Abundant closed-form solutions and solitonic structures to an integrable fifth-order generalized nonlinear evolution equation in plasma physics
This paper investigates the evolution dynamics of closed-form solutions for a new integrable nonlinear fifth-order equation with spatial and temporal dispersion which describes shallow water waves moving in two directions. Some novel computational soliton solutions are obtained in the form of expone...
Saved in:
Published in | Results in physics Vol. 26; p. 104453 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper investigates the evolution dynamics of closed-form solutions for a new integrable nonlinear fifth-order equation with spatial and temporal dispersion which describes shallow water waves moving in two directions. Some novel computational soliton solutions are obtained in the form of exponential rational functions, trigonometric and hyperbolic functions, and complex-soliton solutions. Some dynamical wave structures of soliton solutions are achieved in evolutionary dynamical structures of multi-wave solitons, double-solitons, triple-solitons, multiple solitons, breather-type solitons, Lump-type solitons, singular solitons, and Kink-wave solitons using the generalized exponential rational function (GERF) technique. All newly established solutions are verified by back substituting into the considered fifth-order nonlinear evolution equation using computerized symbolic computational work via Wolfram Mathematica. These newly formed results demonstrate that the considered fifth-order equation theoretically possesses very rich computational wave structures of closed-form solutions, which are also useful in obtaining a better understanding of the internal mechanism of other complex nonlinear physical models arising in the field of plasma physics and nonlinear sciences. The physical characteristics of some constructed solutions are also graphically displayed via three-dimensional plots by selecting the best appropriate constant parameter values to easily understand the complex physical phenomena of the nonlinear equations. Eventually, the results validate the effectiveness and trustworthiness of the used technique.
•Closed-form solutions to an integrable fifth-order nonlinear evolution equation are investigated.•The GERF method is used to obtain numerous closed-form solutions to the governing equation.•Several different types of soliton solutions have been constructed.•The physical interpretation of some soliton solutions is exhibited via 3D postures. |
---|---|
AbstractList | This paper investigates the evolution dynamics of closed-form solutions for a new integrable nonlinear fifth-order equation with spatial and temporal dispersion which describes shallow water waves moving in two directions. Some novel computational soliton solutions are obtained in the form of exponential rational functions, trigonometric and hyperbolic functions, and complex-soliton solutions. Some dynamical wave structures of soliton solutions are achieved in evolutionary dynamical structures of multi-wave solitons, double-solitons, triple-solitons, multiple solitons, breather-type solitons, Lump-type solitons, singular solitons, and Kink-wave solitons using the generalized exponential rational function (GERF) technique. All newly established solutions are verified by back substituting into the considered fifth-order nonlinear evolution equation using computerized symbolic computational work via Wolfram Mathematica. These newly formed results demonstrate that the considered fifth-order equation theoretically possesses very rich computational wave structures of closed-form solutions, which are also useful in obtaining a better understanding of the internal mechanism of other complex nonlinear physical models arising in the field of plasma physics and nonlinear sciences. The physical characteristics of some constructed solutions are also graphically displayed via three-dimensional plots by selecting the best appropriate constant parameter values to easily understand the complex physical phenomena of the nonlinear equations. Eventually, the results validate the effectiveness and trustworthiness of the used technique.
•Closed-form solutions to an integrable fifth-order nonlinear evolution equation are investigated.•The GERF method is used to obtain numerous closed-form solutions to the governing equation.•Several different types of soliton solutions have been constructed.•The physical interpretation of some soliton solutions is exhibited via 3D postures. This paper investigates the evolution dynamics of closed-form solutions for a new integrable nonlinear fifth-order equation with spatial and temporal dispersion which describes shallow water waves moving in two directions. Some novel computational soliton solutions are obtained in the form of exponential rational functions, trigonometric and hyperbolic functions, and complex-soliton solutions. Some dynamical wave structures of soliton solutions are achieved in evolutionary dynamical structures of multi-wave solitons, double-solitons, triple-solitons, multiple solitons, breather-type solitons, Lump-type solitons, singular solitons, and Kink-wave solitons using the generalized exponential rational function (GERF) technique. All newly established solutions are verified by back substituting into the considered fifth-order nonlinear evolution equation using computerized symbolic computational work via Wolfram Mathematica. These newly formed results demonstrate that the considered fifth-order equation theoretically possesses very rich computational wave structures of closed-form solutions, which are also useful in obtaining a better understanding of the internal mechanism of other complex nonlinear physical models arising in the field of plasma physics and nonlinear sciences. The physical characteristics of some constructed solutions are also graphically displayed via three-dimensional plots by selecting the best appropriate constant parameter values to easily understand the complex physical phenomena of the nonlinear equations. Eventually, the results validate the effectiveness and trustworthiness of the used technique. |
ArticleNumber | 104453 |
Author | Hamid, Ihsanullah Abdou, M.A. Kumar, Sachin Almusawa, Hassan |
Author_xml | – sequence: 1 givenname: Sachin orcidid: 0000-0003-4451-3206 surname: Kumar fullname: Kumar, Sachin email: sachinambariya@gmail.com organization: Department of Mathematics, Faculty of Mathematical Sciences, University of Delhi, Delhi-110007, India – sequence: 2 givenname: Hassan orcidid: 0000-0001-5024-866X surname: Almusawa fullname: Almusawa, Hassan organization: Department of Mathematics, College of Sciences, Jazan University, Jazan 45142, Saudi Arabia – sequence: 3 givenname: Ihsanullah orcidid: 0000-0002-5783-8459 surname: Hamid fullname: Hamid, Ihsanullah organization: Department of Mathematics, Faculty of Mathematical Sciences, University of Delhi, Delhi-110007, India – sequence: 4 givenname: M.A. surname: Abdou fullname: Abdou, M.A. organization: Department of Mathematics, College of Sciences, University of Bisha, P.O. Box 344, Bisha 61922, Saudi Arabia |
BookMark | eNp9kctu3CAUhlGUSEnTvEBWvICnYBtjpG6iqJdIkbpp1wjDYXJGHpgCjpS-RF-5eCaVqi6y4nDg-8_lf0fOQwxAyC1nG8748GG3SRgOm5a1vCb6XnRn5KptOW86qeT5P_Elucl5x1ileiE4vyK_76YlOBMKtXPM4Bof057mOC8FY8jUBLfesMSAluaSFluWBJmWWN8ohgLbZKYZqEdfnpqYHCS6hQDJzPgLHK3NzhjAJArPr7IUfi7mGGCgh9nkvaGHp5eMNr8nF97MGW5ez2vy4_On7_dfm8dvXx7u7x4b23NWGmm5YN00gJlGxXrGjGTODk467wfrJslG0Q1tz5SEXijlvBJi7OtPLj3ztrsmDyddF81OHxLuTXrR0aA-JmLaapMK2hm06LtRrjVcVVCTHKWCSfG6QDEpC6JqjSctm2LOCby2WI7zlWRw1pzp1Se906tPevVJn3yqaPsf-reVN6GPJwjqgp4Rks4WIVhwmMCWOgG-hf8BG7uw_g |
CitedBy_id | crossref_primary_10_3934_math_20241530 crossref_primary_10_1016_j_rinp_2023_106432 crossref_primary_10_1088_1402_4896_ad16fd crossref_primary_10_1016_j_joes_2021_10_009 crossref_primary_10_1007_s11071_021_06915_0 crossref_primary_10_1142_S0217979222501946 crossref_primary_10_1515_nleng_2022_0292 crossref_primary_10_1515_phys_2023_0129 crossref_primary_10_3390_math12142242 crossref_primary_10_1016_j_cjph_2021_11_025 crossref_primary_10_1016_j_padiff_2023_100583 crossref_primary_10_1007_s10773_024_05577_z crossref_primary_10_1007_s11082_024_06960_0 crossref_primary_10_1016_j_rinp_2022_105504 crossref_primary_10_1088_1402_4896_ad5062 crossref_primary_10_1088_1402_4896_ac8b3f crossref_primary_10_1016_j_joes_2021_08_001 crossref_primary_10_1007_s12648_022_02559_x crossref_primary_10_1016_j_rinp_2022_105394 crossref_primary_10_1007_s13324_023_00802_0 crossref_primary_10_1016_j_aej_2021_08_064 crossref_primary_10_1016_j_joes_2022_01_012 crossref_primary_10_1002_mma_10581 crossref_primary_10_1007_s11082_023_04774_0 crossref_primary_10_1002_mma_9024 crossref_primary_10_1016_j_joes_2021_12_003 crossref_primary_10_1016_j_rinp_2021_104921 crossref_primary_10_1142_S0217984923501075 crossref_primary_10_1142_S0217984923502081 crossref_primary_10_1016_j_cjph_2022_08_026 crossref_primary_10_1007_s11082_023_04736_6 crossref_primary_10_1016_j_rinp_2023_107068 crossref_primary_10_1016_j_rinp_2023_107101 crossref_primary_10_1016_j_physleta_2022_128616 crossref_primary_10_1142_S0217979221503173 crossref_primary_10_1016_j_padiff_2022_100404 crossref_primary_10_1016_j_rinp_2022_105364 crossref_primary_10_1007_s12043_023_02575_4 crossref_primary_10_1016_j_joes_2021_09_018 crossref_primary_10_1016_j_padiff_2021_100200 crossref_primary_10_1016_j_rinp_2024_107580 crossref_primary_10_1142_S0217984923500896 crossref_primary_10_1038_s41598_024_66765_9 crossref_primary_10_1007_s11082_023_04976_6 crossref_primary_10_1016_j_rinp_2021_104793 crossref_primary_10_1016_j_rinp_2024_107348 crossref_primary_10_1088_1402_4896_ad1e45 crossref_primary_10_1142_S0217984921505400 crossref_primary_10_1007_s40314_022_01926_y crossref_primary_10_1016_j_joes_2022_06_017 crossref_primary_10_1142_S0217984923501737 crossref_primary_10_1088_1402_4896_ac4f9d crossref_primary_10_1007_s10773_024_05559_1 crossref_primary_10_1063_5_0176981 crossref_primary_10_1007_s40819_022_01470_7 crossref_primary_10_1002_mma_8596 crossref_primary_10_1016_j_rinp_2021_104866 crossref_primary_10_1142_S2424942423500093 crossref_primary_10_1007_s11082_023_04712_0 crossref_primary_10_1016_j_rinp_2021_104621 crossref_primary_10_1142_S021798492150603X crossref_primary_10_1142_S0217984921505552 crossref_primary_10_1155_2024_1754782 |
Cites_doi | 10.1140/epjp/i2018-11984-1 10.1016/j.ijleo.2018.12.002 10.1007/s12043-021-02082-4 10.1016/j.chaos.2004.09.109 10.1016/j.rinp.2021.104006 10.1016/j.physleta.2005.10.099 10.1016/j.apm.2013.06.009 10.1016/j.chaos.2004.09.122 10.1007/s11071-019-05294-x 10.1016/j.physleta.2007.07.051 10.1175/1520-0485(1996)026<2712:TEOIWU>2.0.CO;2 10.1142/S0217979206034819 10.1016/j.rinp.2021.104009 10.1140/epjp/s13360-020-00883-x 10.1016/j.aml.2019.106170 10.1016/j.cjph.2021.03.021 10.1016/j.physleta.2019.02.031 10.1016/j.chaos.2020.109709 10.1142/S0217984920502826 10.1016/j.rinp.2021.104201 10.1016/j.chaos.2005.06.001 10.1007/s11071-020-05740-1 10.1016/j.chaos.2020.109950 10.1007/s00033-019-1225-9 10.1016/j.camwa.2019.07.006 10.1016/j.rinp.2019.102895 10.1140/epjp/s13360-020-00218-w 10.1080/17455030.2018.1516053 10.1140/epjp/s13360-021-01528-3 10.1016/j.chaos.2006.03.020 10.1142/S0217979221500284 10.1007/s13538-021-00913-8 10.1142/S0217979220502264 10.1016/j.cnsns.2012.12.003 |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rinp.2021.104453 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (selected full-text) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2211-3797 |
ExternalDocumentID | oai_doaj_org_article_543870400d5849b7879eb914555b9ce5 10_1016_j_rinp_2021_104453 S2211379721005684 |
GroupedDBID | --K 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M48 M~E NCXOZ O-L O9- OK1 RIG ROL SES SSZ XH2 AAFWJ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPKN AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c410t-7c1503b6eab890400a70dc6d7dff6cdb70853624097e4599df9558404017f0fc3 |
IEDL.DBID | IXB |
ISSN | 2211-3797 |
IngestDate | Wed Aug 27 01:10:36 EDT 2025 Tue Jul 01 02:27:40 EDT 2025 Thu Apr 24 22:56:15 EDT 2025 Tue Jul 25 20:58:42 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dynamical structures Closed-form solutions GERF method Fifth-order nonlinear evolution equation Solitons |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-7c1503b6eab890400a70dc6d7dff6cdb70853624097e4599df9558404017f0fc3 |
ORCID | 0000-0001-5024-866X 0000-0002-5783-8459 0000-0003-4451-3206 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211379721005684 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_543870400d5849b7879eb914555b9ce5 crossref_citationtrail_10_1016_j_rinp_2021_104453 crossref_primary_10_1016_j_rinp_2021_104453 elsevier_sciencedirect_doi_10_1016_j_rinp_2021_104453 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationTitle | Results in physics |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Wawaz (b30) 2011; 83 Kuo (b33) 2018; 33 Chen, Tian, Chai, Wu, Du (b40) 2020; 30 Wang, Li, Zhang (b11) 2008; 372 Zhao, Tian, Qu, Yuan, Du, Chu (b39) 2020; 34 Li, Duan, Yu (b10) 2019; 383 Ghanbari, Kumar, Niwas, Baleanu (b21) 2021; 23 Ghanbari, Inc (b22) 2018; 133 Kumar, Kumar, Kharbanda (b24) 2021; 95 Mostafa, Khater (b3) 2020; 19 Gao, Guo, Shan (b34) 2020; 104 Yang, Osman, Liu (b6) 2021; 23 Chen (b37) 2020; 34 Abdou (b5) 2020; 16 Xu, Wazwaz (b29) 2020; 101 Wang, Tian, Sun, Zhang (b38) 2020; 79 Kumar, Kumar, Wazwaz (b7) 2021; 136 Khan, Akbar, Mastroberardino (b12) 2016; 2 Xiqiang, Limin, Weijun (b14) 2006; 28 Kudryashov (b15) 2005; 24 Wazwaz (b28) 2014; 38 Zhang, Wang, Wang, Fang (b13) 2006; 350 Kumar, Niwas, Hamid (b23) 2021; 35 Kumar, Almusawa, Kumar (b8) 2021; 24 Kumar, Kaur, Niwas (b19) 2021; 71 Kumar, Rani (b20) 2021; 95 Bilal (b25) 2021; 403 Wazwaz (b1) 2005; 25 Mostafa, Khater (b4) 2021 Wang, Liu, Zhang (b32) 2013; 18 Zhang, Tian, Qu, Liu, Tian (b41) 2020; 71 Gao, Guo, Shan (b36) 2020; 138 Kumar, Kumar, Kharbanda (b9) 2021 Kumar, Kumar (b18) 2019; 98 Du, Tian, Qu, Yuan, Zhao (b35) 2020; 134 Kumar, Kumar (b26) 2020; 135 Lamb, Yan (b42) 1996; 26 Kumar, Kumar, Wazwaz (b27) 2020; 135 Wazwaz (b31) 2011; 83 He (b2) 2006; 20 He, Wu (b16) 2006; 30 Liu, Osman, Wazwaz (b17) 2019; 180 Khan (10.1016/j.rinp.2021.104453_b12) 2016; 2 Wazwaz (10.1016/j.rinp.2021.104453_b31) 2011; 83 Li (10.1016/j.rinp.2021.104453_b10) 2019; 383 Kudryashov (10.1016/j.rinp.2021.104453_b15) 2005; 24 Kumar (10.1016/j.rinp.2021.104453_b7) 2021; 136 Du (10.1016/j.rinp.2021.104453_b35) 2020; 134 He (10.1016/j.rinp.2021.104453_b2) 2006; 20 Ghanbari (10.1016/j.rinp.2021.104453_b22) 2018; 133 He (10.1016/j.rinp.2021.104453_b16) 2006; 30 Kumar (10.1016/j.rinp.2021.104453_b8) 2021; 24 Wang (10.1016/j.rinp.2021.104453_b11) 2008; 372 Kumar (10.1016/j.rinp.2021.104453_b27) 2020; 135 Kumar (10.1016/j.rinp.2021.104453_b9) 2021 Zhang (10.1016/j.rinp.2021.104453_b13) 2006; 350 Chen (10.1016/j.rinp.2021.104453_b37) 2020; 34 Mostafa (10.1016/j.rinp.2021.104453_b3) 2020; 19 Liu (10.1016/j.rinp.2021.104453_b17) 2019; 180 Kumar (10.1016/j.rinp.2021.104453_b19) 2021; 71 Kumar (10.1016/j.rinp.2021.104453_b20) 2021; 95 Wawaz (10.1016/j.rinp.2021.104453_b30) 2011; 83 Kumar (10.1016/j.rinp.2021.104453_b18) 2019; 98 Ghanbari (10.1016/j.rinp.2021.104453_b21) 2021; 23 Kumar (10.1016/j.rinp.2021.104453_b26) 2020; 135 Kuo (10.1016/j.rinp.2021.104453_b33) 2018; 33 Bilal (10.1016/j.rinp.2021.104453_b25) 2021; 403 Lamb (10.1016/j.rinp.2021.104453_b42) 1996; 26 Mostafa (10.1016/j.rinp.2021.104453_b4) 2021 Wang (10.1016/j.rinp.2021.104453_b32) 2013; 18 Chen (10.1016/j.rinp.2021.104453_b40) 2020; 30 Gao (10.1016/j.rinp.2021.104453_b36) 2020; 138 Kumar (10.1016/j.rinp.2021.104453_b23) 2021; 35 Xu (10.1016/j.rinp.2021.104453_b29) 2020; 101 Gao (10.1016/j.rinp.2021.104453_b34) 2020; 104 Kumar (10.1016/j.rinp.2021.104453_b24) 2021; 95 Zhao (10.1016/j.rinp.2021.104453_b39) 2020; 34 Wang (10.1016/j.rinp.2021.104453_b38) 2020; 79 Abdou (10.1016/j.rinp.2021.104453_b5) 2020; 16 Zhang (10.1016/j.rinp.2021.104453_b41) 2020; 71 Wazwaz (10.1016/j.rinp.2021.104453_b1) 2005; 25 Xiqiang (10.1016/j.rinp.2021.104453_b14) 2006; 28 Wazwaz (10.1016/j.rinp.2021.104453_b28) 2014; 38 Yang (10.1016/j.rinp.2021.104453_b6) 2021; 23 |
References_xml | – volume: 23 year: 2021 ident: b6 article-title: Abundant lump-type solutions for the extended (3+1)-dimensional Jimbo–Miwa equation publication-title: Results Phys – volume: 403 year: 2021 ident: b25 article-title: Investigation of shallow water waves and solitary waves to the conformable 3D-WBBM model by an analytical method publication-title: Phys Lett A – volume: 71 start-page: 518 year: 2021 end-page: 538 ident: b19 article-title: Some exact invariant solutions and dynamical structures of multiple solitons for the (2+1)-dimensional bogoyavlensky-Konopelchenko equation with variable coefficients using Lie symmetry analysis publication-title: Chinese J Phys – volume: 18 start-page: 2313 year: 2013 end-page: 2320 ident: b32 article-title: Symmetry reduction, exact solutions and conservation laws of a new fifth-order nonlinear integrable equation publication-title: Commun Nonlinear Sci Numer Simul – volume: 2 year: 2016 ident: b12 article-title: A note on modified generalized riccati equation method combined with new algebra expansion publication-title: Cogent Math – year: 2021 ident: b9 article-title: Abundant exact closed form solutions and solitonic structures for the double chain deoxyribonucleic acid (DNA) model publication-title: Braz J Phys – volume: 19 year: 2020 ident: b3 article-title: On the interaction between (low and high) frequency of (ion-acoustic and Langmuir) waves in plasma via some recent computational schemes publication-title: Results Phys – volume: 79 start-page: 576 year: 2020 end-page: 587 ident: b38 article-title: Lump, mixed lump-stripe and rogue wave-stripe solutions of a (3+1)-dimensional nonlinear wave equation for a liquid with gas bubbles publication-title: Comput Math Appl – volume: 180 start-page: 917 year: 2019 end-page: 923 ident: b17 article-title: A variety of nonautonomous complex wave solutions for the (2+1)-dimensional nonlinear Schrodinger equation with variable coefficients in nonlinear optical fibers publication-title: Optik – volume: 24 start-page: 1217 year: 2005 ident: b15 article-title: Simplest equation method to look for exact solutions of nonlinear differential equations publication-title: Chaos Solitons Fractals – volume: 23 year: 2021 ident: b21 article-title: The Lie symmetry analysis and exact Jacobi elliptic solutions for the Kawahara–KdV type equations publication-title: Results Phys – volume: 33 year: 2018 ident: b33 article-title: Resonant multi-soliton solutions to two fifth-order KdV equations via the simplified linear superposition principle publication-title: Modern Phys Lett B – volume: 30 start-page: 700 year: 2006 end-page: 708 ident: b16 article-title: Exp-function method for nonlinear wave equations publication-title: Chaos Solitons Fractals – volume: 28 start-page: 448 year: 2006 ident: b14 article-title: The repeated homogeneous balance method and its applications to nonlinear partial differential equations publication-title: Chaos Solitons Fractals – volume: 20 start-page: 2561 year: 2006 end-page: 2568 ident: b2 article-title: Addendum: New interpretation of homotopy perturbation method publication-title: Internat J Modern Phys B – volume: 135 start-page: 870 year: 2020 ident: b27 article-title: New exact solitary wave solutions of the strain wave equation in microstructured solids via the generalized exponential rational function method publication-title: Eur Phys J Plus – volume: 134 year: 2020 ident: b35 article-title: Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma publication-title: Chaos Solitons Fractals – volume: 34 year: 2020 ident: b37 article-title: Ablowitz Kaup Newell Segur system, conservation laws and Bäcklund transformation of a variable-coeffcient Korteweg de Vries equatiom in plasma physics, fluid dynamics or atmospheric science publication-title: Internat J Modern Phys B – volume: 135 start-page: 162 year: 2020 ident: b26 article-title: Solitary wave solutions of pZK equation using Lie point symmetries publication-title: Eur Phys J Plus – volume: 101 start-page: 581 year: 2020 end-page: 595 ident: b29 article-title: Bidirectional solitons and interaction solutions for a new integrable fifth-order nonlinear equation with temporal and spatial dispersion publication-title: Nonlinear Dynam – volume: 95 start-page: 51 year: 2021 ident: b20 article-title: Lie symmetry analysis, Group-invariant solutions and dynamics of solitons to the (2+1)-dimensional Bogoyavlenskii–Schieff equation publication-title: Pramana J Phys – volume: 71 start-page: 18 year: 2020 ident: b41 article-title: Vector bright solitons and their interactions of the couple fokas–lenells system in a birefringent optical fiber publication-title: Z Angew Math Phys – volume: 133 start-page: 142 year: 2018 ident: b22 article-title: A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrodinger equation publication-title: Eur Phys J Plus – volume: 104 year: 2020 ident: b34 article-title: Water-wave symbolic computation for the Earth, Enceladus and Titan: The higher-order Boussinesq-Burgers system, auto- and non-auto-Bäcklund transformations publication-title: Appl Math Lett – volume: 16 year: 2020 ident: b5 article-title: Optical soliton solutions for a space–time fractional perturbed nonlinear Schrödinger equation arising in quantum physics publication-title: Results Phys – volume: 34 year: 2020 ident: b39 article-title: Dark-dark solitons for the coupled spatially modulated Gross-Pitaevskii system in the Bose-Einstein condensation publication-title: Modern Phys Lett B – volume: 350 start-page: 103 year: 2006 ident: b13 article-title: The improved F-expansion method and its applications publication-title: Phys Lett A – volume: 372 start-page: 417 year: 2008 end-page: 423 ident: b11 article-title: The publication-title: Phys Lett A – volume: 24 year: 2021 ident: b8 article-title: Some more closed-form invariant solutions and dynamical behavior of multiple solitons for the (2+1)-dimensional rdDym equation using the Lie symmetry approach publication-title: Results Phys – volume: 83 year: 2011 ident: b30 article-title: New fifth-order nonlinear integrable equation: multiple soliton solutions publication-title: Phys Scr – volume: 138 year: 2020 ident: b36 article-title: Shallow water in an open sea or a wide channel: Auto- and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system publication-title: Chaos Solitons Fractals – volume: 136 start-page: 531 year: 2021 ident: b7 article-title: Lie symmetries, optimal system, group-invariant solutions and dynamical behaviors of solitary wave solutions for a (3+1)-dimensional KdV-type equation publication-title: Eur Phys J Plus – volume: 383 start-page: 1578 year: 2019 end-page: 1582 ident: b10 article-title: An improved Hirota bilinear method and new application for a nonlocal integrable complex modified Korteweg–de Vries (MKdV) equation publication-title: Phys Lett A – volume: 38 start-page: 110 year: 2014 end-page: 118 ident: b28 article-title: Kink solutions for three new fifth order nonlinear equations publication-title: Appl Math Model – volume: 95 start-page: 35 year: 2021 ident: b24 article-title: Lie symmetry analysis, abundant exact solutions and dynamics of multisolitons to the (2+1)-dimensional KP-BBM equation publication-title: Pramana J Phys – volume: 98 start-page: 1891 year: 2019 end-page: 1903 ident: b18 article-title: Lie symmetry reductions and group invariant solutions of (2+1)-dimensional modified Veronese web equation publication-title: Nonlinear Dynam – volume: 30 start-page: 389 year: 2020 end-page: 402 ident: b40 article-title: Lax pair, binary Darboux transformations and dark-soliton interaction of a fifth-order defocusing nonlinear Schrödinger equation for the attosecond pulses in the optical fiber communication publication-title: Waves Random Complex – volume: 35 year: 2021 ident: b23 article-title: Lie symmetry analysis for obtaining exact soliton solutions of generalized Camassa–Holm–Kadomtsev–Petviashvili equation publication-title: Internat J Modern Phys B – volume: 83 year: 2011 ident: b31 article-title: A new generalized fifth-order nonlinear integrable equation publication-title: Phys Scr – volume: 25 start-page: 55 year: 2005 end-page: 63 ident: b1 article-title: The tanh method solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzeica–Dodd–Bullough equations publication-title: Chaos Solitons Fractals – volume: 26 start-page: 2712 year: 1996 end-page: 2734 ident: b42 article-title: The evolution of internal wave undular bores: comparisons of a fully nonlinear numerical model with weakly nonlinear theory publication-title: J Phys Oceanogr – year: 2021 ident: b4 article-title: Computational and approximate solutions of complex nonlinear Fokas–Lenells equation arising in optical fiber publication-title: Results Phys – volume: 133 start-page: 142 year: 2018 ident: 10.1016/j.rinp.2021.104453_b22 article-title: A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrodinger equation publication-title: Eur Phys J Plus doi: 10.1140/epjp/i2018-11984-1 – volume: 180 start-page: 917 year: 2019 ident: 10.1016/j.rinp.2021.104453_b17 article-title: A variety of nonautonomous complex wave solutions for the (2+1)-dimensional nonlinear Schrodinger equation with variable coefficients in nonlinear optical fibers publication-title: Optik doi: 10.1016/j.ijleo.2018.12.002 – volume: 2 year: 2016 ident: 10.1016/j.rinp.2021.104453_b12 article-title: A note on modified generalized riccati equation method combined with new algebra expansion publication-title: Cogent Math – volume: 403 issue: 9 year: 2021 ident: 10.1016/j.rinp.2021.104453_b25 article-title: Investigation of shallow water waves and solitary waves to the conformable 3D-WBBM model by an analytical method publication-title: Phys Lett A – volume: 19 year: 2020 ident: 10.1016/j.rinp.2021.104453_b3 article-title: On the interaction between (low and high) frequency of (ion-acoustic and Langmuir) waves in plasma via some recent computational schemes publication-title: Results Phys – volume: 95 start-page: 51 year: 2021 ident: 10.1016/j.rinp.2021.104453_b20 article-title: Lie symmetry analysis, Group-invariant solutions and dynamics of solitons to the (2+1)-dimensional Bogoyavlenskii–Schieff equation publication-title: Pramana J Phys doi: 10.1007/s12043-021-02082-4 – year: 2021 ident: 10.1016/j.rinp.2021.104453_b4 article-title: Computational and approximate solutions of complex nonlinear Fokas–Lenells equation arising in optical fiber publication-title: Results Phys – volume: 24 start-page: 1217 year: 2005 ident: 10.1016/j.rinp.2021.104453_b15 article-title: Simplest equation method to look for exact solutions of nonlinear differential equations publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2004.09.109 – volume: 23 year: 2021 ident: 10.1016/j.rinp.2021.104453_b21 article-title: The Lie symmetry analysis and exact Jacobi elliptic solutions for the Kawahara–KdV type equations publication-title: Results Phys doi: 10.1016/j.rinp.2021.104006 – volume: 33 year: 2018 ident: 10.1016/j.rinp.2021.104453_b33 article-title: Resonant multi-soliton solutions to two fifth-order KdV equations via the simplified linear superposition principle publication-title: Modern Phys Lett B – volume: 350 start-page: 103 year: 2006 ident: 10.1016/j.rinp.2021.104453_b13 article-title: The improved F-expansion method and its applications publication-title: Phys Lett A doi: 10.1016/j.physleta.2005.10.099 – volume: 38 start-page: 110 year: 2014 ident: 10.1016/j.rinp.2021.104453_b28 article-title: Kink solutions for three new fifth order nonlinear equations publication-title: Appl Math Model doi: 10.1016/j.apm.2013.06.009 – volume: 25 start-page: 55 issue: 1 year: 2005 ident: 10.1016/j.rinp.2021.104453_b1 article-title: The tanh method solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzeica–Dodd–Bullough equations publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2004.09.122 – volume: 98 start-page: 1891 year: 2019 ident: 10.1016/j.rinp.2021.104453_b18 article-title: Lie symmetry reductions and group invariant solutions of (2+1)-dimensional modified Veronese web equation publication-title: Nonlinear Dynam doi: 10.1007/s11071-019-05294-x – volume: 372 start-page: 417 year: 2008 ident: 10.1016/j.rinp.2021.104453_b11 article-title: The (G′G)–expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics publication-title: Phys Lett A doi: 10.1016/j.physleta.2007.07.051 – volume: 26 start-page: 2712 year: 1996 ident: 10.1016/j.rinp.2021.104453_b42 article-title: The evolution of internal wave undular bores: comparisons of a fully nonlinear numerical model with weakly nonlinear theory publication-title: J Phys Oceanogr doi: 10.1175/1520-0485(1996)026<2712:TEOIWU>2.0.CO;2 – volume: 20 start-page: 2561 issue: 18 year: 2006 ident: 10.1016/j.rinp.2021.104453_b2 article-title: Addendum: New interpretation of homotopy perturbation method publication-title: Internat J Modern Phys B doi: 10.1142/S0217979206034819 – volume: 23 year: 2021 ident: 10.1016/j.rinp.2021.104453_b6 article-title: Abundant lump-type solutions for the extended (3+1)-dimensional Jimbo–Miwa equation publication-title: Results Phys doi: 10.1016/j.rinp.2021.104009 – volume: 135 start-page: 870 year: 2020 ident: 10.1016/j.rinp.2021.104453_b27 article-title: New exact solitary wave solutions of the strain wave equation in microstructured solids via the generalized exponential rational function method publication-title: Eur Phys J Plus doi: 10.1140/epjp/s13360-020-00883-x – volume: 104 year: 2020 ident: 10.1016/j.rinp.2021.104453_b34 article-title: Water-wave symbolic computation for the Earth, Enceladus and Titan: The higher-order Boussinesq-Burgers system, auto- and non-auto-Bäcklund transformations publication-title: Appl Math Lett doi: 10.1016/j.aml.2019.106170 – volume: 71 start-page: 518 year: 2021 ident: 10.1016/j.rinp.2021.104453_b19 article-title: Some exact invariant solutions and dynamical structures of multiple solitons for the (2+1)-dimensional bogoyavlensky-Konopelchenko equation with variable coefficients using Lie symmetry analysis publication-title: Chinese J Phys doi: 10.1016/j.cjph.2021.03.021 – volume: 383 start-page: 1578 issue: 14 year: 2019 ident: 10.1016/j.rinp.2021.104453_b10 article-title: An improved Hirota bilinear method and new application for a nonlocal integrable complex modified Korteweg–de Vries (MKdV) equation publication-title: Phys Lett A doi: 10.1016/j.physleta.2019.02.031 – volume: 134 year: 2020 ident: 10.1016/j.rinp.2021.104453_b35 article-title: Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109709 – volume: 34 issue: 26 year: 2020 ident: 10.1016/j.rinp.2021.104453_b39 article-title: Dark-dark solitons for the coupled spatially modulated Gross-Pitaevskii system in the Bose-Einstein condensation publication-title: Modern Phys Lett B doi: 10.1142/S0217984920502826 – volume: 95 start-page: 35 year: 2021 ident: 10.1016/j.rinp.2021.104453_b24 article-title: Lie symmetry analysis, abundant exact solutions and dynamics of multisolitons to the (2+1)-dimensional KP-BBM equation publication-title: Pramana J Phys – volume: 24 year: 2021 ident: 10.1016/j.rinp.2021.104453_b8 article-title: Some more closed-form invariant solutions and dynamical behavior of multiple solitons for the (2+1)-dimensional rdDym equation using the Lie symmetry approach publication-title: Results Phys doi: 10.1016/j.rinp.2021.104201 – volume: 28 start-page: 448 issue: 2 year: 2006 ident: 10.1016/j.rinp.2021.104453_b14 article-title: The repeated homogeneous balance method and its applications to nonlinear partial differential equations publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2005.06.001 – volume: 101 start-page: 581 year: 2020 ident: 10.1016/j.rinp.2021.104453_b29 article-title: Bidirectional solitons and interaction solutions for a new integrable fifth-order nonlinear equation with temporal and spatial dispersion publication-title: Nonlinear Dynam doi: 10.1007/s11071-020-05740-1 – volume: 138 year: 2020 ident: 10.1016/j.rinp.2021.104453_b36 article-title: Shallow water in an open sea or a wide channel: Auto- and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109950 – volume: 71 start-page: 18 year: 2020 ident: 10.1016/j.rinp.2021.104453_b41 article-title: Vector bright solitons and their interactions of the couple fokas–lenells system in a birefringent optical fiber publication-title: Z Angew Math Phys doi: 10.1007/s00033-019-1225-9 – volume: 83 year: 2011 ident: 10.1016/j.rinp.2021.104453_b30 article-title: New fifth-order nonlinear integrable equation: multiple soliton solutions publication-title: Phys Scr – volume: 79 start-page: 576 year: 2020 ident: 10.1016/j.rinp.2021.104453_b38 article-title: Lump, mixed lump-stripe and rogue wave-stripe solutions of a (3+1)-dimensional nonlinear wave equation for a liquid with gas bubbles publication-title: Comput Math Appl doi: 10.1016/j.camwa.2019.07.006 – volume: 16 year: 2020 ident: 10.1016/j.rinp.2021.104453_b5 article-title: Optical soliton solutions for a space–time fractional perturbed nonlinear Schrödinger equation arising in quantum physics publication-title: Results Phys doi: 10.1016/j.rinp.2019.102895 – volume: 135 start-page: 162 year: 2020 ident: 10.1016/j.rinp.2021.104453_b26 article-title: Solitary wave solutions of pZK equation using Lie point symmetries publication-title: Eur Phys J Plus doi: 10.1140/epjp/s13360-020-00218-w – volume: 30 start-page: 389 year: 2020 ident: 10.1016/j.rinp.2021.104453_b40 article-title: Lax pair, binary Darboux transformations and dark-soliton interaction of a fifth-order defocusing nonlinear Schrödinger equation for the attosecond pulses in the optical fiber communication publication-title: Waves Random Complex doi: 10.1080/17455030.2018.1516053 – volume: 136 start-page: 531 year: 2021 ident: 10.1016/j.rinp.2021.104453_b7 article-title: Lie symmetries, optimal system, group-invariant solutions and dynamical behaviors of solitary wave solutions for a (3+1)-dimensional KdV-type equation publication-title: Eur Phys J Plus doi: 10.1140/epjp/s13360-021-01528-3 – volume: 30 start-page: 700 year: 2006 ident: 10.1016/j.rinp.2021.104453_b16 article-title: Exp-function method for nonlinear wave equations publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2006.03.020 – volume: 83 year: 2011 ident: 10.1016/j.rinp.2021.104453_b31 article-title: A new generalized fifth-order nonlinear integrable equation publication-title: Phys Scr – volume: 35 issue: 2 year: 2021 ident: 10.1016/j.rinp.2021.104453_b23 article-title: Lie symmetry analysis for obtaining exact soliton solutions of generalized Camassa–Holm–Kadomtsev–Petviashvili equation publication-title: Internat J Modern Phys B doi: 10.1142/S0217979221500284 – year: 2021 ident: 10.1016/j.rinp.2021.104453_b9 article-title: Abundant exact closed form solutions and solitonic structures for the double chain deoxyribonucleic acid (DNA) model publication-title: Braz J Phys doi: 10.1007/s13538-021-00913-8 – volume: 34 issue: 25 year: 2020 ident: 10.1016/j.rinp.2021.104453_b37 article-title: Ablowitz Kaup Newell Segur system, conservation laws and Bäcklund transformation of a variable-coeffcient Korteweg de Vries equatiom in plasma physics, fluid dynamics or atmospheric science publication-title: Internat J Modern Phys B doi: 10.1142/S0217979220502264 – volume: 18 start-page: 2313 year: 2013 ident: 10.1016/j.rinp.2021.104453_b32 article-title: Symmetry reduction, exact solutions and conservation laws of a new fifth-order nonlinear integrable equation publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2012.12.003 |
SSID | ssj0001645511 |
Score | 2.4334414 |
Snippet | This paper investigates the evolution dynamics of closed-form solutions for a new integrable nonlinear fifth-order equation with spatial and temporal... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 104453 |
SubjectTerms | Closed-form solutions Dynamical structures Fifth-order nonlinear evolution equation GERF method Solitons |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELUQEhIXxCrKJh-4IYsszuJjQVQVEpyo1FvkFYJKWtrAgZ_gl5mJ0ypcyoVjEntseV4yz874mZDLQArDZRowxV3KOKCE5S6PGXz6AsttDBENJ4oPj-lwxO_Hybhz1BfmhHl5YD9w1wmPAVJgw0CoFArwJawSKK-dKKFto14KMa8zmWpWV1Io0By-G0Wo05eJrN0x45O75mWFYpVRiP84eRL_ikqNeH8nOHUCzmCX7LRMkfZ9D_fIhq32yVaTsakXB-S7r3ATR1VTPZkurGHIPukKSVRWBq_gha1KTb1M7AfMrWk9hWe0lYlQE0td6eoX1mhw0mevQl1-WUMrr6Ih59R-tmapfffS4FCfzoB4v0nq10YWh2Q0uHu6HbL2dAWmeRjULNPABWOVWqlygQMss8Do1GTGuVQblQEZg-iGeliWJ0IYJxJwAZQMMxc4HR-RTeiIPSY0tFrKXIcqkBF3IgfSKEOlwayMFQ95j4TL0S10Kz2OJ2BMimWO2WuBHinQI4X3SI9crerMvPDG2tI36LRVSRTNbm4AlIoWSsVfUOqRZOnyouUfnleAqXJN4yf_0fgp2UaTPhP4jGwCLOw58J1aXTTQ_gEZmvtf priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-ELyIT1xf5OBNIu02feQgoqKIoCcXvJU8tbJ2dbeK-if8y8402VVBPHhsm6RNZpL5Jp18Q8huJIXhMouY4i5jHLSEFa5IGCx9keU2AYuGjuLlVXbe4xc36c0UGac7CgM4-tW1w3xSvWF___Xp7RAm_MFXrNawqpF7shvjL0ueJtNkFixTjhkNLgPcb_dcMg4AAX2wbhfZ-3KRh3M0vzfzw1a1lP7fTNY3M3S2SBYCfqRHXuBLZMrWy2SujePUoxXycaTwaEfdUN0fjKxhiEnpRL-orA1ewTSuK009eewzeNy0GcAzGsgjVN9SV7nmjrXMnPTWc1NX79bQ2nNryCG1L6FZap88YTjUp48Axx8k9Tsmo1XSOzu9PjlnIecC0zyOGpZrQIiJyqxUhcAJLvPI6MzkxrlMG5UDRAObhyxZlqdCGCdSwDBQMs5d5HSyRmbgQ-w6obHVUhY6VpHscicKgJIyVhqalYniMe-QeDy6pQ6E5JgXo1-OI8_uS5RIiRIpvUQ6ZG9S59HTcfxZ-hiFNimJVNrtjcHwtgwzs0x5AmsW9NRAP4SCBUxYJZC_PVVC27RD0rHIy4BKPNqApqo_Xr7xz3qbZB6vfEjwFpkBTbDbAHwatdNq8yeivwEP priority: 102 providerName: Scholars Portal |
Title | Abundant closed-form solutions and solitonic structures to an integrable fifth-order generalized nonlinear evolution equation in plasma physics |
URI | https://dx.doi.org/10.1016/j.rinp.2021.104453 https://doaj.org/article/543870400d5849b7879eb914555b9ce5 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQVaVeEG2pujxWPnCrrE3WzsPHBbFageDQFrG3yE8atGSX3cChf6J_mZnYu8CFQy-R4tiOkxnPfOOMvxBynChphcoTpoXPmQAtYaUvOQPTlzjhOHg0DBQvr_LJtTifZtMtcrreC4NpldH2B5veWetYMohvc7Co68GvIcQuvED2GeSzLJETlIuy28Q3PXlZZ8kFgAKMu7A-wwZx70xI81rWDdJWDlP82iky_sY_dTT-r9zUK9cz3iU7ETPSURjWZ7Llmi_kY5e7aVZfyb-Rxu0cTUvNbL5yliEOpRudoqqxeAZTt6kNDYSxjxBl03YO12gkjNAzR33t2z-sY-Okt4GPuv7rLG0Cn4ZaUvcUu6XuIZCEQ3u6AAh-r2hYJVntkevx2e_TCYv_WWBGpEnLCgOokOvcKV1KnNSqSKzJbWG9z43VBcAy8HPIjOVEJqX1MgPcAjXTwife8G9kGwbivhOaOqNUaVKdqKHwsgT4qFJtoFvFtUhFj6Trt1uZSEKO_8KYVetss7sKJVKhRKogkR75sWmzCBQc79Y-QaFtaiJ9dlcwX95WUX-qTHCwU_CkFp5DajBa0mmJnO2ZlsZlPZKtRV690Uboqn7n5vv_2e6AfMKzkAZ8SLZBE9wRgJ1W98mH0cXPm4t-t1jQ73QbjpeifAaDmgDA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgSXiqdYKOADN2RtsnEePrYV1RbaXmilvVl-lqAlu-wGDv0T_cvMxN6lvfTAMYnHcTzjmc_O-DPAx0xLJ3SVcSNCxQVaCW9CU3B0fZkXvsCIRhPFs_Nqeim-zMrZDhxt9sJQWmXy_dGnD9463Rmn3hwv23b8bYJzl6Im9hnis2zEA3iIaKCm0XkyO_y30FIJRAU08SIBThJp80zM81q1HfFWTnL63SnK4k6AGnj8b8WpW7Hn-CnsJdDIDmK7nsGO757DoyF5065fwM2Bof0cXc_sfLH2jhMQZVujYrpzdIVjt2sti4yxv3GazfoFPmOJMcLMPQtt6L_zgY6TXUVC6vbaO9ZFQg29Yv5Pqpb5X5ElHOXZEjH4T83iMsn6JVwef744mvJ00AK3Is96XluEhYWpvDaNpFGt68zZytUuhMo6UyMuw0BH1FhelFK6IEsELlgyr0MWbPEKdrEh_jWw3FutG5ubTE9EkA3iR50bi9XqwohcjCDf9K6yiYWcDsOYq0262Q9FGlGkERU1MoJPW5ll5OC4t_QhKW1bkvizhxuL1ZVKBqRKUaCjwi91-B3SoNeS3kgibS-NtL4cQblRubpjjlhVe8_L3_yn3Ad4PL04O1WnJ-df38ITehJzgvdhF63Cv0Pk05v3g2X_BVO5AG4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abundant+closed-form+solutions+and+solitonic+structures+to+an+integrable+fifth-order+generalized+nonlinear+evolution+equation+in+plasma+physics&rft.jtitle=Results+in+physics&rft.au=Kumar%2C+Sachin&rft.au=Almusawa%2C+Hassan&rft.au=Hamid%2C+Ihsanullah&rft.au=Abdou%2C+M.A.&rft.date=2021-07-01&rft.pub=Elsevier+B.V&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=26&rft_id=info:doi/10.1016%2Fj.rinp.2021.104453&rft.externalDocID=S2211379721005684 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon |