Information content and analysis methods for Multi-Modal High-Throughput Biomedical Data

The spectrum of modern molecular high-throughput assaying includes diverse technologies such as microarray gene expression, miRNA expression, proteomics, DNA methylation, among many others. Now that these technologies have matured and become increasingly accessible, the next frontier is to collect “...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 4; no. 1; p. 4411
Main Authors Ray, Bisakha, Henaff, Mikael, Ma, Sisi, Efstathiadis, Efstratios, Peskin, Eric R., Picone, Marco, Poli, Tito, Aliferis, Constantin F., Statnikov, Alexander
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.03.2014
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/srep04411

Cover

Loading…
Abstract The spectrum of modern molecular high-throughput assaying includes diverse technologies such as microarray gene expression, miRNA expression, proteomics, DNA methylation, among many others. Now that these technologies have matured and become increasingly accessible, the next frontier is to collect “multi-modal” data for the same set of subjects and conduct integrative, multi-level analyses. While multi-modal data does contain distinct biological information that can be useful for answering complex biology questions, its value for predicting clinical phenotypes and contributions of each type of input remain unknown. We obtained 47 datasets/predictive tasks that in total span over 9 data modalities and executed analytic experiments for predicting various clinical phenotypes and outcomes. First, we analyzed each modality separately using uni-modal approaches based on several state-of-the-art supervised classification and feature selection methods. Then, we applied integrative multi-modal classification techniques. We have found that gene expression is the most predictively informative modality. Other modalities such as protein expression, miRNA expression and DNA methylation also provide highly predictive results, which are often statistically comparable but not superior to gene expression data. Integrative multi-modal analyses generally do not increase predictive signal compared to gene expression data.
AbstractList The spectrum of modern molecular high-throughput assaying includes diverse technologies such as microarray gene expression, miRNA expression, proteomics, DNA methylation, among many others. Now that these technologies have matured and become increasingly accessible, the next frontier is to collect “multi-modal” data for the same set of subjects and conduct integrative, multi-level analyses. While multi-modal data does contain distinct biological information that can be useful for answering complex biology questions, its value for predicting clinical phenotypes and contributions of each type of input remain unknown. We obtained 47 datasets/predictive tasks that in total span over 9 data modalities and executed analytic experiments for predicting various clinical phenotypes and outcomes. First, we analyzed each modality separately using uni-modal approaches based on several state-of-the-art supervised classification and feature selection methods. Then, we applied integrative multi-modal classification techniques. We have found that gene expression is the most predictively informative modality. Other modalities such as protein expression, miRNA expression, and DNA methylation also provide highly predictive results, which are often statistically comparable but not superior to gene expression data. Integrative multi-modal analyses generally do not increase predictive signal compared to gene expression data.
The spectrum of modern molecular high-throughput assaying includes diverse technologies such as microarray gene expression, miRNA expression, proteomics, DNA methylation, among many others. Now that these technologies have matured and become increasingly accessible, the next frontier is to collect "multi-modal" data for the same set of subjects and conduct integrative, multi-level analyses. While multi-modal data does contain distinct biological information that can be useful for answering complex biology questions, its value for predicting clinical phenotypes and contributions of each type of input remain unknown. We obtained 47 datasets/predictive tasks that in total span over 9 data modalities and executed analytic experiments for predicting various clinical phenotypes and outcomes. First, we analyzed each modality separately using uni-modal approaches based on several state-of-the-art supervised classification and feature selection methods. Then, we applied integrative multi-modal classification techniques. We have found that gene expression is the most predictively informative modality. Other modalities such as protein expression, miRNA expression, and DNA methylation also provide highly predictive results, which are often statistically comparable but not superior to gene expression data. Integrative multi-modal analyses generally do not increase predictive signal compared to gene expression data.The spectrum of modern molecular high-throughput assaying includes diverse technologies such as microarray gene expression, miRNA expression, proteomics, DNA methylation, among many others. Now that these technologies have matured and become increasingly accessible, the next frontier is to collect "multi-modal" data for the same set of subjects and conduct integrative, multi-level analyses. While multi-modal data does contain distinct biological information that can be useful for answering complex biology questions, its value for predicting clinical phenotypes and contributions of each type of input remain unknown. We obtained 47 datasets/predictive tasks that in total span over 9 data modalities and executed analytic experiments for predicting various clinical phenotypes and outcomes. First, we analyzed each modality separately using uni-modal approaches based on several state-of-the-art supervised classification and feature selection methods. Then, we applied integrative multi-modal classification techniques. We have found that gene expression is the most predictively informative modality. Other modalities such as protein expression, miRNA expression, and DNA methylation also provide highly predictive results, which are often statistically comparable but not superior to gene expression data. Integrative multi-modal analyses generally do not increase predictive signal compared to gene expression data.
ArticleNumber 4411
Author Statnikov, Alexander
Ma, Sisi
Efstathiadis, Efstratios
Peskin, Eric R.
Aliferis, Constantin F.
Picone, Marco
Ray, Bisakha
Poli, Tito
Henaff, Mikael
Author_xml – sequence: 1
  givenname: Bisakha
  surname: Ray
  fullname: Ray, Bisakha
  organization: Center for Health Informatics and Bioinformatics, New York University Langone Medical Center
– sequence: 2
  givenname: Mikael
  surname: Henaff
  fullname: Henaff, Mikael
  organization: Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, Department of Computer Science, New York University
– sequence: 3
  givenname: Sisi
  surname: Ma
  fullname: Ma, Sisi
  organization: Center for Health Informatics and Bioinformatics, New York University Langone Medical Center
– sequence: 4
  givenname: Efstratios
  surname: Efstathiadis
  fullname: Efstathiadis, Efstratios
  organization: Center for Health Informatics and Bioinformatics, New York University Langone Medical Center
– sequence: 5
  givenname: Eric R.
  surname: Peskin
  fullname: Peskin, Eric R.
  organization: Center for Health Informatics and Bioinformatics, New York University Langone Medical Center
– sequence: 6
  givenname: Marco
  surname: Picone
  fullname: Picone, Marco
  organization: Department of Information Engineering, University of Parma, MultiMed Srl
– sequence: 7
  givenname: Tito
  surname: Poli
  fullname: Poli, Tito
  organization: Maxillofacial Surgery Section of the Head and Neck Department, University Hospital of Parma
– sequence: 8
  givenname: Constantin F.
  surname: Aliferis
  fullname: Aliferis, Constantin F.
  organization: Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, Department of Pathology, New York University School of Medicine
– sequence: 9
  givenname: Alexander
  surname: Statnikov
  fullname: Statnikov, Alexander
  organization: Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, Department of Medicine, New York University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24651673$$D View this record in MEDLINE/PubMed
BookMark eNptkVtLJDEQhcOirJedh_0D0o-u0Jpbp6dfhF1vIzj44sK-hUy6Mh3pTsYkveC_NzoqoxgIKaivzgl19tCW8w4Q-knwMcFsehIDrDDnhHxDuxTzqqSM0q2NegdNYrzH-VS04aT5jnYoFxURNdtF_66d8WFQyXpXaO8SuFQo1-ar-sdoYzFA6nwbi4wV87FPtpz7VvXFzC678q4Lflx2qzEVf6wfoLU6t85VUj_QtlF9hMnru4_-Xl7cnc3Km9ur67PfN6XmBKeyNoIZQxfCaGiIoWBALzQxhtVYAzRUCNYAVUDNoq40V-2UM6GJwFOmG-BsH52udVfjIvvr_P-gerkKdlDhUXpl5ceOs51c-v-SNYLUHGeBw1eB4B9GiEkONmroe-XAj1GSCuetVZyLjB5ser2bvK0zAydrQAcfczBGaptedputbS8Jls-ZyffM8sSvTxNvol-xR2s2ZsYtIch7P4acU_wCfgINdKfx
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2955958
crossref_primary_10_1038_tp_2017_38
crossref_primary_10_1074_mcp_MR117_000024
crossref_primary_10_1016_j_eswa_2020_113885
crossref_primary_10_1016_j_jbi_2016_09_004
crossref_primary_10_1177_2470547017747553
crossref_primary_10_1186_s12859_015_0680_3
crossref_primary_10_1111_2041_210X_13748
crossref_primary_10_1186_s12888_017_1384_1
crossref_primary_10_26634_jfet_19_3_20561
crossref_primary_10_1177_1833358319831318
crossref_primary_10_1371_journal_pone_0216904
crossref_primary_10_1073_pnas_2002959117
crossref_primary_10_1093_bioinformatics_btv758
crossref_primary_10_1016_j_euroneuro_2016_01_009
crossref_primary_10_1109_MCI_2018_2840660
crossref_primary_10_1177_1176935117725727
Cites_doi 10.1186/1745-6150-6-25
10.1073/pnas.0401736101
10.1093/bib/6.1.34
10.1126/science.286.5439.531
10.1016/j.ccr.2010.05.026
10.1109/TBME.2011.2169256
10.1093/bioinformatics/btl230
10.1016/S0893-6080(97)00097-X
10.1186/1471-2407-13-280
10.1016/j.cell.2010.11.055
10.1023/A:1022936519097
10.1038/bjc.1953.8
10.1023/A:1010933404324
10.1016/j.ijmedinf.2005.05.002
10.1038/nrd891
10.1109/IJCNN.2004.1380138
10.1198/004017007000000245
10.2307/2531595
10.1109/IEMBS.2005.1615550
10.1158/0008-5472.CAN-11-4121-T
10.1109/IEMBS.2007.4353566
10.1016/S0140-6736(03)13308-9
10.1214/aos/1013699998
10.1186/gm39
10.1111/j.2517-6161.1995.tb02031.x
10.1093/bioinformatics/btg419
10.1038/nature10983
10.1073/pnas.68.4.820
10.1007/978-1-4419-7046-6_37
10.1177/117693510600200004
10.1073/pnas.201162998
10.1073/pnas.0409462102
10.1023/A:1012487302797
10.1145/1027933.1027968
10.1007/3-540-44886-1_25
10.1007/978-0-387-21606-5
10.1142/9789812704856_0029
ContentType Journal Article
Copyright The Author(s) 2014
Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved
Copyright_xml – notice: The Author(s) 2014
– notice: Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1038/srep04411
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID PMC3961740
24651673
10_1038_srep04411
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: UL1 RR029893
– fundername: NCRR NIH HHS
  grantid: 1UL1 RR029893
– fundername: Cancer Research UK
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c410t-7f63ff2b6fce91f2efecbc1ff370cee926639e2ae2fb75c4ad8436c16083c9e43
IEDL.DBID M48
ISSN 2045-2322
IngestDate Thu Aug 21 18:16:54 EDT 2025
Fri Jul 11 16:47:00 EDT 2025
Mon Jul 21 05:46:27 EDT 2025
Wed Aug 20 07:46:06 EDT 2025
Thu Apr 24 22:55:35 EDT 2025
Fri Feb 21 02:38:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-7f63ff2b6fce91f2efecbc1ff370cee926639e2ae2fb75c4ad8436c16083c9e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/srep04411
PMID 24651673
PQID 1509415446
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3961740
proquest_miscellaneous_1509415446
pubmed_primary_24651673
crossref_citationtrail_10_1038_srep04411
crossref_primary_10_1038_srep04411
springer_journals_10_1038_srep04411
PublicationCentury 2000
PublicationDate 20140321
2014-03-21
2014-Mar-21
PublicationDateYYYYMMDD 2014-03-21
PublicationDate_xml – month: 3
  year: 2014
  text: 20140321
  day: 21
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2014
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Aliferis, Statnikov, Tsamardinos (CR15) 2006; 2
West (CR16) 2001; 98
CR39
Braga-Neto, Dougherty (CR35) 2004; 20
CR37
Alekseyenko (CR5) 2011; 6
Hammer, Gersmann (CR24) 2003; 17
Knudson (CR19) 1971; 68
Guyon, Weston, Barnhill, Vapnik (CR34) 2002; 46
Gevaert, De Smet, Timmerman, Moreau, De Moor (CR10) 2006; 22
CR32
Scarselli, Chung Tsoi (CR23) 1998; 11
CR30
Benjamini, Yekutieli (CR46) 2001; 29
Daemen, Gevaert, De Moor (CR11) 2007; 2007
DeLong, DeLong, Clarke-Pearson (CR43) 1988; 44
Yong, Law, Wang (CR2) 2013; 13
Curtis (CR8) 2012; 486
Chang (CR18) 2005; 102
Pittman (CR14) 2004; 101
Kong (CR6) 2011; 58
Genkin, Lewis, Madigan (CR31) 2007; 49
Picone (CR26) 2011; 696
Huang (CR17) 2003; 361
Kohavi (CR38) 1995; 2
CR29
CR28
Nordling (CR20) 1953; 7
CR27
Benjamini, Hochberg (CR45) 1995; 57
CR25
CR22
Breiman (CR33) 2001; 45
CR44
Taylor (CR7) 2010; 18
Daemen (CR9) 2009; 1
Statnikov, Tsamardinos, Dosbayev, Aliferis (CR36) 2005; 74
CR41
CR40
Golub (CR1) 1999; 286
Stephens (CR21) 2011; 144
Menke, Martinez (CR42) 2004; 2
Petricoin, Zoon, Kohn, Barrett, Liotta (CR3) 2002; 1
Poage (CR4) 2012; 72
Li (CR12) 2005; 5
Troyanskaya (CR13) 2005; 6
BFsrep04411_CR32
F Scarselli (BFsrep04411_CR23) 1998; 11
BFsrep04411_CR30
UM Braga-Neto (BFsrep04411_CR35) 2004; 20
FL Yong (BFsrep04411_CR2) 2013; 13
M Picone (BFsrep04411_CR26) 2011; 696
A Statnikov (BFsrep04411_CR36) 2005; 74
C Curtis (BFsrep04411_CR8) 2012; 486
BS Taylor (BFsrep04411_CR7) 2010; 18
AG Knudson Jr (BFsrep04411_CR19) 1971; 68
J Menke (BFsrep04411_CR42) 2004; 2
B Hammer (BFsrep04411_CR24) 2003; 17
M West (BFsrep04411_CR16) 2001; 98
J Pittman (BFsrep04411_CR14) 2004; 101
HY Chang (BFsrep04411_CR18) 2005; 102
A Genkin (BFsrep04411_CR31) 2007; 49
BFsrep04411_CR39
BFsrep04411_CR37
L Breiman (BFsrep04411_CR33) 2001; 45
A Daemen (BFsrep04411_CR11) 2007; 2007
CF Aliferis (BFsrep04411_CR15) 2006; 2
BFsrep04411_CR41
BFsrep04411_CR40
BFsrep04411_CR25
ER DeLong (BFsrep04411_CR43) 1988; 44
BFsrep04411_CR22
BFsrep04411_CR44
O Gevaert (BFsrep04411_CR10) 2006; 22
I Guyon (BFsrep04411_CR34) 2002; 46
TR Golub (BFsrep04411_CR1) 1999; 286
EF Petricoin (BFsrep04411_CR3) 2002; 1
R Kohavi (BFsrep04411_CR38) 1995; 2
CO Nordling (BFsrep04411_CR20) 1953; 7
Y Benjamini (BFsrep04411_CR46) 2001; 29
OG Troyanskaya (BFsrep04411_CR13) 2005; 6
A Daemen (BFsrep04411_CR9) 2009; 1
GM Poage (BFsrep04411_CR4) 2012; 72
Y Benjamini (BFsrep04411_CR45) 1995; 57
BFsrep04411_CR29
BFsrep04411_CR28
J Kong (BFsrep04411_CR6) 2011; 58
BFsrep04411_CR27
AV Alekseyenko (BFsrep04411_CR5) 2011; 6
E Huang (BFsrep04411_CR17) 2003; 361
L Li (BFsrep04411_CR12) 2005; 5
PJ Stephens (BFsrep04411_CR21) 2011; 144
References_xml – ident: CR22
– volume: 6
  start-page: 25
  year: 2011
  ident: CR5
  article-title: Causal graph-based analysis of genome-wide association data in rheumatoid arthritis
  publication-title: Biology Direct
  doi: 10.1186/1745-6150-6-25
– ident: CR39
– ident: CR37
– ident: CR30
– volume: 101
  start-page: 8431
  year: 2004
  end-page: 8436
  ident: CR14
  article-title: Integrated modeling of clinical and gene expression information for personalized prediction of disease outcomes
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0401736101
– volume: 2
  start-page: 1137
  year: 1995
  end-page: 1145
  ident: CR38
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
  publication-title: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI)
– volume: 6
  start-page: 34
  year: 2005
  end-page: 43
  ident: CR13
  article-title: Putting microarrays in a context: integrated analysis of diverse biological data
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/6.1.34
– volume: 286
  start-page: 531
  year: 1999
  end-page: 537
  ident: CR1
  article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– volume: 18
  start-page: 11
  year: 2010
  end-page: 22
  ident: CR7
  article-title: Integrative genomic profiling of human prostate cancer
  publication-title: Cancer cell
  doi: 10.1016/j.ccr.2010.05.026
– volume: 58
  start-page: 3469
  year: 2011
  end-page: 3474
  ident: CR6
  article-title: Integrative, multimodal analysis of glioblastoma using TCGA molecular data, pathology images and clinical outcomes
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2011.2169256
– volume: 22
  start-page: e184
  year: 2006
  end-page: 190
  ident: CR10
  article-title: Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl230
– ident: CR29
– volume: 11
  start-page: 15
  year: 1998
  end-page: 37
  ident: CR23
  article-title: Universal approximation using feedforward neural networks: A survey of some existing methods and some new results
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(97)00097-X
– volume: 13
  start-page: 280
  year: 2013
  ident: CR2
  article-title: Potentiality of a triple microRNA classifier: miR-193a-3p, miR-23a and miR-338-5p for early detection of colorectal cancer
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-13-280
– volume: 144
  start-page: 27
  year: 2011
  end-page: 40
  ident: CR21
  article-title: Massive genomic rearrangement acquired in a single catastrophic event during cancer development
  publication-title: Cell
  doi: 10.1016/j.cell.2010.11.055
– ident: CR40
– volume: 17
  start-page: 43
  year: 2003
  end-page: 53
  ident: CR24
  article-title: A Note on the Universal Approximation Capability of Support Vector Machines
  publication-title: Neural Processing Letters
  doi: 10.1023/A:1022936519097
– ident: CR25
– volume: 7
  start-page: 68
  year: 1953
  end-page: 72
  ident: CR20
  article-title: A new theory on cancer-inducing mechanism
  publication-title: Br J Cancer
  doi: 10.1038/bjc.1953.8
– ident: CR27
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR33
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 74
  start-page: 491
  year: 2005
  end-page: 503
  ident: CR36
  article-title: GEMS: a system for automated cancer diagnosis and biomarker discovery from microarray gene expression data
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2005.05.002
– volume: 1
  start-page: 683
  year: 2002
  end-page: 695
  ident: CR3
  article-title: Clinical proteomics: translating benchside promise into bedside reality
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd891
– volume: 2
  start-page: 1331
  year: 2004
  end-page: 1335
  ident: CR42
  article-title: Using permutations instead of student's t distribution for p-values in paired-difference algorithm comparisons
  publication-title: Proceedings of 2004 IEEE International Joint Conference on Neural Networks
  doi: 10.1109/IJCNN.2004.1380138
– ident: CR44
– volume: 49
  start-page: 291
  year: 2007
  end-page: 304
  ident: CR31
  article-title: Large-scale Bayesian logistic regression for text categorization
  publication-title: Technometrics
  doi: 10.1198/004017007000000245
– volume: 44
  start-page: 837
  year: 1988
  end-page: 845
  ident: CR43
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 5
  start-page: 4818
  year: 2005
  end-page: 4821
  ident: CR12
  article-title: Integration of clinical information and gene expression profiles for prediction of chemo-response for ovarian cancer
  publication-title: Conference proceedings: … Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference
  doi: 10.1109/IEMBS.2005.1615550
– volume: 72
  start-page: 2728
  year: 2012
  end-page: 2737
  ident: CR4
  article-title: Identification of an epigenetic profile classifier that is associated with survival in head and neck cancer
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-4121-T
– volume: 2007
  start-page: 5411
  year: 2007
  end-page: 5415
  ident: CR11
  article-title: Integration of clinical and microarray data with kernel methods
  publication-title: Conference proceedings: … Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference
  doi: 10.1109/IEMBS.2007.4353566
– volume: 361
  start-page: 1590
  year: 2003
  end-page: 1596
  ident: CR17
  article-title: Gene expression predictors of breast cancer outcomes
  publication-title: Lancet
  doi: 10.1016/S0140-6736(03)13308-9
– volume: 29
  start-page: 1165
  year: 2001
  end-page: 1188
  ident: CR46
  article-title: The control of the false discovery rate in multiple testing under dependency
  publication-title: Ann. Statist
  doi: 10.1214/aos/1013699998
– volume: 1
  start-page: 39
  year: 2009
  ident: CR9
  article-title: A kernel-based integration of genome-wide data for clinical decision support
  publication-title: Genome Med
  doi: 10.1186/gm39
– ident: CR32
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: CR45
  article-title: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 20
  start-page: 374
  year: 2004
  end-page: 380
  ident: CR35
  article-title: Is cross-validation valid for small-sample microarray classification?
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg419
– volume: 486
  start-page: 346
  year: 2012
  end-page: 352
  ident: CR8
  article-title: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups
  publication-title: Nature
  doi: 10.1038/nature10983
– volume: 68
  start-page: 820
  year: 1971
  end-page: 823
  ident: CR19
  article-title: Mutation and cancer: statistical study of retinoblastoma
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.68.4.820
– ident: CR28
– ident: CR41
– volume: 696
  start-page: 367
  year: 2011
  end-page: 375
  ident: CR26
  article-title: Enabling heterogeneous data integration and biomedical event prediction through ICT: the test case of cancer reoccurrence
  publication-title: Advances in experimental medicine and biology
  doi: 10.1007/978-1-4419-7046-6_37
– volume: 2
  start-page: 133
  year: 2006
  end-page: 162
  ident: CR15
  article-title: Challenges in the analysis of mass-throughput data: a technical commentary from the statistical machine learning perspective
  publication-title: Cancer Informatics
  doi: 10.1177/117693510600200004
– volume: 98
  start-page: 11462
  year: 2001
  end-page: 11467
  ident: CR16
  article-title: Predicting the clinical status of human breast cancer by using gene expression profiles
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.201162998
– volume: 102
  start-page: 3738
  year: 2005
  end-page: 3743
  ident: CR18
  article-title: Robustness, scalability and integration of a wound-response gene expression signature in predicting breast cancer survival
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0409462102
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: CR34
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Machine Learn
  doi: 10.1023/A:1012487302797
– ident: BFsrep04411_CR40
– volume: 2
  start-page: 133
  year: 2006
  ident: BFsrep04411_CR15
  publication-title: Cancer Informatics
  doi: 10.1177/117693510600200004
– volume: 44
  start-page: 837
  year: 1988
  ident: BFsrep04411_CR43
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 6
  start-page: 25
  year: 2011
  ident: BFsrep04411_CR5
  publication-title: Biology Direct
  doi: 10.1186/1745-6150-6-25
– ident: BFsrep04411_CR25
  doi: 10.1145/1027933.1027968
– ident: BFsrep04411_CR44
– volume: 57
  start-page: 289
  year: 1995
  ident: BFsrep04411_CR45
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: BFsrep04411_CR41
  doi: 10.1007/3-540-44886-1_25
– volume: 102
  start-page: 3738
  year: 2005
  ident: BFsrep04411_CR18
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0409462102
– volume: 20
  start-page: 374
  year: 2004
  ident: BFsrep04411_CR35
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg419
– volume: 6
  start-page: 34
  year: 2005
  ident: BFsrep04411_CR13
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/6.1.34
– ident: BFsrep04411_CR28
– volume: 2
  start-page: 1137
  year: 1995
  ident: BFsrep04411_CR38
  publication-title: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI)
– volume: 72
  start-page: 2728
  year: 2012
  ident: BFsrep04411_CR4
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-4121-T
– volume: 144
  start-page: 27
  year: 2011
  ident: BFsrep04411_CR21
  publication-title: Cell
  doi: 10.1016/j.cell.2010.11.055
– volume: 486
  start-page: 346
  year: 2012
  ident: BFsrep04411_CR8
  publication-title: Nature
  doi: 10.1038/nature10983
– volume: 11
  start-page: 15
  year: 1998
  ident: BFsrep04411_CR23
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(97)00097-X
– volume: 58
  start-page: 3469
  year: 2011
  ident: BFsrep04411_CR6
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2011.2169256
– volume: 18
  start-page: 11
  year: 2010
  ident: BFsrep04411_CR7
  publication-title: Cancer cell
  doi: 10.1016/j.ccr.2010.05.026
– volume: 45
  start-page: 5
  year: 2001
  ident: BFsrep04411_CR33
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 286
  start-page: 531
  year: 1999
  ident: BFsrep04411_CR1
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– ident: BFsrep04411_CR39
– volume: 5
  start-page: 4818
  year: 2005
  ident: BFsrep04411_CR12
  publication-title: Conference proceedings: … Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference
  doi: 10.1109/IEMBS.2005.1615550
– volume: 68
  start-page: 820
  year: 1971
  ident: BFsrep04411_CR19
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.68.4.820
– ident: BFsrep04411_CR37
– volume: 101
  start-page: 8431
  year: 2004
  ident: BFsrep04411_CR14
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0401736101
– volume: 2
  start-page: 1331
  year: 2004
  ident: BFsrep04411_CR42
  publication-title: Proceedings of 2004 IEEE International Joint Conference on Neural Networks
  doi: 10.1109/IJCNN.2004.1380138
– volume: 1
  start-page: 683
  year: 2002
  ident: BFsrep04411_CR3
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd891
– volume: 7
  start-page: 68
  year: 1953
  ident: BFsrep04411_CR20
  publication-title: Br J Cancer
  doi: 10.1038/bjc.1953.8
– volume: 49
  start-page: 291
  year: 2007
  ident: BFsrep04411_CR31
  publication-title: Technometrics
  doi: 10.1198/004017007000000245
– volume: 2007
  start-page: 5411
  year: 2007
  ident: BFsrep04411_CR11
  publication-title: Conference proceedings: … Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference
  doi: 10.1109/IEMBS.2007.4353566
– volume: 696
  start-page: 367
  year: 2011
  ident: BFsrep04411_CR26
  publication-title: Advances in experimental medicine and biology
  doi: 10.1007/978-1-4419-7046-6_37
– volume: 13
  start-page: 280
  year: 2013
  ident: BFsrep04411_CR2
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-13-280
– ident: BFsrep04411_CR22
  doi: 10.1007/978-0-387-21606-5
– volume: 1
  start-page: 39
  year: 2009
  ident: BFsrep04411_CR9
  publication-title: Genome Med
  doi: 10.1186/gm39
– volume: 98
  start-page: 11462
  year: 2001
  ident: BFsrep04411_CR16
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.201162998
– volume: 17
  start-page: 43
  year: 2003
  ident: BFsrep04411_CR24
  publication-title: Neural Processing Letters
  doi: 10.1023/A:1022936519097
– ident: BFsrep04411_CR30
– volume: 46
  start-page: 389
  year: 2002
  ident: BFsrep04411_CR34
  publication-title: Machine Learn
  doi: 10.1023/A:1012487302797
– volume: 74
  start-page: 491
  year: 2005
  ident: BFsrep04411_CR36
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2005.05.002
– ident: BFsrep04411_CR32
– ident: BFsrep04411_CR29
– volume: 22
  start-page: e184
  year: 2006
  ident: BFsrep04411_CR10
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl230
– volume: 361
  start-page: 1590
  year: 2003
  ident: BFsrep04411_CR17
  publication-title: Lancet
  doi: 10.1016/S0140-6736(03)13308-9
– ident: BFsrep04411_CR27
  doi: 10.1142/9789812704856_0029
– volume: 29
  start-page: 1165
  year: 2001
  ident: BFsrep04411_CR46
  publication-title: Ann. Statist
  doi: 10.1214/aos/1013699998
SSID ssj0000529419
Score 2.21656
Snippet The spectrum of modern molecular high-throughput assaying includes diverse technologies such as microarray gene expression, miRNA expression, proteomics, DNA...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4411
SubjectTerms 631/114/2397
631/208/212
692/699/67
Computational Biology - statistics & numerical data
Datasets as Topic
Diagnostic Imaging
DNA Methylation
DNA, Neoplasm - genetics
DNA, Neoplasm - metabolism
Female
Gene Dosage
Gene Expression
Humanities and Social Sciences
Humans
Male
MicroRNAs - genetics
MicroRNAs - metabolism
multidisciplinary
Neoplasm Proteins - genetics
Neoplasm Proteins - metabolism
Neoplasms - diagnosis
Neoplasms - genetics
Neoplasms - mortality
Neoplasms - pathology
Prognosis
RNA, Neoplasm - genetics
RNA, Neoplasm - metabolism
Science
Survival Analysis
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQERIL4k14yTwGFov4EScZoVBVSGVqpW6R49gCCaUVTQf-PWfngUoZGDLl4lh3jr9z7u47hG5pbmPGI0ESKkMiYJ8kcIyQxFgABx3xnPt2b6NXOZyIl2k0bciiF01aZU1p6bfpNjvsHvBiHgJ0w0Fn0zG2u8Xcl_3ud4oLWAmattxBPPl5YhVx1tzI9WzIXyFRjzSDXbTTuIj4oZ7UHtow5T7aqptGfh2gaVNB5DSKXaY5DIhVWcBV84vguiv0AoMY9gW2ZDQrYESX00HGdWOe-bLCj7703lkJP6lKHaLJ4HncH5KmPwLRgoYVia3k1jJXrmNSapmxRueaWsvjELAvBezlqWHKMJvHkRaqSASXGoyScJ0awY9Qr5yV5gRhrZhyQVgdRYWIrEi4kkrZwmqRF4mWAbprdZjphjzc9bD4yHwQmydZp-4AXXei85ox4y-hq9YQGaxnF6RQpZktFxl1jH6OIgjeeVwbphuGucbtMuYBildM1gk4ruzVO-X7m-fM5im4aiIM0E1r3Kz5WBfrszv9l9QZ2gbvSbiENEbPUa_6XJoL8FCq_NKvzW_xuOmL
  priority: 102
  providerName: Springer Nature
Title Information content and analysis methods for Multi-Modal High-Throughput Biomedical Data
URI https://link.springer.com/article/10.1038/srep04411
https://www.ncbi.nlm.nih.gov/pubmed/24651673
https://www.proquest.com/docview/1509415446
https://pubmed.ncbi.nlm.nih.gov/PMC3961740
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-6lsFeRrvP7CNoHw970WZLsmQ_jJGFlhJoGdsCeTOyLNFB52RNAut_3zvLDs3Shz0Ygy3L4k7ynXx3vx_A-7QKRshM8TzVCVf4neS4jdDcBzQOLpOVbOnezs716VRNZtlsD3qOzU6Ayzu3dsQnNb26_Pj3z_UXXPCfY8l4_gltySJBs46boAM0SIbW51nn5UeIb1GoluKDsNc5-hCixxi6_fS2ZdpxN3ezJv8JnbYW6eQQHnauJBtF3R_Bnm8ewf1ILnn9GGZdpRFJnlFGOnbIbFPjEXFIWGSPXjJsxtrEQv57XmOPBGHMOwKfxXrFYok-aZNRQukTmJ4c_xyf8o5HgTuVJitugpYhCCrr8UUahA_eVS4NQZoEbWSBNloWXlgvQmUyp2ydK6kdKi-XrvBKPoX9Zt7458CcFZaCtS7LapUFlUurrQ11cKqqc6cH8KGXYek6kHHiurgs22C3zMuNuAfwdtN0EZE17mr0pldEifOeghm28fP1skwJ-Y-ghPCdz6JiNt0IInjXRg7AbKls04AwtbfvNL8uWmxtWaBLp5IBvOuVW_Zzcnd0L_5jdC_hAfpYitLWRPoK9ldXa_8a_ZhVNYR7ZmaGcDAaTX5M8Pz1-Pzbd7w61uNh-29g2M7jGzWm-x0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQCMGCeBOe5jGwWMSx4yQjFKoCbadW6hY5ji2QUFqRdODfc84LlTIwZMrFse4c3zl3930I3dDEBB7zOQmpcAmHfZLAMUIQbcA5KJ8lrKR7GwxFb8xfJv6kBovO67LKCtKy3Kab6rA78BczF1w3HHTWIMQWtnqrIzrt7xSbsOI0arCDWPjzxKLHWQojl6shf6VES0_T3UZbdYiI76tJ7aAVne2i9Yo08msPTeoOIqtRbCvNYUAssxSuCl8EV6zQOQYxXDbYksE0hRFtTQcZVcQ8s3mBH8rWe2sl_CgLuY_G3adRp0dqfgSiOHULEhjBjPFsu46OqPG00SpR1BgWuOD7IvC9LNKe1J5JAl9xmYacCQVGCZmKNGcHaDWbZvoIYSU9aZOwyvdT7hseMimkNKlRPElDJRx02-gwVjV4uOWw-IjLJDYL41bdDrpqRWcVYsZfQpeNIWJYzzZJITM9necxtYh-FiII3nlYGaYdxrPE7SJgDgoWTNYKWKzsxTvZ-1uJmc0iCNW466Drxrhx_bHmy7M7_pfUBdrojQb9uP88fD1BmxBJcVuc5tFTtFp8zvUZRCtFcl6u028U1ex6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BEYgF8SY8zWNgsUhix0lGaKl4iwGkbpHj2AIJpRVNB_4957xQKQNDplwc687xnXN33wdw5qUm9FnAaeQJl3LcJykeIwTVBp2DCljKSrq3xydx88rvBsGgblYf12WVFaRluU031WEX6C9GLrpu3FgyMw8LGGa79qzVFd32l4pNWnEvbvCDWPTz1LTXmQklZysif6VFS2_TX4WVOkwkl9XE1mBO5-uwWBFHfm3AoO4islolttocByQyz_CqMEZIxQw9JihGyiZb-jjMcERb10FfKnKe0aQgV2X7vbUU6clCbsJr__qle0NrjgSquOcWNDSCGePblh0de8bXRqtUecaw0EX_F6P_ZbH2pfZNGgaKyyziTCg0TMRUrDnbgk4-zPUOECV9aROxKggyHhgeMSmkNJlRPM0iJRw4b3SYqBpA3PJYfCRlIptFSatuB05a0VGFmvGX0HFjiATXtE1UyFwPJ-PEs6h-FiYI37ldGaYdxrfk7SJkDoRTJmsFLF729J38_a3EzWYxhmvcdeC0MW5Sf7Dj2dnt_kvqCJaee_3k4fbpfg-WMZjitj7N9_ahU3xO9AEGLEV6WC7Tb1Zc7YM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Information+content+and+analysis+methods+for+multi-modal+high-throughput+biomedical+data&rft.jtitle=Scientific+reports&rft.au=Ray%2C+Bisakha&rft.au=Henaff%2C+Mikael&rft.au=Ma%2C+Sisi&rft.au=Efstathiadis%2C+Efstratios&rft.date=2014-03-21&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=4&rft.spage=4411&rft_id=info:doi/10.1038%2Fsrep04411&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon