A review: crystal growth for high-performance all-inorganic perovskite solar cells
Recently, halide perovskites have become one of the most promising materials for solar cells owing to their outstanding photoelectric performance. Among them, metal halide all-inorganic perovskites (CsPbX 3 ; where X denotes a halogen) show superior thermal and light stability. In particular, the po...
Saved in:
Published in | Energy & environmental science Vol. 13; no. 7; pp. 1971 - 1996 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, halide perovskites have become one of the most promising materials for solar cells owing to their outstanding photoelectric performance. Among them, metal halide all-inorganic perovskites (CsPbX
3
; where X denotes a halogen) show superior thermal and light stability. In particular, the power conversion efficiency (PCE) of perovskite solar cells (pero-SCs) based on a CsPbX
3
active layer has shown a steady increase from 2.7% to 19.03% with the improvement of the CsPbX
3
crystal quality. In this review, we summarize methodologies that have been employed for controlling the growth of all-inorganic perovskite films so far, including precursor solution deposition, substrate modification, composition doping, and surface engineering. Furthermore, we discuss the effect of the perovskite crystal characteristics on defects and the perovskite film morphology, both of which are closely related to device performance. Finally, conclusions and perspectives are presented along with useful guidelines for developing all-inorganic pero-SCs with high PCE and robust stability.
The key factors for high-quality all-inorganic perovskite crystal growth. |
---|---|
AbstractList | Recently, halide perovskites have become one of the most promising materials for solar cells owing to their outstanding photoelectric performance. Among them, metal halide all-inorganic perovskites (CsPbX3; where X denotes a halogen) show superior thermal and light stability. In particular, the power conversion efficiency (PCE) of perovskite solar cells (pero-SCs) based on a CsPbX3 active layer has shown a steady increase from 2.7% to 19.03% with the improvement of the CsPbX3 crystal quality. In this review, we summarize methodologies that have been employed for controlling the growth of all-inorganic perovskite films so far, including precursor solution deposition, substrate modification, composition doping, and surface engineering. Furthermore, we discuss the effect of the perovskite crystal characteristics on defects and the perovskite film morphology, both of which are closely related to device performance. Finally, conclusions and perspectives are presented along with useful guidelines for developing all-inorganic pero-SCs with high PCE and robust stability. Recently, halide perovskites have become one of the most promising materials for solar cells owing to their outstanding photoelectric performance. Among them, metal halide all-inorganic perovskites (CsPbX 3 ; where X denotes a halogen) show superior thermal and light stability. In particular, the power conversion efficiency (PCE) of perovskite solar cells (pero-SCs) based on a CsPbX 3 active layer has shown a steady increase from 2.7% to 19.03% with the improvement of the CsPbX 3 crystal quality. In this review, we summarize methodologies that have been employed for controlling the growth of all-inorganic perovskite films so far, including precursor solution deposition, substrate modification, composition doping, and surface engineering. Furthermore, we discuss the effect of the perovskite crystal characteristics on defects and the perovskite film morphology, both of which are closely related to device performance. Finally, conclusions and perspectives are presented along with useful guidelines for developing all-inorganic pero-SCs with high PCE and robust stability. Recently, halide perovskites have become one of the most promising materials for solar cells owing to their outstanding photoelectric performance. Among them, metal halide all-inorganic perovskites (CsPbX 3 ; where X denotes a halogen) show superior thermal and light stability. In particular, the power conversion efficiency (PCE) of perovskite solar cells (pero-SCs) based on a CsPbX 3 active layer has shown a steady increase from 2.7% to 19.03% with the improvement of the CsPbX 3 crystal quality. In this review, we summarize methodologies that have been employed for controlling the growth of all-inorganic perovskite films so far, including precursor solution deposition, substrate modification, composition doping, and surface engineering. Furthermore, we discuss the effect of the perovskite crystal characteristics on defects and the perovskite film morphology, both of which are closely related to device performance. Finally, conclusions and perspectives are presented along with useful guidelines for developing all-inorganic pero-SCs with high PCE and robust stability. The key factors for high-quality all-inorganic perovskite crystal growth. |
Author | Li, Yongfang Chen, Weijie Li, Yaowen Li, Xinqi |
AuthorAffiliation | Laboratory of Advanced Optoelectronic Materials Chemical Engineering and Materials Science Chinese Academy of Sciences Institute of Chemistry College of Chemistry Soochow University Beijing National Laboratory for Molecular Sciences |
AuthorAffiliation_xml | – name: Soochow University – name: Beijing National Laboratory for Molecular Sciences – name: Institute of Chemistry – name: Chinese Academy of Sciences – name: Chemical Engineering and Materials Science – name: Laboratory of Advanced Optoelectronic Materials – name: College of Chemistry |
Author_xml | – sequence: 1 givenname: Weijie surname: Chen fullname: Chen, Weijie – sequence: 2 givenname: Xinqi surname: Li fullname: Li, Xinqi – sequence: 3 givenname: Yaowen surname: Li fullname: Li, Yaowen – sequence: 4 givenname: Yongfang surname: Li fullname: Li, Yongfang |
BookMark | eNp9kd1LwzAUxYNMcJu--C5EfBOqt0mTtr6NOT9gIIg-lzRNt8ysqUm2sf_e6vwAEZ_ugfs758K5A9RrbKMQOo7hIgaaX1agFACJmdhD_ThlScRS4L0vzXNygAbeLwA4gTTvo8cRdmqt1eYKS7f1QRg8c3YT5ri2Ds_1bB61ynV6KRqpsDAm0o11M9FoibuNXfsXHRT21giHpTLGH6L9Whivjj7nED3fTJ7Gd9H04fZ-PJpGMokhRCmpVMIoZDmQMuO8TFgtyyqhZVbKpMpIlTORqzrlhMuaV0yVsaCipIx0lryiQ3S2y22dfV0pH4qFXbmmO1mQhNA0yzIGHXW-o6Sz3jtVF63TS-G2RQzFe2fFNUwmH52NOhh-wVIHEbRtghPa_G053Vmcl9_RP28o2qrumJP_GPoGkRmFtA |
CitedBy_id | crossref_primary_10_1002_adma_202303635 crossref_primary_10_1002_smll_202203565 crossref_primary_10_1016_j_nanoen_2024_110633 crossref_primary_10_1021_acsami_2c02373 crossref_primary_10_1016_j_cej_2024_150970 crossref_primary_10_1016_j_joule_2023_11_018 crossref_primary_10_1002_adfm_202010696 crossref_primary_10_1016_j_mtener_2023_101381 crossref_primary_10_3390_ma16072625 crossref_primary_10_1016_j_mtnano_2021_100143 crossref_primary_10_1016_j_scib_2022_04_011 crossref_primary_10_1039_D4CE00586D crossref_primary_10_1016_j_solener_2022_01_060 crossref_primary_10_1021_acsami_2c11895 crossref_primary_10_1039_D2DT03868D crossref_primary_10_1016_j_actamat_2022_118661 crossref_primary_10_1107_S1600577524010695 crossref_primary_10_1039_D2MA00385F crossref_primary_10_1039_D4TC04500A crossref_primary_10_1016_j_cej_2023_146587 crossref_primary_10_1002_slct_202401586 crossref_primary_10_2139_ssrn_4172830 crossref_primary_10_1021_acsphotonics_0c01904 crossref_primary_10_1039_D1EE00062D crossref_primary_10_1016_j_jechem_2024_08_034 crossref_primary_10_1016_j_jechem_2021_12_019 crossref_primary_10_2139_ssrn_4106704 crossref_primary_10_1021_acs_cgd_4c00189 crossref_primary_10_1016_j_cej_2022_139952 crossref_primary_10_1038_s41467_022_33857_x crossref_primary_10_3390_nano11092408 crossref_primary_10_1039_D1TC00277E crossref_primary_10_1002_adfm_202200651 crossref_primary_10_1002_aenm_202002882 crossref_primary_10_3390_nano11051253 crossref_primary_10_1039_D2NR02799B crossref_primary_10_1002_adom_202400019 crossref_primary_10_1002_advs_202403735 crossref_primary_10_1002_adma_202106750 crossref_primary_10_1039_D1EE00493J crossref_primary_10_1039_D2TC03087J crossref_primary_10_1039_D3RA02143B crossref_primary_10_1002_adma_202203204 crossref_primary_10_1039_D3EE02822D crossref_primary_10_1002_solr_202200340 crossref_primary_10_1016_j_cap_2024_05_006 crossref_primary_10_1021_acsaem_1c00054 crossref_primary_10_1021_acsami_1c21785 crossref_primary_10_3390_en16104135 crossref_primary_10_1002_advs_202101729 crossref_primary_10_1002_aenm_202101973 crossref_primary_10_1016_j_cej_2022_140831 crossref_primary_10_1016_j_cej_2022_137307 crossref_primary_10_1088_1674_1056_ac7c01 crossref_primary_10_1360_SSPMA_2024_0016 crossref_primary_10_3390_cryst13081180 crossref_primary_10_1021_acsaem_2c01554 crossref_primary_10_1002_solr_202100265 crossref_primary_10_1016_j_jmat_2022_09_005 crossref_primary_10_1002_adfm_202311260 crossref_primary_10_1007_s12200_022_00048_x crossref_primary_10_1002_solr_202000714 crossref_primary_10_2139_ssrn_4066209 crossref_primary_10_1016_j_cej_2022_137672 crossref_primary_10_1021_acs_jpclett_1c03021 crossref_primary_10_1002_inf2_12246 crossref_primary_10_1021_acsami_3c17813 crossref_primary_10_1039_D2TA09627G crossref_primary_10_1021_acsaem_2c00615 crossref_primary_10_1002_aenm_202201320 crossref_primary_10_1016_j_isci_2021_103365 crossref_primary_10_1016_j_joule_2023_02_014 crossref_primary_10_1002_solr_202100097 crossref_primary_10_1016_j_ceramint_2024_05_144 crossref_primary_10_1021_acs_langmuir_2c01214 crossref_primary_10_1021_acs_cgd_1c00045 crossref_primary_10_1002_admi_202200447 crossref_primary_10_1016_j_surfin_2022_102477 crossref_primary_10_7498_aps_72_20230593 crossref_primary_10_1002_solr_202300369 crossref_primary_10_1021_acsaem_4c00555 crossref_primary_10_1002_ange_202110603 crossref_primary_10_1002_adom_202300873 crossref_primary_10_1002_aenm_202103933 crossref_primary_10_1002_cssc_202301761 crossref_primary_10_1016_j_energy_2022_124640 crossref_primary_10_1002_adfm_202109321 crossref_primary_10_1016_j_jssc_2024_124780 crossref_primary_10_1016_j_apsusc_2022_156229 crossref_primary_10_1039_D2TA09434G crossref_primary_10_1039_D1NJ04214A crossref_primary_10_1039_D3NJ04596J crossref_primary_10_1016_j_mattod_2021_05_016 crossref_primary_10_1002_smtd_202201255 crossref_primary_10_2494_photopolymer_34_263 crossref_primary_10_3390_cryst12060792 crossref_primary_10_1039_D2TA03559F crossref_primary_10_1021_acs_jpcc_1c02350 crossref_primary_10_1016_j_optmat_2020_110511 crossref_primary_10_1016_j_solener_2021_06_060 crossref_primary_10_1002_anie_202412515 crossref_primary_10_1039_D0TA09096D crossref_primary_10_1002_sstr_202000050 crossref_primary_10_1039_D2TA00653G crossref_primary_10_1007_s42823_023_00578_0 crossref_primary_10_1021_acsami_1c04439 crossref_primary_10_1016_j_jechem_2022_07_035 crossref_primary_10_1039_D1TC03834F crossref_primary_10_1016_j_jechem_2021_07_014 crossref_primary_10_1021_acs_energyfuels_2c02864 crossref_primary_10_1088_1361_6463_abd728 crossref_primary_10_2139_ssrn_3904962 crossref_primary_10_1016_j_esci_2024_100273 crossref_primary_10_1016_j_cej_2023_143273 crossref_primary_10_1016_j_jechem_2021_07_011 crossref_primary_10_1016_j_mattod_2023_05_006 crossref_primary_10_1002_agt2_19 crossref_primary_10_1016_j_materresbull_2021_111622 crossref_primary_10_1039_D1SE00713K crossref_primary_10_1002_solr_202100458 crossref_primary_10_1021_acs_accounts_1c00343 crossref_primary_10_3390_nano12142396 crossref_primary_10_1002_cplu_202200021 crossref_primary_10_1016_j_commatsci_2023_112215 crossref_primary_10_1021_acs_jpclett_0c02151 crossref_primary_10_1039_D1TC05963G crossref_primary_10_1016_j_xcrp_2021_100395 crossref_primary_10_1021_acsami_2c09586 crossref_primary_10_1002_cssc_202001680 crossref_primary_10_1016_j_xcrp_2023_101726 crossref_primary_10_1002_anie_202110603 crossref_primary_10_1002_ente_202300611 crossref_primary_10_1002_solr_202200020 crossref_primary_10_1016_j_jallcom_2023_171441 crossref_primary_10_7498_aps_70_20210145 crossref_primary_10_1002_solr_202200656 crossref_primary_10_1093_nsr_nwab075 crossref_primary_10_1021_acsami_4c02980 crossref_primary_10_1063_5_0150712 crossref_primary_10_1109_TED_2021_3057029 crossref_primary_10_3390_pr11061852 crossref_primary_10_1002_adfm_202111894 crossref_primary_10_1002_aenm_202100728 crossref_primary_10_1021_acsami_2c13658 crossref_primary_10_1002_solr_202400225 crossref_primary_10_1021_acs_jpclett_1c02490 crossref_primary_10_1039_D1EE03192A crossref_primary_10_1016_j_optmat_2020_110456 crossref_primary_10_1021_acsnanoscienceau_3c00026 crossref_primary_10_1063_5_0192047 crossref_primary_10_1002_solr_202200030 crossref_primary_10_1002_chem_202300566 crossref_primary_10_1016_j_solener_2021_10_008 crossref_primary_10_1021_acsami_5c01130 crossref_primary_10_1021_acsphotonics_4c01281 crossref_primary_10_7498_aps_70_20210651 crossref_primary_10_1021_acsaelm_3c01156 crossref_primary_10_1021_acsami_1c23637 crossref_primary_10_1002_ange_202412515 crossref_primary_10_1002_inf2_12322 crossref_primary_10_1002_eem2_12543 crossref_primary_10_1016_j_jallcom_2023_171291 crossref_primary_10_1039_D1TA10388A crossref_primary_10_1039_D2TC04045J crossref_primary_10_1002_adom_202200423 crossref_primary_10_1016_j_nanoen_2022_107792 crossref_primary_10_1039_D3CP00285C |
Cites_doi | 10.1016/j.nanoen.2019.104249 10.1021/acs.chemmater.8b03709 10.1002/anie.201910800 10.1002/adma.201803422 10.1002/solr.201800164 10.1002/solr.201900109 10.1002/advs.201801123 10.1002/adma.201604545 10.1126/science.1254050 10.1016/j.nanoen.2017.08.048 10.1002/adma.201905143 10.1021/acsphotonics.8b00783 10.1021/acsami.9b12179 10.1039/C9TC00374F 10.1002/adma.201900605 10.1002/adfm.201803269 10.1021/acs.chemmater.8b01808 10.1002/adma.201802763 10.1039/C8TA08900K 10.1039/C9TA01151J 10.1039/C8TA07968D 10.1021/acs.jpclett.6b01576 10.1002/smll.201801460 10.1002/aenm.201501310 10.1002/aenm.201803785 10.1002/adfm.201604944 10.1021/acs.chemmater.9b02248 10.1002/aenm.201703246 10.1039/C9TA03336J 10.1038/s41467-018-06915-6 10.1007/BF01507527 10.1002/solr.201700188 10.1021/acs.nanolett.9b01553 10.1016/j.solener.2018.06.041 10.1021/jz501896w 10.1021/acs.jpclett.6b00002 10.1021/acs.nanolett.7b00050 10.1002/adma.201902851 10.1002/adfm.201804660 10.1038/s41566-019-0398-2 10.1021/acsami.7b14039 10.1039/C9TA08465G 10.1002/advs.201801117 10.1016/j.nanoen.2017.02.019 10.1021/acs.nanolett.9b02277 10.1021/acsami.9b03413 10.1002/aenm.201502202 10.1002/adma.201705393 10.1039/C8NR00758F 10.1002/aenm.201800007 10.1002/adma.201904735 10.1039/C9TA05948B 10.1039/C9EE02043H 10.1002/ange.201800019 10.1002/aenm.201700946 10.1021/acs.jpclett.7b01067 10.1002/solr.201800325 10.1016/j.nanoen.2018.08.012 10.1002/solr.201800239 10.1039/C7TA11154A 10.1002/anie.201814024 10.1002/anie.201504379 10.1023/A:1022836800820 10.1021/acsenergylett.7b00751 10.1038/s41563-017-0006-0 10.1016/j.nanoen.2019.01.034 10.1002/adma.201605290 10.1039/C9TA10899H 10.1016/j.joule.2018.08.011 10.1021/acs.jpclett.7b00134 10.1021/acsenergylett.7b00239 10.1002/aenm.201800504 10.1002/adma.201802509 10.1039/C4CS00458B 10.1002/advs.201800509 10.1039/C8TA04590A 10.1002/solr.201800139 10.1016/j.joule.2018.10.011 10.1016/j.nanoen.2015.12.013 10.1021/acs.chemrev.8b00336 10.1002/solr.201700180 10.1002/aenm.201800758 10.1039/C8TA02899K 10.1126/science.aap9282 10.1021/jacs.7b13229 10.1002/solr.201900091 10.1002/adma.201901152 10.1016/j.nanoen.2019.104015 10.1021/jacs.8b05949 10.1016/j.mtener.2017.09.016 10.1021/jacs.8b06050 10.1021/acsenergylett.7b00508 10.1039/C5TA06398A 10.1039/C9EE01479A 10.1002/anie.201807270 10.1038/nenergy.2016.152 10.1016/j.electacta.2018.07.044 10.1039/c3ee43822h 10.1021/ja411509g 10.1002/anie.201901081 10.1021/acsaem.8b00972 10.1126/sciadv.1700841 10.1126/science.aav8680 10.1016/j.nanoen.2019.02.075 10.1016/j.mtener.2017.07.014 10.1021/acs.jpclett.5b00968 10.1002/aenm.201900896 10.1039/C8TA09838G 10.1039/C8TA09855G 10.1002/aenm.201703054 10.1021/acsenergylett.7b00591 10.1002/aenm.201502458 10.1016/j.nanoen.2019.04.066 10.1002/smll.201603996 10.1002/aenm.201802346 10.1021/acsnano.8b00267 10.1021/acs.jpclett.8b01553 10.1002/adfm.201905163 10.1021/jacs.8b07927 10.1038/s41467-018-05454-4 10.1002/solr.201800216 10.1016/j.joule.2019.07.015 10.1002/adfm.201804427 10.1021/jacs.6b10227 10.1016/j.nanoen.2018.12.097 10.1021/jacs.9b06940 10.1002/anie.201801837 10.1038/s41560-018-0153-9 10.1016/j.joule.2018.05.004 10.1021/acs.jpclett.7b01851 10.1021/acsami.9b09171 10.1002/adfm.201101632 10.1038/nature12509 10.1016/j.jpowsour.2017.05.050 10.1039/C9TA08564E 10.1039/C8TA03811B 10.1002/adma.201601505 10.1039/C6TA09582H 10.1002/aenm.201901685 10.1021/acs.jpcc.8b09482 10.1002/aenm.201900555 10.1021/acsami.9b03622 10.1021/acs.jpclett.8b03481 10.1002/aenm.201802080 10.1002/aenm.201803572 10.1016/j.isci.2018.08.005 10.1002/solr.201800188 10.1126/science.aah5557 10.1002/adma.201800855 10.1021/acsami.8b00358 10.1021/acs.jpcc.7b06268 10.1021/acsenergylett.8b00270 10.1016/j.mtener.2018.03.006 10.1021/acsaem.8b01430 10.1038/s41467-018-04636-4 10.1002/adfm.201808986 10.1039/C8TA09859J 10.1021/acs.jpclett.5b02597 10.1016/j.nanoen.2018.11.053 10.1038/nenergy.2015.16 10.1002/solr.201900212 10.1016/j.nanoen.2019.02.049 10.1126/science.aaa2725 10.1038/s41467-018-03169-0 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/d0ee00215a |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 1996 |
ExternalDocumentID | 10_1039_D0EE00215A d0ee00215a |
GroupedDBID | 0-7 0R 29G 4.4 5GY 70 705 7~J AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 EBS ECGLT EE0 EF- GNO HZ H~N J3I JG M4U N9A O-G O9- P2P RCNCU RIG RPMJG RRC RSCEA SKA SLH TOV UCJ 0R~ 70~ AAJAE AARTK AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c410t-72de45308902b866b45fcbd43b8bc4d82d95a9ef7626cf6d5eb1a3ab3528909d3 |
ISSN | 1754-5692 |
IngestDate | Mon Jun 30 11:59:47 EDT 2025 Tue Jul 01 01:45:45 EDT 2025 Thu Apr 24 23:04:32 EDT 2025 Wed Nov 11 00:27:43 EST 2020 Sat Jan 08 03:53:11 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c410t-72de45308902b866b45fcbd43b8bc4d82d95a9ef7626cf6d5eb1a3ab3528909d3 |
Notes | Xinqi Li received her Bachelor's Degree in 2019 from Soochow University. She is currently a master postgraduate in the College of Chemistry, Chemical Engineering and Material science, Soochow University, under the supervision of Prof. Yaowen Li. Her research interests focus on all-inorganic perovskite solar cells. Yaowen Li is a professor at Soochow University. He received his Bachelor's and PhD degrees in the Department of Chemistry from Jilin University (2005 and 2010, respectively). In the period from 2011 to 2014, he collaborated with Prof. Liwei Chen as a postdoctoral scientist at SINANO, Chinese Academy of Sciences. Then he joined Prof. Yang Yang's group of UCLA as a visiting scholar (2015-2016). His present research interests are organic and perovskite materials and devices, and their commercialization technology. Weijie Chen received his Bachelor's Degree in 2016 from Soochow University. He is currently a PhD student in the College of Chemistry, Chemical Engineering and Materials Science, Soochow University, under the supervision of Prof. Yongfang Li and Prof. Yaowen Li. His research interests focus on all-inorganic perovskite solar cells and all-inorganic perovskite/organic integrated solar cells. Yongfang Li is a professor at the Institute of Chemistry, Chinese Academy of Sciences and Soochow University. He received his PhD in the Department of Chemistry from Fudan University (1986), and did postdoctoral research at ICCAS (1986-1988). He then became staff (1988) and was promoted to professor at ICCAS (1993). He was elected as a member of the Chinese Academy of Sciences in 2013. He did his visiting research at the Institute for Molecular Science, Japan (1988-1991), and at the University of California at Santa Barbara (1997-1998). His present research interests are photovoltaic materials and devices for polymer solar cells. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2565-2748 0000-0001-7229-582X |
PQID | 2423788850 |
PQPubID | 2047494 |
PageCount | 26 |
ParticipantIDs | proquest_journals_2423788850 crossref_citationtrail_10_1039_D0EE00215A crossref_primary_10_1039_D0EE00215A rsc_primary_d0ee00215a |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 20200101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Bai (D0EE00215A-(cit89)/*[position()=1]) 2017; 34 Yang (D0EE00215A-(cit165)/*[position()=1]) 2019; 3 Zhang (D0EE00215A-(cit86)/*[position()=1]) 2018; 8 Liang (D0EE00215A-(cit24)/*[position()=1]) 2016; 138 Lau (D0EE00215A-(cit139)/*[position()=1]) 2018; 6 Liu (D0EE00215A-(cit62)/*[position()=1]) 2018; 6 Hsiao (D0EE00215A-(cit79)/*[position()=1]) 2016; 28 Bai (D0EE00215A-(cit97)/*[position()=1]) 2019; 31 Li (D0EE00215A-(cit96)/*[position()=1]) 2018; 6 Yu (D0EE00215A-(cit104)/*[position()=1]) 2018; 6 Zhang (D0EE00215A-(cit40)/*[position()=1]) 2018; 10 Zeng (D0EE00215A-(cit156)/*[position()=1]) 2018; 30 Zhang (D0EE00215A-(cit163)/*[position()=1]) 2019; 7 Goldschmidt (D0EE00215A-(cit46)/*[position()=1]) 1926; 14 Liu (D0EE00215A-(cit119)/*[position()=1]) 2017; 41 Zai (D0EE00215A-(cit108)/*[position()=1]) 2018; 6 Yan (D0EE00215A-(cit110)/*[position()=1]) 2018; 30 Nam (D0EE00215A-(cit131)/*[position()=1]) 2017; 17 Boyd (D0EE00215A-(cit10)/*[position()=1]) 2019; 119 Kulbak (D0EE00215A-(cit58)/*[position()=1]) 2016; 7 Xu (D0EE00215A-(cit34)/*[position()=1]) 2018; 8 Zhao (D0EE00215A-(cit69)/*[position()=1]) 2019; 29 Ma (D0EE00215A-(cit83)/*[position()=1]) 2017; 121 Wang (D0EE00215A-(cit43)/*[position()=1]) 2019; 59 Rao (D0EE00215A-(cit61)/*[position()=1]) 2018; 8 Liang (D0EE00215A-(cit130)/*[position()=1]) 2018; 8 Shao (D0EE00215A-(cit148)/*[position()=1]) 2019; 58 Yuan (D0EE00215A-(cit158)/*[position()=1]) 2018; 2 Wang (D0EE00215A-(cit106)/*[position()=1]) 2018; 9 Lin (D0EE00215A-(cit35)/*[position()=1]) 2017; 29 Mariotti (D0EE00215A-(cit53)/*[position()=1]) 2018; 10 Parida (D0EE00215A-(cit154)/*[position()=1]) 2019; 7 Ye (D0EE00215A-(cit142)/*[position()=1]) 2019; 31 Liu (D0EE00215A-(cit101)/*[position()=1]) 2019; 7 Eperon (D0EE00215A-(cit9)/*[position()=1]) 2014; 7 Ye (D0EE00215A-(cit63)/*[position()=1]) 2019; 3 Hutter (D0EE00215A-(cit49)/*[position()=1]) 2017; 2 Sun (D0EE00215A-(cit129)/*[position()=1]) 2019; 9 Li (D0EE00215A-(cit7)/*[position()=1]) 2018; 122 Zhang (D0EE00215A-(cit162)/*[position()=1]) 2018; 5 Dong (D0EE00215A-(cit84)/*[position()=1]) 2018; 2 Deng (D0EE00215A-(cit123)/*[position()=1]) 2018; 3 Lin (D0EE00215A-(cit42)/*[position()=1]) 2018; 17 Zhou (D0EE00215A-(cit33)/*[position()=1]) 2014; 345 Marronnier (D0EE00215A-(cit50)/*[position()=1]) 2018; 12 Tong (D0EE00215A-(cit80)/*[position()=1]) 2019; 65 Zhang (D0EE00215A-(cit93)/*[position()=1]) 2018; 8 Chen (D0EE00215A-(cit26)/*[position()=1]) 2018; 30 Li (D0EE00215A-(cit140)/*[position()=1]) 2017; 360 Yang (D0EE00215A-(cit8)/*[position()=1]) 2016; 1 Wang (D0EE00215A-(cit66)/*[position()=1]) 2018; 9 Yuan (D0EE00215A-(cit102)/*[position()=1]) 2018; 6 Tian (D0EE00215A-(cit115)/*[position()=1]) 2019; 31 Guo (D0EE00215A-(cit124)/*[position()=1]) 2019; 7 Yin (D0EE00215A-(cit55)/*[position()=1]) 2014; 5 Wu (D0EE00215A-(cit121)/*[position()=1]) 2019; 31 Guo (D0EE00215A-(cit167)/*[position()=1]) 2019; 7 Zhang (D0EE00215A-(cit22)/*[position()=1]) 2019; 58 Stranks (D0EE00215A-(cit29)/*[position()=1]) 2017; 2 Xu (D0EE00215A-(cit32)/*[position()=1]) 2018; 28 Gao (D0EE00215A-(cit111)/*[position()=1]) 2018; 5 Subhani (D0EE00215A-(cit113)/*[position()=1]) 2019; 9 Shi (D0EE00215A-(cit1)/*[position()=1]) 2015; 347 Liu (D0EE00215A-(cit125)/*[position()=1]) 2018; 283 Sun (D0EE00215A-(cit45)/*[position()=1]) 2018; 140 Wang (D0EE00215A-(cit67)/*[position()=1]) 2018; 2 Duan (D0EE00215A-(cit12)/*[position()=1]) 2018; 7 Zhao (D0EE00215A-(cit85)/*[position()=1]) 2018; 30 Tai (D0EE00215A-(cit151)/*[position()=1]) 2019; 7 Lee (D0EE00215A-(cit6)/*[position()=1]) 2018; 9 Kim (D0EE00215A-(cit160)/*[position()=1]) 2019; 11 Guo (D0EE00215A-(cit134)/*[position()=1]) 2019; 11 Beal (D0EE00215A-(cit52)/*[position()=1]) 2016; 7 Heo (D0EE00215A-(cit73)/*[position()=1]) 2019; 11 Duan (D0EE00215A-(cit27)/*[position()=1]) 2018; 130 Lu (D0EE00215A-(cit146)/*[position()=1]) 2018; 1 Lee (D0EE00215A-(cit14)/*[position()=1]) 2015; 5 Zhang (D0EE00215A-(cit39)/*[position()=1]) 2017; 3 Luo (D0EE00215A-(cit65)/*[position()=1]) 2016; 7 Eperon (D0EE00215A-(cit60)/*[position()=1]) 2015; 3 Tang (D0EE00215A-(cit90)/*[position()=1]) 2016; 21 Liu (D0EE00215A-(cit37)/*[position()=1]) 2018; 140 Rodová (D0EE00215A-(cit57)/*[position()=1]) 2003; 71 Wang (D0EE00215A-(cit95)/*[position()=1]) 2019; 31 Ouedraogo (D0EE00215A-(cit16)/*[position()=1]) 2020; 67 Guo (D0EE00215A-(cit18)/*[position()=1]) 2016; 6 Lee (D0EE00215A-(cit5)/*[position()=1]) 2018; 7 Li (D0EE00215A-(cit54)/*[position()=1]) 2017; 7 Wang (D0EE00215A-(cit147)/*[position()=1]) 2018; 140 Wang (D0EE00215A-(cit164)/*[position()=1]) 2019; 365 Liu (D0EE00215A-(cit78)/*[position()=1]) 2013; 501 Yin (D0EE00215A-(cit72)/*[position()=1]) 2018; 28 Li (D0EE00215A-(cit143)/*[position()=1]) 2018; 9 Wang (D0EE00215A-(cit94)/*[position()=1]) 2018; 2 Li (D0EE00215A-(cit128)/*[position()=1]) 2018; 2 Duan (D0EE00215A-(cit103)/*[position()=1]) 2018; 8 Huang (D0EE00215A-(cit91)/*[position()=1]) 2019; 7 Liu (D0EE00215A-(cit126)/*[position()=1]) 2018; 14 Dastidar (D0EE00215A-(cit44)/*[position()=1]) 2017; 8 Zeng (D0EE00215A-(cit15)/*[position()=1]) 2019; 3 Liu (D0EE00215A-(cit118)/*[position()=1]) 2019; 9 Bai (D0EE00215A-(cit87)/*[position()=1]) 2018; 52 Han (D0EE00215A-(cit120)/*[position()=1]) 2019; 3 Wang (D0EE00215A-(cit137)/*[position()=1]) 2019; 58 Chen (D0EE00215A-(cit19)/*[position()=1]) 2018; 2 Sutton (D0EE00215A-(cit23)/*[position()=1]) 2016; 6 Wang (D0EE00215A-(cit138)/*[position()=1]) 2019; 19 Lin (D0EE00215A-(cit81)/*[position()=1]) 2019; 29 Luo (D0EE00215A-(cit149)/*[position()=1]) 2018; 360 Zhou (D0EE00215A-(cit152)/*[position()=1]) 2015; 54 Jena (D0EE00215A-(cit47)/*[position()=1]) 2018; 30 Chen (D0EE00215A-(cit82)/*[position()=1]) 2017; 29 Ma (D0EE00215A-(cit127)/*[position()=1]) 2019; 7 Ouyang (D0EE00215A-(cit30)/*[position()=1]) 2019; 29 Nam (D0EE00215A-(cit20)/*[position()=1]) 2018; 5 Zhao (D0EE00215A-(cit64)/*[position()=1]) 2018; 140 Fu (D0EE00215A-(cit4)/*[position()=1]) 2019; 12 Saliba (D0EE00215A-(cit13)/*[position()=1]) 2016; 354 Fu (D0EE00215A-(cit141)/*[position()=1]) 2018; 6 Cowan (D0EE00215A-(cit117)/*[position()=1]) 2012; 22 Jiang (D0EE00215A-(cit36)/*[position()=1]) 2019; 13 Yuan (D0EE00215A-(cit157)/*[position()=1]) 2018; 2 Zhou (D0EE00215A-(cit56)/*[position()=1]) 2017; 8 Tai (D0EE00215A-(cit17)/*[position()=1]) 2019; 12 Liao (D0EE00215A-(cit161)/*[position()=1]) 2018; 171 Zhang (D0EE00215A-(cit166)/*[position()=1]) 2019; 11 Subhani (D0EE00215A-(cit51)/*[position()=1]) 2019; 61 Wang (D0EE00215A-(cit74)/*[position()=1]) 2019; 7 Yang (D0EE00215A-(cit114)/*[position()=1]) 2019; 57 Lau (D0EE00215A-(cit136)/*[position()=1]) 2017; 2 Bai (D0EE00215A-(cit135)/*[position()=1]) 2018; 3 Shpatz Dayan (D0EE00215A-(cit144)/*[position()=1]) 2018; 30 Bao (D0EE00215A-(cit122)/*[position()=1]) 2018; 30 Xue (D0EE00215A-(cit150)/*[position()=1]) 2019; 141 Liu (D0EE00215A-(cit116)/*[position()=1]) 2019; 56 Mali (D0EE00215A-(cit168)/*[position()=1]) 2019; 19 Jiang (D0EE00215A-(cit38)/*[position()=1]) 2018; 2 Ding (D0EE00215A-(cit41)/*[position()=1]) 2018; 6 Shen (D0EE00215A-(cit25)/*[position()=1]) 2018; 14 Ma (D0EE00215A-(cit75)/*[position()=1]) 2016; 6 Li (D0EE00215A-(cit59)/*[position()=1]) 2017; 13 Zhang (D0EE00215A-(cit155)/*[position()=1]) 2019; 7 Liao (D0EE00215A-(cit68)/*[position()=1]) 2017; 5 Fan (D0EE00215A-(cit71)/*[position()=1]) 2019; 3 Becker (D0EE00215A-(cit48)/*[position()=1]) 2019; 9 Kulbak (D0EE00215A-(cit99)/*[position()=1]) 2015; 6 Xiao (D0EE00215A-(cit92)/*[position()=1]) 2017; 27 Teng (D0EE00215A-(cit98)/*[position()=1]) 2018; 10 Zhu (D0EE00215A-(cit112)/*[position()=1]) 2018; 1 Zhao (D0EE00215A-(cit2)/*[position()=1]) 2016; 45 Zhu (D0EE00215A-(cit105)/*[position()=1]) 2018; 8 Xiang (D0EE00215A-(cit21)/*[position()=1]) 2019 Chen (D0EE00215A-(cit88)/*[position()=1]) 2013; 136 Yang (D0EE00215A-(cit133)/*[position()=1]) 2018; 57 Hu (D0EE00215A-(cit132)/*[position()=1]) 2017; 2 Jiang (D0EE00215A-(cit70)/*[position()=1]) 2018; 5 Park (D0EE00215A-(cit11)/*[position()=1]) 2016; 1 Dong (D0EE00215A-(cit76)/*[position()=1]) 2019; 59 Li (D0EE00215A-(cit145)/*[position()=1]) 2018; 10 Duan (D0EE00215A-(cit100)/*[position()=1]) 2018; 57 Wang (D0EE00215A-(cit159)/*[position()=1]) 2018; 8 Zhao (D0EE00215A-(cit28)/*[position()=1]) 2019; 58 Nam (D0EE00215A-(cit109)/*[position()=1]) 2017; 8 Lau (D0EE00215A-(cit153)/*[position()=1]) 2019; 9 Chen (D0EE00215A-(cit77)/*[position()=1]) 2019; 3 Zhang (D0EE00215A-(cit107)/*[position()=1]) 2018; 9 Wang (D0EE00215A-(cit31)/*[position()=1]) 2019; 3 |
References_xml | – volume: 67 start-page: 104249 year: 2020 ident: D0EE00215A-(cit16)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104249 – volume: 30 start-page: 8017 year: 2018 ident: D0EE00215A-(cit144)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03709 – volume: 58 start-page: 16691 year: 2019 ident: D0EE00215A-(cit28)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201910800 – volume: 30 start-page: 1803422 year: 2018 ident: D0EE00215A-(cit122)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201803422 – volume: 2 start-page: 1800164 year: 2018 ident: D0EE00215A-(cit128)/*[position()=1] publication-title: Sol. RRL doi: 10.1002/solr.201800164 – volume: 3 start-page: 1900109 year: 2019 ident: D0EE00215A-(cit63)/*[position()=1] publication-title: Sol. RRL doi: 10.1002/solr.201900109 – volume: 5 start-page: 1801123 year: 2018 ident: D0EE00215A-(cit162)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201801123 – volume: 29 start-page: 1604545 year: 2017 ident: D0EE00215A-(cit35)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201604545 – volume: 345 start-page: 542 year: 2014 ident: D0EE00215A-(cit33)/*[position()=1] publication-title: Science doi: 10.1126/science.1254050 – volume: 41 start-page: 75 year: 2017 ident: D0EE00215A-(cit119)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.08.048 – volume: 31 start-page: 1905143 year: 2019 ident: D0EE00215A-(cit142)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201905143 – volume: 5 start-page: 4104 year: 2018 ident: D0EE00215A-(cit111)/*[position()=1] publication-title: ACS Photonics doi: 10.1021/acsphotonics.8b00783 – volume: 11 start-page: 43066 year: 2019 ident: D0EE00215A-(cit73)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b12179 – volume: 7 start-page: 3852 year: 2019 ident: D0EE00215A-(cit163)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C9TC00374F – volume: 31 start-page: 1900605 year: 2019 ident: D0EE00215A-(cit121)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201900605 – volume: 28 start-page: 1803269 year: 2018 ident: D0EE00215A-(cit72)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803269 – volume: 30 start-page: 6668 year: 2018 ident: D0EE00215A-(cit47)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01808 – volume: 30 start-page: 1802763 year: 2018 ident: D0EE00215A-(cit85)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201802763 – volume: 6 start-page: 24324 year: 2018 ident: D0EE00215A-(cit102)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08900K – volume: 7 start-page: 12635 year: 2019 ident: D0EE00215A-(cit101)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01151J – volume: 6 start-page: 19810 year: 2018 ident: D0EE00215A-(cit104)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07968D – volume: 7 start-page: 3603 year: 2016 ident: D0EE00215A-(cit65)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b01576 – volume: 14 start-page: 1801460 year: 2018 ident: D0EE00215A-(cit126)/*[position()=1] publication-title: Small doi: 10.1002/smll.201801460 – volume: 5 start-page: 1501310 year: 2015 ident: D0EE00215A-(cit14)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501310 – volume: 9 start-page: 1803785 year: 2019 ident: D0EE00215A-(cit113)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803785 – volume: 27 start-page: 1604944 year: 2017 ident: D0EE00215A-(cit92)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604944 – volume: 31 start-page: 6231 year: 2019 ident: D0EE00215A-(cit95)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b02248 – volume: 14 start-page: 1801460 year: 2018 ident: D0EE00215A-(cit25)/*[position()=1] publication-title: Small doi: 10.1002/smll.201801460 – volume: 8 start-page: 1703246 year: 2018 ident: D0EE00215A-(cit93)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703246 – volume: 7 start-page: 19008 year: 2019 ident: D0EE00215A-(cit167)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03336J – volume: 9 start-page: 4544 year: 2018 ident: D0EE00215A-(cit66)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-06915-6 – volume: 14 start-page: 477 year: 1926 ident: D0EE00215A-(cit46)/*[position()=1] publication-title: Naturwissenschaften doi: 10.1007/BF01507527 – volume: 2 start-page: 1700188 year: 2018 ident: D0EE00215A-(cit19)/*[position()=1] publication-title: Sol. RRL doi: 10.1002/solr.201700188 – volume: 19 start-page: 5176 year: 2019 ident: D0EE00215A-(cit138)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01553 – volume: 171 start-page: 279 year: 2018 ident: D0EE00215A-(cit161)/*[position()=1] publication-title: Sol. Energy doi: 10.1016/j.solener.2018.06.041 – volume: 5 start-page: 3625 year: 2014 ident: D0EE00215A-(cit55)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz501896w – volume: 7 start-page: 746 year: 2016 ident: D0EE00215A-(cit52)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00002 – volume: 17 start-page: 2028 year: 2017 ident: D0EE00215A-(cit131)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00050 – start-page: 1902851 year: 2019 ident: D0EE00215A-(cit21)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201902851 – volume: 29 start-page: 1804660 year: 2019 ident: D0EE00215A-(cit30)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804660 – volume: 13 start-page: 460 year: 2019 ident: D0EE00215A-(cit36)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/s41566-019-0398-2 – volume: 10 start-page: 3750 year: 2018 ident: D0EE00215A-(cit53)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b14039 – volume: 7 start-page: 22420 year: 2019 ident: D0EE00215A-(cit91)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA08465G – volume: 5 start-page: 1801117 year: 2018 ident: D0EE00215A-(cit70)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201801117 – volume: 34 start-page: 58 year: 2017 ident: D0EE00215A-(cit89)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.02.019 – volume: 19 start-page: 6213 year: 2019 ident: D0EE00215A-(cit168)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b02277 – volume: 11 start-page: 19123 year: 2019 ident: D0EE00215A-(cit160)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b03413 – volume: 6 start-page: 1502202 year: 2016 ident: D0EE00215A-(cit75)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502202 – volume: 30 start-page: 1705393 year: 2018 ident: D0EE00215A-(cit156)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201705393 – volume: 10 start-page: 6318 year: 2018 ident: D0EE00215A-(cit145)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR00758F – volume: 8 start-page: 1800007 year: 2018 ident: D0EE00215A-(cit159)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800007 – volume: 31 start-page: 1904735 year: 2019 ident: D0EE00215A-(cit97)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201904735 – volume: 7 start-page: 18488 year: 2019 ident: D0EE00215A-(cit154)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05948B – volume: 12 start-page: 3074 year: 2019 ident: D0EE00215A-(cit4)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02043H – volume: 130 start-page: 3849 year: 2018 ident: D0EE00215A-(cit27)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201800019 – volume: 7 start-page: 1700946 year: 2017 ident: D0EE00215A-(cit54)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700946 – volume: 8 start-page: 2936 year: 2017 ident: D0EE00215A-(cit109)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b01067 – volume: 3 start-page: 1800325 year: 2019 ident: D0EE00215A-(cit31)/*[position()=1] publication-title: Sol. RRL doi: 10.1002/solr.201800325 – volume: 52 start-page: 408 year: 2018 ident: D0EE00215A-(cit87)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.08.012 – volume: 3 start-page: 1800239 year: 2019 ident: D0EE00215A-(cit15)/*[position()=1] publication-title: Sol. RRL doi: 10.1002/solr.201800239 – volume: 6 start-page: 5580 year: 2018 ident: D0EE00215A-(cit139)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA11154A – volume: 58 start-page: 5587 year: 2019 ident: D0EE00215A-(cit148)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201814024 – volume: 54 start-page: 9705 year: 2015 ident: D0EE00215A-(cit152)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201504379 – volume: 71 start-page: 667 year: 2003 ident: D0EE00215A-(cit57)/*[position()=1] publication-title: J. Therm. Anal. Calorim. doi: 10.1023/A:1022836800820 – volume: 2 start-page: 2319 year: 2017 ident: D0EE00215A-(cit136)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00751 – volume: 17 start-page: 261 year: 2018 ident: D0EE00215A-(cit42)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/s41563-017-0006-0 – volume: 58 start-page: 175 year: 2019 ident: D0EE00215A-(cit137)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.034 – volume: 29 start-page: 1605290 year: 2017 ident: D0EE00215A-(cit82)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201605290 – volume: 7 start-page: 27640 year: 2019 ident: D0EE00215A-(cit127)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA10899H – volume: 2 start-page: 2450 year: 2018 ident: D0EE00215A-(cit158)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2018.08.011 – volume: 8 start-page: 1278 year: 2017 ident: D0EE00215A-(cit44)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b00134 – volume: 2 start-page: 1515 year: 2017 ident: D0EE00215A-(cit29)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00239 – volume: 8 start-page: 1800504 year: 2018 ident: D0EE00215A-(cit130)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800504 – volume: 30 start-page: 1802509 year: 2018 ident: D0EE00215A-(cit110)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201802509 – volume: 45 start-page: 655 year: 2016 ident: D0EE00215A-(cit2)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00458B – volume: 5 start-page: 1800509 year: 2018 ident: D0EE00215A-(cit20)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201800509 – volume: 6 start-page: 18258 year: 2018 ident: D0EE00215A-(cit41)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA04590A – volume: 2 start-page: 1800139 year: 2018 ident: D0EE00215A-(cit84)/*[position()=1] publication-title: Sol. RRL doi: 10.1002/solr.201800139 – volume: 3 start-page: 191 year: 2019 ident: D0EE00215A-(cit77)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2018.10.011 – volume: 21 start-page: 51 year: 2016 ident: D0EE00215A-(cit90)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.12.013 – volume: 119 start-page: 3418 year: 2019 ident: D0EE00215A-(cit10)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00336 – volume: 2 start-page: 1700180 year: 2018 ident: D0EE00215A-(cit67)/*[position()=1] publication-title: Sol. RRL doi: 10.1002/solr.201700180 – volume: 8 start-page: 1800758 year: 2018 ident: D0EE00215A-(cit61)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800758 – volume: 6 start-page: 13263 year: 2018 ident: D0EE00215A-(cit141)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02899K – volume: 360 start-page: 1442 year: 2018 ident: D0EE00215A-(cit149)/*[position()=1] publication-title: Science doi: 10.1126/science.aap9282 – volume: 140 start-page: 3825 year: 2018 ident: D0EE00215A-(cit37)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b13229 – volume: 3 start-page: 1900091 year: 2019 ident: D0EE00215A-(cit120)/*[position()=1] publication-title: Sol. RRL doi: 10.1002/solr.201900091 – volume: 31 start-page: 1901152 year: 2019 ident: D0EE00215A-(cit115)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201901152 – volume: 65 start-page: 104015 year: 2019 ident: D0EE00215A-(cit80)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104015 – volume: 140 start-page: 11705 year: 2018 ident: D0EE00215A-(cit45)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05949 – volume: 7 start-page: 221 year: 2018 ident: D0EE00215A-(cit12)/*[position()=1] publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2017.09.016 – volume: 140 start-page: 11716 year: 2018 ident: D0EE00215A-(cit64)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b06050 – volume: 2 start-page: 2219 year: 2017 ident: D0EE00215A-(cit132)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00508 – volume: 3 start-page: 19688 year: 2015 ident: D0EE00215A-(cit60)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA06398A – volume: 12 start-page: 2375 year: 2019 ident: D0EE00215A-(cit17)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01479A – volume: 57 start-page: 12745 year: 2018 ident: D0EE00215A-(cit133)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201807270 – volume: 1 start-page: 16152 year: 2016 ident: D0EE00215A-(cit11)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2016.152 – volume: 283 start-page: 1115 year: 2018 ident: D0EE00215A-(cit125)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.07.044 – volume: 7 start-page: 982 year: 2014 ident: D0EE00215A-(cit9)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c3ee43822h – volume: 136 start-page: 622 year: 2013 ident: D0EE00215A-(cit88)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja411509g – volume: 58 start-page: 15596 year: 2019 ident: D0EE00215A-(cit22)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201901081 – volume: 1 start-page: 4991 year: 2018 ident: D0EE00215A-(cit112)/*[position()=1] publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00972 – volume: 3 start-page: e1700841 year: 2017 ident: D0EE00215A-(cit39)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.1700841 – volume: 365 start-page: 591 year: 2019 ident: D0EE00215A-(cit164)/*[position()=1] publication-title: Science doi: 10.1126/science.aav8680 – volume: 59 start-page: 553 year: 2019 ident: D0EE00215A-(cit76)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.075 – volume: 7 start-page: 149 year: 2018 ident: D0EE00215A-(cit5)/*[position()=1] publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2017.07.014 – volume: 6 start-page: 2452 year: 2015 ident: D0EE00215A-(cit99)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00968 – volume: 9 start-page: 1900896 year: 2019 ident: D0EE00215A-(cit129)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900896 – volume: 7 start-page: 1227 year: 2019 ident: D0EE00215A-(cit124)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09838G – volume: 7 start-page: 2773 year: 2019 ident: D0EE00215A-(cit74)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09855G – volume: 8 start-page: 1703054 year: 2018 ident: D0EE00215A-(cit34)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703054 – volume: 2 start-page: 1901 year: 2017 ident: D0EE00215A-(cit49)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00591 – volume: 6 start-page: 1502458 year: 2016 ident: D0EE00215A-(cit18)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502458 – volume: 61 start-page: 165 year: 2019 ident: D0EE00215A-(cit51)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.066 – volume: 13 start-page: 1603996 year: 2017 ident: D0EE00215A-(cit59)/*[position()=1] publication-title: Small doi: 10.1002/smll.201603996 – volume: 8 start-page: 1802346 year: 2018 ident: D0EE00215A-(cit103)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802346 – volume: 12 start-page: 3477 year: 2018 ident: D0EE00215A-(cit50)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b00267 – volume: 9 start-page: 3646 year: 2018 ident: D0EE00215A-(cit107)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b01553 – volume: 29 start-page: 1905163 year: 2019 ident: D0EE00215A-(cit81)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905163 – volume: 140 start-page: 12345 year: 2018 ident: D0EE00215A-(cit147)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07927 – volume: 9 start-page: 3021 year: 2018 ident: D0EE00215A-(cit6)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-05454-4 – volume: 2 start-page: 1800216 year: 2018 ident: D0EE00215A-(cit94)/*[position()=1] publication-title: Sol. RRL doi: 10.1002/solr.201800216 – volume: 3 start-page: 2485 year: 2019 ident: D0EE00215A-(cit71)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2019.07.015 – volume: 28 start-page: 1804427 year: 2018 ident: D0EE00215A-(cit32)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804427 – volume: 138 start-page: 15829 year: 2016 ident: D0EE00215A-(cit24)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b10227 – volume: 57 start-page: 718 year: 2019 ident: D0EE00215A-(cit114)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.097 – volume: 141 start-page: 13948 year: 2019 ident: D0EE00215A-(cit150)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b06940 – volume: 57 start-page: 5746 year: 2018 ident: D0EE00215A-(cit100)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201801837 – volume: 3 start-page: 560 year: 2018 ident: D0EE00215A-(cit123)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-018-0153-9 – volume: 2 start-page: 1356 year: 2018 ident: D0EE00215A-(cit38)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2018.05.004 – volume: 8 start-page: 4122 year: 2017 ident: D0EE00215A-(cit56)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b01851 – volume: 11 start-page: 33868 year: 2019 ident: D0EE00215A-(cit166)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b09171 – volume: 22 start-page: 1116 year: 2012 ident: D0EE00215A-(cit117)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201101632 – volume: 501 start-page: 395 year: 2013 ident: D0EE00215A-(cit78)/*[position()=1] publication-title: Nature doi: 10.1038/nature12509 – volume: 360 start-page: 11 year: 2017 ident: D0EE00215A-(cit140)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.05.050 – volume: 7 start-page: 22675 year: 2019 ident: D0EE00215A-(cit151)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA08564E – volume: 6 start-page: 14255 year: 2018 ident: D0EE00215A-(cit96)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03811B – volume: 28 start-page: 7013 year: 2016 ident: D0EE00215A-(cit79)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201601505 – volume: 5 start-page: 2066 year: 2017 ident: D0EE00215A-(cit68)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09582H – volume: 9 start-page: 1901685 year: 2019 ident: D0EE00215A-(cit153)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901685 – volume: 122 start-page: 24014 year: 2018 ident: D0EE00215A-(cit7)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b09482 – volume: 9 start-page: 1900555 year: 2019 ident: D0EE00215A-(cit48)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900555 – volume: 11 start-page: 19994 year: 2019 ident: D0EE00215A-(cit134)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b03622 – volume: 10 start-page: 200 year: 2018 ident: D0EE00215A-(cit40)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b03481 – volume: 8 start-page: 1802080 year: 2018 ident: D0EE00215A-(cit105)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802080 – volume: 9 start-page: 1803572 year: 2019 ident: D0EE00215A-(cit118)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803572 – volume: 6 start-page: 272 year: 2018 ident: D0EE00215A-(cit62)/*[position()=1] publication-title: iScience doi: 10.1016/j.isci.2018.08.005 – volume: 7 start-page: 18488 year: 2019 ident: D0EE00215A-(cit155)/*[position()=1] publication-title: Sol. RRL – volume: 2 start-page: 1800188 year: 2018 ident: D0EE00215A-(cit157)/*[position()=1] publication-title: Sol. RRL doi: 10.1002/solr.201800188 – volume: 354 start-page: 206 year: 2016 ident: D0EE00215A-(cit13)/*[position()=1] publication-title: Science doi: 10.1126/science.aah5557 – volume: 30 start-page: 1800855 year: 2018 ident: D0EE00215A-(cit26)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201800855 – volume: 10 start-page: 9541 year: 2018 ident: D0EE00215A-(cit98)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00358 – volume: 121 start-page: 19642 year: 2017 ident: D0EE00215A-(cit83)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b06268 – volume: 3 start-page: 970 year: 2018 ident: D0EE00215A-(cit135)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00270 – volume: 8 start-page: 125 year: 2018 ident: D0EE00215A-(cit86)/*[position()=1] publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2018.03.006 – volume: 1 start-page: 5872 year: 2018 ident: D0EE00215A-(cit146)/*[position()=1] publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b01430 – volume: 9 start-page: 2225 year: 2018 ident: D0EE00215A-(cit106)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-04636-4 – volume: 29 start-page: 1808986 year: 2019 ident: D0EE00215A-(cit69)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808986 – volume: 6 start-page: 23602 year: 2018 ident: D0EE00215A-(cit108)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09859J – volume: 7 start-page: 167 year: 2016 ident: D0EE00215A-(cit58)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02597 – volume: 56 start-page: 184 year: 2019 ident: D0EE00215A-(cit116)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.053 – volume: 1 start-page: 15016 year: 2016 ident: D0EE00215A-(cit8)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2015.16 – volume: 3 start-page: 1900212 year: 2019 ident: D0EE00215A-(cit165)/*[position()=1] publication-title: Sol. RRL doi: 10.1002/solr.201900212 – volume: 6 start-page: 1502458 year: 2016 ident: D0EE00215A-(cit23)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502458 – volume: 59 start-page: 258 year: 2019 ident: D0EE00215A-(cit43)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.049 – volume: 347 start-page: 519 year: 2015 ident: D0EE00215A-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.aaa2725 – volume: 9 start-page: 1076 year: 2018 ident: D0EE00215A-(cit143)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-03169-0 |
SSID | ssj0062079 |
Score | 2.6420698 |
SecondaryResourceType | review_article |
Snippet | Recently, halide perovskites have become one of the most promising materials for solar cells owing to their outstanding photoelectric performance. Among them,... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1971 |
SubjectTerms | Crystal defects Crystal growth Energy conversion efficiency Metal halides Morphology Perovskites Photoelectricity Photovoltaic cells Solar cells Stability Substrates |
Title | A review: crystal growth for high-performance all-inorganic perovskite solar cells |
URI | https://www.proquest.com/docview/2423788850 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gUeELeJjoEswQuaPJz4kpi3MgoTtwe0aeUpSmxnBFVpabMh-PXYjnMbfRi8RNVp3Kg-X3wu9vkOAM-jnBqngyjEdBAiyghHaRxrJLSgaRDINHI83Z8-85Mz-n7O5qPRVe_U0mWVHcnfW-tK_kerRmb0aqtk_0Gz7Y8agfls9GuuRsPmeiMdT33liQ3r5frXxhY2Xpi4uvrmTg9aKmK06lcGLBaoKOtGTtIyFi-vNjZ7e7ixAe6hTeJvBqn6ujDQoqNXENeUUXaYOPYlHue6-F600o_uoMC8KH8UQ9HXdPmzq0DzsmV5kafejPosRIh7WYh64YwYRYzXfe2OdE8WYT5YbUkPVVFv6QxE3YvFm2F7OnrrEo-JZUh9g2cz56-0JKkdj_Y1-9aeOnT77UQk3dgdsBua8CIcg93ph9fvzhsbzkPsWBrbf9UQ2xLxshs9dGW6-GRn3TSPcU7K6V1wx0cXcFpD5R4Y6fI-uN3jnHwAvkxhDZpX0EMG1pCBBibwOmTgADKwgwx0kIEOMg_B2dvZ6fEJ8o01kKQBrlAUKm1eS2z3mLOY84yyXGaKkizOJFVxqARLhc6NoeQy54oZg56SNLNMQAILRfbAuFyW-hGATNmdbhIo42rSSEeCS81lRONcYYbzYAJeNHOUSM86b5ufLJK_tTEBz9p7VzXXyta7DpqpTvy7uElsVGCTOQxPwJ6Z_na8wlq7cekE7G__IlmpfP9Gj34MbnXYPwDjan2pnxiftMqeegD9AeKZiVU |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review%3A+crystal+growth+for+high-performance+all-inorganic+perovskite+solar+cells&rft.jtitle=Energy+%26+environmental+science&rft.au=Chen%2C+Weijie&rft.au=Li%2C+Xinqi&rft.au=Li%2C+Yaowen&rft.au=Li%2C+Yongfang&rft.date=2020-01-01&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=13&rft.issue=7&rft.spage=1971&rft.epage=1996&rft_id=info:doi/10.1039%2FD0EE00215A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0EE00215A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |