 crossref_primary_10_1074_mcp_MR117_000024 crossref_primary_10_1016_j_eswa_2020_113885 crossref_primary_10_1016_j_jbi_2016_09_004 crossref_primary_10_1177_2470547017747553 crossref_primary_10_1186_s12859_015_0680_3 crossref_primary_10_1111_2041_210X_13748 crossref_primary_10_1186_s12888_017_1384_1 crossref_primary_10_26634_jfet_19_3_20561 crossref_primary_10_1177_1833358319831318 crossref_primary_10_1371_journal_pone_0216904 crossref_primary_10_1073_pnas_2002959117 crossref_primary_10_1093_bioinformatics_btv758 crossref_primary_10_1016_j_euroneuro_2016_01_009 crossref_primary_10_1109_MCI_2018_2840660 crossref_primary_10_1177_1176935117725727 |
Cites_doi | 10.1186/1745-6150-6-25 10.1073/pnas.0401736101 10.1093/bib/6.1.34 10.1126/science.286.5439.531 10.1016/j.ccr.2010.05.026 10.1109/TBME.2011.2169256 10.1093/bioinformatics/btl230 10.1016/S0893-6080(97)00097-X 10.1186/1471-2407-13-280 10.1016/j.cell.2010.11.055 10.1023/A:1022936519097 10.1038/bjc.1953.8 10.1023/A:1010933404324 10.1016/j.ijmedinf.2005.05.002 10.1038/nrd891 10.1109/IJCNN.2004.1380138 10.1198/004017007000000245 10.2307/2531595 10.1109/IEMBS.2005.1615550 10.1158/0008-5472.CAN-11-4121-T 10.1109/IEMBS.2007.4353566 10.1016/S0140-6736(03)13308-9 10.1214/aos/1013699998 10.1186/gm39 10.1111/j.2517-6161.1995.tb02031.x 10.1093/bioinformatics/btg419 10.1038/nature10983 10.1073/pnas.68.4.820 10.1007/978-1-4419-7046-6_37 10.1177/117693510600200004 10.1073/pnas.201162998 10.1073/pnas.0409462102 10.1023/A:1012487302797 10.1145/1027933.1027968 10.1007/3-540-44886-1_25 10.1007/978-0-387-21606-5 10.1142/9789812704856_0029 |
ContentType | Journal Article |
Copyright | The Author(s) 2014 Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved |
Copyright_xml | – notice: The Author(s) 2014 – notice: Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1038/srep04411 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
ExternalDocumentID | PMC3961740 24651673 10_1038_srep04411 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: UL1 RR029893 – fundername: NCRR NIH HHS grantid: 1UL1 RR029893 – fundername: Cancer Research UK |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c410t-7f63ff2b6fce91f2efecbc1ff370cee926639e2ae2fb75c4ad8436c16083c9e43 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 18:16:54 EDT 2025 Fri Jul 11 16:47:00 EDT 2025 Mon Jul 21 05:46:27 EDT 2025 Wed Aug 20 07:46:06 EDT 2025 Thu Apr 24 22:55:35 EDT 2025 Fri Feb 21 02:38:53 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-7f63ff2b6fce91f2efecbc1ff370cee926639e2ae2fb75c4ad8436c16083c9e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/srep04411 |
PMID | 24651673 |
PQID | 1509415446 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3961740 proquest_miscellaneous_1509415446 pubmed_primary_24651673 crossref_citationtrail_10_1038_srep04411 crossref_primary_10_1038_srep04411 springer_journals_10_1038_srep04411 |
PublicationCentury | 2000 |
PublicationDate | 20140321 2014-03-21 2014-Mar-21 |
PublicationDateYYYYMMDD | 2014-03-21 |
PublicationDate_xml | – month: 3 year: 2014 text: 20140321 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2014 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Aliferis, Statnikov, Tsamardinos (CR15) 2006; 2 West (CR16) 2001; 98 CR39 Braga-Neto, Dougherty (CR35) 2004; 20 CR37 Alekseyenko (CR5) 2011; 6 Hammer, Gersmann (CR24) 2003; 17 Knudson (CR19) 1971; 68 Guyon, Weston, Barnhill, Vapnik (CR34) 2002; 46 Gevaert, De Smet, Timmerman, Moreau, De Moor (CR10) 2006; 22 CR32 Scarselli, Chung Tsoi (CR23) 1998; 11 CR30 Benjamini, Yekutieli (CR46) 2001; 29 Daemen, Gevaert, De Moor (CR11) 2007; 2007 DeLong, DeLong, Clarke-Pearson (CR43) 1988; 44 Yong, Law, Wang (CR2) 2013; 13 Curtis (CR8) 2012; 486 Chang (CR18) 2005; 102 Pittman (CR14) 2004; 101 Kong (CR6) 2011; 58 Genkin, Lewis, Madigan (CR31) 2007; 49 Picone (CR26) 2011; 696 Huang (CR17) 2003; 361 Kohavi (CR38) 1995; 2 CR29 CR28 Nordling (CR20) 1953; 7 CR27 Benjamini, Hochberg (CR45) 1995; 57 CR25 CR22 Breiman (CR33) 2001; 45 CR44 Taylor (CR7) 2010; 18 Daemen (CR9) 2009; 1 Statnikov, Tsamardinos, Dosbayev, Aliferis (CR36) 2005; 74 CR41 CR40 Golub (CR1) 1999; 286 Stephens (CR21) 2011; 144 Menke, Martinez (CR42) 2004; 2 Petricoin, Zoon, Kohn, Barrett, Liotta (CR3) 2002; 1 Poage (CR4) 2012; 72 Li (CR12) 2005; 5 Troyanskaya (CR13) 2005; 6 BFsrep04411_CR32 F Scarselli (BFsrep04411_CR23) 1998; 11 BFsrep04411_CR30 UM Braga-Neto (BFsrep04411_CR35) 2004; 20 FL Yong (BFsrep04411_CR2) 2013; 13 M Picone (BFsrep04411_CR26) 2011; 696 A Statnikov (BFsrep04411_CR36) 2005; 74 C Curtis (BFsrep04411_CR8) 2012; 486 BS Taylor (BFsrep04411_CR7) 2010; 18 AG Knudson Jr (BFsrep04411_CR19) 1971; 68 J Menke (BFsrep04411_CR42) 2004; 2 B Hammer (BFsrep04411_CR24) 2003; 17 M West (BFsrep04411_CR16) 2001; 98 J Pittman (BFsrep04411_CR14) 2004; 101 HY Chang (BFsrep04411_CR18) 2005; 102 A Genkin (BFsrep04411_CR31) 2007; 49 BFsrep04411_CR39 BFsrep04411_CR37 L Breiman (BFsrep04411_CR33) 2001; 45 A Daemen (BFsrep04411_CR11) 2007; 2007 CF Aliferis (BFsrep04411_CR15) 2006; 2 BFsrep04411_CR41 BFsrep04411_CR40 BFsrep04411_CR25 ER DeLong (BFsrep04411_CR43) 1988; 44 BFsrep04411_CR22 BFsrep04411_CR44 O Gevaert (BFsrep04411_CR10) 2006; 22 I Guyon (BFsrep04411_CR34) 2002; 46 TR Golub (BFsrep04411_CR1) 1999; 286 EF Petricoin (BFsrep04411_CR3) 2002; 1 R Kohavi (BFsrep04411_CR38) 1995; 2 CO Nordling (BFsrep04411_CR20) 1953; 7 Y Benjamini (BFsrep04411_CR46) 2001; 29 OG Troyanskaya (BFsrep04411_CR13) 2005; 6 A Daemen (BFsrep04411_CR9) 2009; 1 GM Poage (BFsrep04411_CR4) 2012; 72 Y Benjamini (BFsrep04411_CR45) 1995; 57 BFsrep04411_CR29 BFsrep04411_CR28 J Kong (BFsrep04411_CR6) 2011; 58 BFsrep04411_CR27 AV Alekseyenko (BFsrep04411_CR5) 2011; 6 E Huang (BFsrep04411_CR17) 2003; 361 L Li (BFsrep04411_CR12) 2005; 5 PJ Stephens (BFsrep04411_CR21) 2011; 144 |
References_xml | – ident: CR22 – volume: 6 start-page: 25 year: 2011 ident: CR5 article-title: Causal graph-based analysis of genome-wide association data in rheumatoid arthritis publication-title: Biology Direct doi: 10.1186/1745-6150-6-25 – ident: CR39 – ident: CR37 – ident: CR30 – volume: 101 start-page: 8431 year: 2004 end-page: 8436 ident: CR14 article-title: Integrated modeling of clinical and gene expression information for personalized prediction of disease outcomes publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0401736101 – volume: 2 start-page: 1137 year: 1995 end-page: 1145 ident: CR38 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection publication-title: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI) – volume: 6 start-page: 34 year: 2005 end-page: 43 ident: CR13 article-title: Putting microarrays in a context: integrated analysis of diverse biological data publication-title: Brief. Bioinform. doi: 10.1093/bib/6.1.34 – volume: 286 start-page: 531 year: 1999 end-page: 537 ident: CR1 article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring publication-title: Science doi: 10.1126/science.286.5439.531 – volume: 18 start-page: 11 year: 2010 end-page: 22 ident: CR7 article-title: Integrative genomic profiling of human prostate cancer publication-title: Cancer cell doi: 10.1016/j.ccr.2010.05.026 – volume: 58 start-page: 3469 year: 2011 end-page: 3474 ident: CR6 article-title: Integrative, multimodal analysis of glioblastoma using TCGA molecular data, pathology images and clinical outcomes publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2011.2169256 – volume: 22 start-page: e184 year: 2006 end-page: 190 ident: CR10 article-title: Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl230 – ident: CR29 – volume: 11 start-page: 15 year: 1998 end-page: 37 ident: CR23 article-title: Universal approximation using feedforward neural networks: A survey of some existing methods and some new results publication-title: Neural Networks doi: 10.1016/S0893-6080(97)00097-X – volume: 13 start-page: 280 year: 2013 ident: CR2 article-title: Potentiality of a triple microRNA classifier: miR-193a-3p, miR-23a and miR-338-5p for early detection of colorectal cancer publication-title: BMC Cancer doi: 10.1186/1471-2407-13-280 – volume: 144 start-page: 27 year: 2011 end-page: 40 ident: CR21 article-title: Massive genomic rearrangement acquired in a single catastrophic event during cancer development publication-title: Cell doi: 10.1016/j.cell.2010.11.055 – ident: CR40 – volume: 17 start-page: 43 year: 2003 end-page: 53 ident: CR24 article-title: A Note on the Universal Approximation Capability of Support Vector Machines publication-title: Neural Processing Letters doi: 10.1023/A:1022936519097 – ident: CR25 – volume: 7 start-page: 68 year: 1953 end-page: 72 ident: CR20 article-title: A new theory on cancer-inducing mechanism publication-title: Br J Cancer doi: 10.1038/bjc.1953.8 – ident: CR27 – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: CR33 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 74 start-page: 491 year: 2005 end-page: 503 ident: CR36 article-title: GEMS: a system for automated cancer diagnosis and biomarker discovery from microarray gene expression data publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2005.05.002 – volume: 1 start-page: 683 year: 2002 end-page: 695 ident: CR3 article-title: Clinical proteomics: translating benchside promise into bedside reality publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd891 – volume: 2 start-page: 1331 year: 2004 end-page: 1335 ident: CR42 article-title: Using permutations instead of student's t distribution for p-values in paired-difference algorithm comparisons publication-title: Proceedings of 2004 IEEE International Joint Conference on Neural Networks doi: 10.1109/IJCNN.2004.1380138 – ident: CR44 – volume: 49 start-page: 291 year: 2007 end-page: 304 ident: CR31 article-title: Large-scale Bayesian logistic regression for text categorization publication-title: Technometrics doi: 10.1198/004017007000000245 – volume: 44 start-page: 837 year: 1988 end-page: 845 ident: CR43 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 – volume: 5 start-page: 4818 year: 2005 end-page: 4821 ident: CR12 article-title: Integration of clinical information and gene expression profiles for prediction of chemo-response for ovarian cancer publication-title: Conference proceedings: … Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference doi: 10.1109/IEMBS.2005.1615550 – volume: 72 start-page: 2728 year: 2012 end-page: 2737 ident: CR4 article-title: Identification of an epigenetic profile classifier that is associated with survival in head and neck cancer publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-11-4121-T – volume: 2007 start-page: 5411 year: 2007 end-page: 5415 ident: CR11 article-title: Integration of clinical and microarray data with kernel methods publication-title: Conference proceedings: … Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference doi: 10.1109/IEMBS.2007.4353566 – volume: 361 start-page: 1590 year: 2003 end-page: 1596 ident: CR17 article-title: Gene expression predictors of breast cancer outcomes publication-title: Lancet doi: 10.1016/S0140-6736(03)13308-9 – volume: 29 start-page: 1165 year: 2001 end-page: 1188 ident: CR46 article-title: The control of the false discovery rate in multiple testing under dependency publication-title: Ann. Statist doi: 10.1214/aos/1013699998 – volume: 1 start-page: 39 year: 2009 ident: CR9 article-title: A kernel-based integration of genome-wide data for clinical decision support publication-title: Genome Med doi: 10.1186/gm39 – ident: CR32 – volume: 57 start-page: 289 year: 1995 end-page: 300 ident: CR45 article-title: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing publication-title: Journal of the Royal Statistical Society. Series B (Methodological) doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 20 start-page: 374 year: 2004 end-page: 380 ident: CR35 article-title: Is cross-validation valid for small-sample microarray classification? publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg419 – volume: 486 start-page: 346 year: 2012 end-page: 352 ident: CR8 article-title: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups publication-title: Nature doi: 10.1038/nature10983 – volume: 68 start-page: 820 year: 1971 end-page: 823 ident: CR19 article-title: Mutation and cancer: statistical study of retinoblastoma publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.68.4.820 – ident: CR28 – ident: CR41 – volume: 696 start-page: 367 year: 2011 end-page: 375 ident: CR26 article-title: Enabling heterogeneous data integration and biomedical event prediction through ICT: the test case of cancer reoccurrence publication-title: Advances in experimental medicine and biology doi: 10.1007/978-1-4419-7046-6_37 – volume: 2 start-page: 133 year: 2006 end-page: 162 ident: CR15 article-title: Challenges in the analysis of mass-throughput data: a technical commentary from the statistical machine learning perspective publication-title: Cancer Informatics doi: 10.1177/117693510600200004 – volume: 98 start-page: 11462 year: 2001 end-page: 11467 ident: CR16 article-title: Predicting the clinical status of human breast cancer by using gene expression profiles publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.201162998 – volume: 102 start-page: 3738 year: 2005 end-page: 3743 ident: CR18 article-title: Robustness, scalability and integration of a wound-response gene expression signature in predicting breast cancer survival publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0409462102 – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: CR34 article-title: Gene selection for cancer classification using support vector machines publication-title: Machine Learn doi: 10.1023/A:1012487302797 – ident: BFsrep04411_CR40 – volume: 2 start-page: 133 year: 2006 ident: BFsrep04411_CR15 publication-title: Cancer Informatics doi: 10.1177/117693510600200004 – volume: 44 start-page: 837 year: 1988 ident: BFsrep04411_CR43 publication-title: Biometrics doi: 10.2307/2531595 – volume: 6 start-page: 25 year: 2011 ident: BFsrep04411_CR5 publication-title: Biology Direct doi: 10.1186/1745-6150-6-25 – ident: BFsrep04411_CR25 doi: 10.1145/1027933.1027968 – ident: BFsrep04411_CR44 – volume: 57 start-page: 289 year: 1995 ident: BFsrep04411_CR45 publication-title: Journal of the Royal Statistical Society. Series B (Methodological) doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: BFsrep04411_CR41 doi: 10.1007/3-540-44886-1_25 – volume: 102 start-page: 3738 year: 2005 ident: BFsrep04411_CR18 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0409462102 – volume: 20 start-page: 374 year: 2004 ident: BFsrep04411_CR35 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg419 – volume: 6 start-page: 34 year: 2005 ident: BFsrep04411_CR13 publication-title: Brief. Bioinform. doi: 10.1093/bib/6.1.34 – ident: BFsrep04411_CR28 – volume: 2 start-page: 1137 year: 1995 ident: BFsrep04411_CR38 publication-title: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI) – volume: 72 start-page: 2728 year: 2012 ident: BFsrep04411_CR4 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-11-4121-T – volume: 144 start-page: 27 year: 2011 ident: BFsrep04411_CR21 publication-title: Cell doi: 10.1016/j.cell.2010.11.055 – volume: 486 start-page: 346 year: 2012 ident: BFsrep04411_CR8 publication-title: Nature doi: 10.1038/nature10983 – volume: 11 start-page: 15 year: 1998 ident: BFsrep04411_CR23 publication-title: Neural Networks doi: 10.1016/S0893-6080(97)00097-X – volume: 58 start-page: 3469 year: 2011 ident: BFsrep04411_CR6 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2011.2169256 – volume: 18 start-page: 11 year: 2010 ident: BFsrep04411_CR7 publication-title: Cancer cell doi: 10.1016/j.ccr.2010.05.026 – volume: 45 start-page: 5 year: 2001 ident: BFsrep04411_CR33 publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 286 start-page: 531 year: 1999 ident: BFsrep04411_CR1 publication-title: Science doi: 10.1126/science.286.5439.531 – ident: BFsrep04411_CR39 – volume: 5 start-page: 4818 year: 2005 ident: BFsrep04411_CR12 publication-title: Conference proceedings: … Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference doi: 10.1109/IEMBS.2005.1615550 – volume: 68 start-page: 820 year: 1971 ident: BFsrep04411_CR19 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.68.4.820 – ident: BFsrep04411_CR37 – volume: 101 start-page: 8431 year: 2004 ident: BFsrep04411_CR14 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0401736101 – volume: 2 start-page: 1331 year: 2004 ident: BFsrep04411_CR42 publication-title: Proceedings of 2004 IEEE International Joint Conference on Neural Networks doi: 10.1109/IJCNN.2004.1380138 – volume: 1 start-page: 683 year: 2002 ident: BFsrep04411_CR3 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd891 – volume: 7 start-page: 68 year: 1953 ident: BFsrep04411_CR20 publication-title: Br J Cancer doi: 10.1038/bjc.1953.8 – volume: 49 start-page: 291 year: 2007 ident: BFsrep04411_CR31 publication-title: Technometrics doi: 10.1198/004017007000000245 – volume: 2007 start-page: 5411 year: 2007 ident: BFsrep04411_CR11 publication-title: Conference proceedings: … Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference doi: 10.1109/IEMBS.2007.4353566 – volume: 696 start-page: 367 year: 2011 ident: BFsrep04411_CR26 publication-title: Advances in experimental medicine and biology doi: 10.1007/978-1-4419-7046-6_37 – volume: 13 start-page: 280 year: 2013 ident: BFsrep04411_CR2 publication-title: BMC Cancer doi: 10.1186/1471-2407-13-280 – ident: BFsrep04411_CR22 doi: 10.1007/978-0-387-21606-5 – volume: 1 start-page: 39 year: 2009 ident: BFsrep04411_CR9 publication-title: Genome Med doi: 10.1186/gm39 – volume: 98 start-page: 11462 year: 2001 ident: BFsrep04411_CR16 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.201162998 – volume: 17 start-page: 43 year: 2003 ident: BFsrep04411_CR24 publication-title: Neural Processing Letters doi: 10.1023/A:1022936519097 – ident: BFsrep04411_CR30 – volume: 46 start-page: 389 year: 2002 ident: BFsrep04411_CR34 publication-title: Machine Learn doi: 10.1023/A:1012487302797 – volume: 74 start-page: 491 year: 2005 ident: BFsrep04411_CR36 publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2005.05.002 – ident: BFsrep04411_CR32 – ident: BFsrep04411_CR29 – volume: 22 start-page: e184 year: 2006 ident: BFsrep04411_CR10 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl230 – volume: 361 start-page: 1590 year: 2003 ident: BFsrep04411_CR17 publication-title: Lancet doi: 10.1016/S0140-6736(03)13308-9 – ident: BFsrep04411_CR27 doi: 10.1142/9789812704856_0029 – volume: 29 start-page: 1165 year: 2001 ident: BFsrep04411_CR46 publication-title: Ann. Statist doi: 10.1214/aos/1013699998 |
SSID | ssj0000529419 |
Score | 2.21656 |
Snippet | The spectrum of modern molecular high-throughput assaying includes diverse technologies such as microarray gene expression, miRNA expression, proteomics, DNA... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4411 |
SubjectTerms | 631/114/2397 631/208/212 692/699/67 Computational Biology - statistics & numerical data Datasets as Topic Diagnostic Imaging DNA Methylation DNA, Neoplasm - genetics DNA, Neoplasm - metabolism Female Gene Dosage Gene Expression Humanities and Social Sciences Humans Male MicroRNAs - genetics MicroRNAs - metabolism multidisciplinary Neoplasm Proteins - genetics Neoplasm Proteins - metabolism Neoplasms - diagnosis Neoplasms - genetics Neoplasms - mortality Neoplasms - pathology Prognosis RNA, Neoplasm - genetics RNA, Neoplasm - metabolism Science Survival Analysis |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQERIL4k14yTwGFov4EScZoVBVSGVqpW6R49gCCaUVTQf-PWfngUoZGDLl4lh3jr9z7u47hG5pbmPGI0ESKkMiYJ8kcIyQxFgABx3xnPt2b6NXOZyIl2k0bciiF01aZU1p6bfpNjvsHvBiHgJ0w0Fn0zG2u8Xcl_3ud4oLWAmattxBPPl5YhVx1tzI9WzIXyFRjzSDXbTTuIj4oZ7UHtow5T7aqptGfh2gaVNB5DSKXaY5DIhVWcBV84vguiv0AoMY9gW2ZDQrYESX00HGdWOe-bLCj7703lkJP6lKHaLJ4HncH5KmPwLRgoYVia3k1jJXrmNSapmxRueaWsvjELAvBezlqWHKMJvHkRaqSASXGoyScJ0awY9Qr5yV5gRhrZhyQVgdRYWIrEi4kkrZwmqRF4mWAbprdZjphjzc9bD4yHwQmydZp-4AXXei85ox4y-hq9YQGaxnF6RQpZktFxl1jH6OIgjeeVwbphuGucbtMuYBildM1gk4ruzVO-X7m-fM5im4aiIM0E1r3Kz5WBfrszv9l9QZ2gbvSbiENEbPUa_6XJoL8FCq_NKvzW_xuOmL priority: 102 providerName: Springer Nature |
Title | Information content and analysis methods for Multi-Modal High-Throughput Biomedical Data |
URI | https://link.springer.com/article/10.1038/srep04411 https://www.ncbi.nlm.nih.gov/pubmed/24651673 https://www.proquest.com/docview/1509415446 https://pubmed.ncbi.nlm.nih.gov/PMC3961740 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-6lsFeRrvP7CNoHw970WZLsmQ_jJGFlhJoGdsCeTOyLNFB52RNAut_3zvLDs3Shz0Ygy3L4k7ynXx3vx_A-7QKRshM8TzVCVf4neS4jdDcBzQOLpOVbOnezs716VRNZtlsD3qOzU6Ayzu3dsQnNb26_Pj3z_UXXPCfY8l4_gltySJBs46boAM0SIbW51nn5UeIb1GoluKDsNc5-hCixxi6_fS2ZdpxN3ezJv8JnbYW6eQQHnauJBtF3R_Bnm8ewf1ILnn9GGZdpRFJnlFGOnbIbFPjEXFIWGSPXjJsxtrEQv57XmOPBGHMOwKfxXrFYok-aZNRQukTmJ4c_xyf8o5HgTuVJitugpYhCCrr8UUahA_eVS4NQZoEbWSBNloWXlgvQmUyp2ydK6kdKi-XrvBKPoX9Zt7458CcFZaCtS7LapUFlUurrQ11cKqqc6cH8KGXYek6kHHiurgs22C3zMuNuAfwdtN0EZE17mr0pldEifOeghm28fP1skwJ-Y-ghPCdz6JiNt0IInjXRg7AbKls04AwtbfvNL8uWmxtWaBLp5IBvOuVW_Zzcnd0L_5jdC_hAfpYitLWRPoK9ldXa_8a_ZhVNYR7ZmaGcDAaTX5M8Pz1-Pzbd7w61uNh-29g2M7jGzWm-x0 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQCMGCeBOe5jGwWMSx4yQjFKoCbadW6hY5ji2QUFqRdODfc84LlTIwZMrFse4c3zl3930I3dDEBB7zOQmpcAmHfZLAMUIQbcA5KJ8lrKR7GwxFb8xfJv6kBovO67LKCtKy3Kab6rA78BczF1w3HHTWIMQWtnqrIzrt7xSbsOI0arCDWPjzxKLHWQojl6shf6VES0_T3UZbdYiI76tJ7aAVne2i9Yo08msPTeoOIqtRbCvNYUAssxSuCl8EV6zQOQYxXDbYksE0hRFtTQcZVcQ8s3mBH8rWe2sl_CgLuY_G3adRp0dqfgSiOHULEhjBjPFsu46OqPG00SpR1BgWuOD7IvC9LNKe1J5JAl9xmYacCQVGCZmKNGcHaDWbZvoIYSU9aZOwyvdT7hseMimkNKlRPElDJRx02-gwVjV4uOWw-IjLJDYL41bdDrpqRWcVYsZfQpeNIWJYzzZJITM9necxtYh-FiII3nlYGaYdxrPE7SJgDgoWTNYKWKzsxTvZ-1uJmc0iCNW466Drxrhx_bHmy7M7_pfUBdrojQb9uP88fD1BmxBJcVuc5tFTtFp8zvUZRCtFcl6u028U1ex6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BEYgF8SY8zWNgsUhix0lGaKl4iwGkbpHj2AIJpRVNB_4957xQKQNDplwc687xnXN33wdw5qUm9FnAaeQJl3LcJykeIwTVBp2DCljKSrq3xydx88rvBsGgblYf12WVFaRluU031WEX6C9GLrpu3FgyMw8LGGa79qzVFd32l4pNWnEvbvCDWPTz1LTXmQklZysif6VFS2_TX4WVOkwkl9XE1mBO5-uwWBFHfm3AoO4islolttocByQyz_CqMEZIxQw9JihGyiZb-jjMcERb10FfKnKe0aQgV2X7vbUU6clCbsJr__qle0NrjgSquOcWNDSCGePblh0de8bXRqtUecaw0EX_F6P_ZbH2pfZNGgaKyyziTCg0TMRUrDnbgk4-zPUOECV9aROxKggyHhgeMSmkNJlRPM0iJRw4b3SYqBpA3PJYfCRlIptFSatuB05a0VGFmvGX0HFjiATXtE1UyFwPJ-PEs6h-FiYI37ldGaYdxrfk7SJkDoRTJmsFLF729J38_a3EzWYxhmvcdeC0MW5Sf7Dj2dnt_kvqCJaee_3k4fbpfg-WMZjitj7N9_ahU3xO9AEGLEV6WC7Tb1Zc7YM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Information+content+and+analysis+methods+for+multi-modal+high-throughput+biomedical+data&rft.jtitle=Scientific+reports&rft.au=Ray%2C+Bisakha&rft.au=Henaff%2C+Mikael&rft.au=Ma%2C+Sisi&rft.au=Efstathiadis%2C+Efstratios&rft.date=2014-03-21&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=4&rft.spage=4411&rft_id=info:doi/10.1038%2Fsrep04411&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |