Abundant closed-form solutions and solitonic structures to an integrable fifth-order generalized nonlinear evolution equation in plasma physics

This paper investigates the evolution dynamics of closed-form solutions for a new integrable nonlinear fifth-order equation with spatial and temporal dispersion which describes shallow water waves moving in two directions. Some novel computational soliton solutions are obtained in the form of expone...

Full description

Saved in:
Bibliographic Details
Published inResults in physics Vol. 26; p. 104453
Main Authors Kumar, Sachin, Almusawa, Hassan, Hamid, Ihsanullah, Abdou, M.A.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper investigates the evolution dynamics of closed-form solutions for a new integrable nonlinear fifth-order equation with spatial and temporal dispersion which describes shallow water waves moving in two directions. Some novel computational soliton solutions are obtained in the form of exponential rational functions, trigonometric and hyperbolic functions, and complex-soliton solutions. Some dynamical wave structures of soliton solutions are achieved in evolutionary dynamical structures of multi-wave solitons, double-solitons, triple-solitons, multiple solitons, breather-type solitons, Lump-type solitons, singular solitons, and Kink-wave solitons using the generalized exponential rational function (GERF) technique. All newly established solutions are verified by back substituting into the considered fifth-order nonlinear evolution equation using computerized symbolic computational work via Wolfram Mathematica. These newly formed results demonstrate that the considered fifth-order equation theoretically possesses very rich computational wave structures of closed-form solutions, which are also useful in obtaining a better understanding of the internal mechanism of other complex nonlinear physical models arising in the field of plasma physics and nonlinear sciences. The physical characteristics of some constructed solutions are also graphically displayed via three-dimensional plots by selecting the best appropriate constant parameter values to easily understand the complex physical phenomena of the nonlinear equations. Eventually, the results validate the effectiveness and trustworthiness of the used technique. •Closed-form solutions to an integrable fifth-order nonlinear evolution equation are investigated.•The GERF method is used to obtain numerous closed-form solutions to the governing equation.•Several different types of soliton solutions have been constructed.•The physical interpretation of some soliton solutions is exhibited via 3D postures.
ISSN:2211-3797
2211-3797
DOI:10.1016/j.rinp.2021.104453