Abundant closed-form solutions and solitonic structures to an integrable fifth-order generalized nonlinear evolution equation in plasma physics

This paper investigates the evolution dynamics of closed-form solutions for a new integrable nonlinear fifth-order equation with spatial and temporal dispersion which describes shallow water waves moving in two directions. Some novel computational soliton solutions are obtained in the form of expone...

Full description

Saved in:
Bibliographic Details
Published inResults in physics Vol. 26; p. 104453
Main Authors Kumar, Sachin, Almusawa, Hassan, Hamid, Ihsanullah, Abdou, M.A.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper investigates the evolution dynamics of closed-form solutions for a new integrable nonlinear fifth-order equation with spatial and temporal dispersion which describes shallow water waves moving in two directions. Some novel computational soliton solutions are obtained in the form of exponential rational functions, trigonometric and hyperbolic functions, and complex-soliton solutions. Some dynamical wave structures of soliton solutions are achieved in evolutionary dynamical structures of multi-wave solitons, double-solitons, triple-solitons, multiple solitons, breather-type solitons, Lump-type solitons, singular solitons, and Kink-wave solitons using the generalized exponential rational function (GERF) technique. All newly established solutions are verified by back substituting into the considered fifth-order nonlinear evolution equation using computerized symbolic computational work via Wolfram Mathematica. These newly formed results demonstrate that the considered fifth-order equation theoretically possesses very rich computational wave structures of closed-form solutions, which are also useful in obtaining a better understanding of the internal mechanism of other complex nonlinear physical models arising in the field of plasma physics and nonlinear sciences. The physical characteristics of some constructed solutions are also graphically displayed via three-dimensional plots by selecting the best appropriate constant parameter values to easily understand the complex physical phenomena of the nonlinear equations. Eventually, the results validate the effectiveness and trustworthiness of the used technique. •Closed-form solutions to an integrable fifth-order nonlinear evolution equation are investigated.•The GERF method is used to obtain numerous closed-form solutions to the governing equation.•Several different types of soliton solutions have been constructed.•The physical interpretation of some soliton solutions is exhibited via 3D postures.
AbstractList This paper investigates the evolution dynamics of closed-form solutions for a new integrable nonlinear fifth-order equation with spatial and temporal dispersion which describes shallow water waves moving in two directions. Some novel computational soliton solutions are obtained in the form of exponential rational functions, trigonometric and hyperbolic functions, and complex-soliton solutions. Some dynamical wave structures of soliton solutions are achieved in evolutionary dynamical structures of multi-wave solitons, double-solitons, triple-solitons, multiple solitons, breather-type solitons, Lump-type solitons, singular solitons, and Kink-wave solitons using the generalized exponential rational function (GERF) technique. All newly established solutions are verified by back substituting into the considered fifth-order nonlinear evolution equation using computerized symbolic computational work via Wolfram Mathematica. These newly formed results demonstrate that the considered fifth-order equation theoretically possesses very rich computational wave structures of closed-form solutions, which are also useful in obtaining a better understanding of the internal mechanism of other complex nonlinear physical models arising in the field of plasma physics and nonlinear sciences. The physical characteristics of some constructed solutions are also graphically displayed via three-dimensional plots by selecting the best appropriate constant parameter values to easily understand the complex physical phenomena of the nonlinear equations. Eventually, the results validate the effectiveness and trustworthiness of the used technique. •Closed-form solutions to an integrable fifth-order nonlinear evolution equation are investigated.•The GERF method is used to obtain numerous closed-form solutions to the governing equation.•Several different types of soliton solutions have been constructed.•The physical interpretation of some soliton solutions is exhibited via 3D postures.
This paper investigates the evolution dynamics of closed-form solutions for a new integrable nonlinear fifth-order equation with spatial and temporal dispersion which describes shallow water waves moving in two directions. Some novel computational soliton solutions are obtained in the form of exponential rational functions, trigonometric and hyperbolic functions, and complex-soliton solutions. Some dynamical wave structures of soliton solutions are achieved in evolutionary dynamical structures of multi-wave solitons, double-solitons, triple-solitons, multiple solitons, breather-type solitons, Lump-type solitons, singular solitons, and Kink-wave solitons using the generalized exponential rational function (GERF) technique. All newly established solutions are verified by back substituting into the considered fifth-order nonlinear evolution equation using computerized symbolic computational work via Wolfram Mathematica. These newly formed results demonstrate that the considered fifth-order equation theoretically possesses very rich computational wave structures of closed-form solutions, which are also useful in obtaining a better understanding of the internal mechanism of other complex nonlinear physical models arising in the field of plasma physics and nonlinear sciences. The physical characteristics of some constructed solutions are also graphically displayed via three-dimensional plots by selecting the best appropriate constant parameter values to easily understand the complex physical phenomena of the nonlinear equations. Eventually, the results validate the effectiveness and trustworthiness of the used technique.
ArticleNumber 104453
Author Hamid, Ihsanullah
Abdou, M.A.
Kumar, Sachin
Almusawa, Hassan
Author_xml – sequence: 1
  givenname: Sachin
  orcidid: 0000-0003-4451-3206
  surname: Kumar
  fullname: Kumar, Sachin
  email: sachinambariya@gmail.com
  organization: Department of Mathematics, Faculty of Mathematical Sciences, University of Delhi, Delhi-110007, India
– sequence: 2
  givenname: Hassan
  orcidid: 0000-0001-5024-866X
  surname: Almusawa
  fullname: Almusawa, Hassan
  organization: Department of Mathematics, College of Sciences, Jazan University, Jazan 45142, Saudi Arabia
– sequence: 3
  givenname: Ihsanullah
  orcidid: 0000-0002-5783-8459
  surname: Hamid
  fullname: Hamid, Ihsanullah
  organization: Department of Mathematics, Faculty of Mathematical Sciences, University of Delhi, Delhi-110007, India
– sequence: 4
  givenname: M.A.
  surname: Abdou
  fullname: Abdou, M.A.
  organization: Department of Mathematics, College of Sciences, University of Bisha, P.O. Box 344, Bisha 61922, Saudi Arabia
BookMark eNp9kctu3CAUhlGUSEnTvEBWvICnYBtjpG6iqJdIkbpp1wjDYXJGHpgCjpS-RF-5eCaVqi6y4nDg-8_lf0fOQwxAyC1nG8748GG3SRgOm5a1vCb6XnRn5KptOW86qeT5P_Elucl5x1ileiE4vyK_76YlOBMKtXPM4Bof057mOC8FY8jUBLfesMSAluaSFluWBJmWWN8ohgLbZKYZqEdfnpqYHCS6hQDJzPgLHK3NzhjAJArPr7IUfi7mGGCgh9nkvaGHp5eMNr8nF97MGW5ez2vy4_On7_dfm8dvXx7u7x4b23NWGmm5YN00gJlGxXrGjGTODk467wfrJslG0Q1tz5SEXijlvBJi7OtPLj3ztrsmDyddF81OHxLuTXrR0aA-JmLaapMK2hm06LtRrjVcVVCTHKWCSfG6QDEpC6JqjSctm2LOCby2WI7zlWRw1pzp1Se906tPevVJn3yqaPsf-reVN6GPJwjqgp4Rks4WIVhwmMCWOgG-hf8BG7uw_g
CitedBy_id crossref_primary_10_3934_math_20241530
crossref_primary_10_1016_j_rinp_2023_106432
crossref_primary_10_1088_1402_4896_ad16fd
crossref_primary_10_1016_j_joes_2021_10_009
crossref_primary_10_1007_s11071_021_06915_0
crossref_primary_10_1142_S0217979222501946
crossref_primary_10_1515_nleng_2022_0292
crossref_primary_10_1515_phys_2023_0129
crossref_primary_10_3390_math12142242
crossref_primary_10_1016_j_cjph_2021_11_025
crossref_primary_10_1016_j_padiff_2023_100583
crossref_primary_10_1007_s10773_024_05577_z
crossref_primary_10_1007_s11082_024_06960_0
crossref_primary_10_1016_j_rinp_2022_105504
crossref_primary_10_1088_1402_4896_ad5062
crossref_primary_10_1088_1402_4896_ac8b3f
crossref_primary_10_1016_j_joes_2021_08_001
crossref_primary_10_1007_s12648_022_02559_x
crossref_primary_10_1016_j_rinp_2022_105394
crossref_primary_10_1007_s13324_023_00802_0
crossref_primary_10_1016_j_aej_2021_08_064
crossref_primary_10_1016_j_joes_2022_01_012
crossref_primary_10_1002_mma_10581
crossref_primary_10_1007_s11082_023_04774_0
crossref_primary_10_1002_mma_9024
crossref_primary_10_1016_j_joes_2021_12_003
crossref_primary_10_1016_j_rinp_2021_104921
crossref_primary_10_1142_S0217984923501075
crossref_primary_10_1142_S0217984923502081
crossref_primary_10_1016_j_cjph_2022_08_026
crossref_primary_10_1007_s11082_023_04736_6
crossref_primary_10_1016_j_rinp_2023_107068
crossref_primary_10_1016_j_rinp_2023_107101
crossref_primary_10_1016_j_physleta_2022_128616
crossref_primary_10_1142_S0217979221503173
crossref_primary_10_1016_j_padiff_2022_100404
crossref_primary_10_1016_j_rinp_2022_105364
crossref_primary_10_1007_s12043_023_02575_4
crossref_primary_10_1016_j_joes_2021_09_018
crossref_primary_10_1016_j_padiff_2021_100200
crossref_primary_10_1016_j_rinp_2024_107580
crossref_primary_10_1142_S0217984923500896
crossref_primary_10_1038_s41598_024_66765_9
crossref_primary_10_1007_s11082_023_04976_6
crossref_primary_10_1016_j_rinp_2021_104793
crossref_primary_10_1016_j_rinp_2024_107348
crossref_primary_10_1088_1402_4896_ad1e45
crossref_primary_10_1142_S0217984921505400
crossref_primary_10_1007_s40314_022_01926_y
crossref_primary_10_1016_j_joes_2022_06_017
crossref_primary_10_1142_S0217984923501737
crossref_primary_10_1088_1402_4896_ac4f9d
crossref_primary_10_1007_s10773_024_05559_1
crossref_primary_10_1063_5_0176981
crossref_primary_10_1007_s40819_022_01470_7
crossref_primary_10_1002_mma_8596
crossref_primary_10_1016_j_rinp_2021_104866
crossref_primary_10_1142_S2424942423500093
crossref_primary_10_1007_s11082_023_04712_0
crossref_primary_10_1016_j_rinp_2021_104621
crossref_primary_10_1142_S021798492150603X
crossref_primary_10_1142_S0217984921505552
crossref_primary_10_1155_2024_1754782
Cites_doi 10.1140/epjp/i2018-11984-1
10.1016/j.ijleo.2018.12.002
10.1007/s12043-021-02082-4
10.1016/j.chaos.2004.09.109
10.1016/j.rinp.2021.104006
10.1016/j.physleta.2005.10.099
10.1016/j.apm.2013.06.009
10.1016/j.chaos.2004.09.122
10.1007/s11071-019-05294-x
10.1016/j.physleta.2007.07.051
10.1175/1520-0485(1996)026<2712:TEOIWU>2.0.CO;2
10.1142/S0217979206034819
10.1016/j.rinp.2021.104009
10.1140/epjp/s13360-020-00883-x
10.1016/j.aml.2019.106170
10.1016/j.cjph.2021.03.021
10.1016/j.physleta.2019.02.031
10.1016/j.chaos.2020.109709
10.1142/S0217984920502826
10.1016/j.rinp.2021.104201
10.1016/j.chaos.2005.06.001
10.1007/s11071-020-05740-1
10.1016/j.chaos.2020.109950
10.1007/s00033-019-1225-9
10.1016/j.camwa.2019.07.006
10.1016/j.rinp.2019.102895
10.1140/epjp/s13360-020-00218-w
10.1080/17455030.2018.1516053
10.1140/epjp/s13360-021-01528-3
10.1016/j.chaos.2006.03.020
10.1142/S0217979221500284
10.1007/s13538-021-00913-8
10.1142/S0217979220502264
10.1016/j.cnsns.2012.12.003
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rinp.2021.104453
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (selected full-text)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2211-3797
ExternalDocumentID oai_doaj_org_article_543870400d5849b7879eb914555b9ce5
10_1016_j_rinp_2021_104453
S2211379721005684
GroupedDBID --K
0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
SES
SSZ
XH2
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c410t-7c1503b6eab890400a70dc6d7dff6cdb70853624097e4599df9558404017f0fc3
IEDL.DBID IXB
ISSN 2211-3797
IngestDate Wed Aug 27 01:10:36 EDT 2025
Tue Jul 01 02:27:40 EDT 2025
Thu Apr 24 22:56:15 EDT 2025
Tue Jul 25 20:58:42 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dynamical structures
Closed-form solutions
GERF method
Fifth-order nonlinear evolution equation
Solitons
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-7c1503b6eab890400a70dc6d7dff6cdb70853624097e4599df9558404017f0fc3
ORCID 0000-0001-5024-866X
0000-0002-5783-8459
0000-0003-4451-3206
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211379721005684
ParticipantIDs doaj_primary_oai_doaj_org_article_543870400d5849b7879eb914555b9ce5
crossref_citationtrail_10_1016_j_rinp_2021_104453
crossref_primary_10_1016_j_rinp_2021_104453
elsevier_sciencedirect_doi_10_1016_j_rinp_2021_104453
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Results in physics
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Wawaz (b30) 2011; 83
Kuo (b33) 2018; 33
Chen, Tian, Chai, Wu, Du (b40) 2020; 30
Wang, Li, Zhang (b11) 2008; 372
Zhao, Tian, Qu, Yuan, Du, Chu (b39) 2020; 34
Li, Duan, Yu (b10) 2019; 383
Ghanbari, Kumar, Niwas, Baleanu (b21) 2021; 23
Ghanbari, Inc (b22) 2018; 133
Kumar, Kumar, Kharbanda (b24) 2021; 95
Mostafa, Khater (b3) 2020; 19
Gao, Guo, Shan (b34) 2020; 104
Yang, Osman, Liu (b6) 2021; 23
Chen (b37) 2020; 34
Abdou (b5) 2020; 16
Xu, Wazwaz (b29) 2020; 101
Wang, Tian, Sun, Zhang (b38) 2020; 79
Kumar, Kumar, Wazwaz (b7) 2021; 136
Khan, Akbar, Mastroberardino (b12) 2016; 2
Xiqiang, Limin, Weijun (b14) 2006; 28
Kudryashov (b15) 2005; 24
Wazwaz (b28) 2014; 38
Zhang, Wang, Wang, Fang (b13) 2006; 350
Kumar, Niwas, Hamid (b23) 2021; 35
Kumar, Almusawa, Kumar (b8) 2021; 24
Kumar, Kaur, Niwas (b19) 2021; 71
Kumar, Rani (b20) 2021; 95
Bilal (b25) 2021; 403
Wazwaz (b1) 2005; 25
Mostafa, Khater (b4) 2021
Wang, Liu, Zhang (b32) 2013; 18
Zhang, Tian, Qu, Liu, Tian (b41) 2020; 71
Gao, Guo, Shan (b36) 2020; 138
Kumar, Kumar, Kharbanda (b9) 2021
Kumar, Kumar (b18) 2019; 98
Du, Tian, Qu, Yuan, Zhao (b35) 2020; 134
Kumar, Kumar (b26) 2020; 135
Lamb, Yan (b42) 1996; 26
Kumar, Kumar, Wazwaz (b27) 2020; 135
Wazwaz (b31) 2011; 83
He (b2) 2006; 20
He, Wu (b16) 2006; 30
Liu, Osman, Wazwaz (b17) 2019; 180
Khan (10.1016/j.rinp.2021.104453_b12) 2016; 2
Wazwaz (10.1016/j.rinp.2021.104453_b31) 2011; 83
Li (10.1016/j.rinp.2021.104453_b10) 2019; 383
Kudryashov (10.1016/j.rinp.2021.104453_b15) 2005; 24
Kumar (10.1016/j.rinp.2021.104453_b7) 2021; 136
Du (10.1016/j.rinp.2021.104453_b35) 2020; 134
He (10.1016/j.rinp.2021.104453_b2) 2006; 20
Ghanbari (10.1016/j.rinp.2021.104453_b22) 2018; 133
He (10.1016/j.rinp.2021.104453_b16) 2006; 30
Kumar (10.1016/j.rinp.2021.104453_b8) 2021; 24
Wang (10.1016/j.rinp.2021.104453_b11) 2008; 372
Kumar (10.1016/j.rinp.2021.104453_b27) 2020; 135
Kumar (10.1016/j.rinp.2021.104453_b9) 2021
Zhang (10.1016/j.rinp.2021.104453_b13) 2006; 350
Chen (10.1016/j.rinp.2021.104453_b37) 2020; 34
Mostafa (10.1016/j.rinp.2021.104453_b3) 2020; 19
Liu (10.1016/j.rinp.2021.104453_b17) 2019; 180
Kumar (10.1016/j.rinp.2021.104453_b19) 2021; 71
Kumar (10.1016/j.rinp.2021.104453_b20) 2021; 95
Wawaz (10.1016/j.rinp.2021.104453_b30) 2011; 83
Kumar (10.1016/j.rinp.2021.104453_b18) 2019; 98
Ghanbari (10.1016/j.rinp.2021.104453_b21) 2021; 23
Kumar (10.1016/j.rinp.2021.104453_b26) 2020; 135
Kuo (10.1016/j.rinp.2021.104453_b33) 2018; 33
Bilal (10.1016/j.rinp.2021.104453_b25) 2021; 403
Lamb (10.1016/j.rinp.2021.104453_b42) 1996; 26
Mostafa (10.1016/j.rinp.2021.104453_b4) 2021
Wang (10.1016/j.rinp.2021.104453_b32) 2013; 18
Chen (10.1016/j.rinp.2021.104453_b40) 2020; 30
Gao (10.1016/j.rinp.2021.104453_b36) 2020; 138
Kumar (10.1016/j.rinp.2021.104453_b23) 2021; 35
Xu (10.1016/j.rinp.2021.104453_b29) 2020; 101
Gao (10.1016/j.rinp.2021.104453_b34) 2020; 104
Kumar (10.1016/j.rinp.2021.104453_b24) 2021; 95
Zhao (10.1016/j.rinp.2021.104453_b39) 2020; 34
Wang (10.1016/j.rinp.2021.104453_b38) 2020; 79
Abdou (10.1016/j.rinp.2021.104453_b5) 2020; 16
Zhang (10.1016/j.rinp.2021.104453_b41) 2020; 71
Wazwaz (10.1016/j.rinp.2021.104453_b1) 2005; 25
Xiqiang (10.1016/j.rinp.2021.104453_b14) 2006; 28
Wazwaz (10.1016/j.rinp.2021.104453_b28) 2014; 38
Yang (10.1016/j.rinp.2021.104453_b6) 2021; 23
References_xml – volume: 23
  year: 2021
  ident: b6
  article-title: Abundant lump-type solutions for the extended (3+1)-dimensional Jimbo–Miwa equation
  publication-title: Results Phys
– volume: 403
  year: 2021
  ident: b25
  article-title: Investigation of shallow water waves and solitary waves to the conformable 3D-WBBM model by an analytical method
  publication-title: Phys Lett A
– volume: 71
  start-page: 518
  year: 2021
  end-page: 538
  ident: b19
  article-title: Some exact invariant solutions and dynamical structures of multiple solitons for the (2+1)-dimensional bogoyavlensky-Konopelchenko equation with variable coefficients using Lie symmetry analysis
  publication-title: Chinese J Phys
– volume: 18
  start-page: 2313
  year: 2013
  end-page: 2320
  ident: b32
  article-title: Symmetry reduction, exact solutions and conservation laws of a new fifth-order nonlinear integrable equation
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 2
  year: 2016
  ident: b12
  article-title: A note on modified generalized riccati equation method combined with new algebra expansion
  publication-title: Cogent Math
– year: 2021
  ident: b9
  article-title: Abundant exact closed form solutions and solitonic structures for the double chain deoxyribonucleic acid (DNA) model
  publication-title: Braz J Phys
– volume: 19
  year: 2020
  ident: b3
  article-title: On the interaction between (low and high) frequency of (ion-acoustic and Langmuir) waves in plasma via some recent computational schemes
  publication-title: Results Phys
– volume: 79
  start-page: 576
  year: 2020
  end-page: 587
  ident: b38
  article-title: Lump, mixed lump-stripe and rogue wave-stripe solutions of a (3+1)-dimensional nonlinear wave equation for a liquid with gas bubbles
  publication-title: Comput Math Appl
– volume: 180
  start-page: 917
  year: 2019
  end-page: 923
  ident: b17
  article-title: A variety of nonautonomous complex wave solutions for the (2+1)-dimensional nonlinear Schrodinger equation with variable coefficients in nonlinear optical fibers
  publication-title: Optik
– volume: 24
  start-page: 1217
  year: 2005
  ident: b15
  article-title: Simplest equation method to look for exact solutions of nonlinear differential equations
  publication-title: Chaos Solitons Fractals
– volume: 23
  year: 2021
  ident: b21
  article-title: The Lie symmetry analysis and exact Jacobi elliptic solutions for the Kawahara–KdV type equations
  publication-title: Results Phys
– volume: 33
  year: 2018
  ident: b33
  article-title: Resonant multi-soliton solutions to two fifth-order KdV equations via the simplified linear superposition principle
  publication-title: Modern Phys Lett B
– volume: 30
  start-page: 700
  year: 2006
  end-page: 708
  ident: b16
  article-title: Exp-function method for nonlinear wave equations
  publication-title: Chaos Solitons Fractals
– volume: 28
  start-page: 448
  year: 2006
  ident: b14
  article-title: The repeated homogeneous balance method and its applications to nonlinear partial differential equations
  publication-title: Chaos Solitons Fractals
– volume: 20
  start-page: 2561
  year: 2006
  end-page: 2568
  ident: b2
  article-title: Addendum: New interpretation of homotopy perturbation method
  publication-title: Internat J Modern Phys B
– volume: 135
  start-page: 870
  year: 2020
  ident: b27
  article-title: New exact solitary wave solutions of the strain wave equation in microstructured solids via the generalized exponential rational function method
  publication-title: Eur Phys J Plus
– volume: 134
  year: 2020
  ident: b35
  article-title: Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma
  publication-title: Chaos Solitons Fractals
– volume: 34
  year: 2020
  ident: b37
  article-title: Ablowitz Kaup Newell Segur system, conservation laws and Bäcklund transformation of a variable-coeffcient Korteweg de Vries equatiom in plasma physics, fluid dynamics or atmospheric science
  publication-title: Internat J Modern Phys B
– volume: 135
  start-page: 162
  year: 2020
  ident: b26
  article-title: Solitary wave solutions of pZK equation using Lie point symmetries
  publication-title: Eur Phys J Plus
– volume: 101
  start-page: 581
  year: 2020
  end-page: 595
  ident: b29
  article-title: Bidirectional solitons and interaction solutions for a new integrable fifth-order nonlinear equation with temporal and spatial dispersion
  publication-title: Nonlinear Dynam
– volume: 95
  start-page: 51
  year: 2021
  ident: b20
  article-title: Lie symmetry analysis, Group-invariant solutions and dynamics of solitons to the (2+1)-dimensional Bogoyavlenskii–Schieff equation
  publication-title: Pramana J Phys
– volume: 71
  start-page: 18
  year: 2020
  ident: b41
  article-title: Vector bright solitons and their interactions of the couple fokas–lenells system in a birefringent optical fiber
  publication-title: Z Angew Math Phys
– volume: 133
  start-page: 142
  year: 2018
  ident: b22
  article-title: A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrodinger equation
  publication-title: Eur Phys J Plus
– volume: 104
  year: 2020
  ident: b34
  article-title: Water-wave symbolic computation for the Earth, Enceladus and Titan: The higher-order Boussinesq-Burgers system, auto- and non-auto-Bäcklund transformations
  publication-title: Appl Math Lett
– volume: 16
  year: 2020
  ident: b5
  article-title: Optical soliton solutions for a space–time fractional perturbed nonlinear Schrödinger equation arising in quantum physics
  publication-title: Results Phys
– volume: 34
  year: 2020
  ident: b39
  article-title: Dark-dark solitons for the coupled spatially modulated Gross-Pitaevskii system in the Bose-Einstein condensation
  publication-title: Modern Phys Lett B
– volume: 350
  start-page: 103
  year: 2006
  ident: b13
  article-title: The improved F-expansion method and its applications
  publication-title: Phys Lett A
– volume: 372
  start-page: 417
  year: 2008
  end-page: 423
  ident: b11
  article-title: The
  publication-title: Phys Lett A
– volume: 24
  year: 2021
  ident: b8
  article-title: Some more closed-form invariant solutions and dynamical behavior of multiple solitons for the (2+1)-dimensional rdDym equation using the Lie symmetry approach
  publication-title: Results Phys
– volume: 83
  year: 2011
  ident: b30
  article-title: New fifth-order nonlinear integrable equation: multiple soliton solutions
  publication-title: Phys Scr
– volume: 138
  year: 2020
  ident: b36
  article-title: Shallow water in an open sea or a wide channel: Auto- and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system
  publication-title: Chaos Solitons Fractals
– volume: 136
  start-page: 531
  year: 2021
  ident: b7
  article-title: Lie symmetries, optimal system, group-invariant solutions and dynamical behaviors of solitary wave solutions for a (3+1)-dimensional KdV-type equation
  publication-title: Eur Phys J Plus
– volume: 383
  start-page: 1578
  year: 2019
  end-page: 1582
  ident: b10
  article-title: An improved Hirota bilinear method and new application for a nonlocal integrable complex modified Korteweg–de Vries (MKdV) equation
  publication-title: Phys Lett A
– volume: 38
  start-page: 110
  year: 2014
  end-page: 118
  ident: b28
  article-title: Kink solutions for three new fifth order nonlinear equations
  publication-title: Appl Math Model
– volume: 95
  start-page: 35
  year: 2021
  ident: b24
  article-title: Lie symmetry analysis, abundant exact solutions and dynamics of multisolitons to the (2+1)-dimensional KP-BBM equation
  publication-title: Pramana J Phys
– volume: 98
  start-page: 1891
  year: 2019
  end-page: 1903
  ident: b18
  article-title: Lie symmetry reductions and group invariant solutions of (2+1)-dimensional modified Veronese web equation
  publication-title: Nonlinear Dynam
– volume: 30
  start-page: 389
  year: 2020
  end-page: 402
  ident: b40
  article-title: Lax pair, binary Darboux transformations and dark-soliton interaction of a fifth-order defocusing nonlinear Schrödinger equation for the attosecond pulses in the optical fiber communication
  publication-title: Waves Random Complex
– volume: 35
  year: 2021
  ident: b23
  article-title: Lie symmetry analysis for obtaining exact soliton solutions of generalized Camassa–Holm–Kadomtsev–Petviashvili equation
  publication-title: Internat J Modern Phys B
– volume: 83
  year: 2011
  ident: b31
  article-title: A new generalized fifth-order nonlinear integrable equation
  publication-title: Phys Scr
– volume: 25
  start-page: 55
  year: 2005
  end-page: 63
  ident: b1
  article-title: The tanh method solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzeica–Dodd–Bullough equations
  publication-title: Chaos Solitons Fractals
– volume: 26
  start-page: 2712
  year: 1996
  end-page: 2734
  ident: b42
  article-title: The evolution of internal wave undular bores: comparisons of a fully nonlinear numerical model with weakly nonlinear theory
  publication-title: J Phys Oceanogr
– year: 2021
  ident: b4
  article-title: Computational and approximate solutions of complex nonlinear Fokas–Lenells equation arising in optical fiber
  publication-title: Results Phys
– volume: 133
  start-page: 142
  year: 2018
  ident: 10.1016/j.rinp.2021.104453_b22
  article-title: A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrodinger equation
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/i2018-11984-1
– volume: 180
  start-page: 917
  year: 2019
  ident: 10.1016/j.rinp.2021.104453_b17
  article-title: A variety of nonautonomous complex wave solutions for the (2+1)-dimensional nonlinear Schrodinger equation with variable coefficients in nonlinear optical fibers
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.12.002
– volume: 2
  year: 2016
  ident: 10.1016/j.rinp.2021.104453_b12
  article-title: A note on modified generalized riccati equation method combined with new algebra expansion
  publication-title: Cogent Math
– volume: 403
  issue: 9
  year: 2021
  ident: 10.1016/j.rinp.2021.104453_b25
  article-title: Investigation of shallow water waves and solitary waves to the conformable 3D-WBBM model by an analytical method
  publication-title: Phys Lett A
– volume: 19
  year: 2020
  ident: 10.1016/j.rinp.2021.104453_b3
  article-title: On the interaction between (low and high) frequency of (ion-acoustic and Langmuir) waves in plasma via some recent computational schemes
  publication-title: Results Phys
– volume: 95
  start-page: 51
  year: 2021
  ident: 10.1016/j.rinp.2021.104453_b20
  article-title: Lie symmetry analysis, Group-invariant solutions and dynamics of solitons to the (2+1)-dimensional Bogoyavlenskii–Schieff equation
  publication-title: Pramana J Phys
  doi: 10.1007/s12043-021-02082-4
– year: 2021
  ident: 10.1016/j.rinp.2021.104453_b4
  article-title: Computational and approximate solutions of complex nonlinear Fokas–Lenells equation arising in optical fiber
  publication-title: Results Phys
– volume: 24
  start-page: 1217
  year: 2005
  ident: 10.1016/j.rinp.2021.104453_b15
  article-title: Simplest equation method to look for exact solutions of nonlinear differential equations
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2004.09.109
– volume: 23
  year: 2021
  ident: 10.1016/j.rinp.2021.104453_b21
  article-title: The Lie symmetry analysis and exact Jacobi elliptic solutions for the Kawahara–KdV type equations
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2021.104006
– volume: 33
  year: 2018
  ident: 10.1016/j.rinp.2021.104453_b33
  article-title: Resonant multi-soliton solutions to two fifth-order KdV equations via the simplified linear superposition principle
  publication-title: Modern Phys Lett B
– volume: 350
  start-page: 103
  year: 2006
  ident: 10.1016/j.rinp.2021.104453_b13
  article-title: The improved F-expansion method and its applications
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2005.10.099
– volume: 38
  start-page: 110
  year: 2014
  ident: 10.1016/j.rinp.2021.104453_b28
  article-title: Kink solutions for three new fifth order nonlinear equations
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2013.06.009
– volume: 25
  start-page: 55
  issue: 1
  year: 2005
  ident: 10.1016/j.rinp.2021.104453_b1
  article-title: The tanh method solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzeica–Dodd–Bullough equations
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2004.09.122
– volume: 98
  start-page: 1891
  year: 2019
  ident: 10.1016/j.rinp.2021.104453_b18
  article-title: Lie symmetry reductions and group invariant solutions of (2+1)-dimensional modified Veronese web equation
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-019-05294-x
– volume: 372
  start-page: 417
  year: 2008
  ident: 10.1016/j.rinp.2021.104453_b11
  article-title: The (G′G)–expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2007.07.051
– volume: 26
  start-page: 2712
  year: 1996
  ident: 10.1016/j.rinp.2021.104453_b42
  article-title: The evolution of internal wave undular bores: comparisons of a fully nonlinear numerical model with weakly nonlinear theory
  publication-title: J Phys Oceanogr
  doi: 10.1175/1520-0485(1996)026<2712:TEOIWU>2.0.CO;2
– volume: 20
  start-page: 2561
  issue: 18
  year: 2006
  ident: 10.1016/j.rinp.2021.104453_b2
  article-title: Addendum: New interpretation of homotopy perturbation method
  publication-title: Internat J Modern Phys B
  doi: 10.1142/S0217979206034819
– volume: 23
  year: 2021
  ident: 10.1016/j.rinp.2021.104453_b6
  article-title: Abundant lump-type solutions for the extended (3+1)-dimensional Jimbo–Miwa equation
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2021.104009
– volume: 135
  start-page: 870
  year: 2020
  ident: 10.1016/j.rinp.2021.104453_b27
  article-title: New exact solitary wave solutions of the strain wave equation in microstructured solids via the generalized exponential rational function method
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/s13360-020-00883-x
– volume: 104
  year: 2020
  ident: 10.1016/j.rinp.2021.104453_b34
  article-title: Water-wave symbolic computation for the Earth, Enceladus and Titan: The higher-order Boussinesq-Burgers system, auto- and non-auto-Bäcklund transformations
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2019.106170
– volume: 71
  start-page: 518
  year: 2021
  ident: 10.1016/j.rinp.2021.104453_b19
  article-title: Some exact invariant solutions and dynamical structures of multiple solitons for the (2+1)-dimensional bogoyavlensky-Konopelchenko equation with variable coefficients using Lie symmetry analysis
  publication-title: Chinese J Phys
  doi: 10.1016/j.cjph.2021.03.021
– volume: 383
  start-page: 1578
  issue: 14
  year: 2019
  ident: 10.1016/j.rinp.2021.104453_b10
  article-title: An improved Hirota bilinear method and new application for a nonlocal integrable complex modified Korteweg–de Vries (MKdV) equation
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2019.02.031
– volume: 134
  year: 2020
  ident: 10.1016/j.rinp.2021.104453_b35
  article-title: Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109709
– volume: 34
  issue: 26
  year: 2020
  ident: 10.1016/j.rinp.2021.104453_b39
  article-title: Dark-dark solitons for the coupled spatially modulated Gross-Pitaevskii system in the Bose-Einstein condensation
  publication-title: Modern Phys Lett B
  doi: 10.1142/S0217984920502826
– volume: 95
  start-page: 35
  year: 2021
  ident: 10.1016/j.rinp.2021.104453_b24
  article-title: Lie symmetry analysis, abundant exact solutions and dynamics of multisolitons to the (2+1)-dimensional KP-BBM equation
  publication-title: Pramana J Phys
– volume: 24
  year: 2021
  ident: 10.1016/j.rinp.2021.104453_b8
  article-title: Some more closed-form invariant solutions and dynamical behavior of multiple solitons for the (2+1)-dimensional rdDym equation using the Lie symmetry approach
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2021.104201
– volume: 28
  start-page: 448
  issue: 2
  year: 2006
  ident: 10.1016/j.rinp.2021.104453_b14
  article-title: The repeated homogeneous balance method and its applications to nonlinear partial differential equations
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.06.001
– volume: 101
  start-page: 581
  year: 2020
  ident: 10.1016/j.rinp.2021.104453_b29
  article-title: Bidirectional solitons and interaction solutions for a new integrable fifth-order nonlinear equation with temporal and spatial dispersion
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-020-05740-1
– volume: 138
  year: 2020
  ident: 10.1016/j.rinp.2021.104453_b36
  article-title: Shallow water in an open sea or a wide channel: Auto- and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109950
– volume: 71
  start-page: 18
  year: 2020
  ident: 10.1016/j.rinp.2021.104453_b41
  article-title: Vector bright solitons and their interactions of the couple fokas–lenells system in a birefringent optical fiber
  publication-title: Z Angew Math Phys
  doi: 10.1007/s00033-019-1225-9
– volume: 83
  year: 2011
  ident: 10.1016/j.rinp.2021.104453_b30
  article-title: New fifth-order nonlinear integrable equation: multiple soliton solutions
  publication-title: Phys Scr
– volume: 79
  start-page: 576
  year: 2020
  ident: 10.1016/j.rinp.2021.104453_b38
  article-title: Lump, mixed lump-stripe and rogue wave-stripe solutions of a (3+1)-dimensional nonlinear wave equation for a liquid with gas bubbles
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2019.07.006
– volume: 16
  year: 2020
  ident: 10.1016/j.rinp.2021.104453_b5
  article-title: Optical soliton solutions for a space–time fractional perturbed nonlinear Schrödinger equation arising in quantum physics
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2019.102895
– volume: 135
  start-page: 162
  year: 2020
  ident: 10.1016/j.rinp.2021.104453_b26
  article-title: Solitary wave solutions of pZK equation using Lie point symmetries
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/s13360-020-00218-w
– volume: 30
  start-page: 389
  year: 2020
  ident: 10.1016/j.rinp.2021.104453_b40
  article-title: Lax pair, binary Darboux transformations and dark-soliton interaction of a fifth-order defocusing nonlinear Schrödinger equation for the attosecond pulses in the optical fiber communication
  publication-title: Waves Random Complex
  doi: 10.1080/17455030.2018.1516053
– volume: 136
  start-page: 531
  year: 2021
  ident: 10.1016/j.rinp.2021.104453_b7
  article-title: Lie symmetries, optimal system, group-invariant solutions and dynamical behaviors of solitary wave solutions for a (3+1)-dimensional KdV-type equation
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/s13360-021-01528-3
– volume: 30
  start-page: 700
  year: 2006
  ident: 10.1016/j.rinp.2021.104453_b16
  article-title: Exp-function method for nonlinear wave equations
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.03.020
– volume: 83
  year: 2011
  ident: 10.1016/j.rinp.2021.104453_b31
  article-title: A new generalized fifth-order nonlinear integrable equation
  publication-title: Phys Scr
– volume: 35
  issue: 2
  year: 2021
  ident: 10.1016/j.rinp.2021.104453_b23
  article-title: Lie symmetry analysis for obtaining exact soliton solutions of generalized Camassa–Holm–Kadomtsev–Petviashvili equation
  publication-title: Internat J Modern Phys B
  doi: 10.1142/S0217979221500284
– year: 2021
  ident: 10.1016/j.rinp.2021.104453_b9
  article-title: Abundant exact closed form solutions and solitonic structures for the double chain deoxyribonucleic acid (DNA) model
  publication-title: Braz J Phys
  doi: 10.1007/s13538-021-00913-8
– volume: 34
  issue: 25
  year: 2020
  ident: 10.1016/j.rinp.2021.104453_b37
  article-title: Ablowitz Kaup Newell Segur system, conservation laws and Bäcklund transformation of a variable-coeffcient Korteweg de Vries equatiom in plasma physics, fluid dynamics or atmospheric science
  publication-title: Internat J Modern Phys B
  doi: 10.1142/S0217979220502264
– volume: 18
  start-page: 2313
  year: 2013
  ident: 10.1016/j.rinp.2021.104453_b32
  article-title: Symmetry reduction, exact solutions and conservation laws of a new fifth-order nonlinear integrable equation
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2012.12.003
SSID ssj0001645511
Score 2.4334414
Snippet This paper investigates the evolution dynamics of closed-form solutions for a new integrable nonlinear fifth-order equation with spatial and temporal...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 104453
SubjectTerms Closed-form solutions
Dynamical structures
Fifth-order nonlinear evolution equation
GERF method
Solitons
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELUQEhIXxCrKJh-4IYsszuJjQVQVEpyo1FvkFYJKWtrAgZ_gl5mJ0ypcyoVjEntseV4yz874mZDLQArDZRowxV3KOKCE5S6PGXz6AsttDBENJ4oPj-lwxO_Hybhz1BfmhHl5YD9w1wmPAVJgw0CoFArwJawSKK-dKKFto14KMa8zmWpWV1Io0By-G0Wo05eJrN0x45O75mWFYpVRiP84eRL_ikqNeH8nOHUCzmCX7LRMkfZ9D_fIhq32yVaTsakXB-S7r3ATR1VTPZkurGHIPukKSVRWBq_gha1KTb1M7AfMrWk9hWe0lYlQE0td6eoX1mhw0mevQl1-WUMrr6Ih59R-tmapfffS4FCfzoB4v0nq10YWh2Q0uHu6HbL2dAWmeRjULNPABWOVWqlygQMss8Do1GTGuVQblQEZg-iGeliWJ0IYJxJwAZQMMxc4HR-RTeiIPSY0tFrKXIcqkBF3IgfSKEOlwayMFQ95j4TL0S10Kz2OJ2BMimWO2WuBHinQI4X3SI9crerMvPDG2tI36LRVSRTNbm4AlIoWSsVfUOqRZOnyouUfnleAqXJN4yf_0fgp2UaTPhP4jGwCLOw58J1aXTTQ_gEZmvtf
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-ELyIT1xf5OBNIu02feQgoqKIoCcXvJU8tbJ2dbeK-if8y8402VVBPHhsm6RNZpL5Jp18Q8huJIXhMouY4i5jHLSEFa5IGCx9keU2AYuGjuLlVXbe4xc36c0UGac7CgM4-tW1w3xSvWF___Xp7RAm_MFXrNawqpF7shvjL0ueJtNkFixTjhkNLgPcb_dcMg4AAX2wbhfZ-3KRh3M0vzfzw1a1lP7fTNY3M3S2SBYCfqRHXuBLZMrWy2SujePUoxXycaTwaEfdUN0fjKxhiEnpRL-orA1ewTSuK009eewzeNy0GcAzGsgjVN9SV7nmjrXMnPTWc1NX79bQ2nNryCG1L6FZap88YTjUp48Axx8k9Tsmo1XSOzu9PjlnIecC0zyOGpZrQIiJyqxUhcAJLvPI6MzkxrlMG5UDRAObhyxZlqdCGCdSwDBQMs5d5HSyRmbgQ-w6obHVUhY6VpHscicKgJIyVhqalYniMe-QeDy6pQ6E5JgXo1-OI8_uS5RIiRIpvUQ6ZG9S59HTcfxZ-hiFNimJVNrtjcHwtgwzs0x5AmsW9NRAP4SCBUxYJZC_PVVC27RD0rHIy4BKPNqApqo_Xr7xz3qbZB6vfEjwFpkBTbDbAHwatdNq8yeivwEP
  priority: 102
  providerName: Scholars Portal
Title Abundant closed-form solutions and solitonic structures to an integrable fifth-order generalized nonlinear evolution equation in plasma physics
URI https://dx.doi.org/10.1016/j.rinp.2021.104453
https://doaj.org/article/543870400d5849b7879eb914555b9ce5
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQVaVeEG2pujxWPnCrrE3WzsPHBbFageDQFrG3yE8atGSX3cChf6J_mZnYu8CFQy-R4tiOkxnPfOOMvxBynChphcoTpoXPmQAtYaUvOQPTlzjhOHg0DBQvr_LJtTifZtMtcrreC4NpldH2B5veWetYMohvc7Co68GvIcQuvED2GeSzLJETlIuy28Q3PXlZZ8kFgAKMu7A-wwZx70xI81rWDdJWDlP82iky_sY_dTT-r9zUK9cz3iU7ETPSURjWZ7Llmi_kY5e7aVZfyb-Rxu0cTUvNbL5yliEOpRudoqqxeAZTt6kNDYSxjxBl03YO12gkjNAzR33t2z-sY-Okt4GPuv7rLG0Cn4ZaUvcUu6XuIZCEQ3u6AAh-r2hYJVntkevx2e_TCYv_WWBGpEnLCgOokOvcKV1KnNSqSKzJbWG9z43VBcAy8HPIjOVEJqX1MgPcAjXTwife8G9kGwbivhOaOqNUaVKdqKHwsgT4qFJtoFvFtUhFj6Trt1uZSEKO_8KYVetss7sKJVKhRKogkR75sWmzCBQc79Y-QaFtaiJ9dlcwX95WUX-qTHCwU_CkFp5DajBa0mmJnO2ZlsZlPZKtRV690Uboqn7n5vv_2e6AfMKzkAZ8SLZBE9wRgJ1W98mH0cXPm4t-t1jQ73QbjpeifAaDmgDA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgSXiqdYKOADN2RtsnEePrYV1RbaXmilvVl-lqAlu-wGDv0T_cvMxN6lvfTAMYnHcTzjmc_O-DPAx0xLJ3SVcSNCxQVaCW9CU3B0fZkXvsCIRhPFs_Nqeim-zMrZDhxt9sJQWmXy_dGnD9463Rmn3hwv23b8bYJzl6Im9hnis2zEA3iIaKCm0XkyO_y30FIJRAU08SIBThJp80zM81q1HfFWTnL63SnK4k6AGnj8b8WpW7Hn-CnsJdDIDmK7nsGO757DoyF5065fwM2Bof0cXc_sfLH2jhMQZVujYrpzdIVjt2sti4yxv3GazfoFPmOJMcLMPQtt6L_zgY6TXUVC6vbaO9ZFQg29Yv5Pqpb5X5ElHOXZEjH4T83iMsn6JVwef744mvJ00AK3Is96XluEhYWpvDaNpFGt68zZytUuhMo6UyMuw0BH1FhelFK6IEsELlgyr0MWbPEKdrEh_jWw3FutG5ubTE9EkA3iR50bi9XqwohcjCDf9K6yiYWcDsOYq0262Q9FGlGkERU1MoJPW5ll5OC4t_QhKW1bkvizhxuL1ZVKBqRKUaCjwi91-B3SoNeS3kgibS-NtL4cQblRubpjjlhVe8_L3_yn3Ad4PL04O1WnJ-df38ITehJzgvdhF63Cv0Pk05v3g2X_BVO5AG4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abundant+closed-form+solutions+and+solitonic+structures+to+an+integrable+fifth-order+generalized+nonlinear+evolution+equation+in+plasma+physics&rft.jtitle=Results+in+physics&rft.au=Kumar%2C+Sachin&rft.au=Almusawa%2C+Hassan&rft.au=Hamid%2C+Ihsanullah&rft.au=Abdou%2C+M.A.&rft.date=2021-07-01&rft.pub=Elsevier+B.V&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=26&rft_id=info:doi/10.1016%2Fj.rinp.2021.104453&rft.externalDocID=S2211379721005684
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon