A review: crystal growth for high-performance all-inorganic perovskite solar cells

Recently, halide perovskites have become one of the most promising materials for solar cells owing to their outstanding photoelectric performance. Among them, metal halide all-inorganic perovskites (CsPbX 3 ; where X denotes a halogen) show superior thermal and light stability. In particular, the po...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 13; no. 7; pp. 1971 - 1996
Main Authors Chen, Weijie, Li, Xinqi, Li, Yaowen, Li, Yongfang
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, halide perovskites have become one of the most promising materials for solar cells owing to their outstanding photoelectric performance. Among them, metal halide all-inorganic perovskites (CsPbX 3 ; where X denotes a halogen) show superior thermal and light stability. In particular, the power conversion efficiency (PCE) of perovskite solar cells (pero-SCs) based on a CsPbX 3 active layer has shown a steady increase from 2.7% to 19.03% with the improvement of the CsPbX 3 crystal quality. In this review, we summarize methodologies that have been employed for controlling the growth of all-inorganic perovskite films so far, including precursor solution deposition, substrate modification, composition doping, and surface engineering. Furthermore, we discuss the effect of the perovskite crystal characteristics on defects and the perovskite film morphology, both of which are closely related to device performance. Finally, conclusions and perspectives are presented along with useful guidelines for developing all-inorganic pero-SCs with high PCE and robust stability. The key factors for high-quality all-inorganic perovskite crystal growth.
AbstractList Recently, halide perovskites have become one of the most promising materials for solar cells owing to their outstanding photoelectric performance. Among them, metal halide all-inorganic perovskites (CsPbX3; where X denotes a halogen) show superior thermal and light stability. In particular, the power conversion efficiency (PCE) of perovskite solar cells (pero-SCs) based on a CsPbX3 active layer has shown a steady increase from 2.7% to 19.03% with the improvement of the CsPbX3 crystal quality. In this review, we summarize methodologies that have been employed for controlling the growth of all-inorganic perovskite films so far, including precursor solution deposition, substrate modification, composition doping, and surface engineering. Furthermore, we discuss the effect of the perovskite crystal characteristics on defects and the perovskite film morphology, both of which are closely related to device performance. Finally, conclusions and perspectives are presented along with useful guidelines for developing all-inorganic pero-SCs with high PCE and robust stability.
Recently, halide perovskites have become one of the most promising materials for solar cells owing to their outstanding photoelectric performance. Among them, metal halide all-inorganic perovskites (CsPbX 3 ; where X denotes a halogen) show superior thermal and light stability. In particular, the power conversion efficiency (PCE) of perovskite solar cells (pero-SCs) based on a CsPbX 3 active layer has shown a steady increase from 2.7% to 19.03% with the improvement of the CsPbX 3 crystal quality. In this review, we summarize methodologies that have been employed for controlling the growth of all-inorganic perovskite films so far, including precursor solution deposition, substrate modification, composition doping, and surface engineering. Furthermore, we discuss the effect of the perovskite crystal characteristics on defects and the perovskite film morphology, both of which are closely related to device performance. Finally, conclusions and perspectives are presented along with useful guidelines for developing all-inorganic pero-SCs with high PCE and robust stability.
Recently, halide perovskites have become one of the most promising materials for solar cells owing to their outstanding photoelectric performance. Among them, metal halide all-inorganic perovskites (CsPbX 3 ; where X denotes a halogen) show superior thermal and light stability. In particular, the power conversion efficiency (PCE) of perovskite solar cells (pero-SCs) based on a CsPbX 3 active layer has shown a steady increase from 2.7% to 19.03% with the improvement of the CsPbX 3 crystal quality. In this review, we summarize methodologies that have been employed for controlling the growth of all-inorganic perovskite films so far, including precursor solution deposition, substrate modification, composition doping, and surface engineering. Furthermore, we discuss the effect of the perovskite crystal characteristics on defects and the perovskite film morphology, both of which are closely related to device performance. Finally, conclusions and perspectives are presented along with useful guidelines for developing all-inorganic pero-SCs with high PCE and robust stability. The key factors for high-quality all-inorganic perovskite crystal growth.
Author Li, Yongfang
Chen, Weijie
Li, Yaowen
Li, Xinqi
AuthorAffiliation Laboratory of Advanced Optoelectronic Materials
Chemical Engineering and Materials Science
Chinese Academy of Sciences
Institute of Chemistry
College of Chemistry
Soochow University
Beijing National Laboratory for Molecular Sciences
AuthorAffiliation_xml – name: Soochow University
– name: Beijing National Laboratory for Molecular Sciences
– name: Institute of Chemistry
– name: Chinese Academy of Sciences
– name: Chemical Engineering and Materials Science
– name: Laboratory of Advanced Optoelectronic Materials
– name: College of Chemistry
Author_xml – sequence: 1
  givenname: Weijie
  surname: Chen
  fullname: Chen, Weijie
– sequence: 2
  givenname: Xinqi
  surname: Li
  fullname: Li, Xinqi
– sequence: 3
  givenname: Yaowen
  surname: Li
  fullname: Li, Yaowen
– sequence: 4
  givenname: Yongfang
  surname: Li
  fullname: Li, Yongfang
BookMark eNp9kd1LwzAUxYNMcJu--C5EfBOqt0mTtr6NOT9gIIg-lzRNt8ysqUm2sf_e6vwAEZ_ugfs758K5A9RrbKMQOo7hIgaaX1agFACJmdhD_ThlScRS4L0vzXNygAbeLwA4gTTvo8cRdmqt1eYKS7f1QRg8c3YT5ri2Ds_1bB61ynV6KRqpsDAm0o11M9FoibuNXfsXHRT21giHpTLGH6L9Whivjj7nED3fTJ7Gd9H04fZ-PJpGMokhRCmpVMIoZDmQMuO8TFgtyyqhZVbKpMpIlTORqzrlhMuaV0yVsaCipIx0lryiQ3S2y22dfV0pH4qFXbmmO1mQhNA0yzIGHXW-o6Sz3jtVF63TS-G2RQzFe2fFNUwmH52NOhh-wVIHEbRtghPa_G053Vmcl9_RP28o2qrumJP_GPoGkRmFtA
CitedBy_id crossref_primary_10_1002_adma_202303635
crossref_primary_10_1002_smll_202203565
crossref_primary_10_1016_j_nanoen_2024_110633
crossref_primary_10_1021_acsami_2c02373
crossref_primary_10_1016_j_cej_2024_150970
crossref_primary_10_1016_j_joule_2023_11_018
crossref_primary_10_1002_adfm_202010696
crossref_primary_10_1016_j_mtener_2023_101381
crossref_primary_10_3390_ma16072625
crossref_primary_10_1016_j_mtnano_2021_100143
crossref_primary_10_1016_j_scib_2022_04_011
crossref_primary_10_1039_D4CE00586D
crossref_primary_10_1016_j_solener_2022_01_060
crossref_primary_10_1021_acsami_2c11895
crossref_primary_10_1039_D2DT03868D
crossref_primary_10_1016_j_actamat_2022_118661
crossref_primary_10_1107_S1600577524010695
crossref_primary_10_1039_D2MA00385F
crossref_primary_10_1039_D4TC04500A
crossref_primary_10_1016_j_cej_2023_146587
crossref_primary_10_1002_slct_202401586
crossref_primary_10_2139_ssrn_4172830
crossref_primary_10_1021_acsphotonics_0c01904
crossref_primary_10_1039_D1EE00062D
crossref_primary_10_1016_j_jechem_2024_08_034
crossref_primary_10_1016_j_jechem_2021_12_019
crossref_primary_10_2139_ssrn_4106704
crossref_primary_10_1021_acs_cgd_4c00189
crossref_primary_10_1016_j_cej_2022_139952
crossref_primary_10_1038_s41467_022_33857_x
crossref_primary_10_3390_nano11092408
crossref_primary_10_1039_D1TC00277E
crossref_primary_10_1002_adfm_202200651
crossref_primary_10_1002_aenm_202002882
crossref_primary_10_3390_nano11051253
crossref_primary_10_1039_D2NR02799B
crossref_primary_10_1002_adom_202400019
crossref_primary_10_1002_advs_202403735
crossref_primary_10_1002_adma_202106750
crossref_primary_10_1039_D1EE00493J
crossref_primary_10_1039_D2TC03087J
crossref_primary_10_1039_D3RA02143B
crossref_primary_10_1002_adma_202203204
crossref_primary_10_1039_D3EE02822D
crossref_primary_10_1002_solr_202200340
crossref_primary_10_1016_j_cap_2024_05_006
crossref_primary_10_1021_acsaem_1c00054
crossref_primary_10_1021_acsami_1c21785
crossref_primary_10_3390_en16104135
crossref_primary_10_1002_advs_202101729
crossref_primary_10_1002_aenm_202101973
crossref_primary_10_1016_j_cej_2022_140831
crossref_primary_10_1016_j_cej_2022_137307
crossref_primary_10_1088_1674_1056_ac7c01
crossref_primary_10_1360_SSPMA_2024_0016
crossref_primary_10_3390_cryst13081180
crossref_primary_10_1021_acsaem_2c01554
crossref_primary_10_1002_solr_202100265
crossref_primary_10_1016_j_jmat_2022_09_005
crossref_primary_10_1002_adfm_202311260
crossref_primary_10_1007_s12200_022_00048_x
crossref_primary_10_1002_solr_202000714
crossref_primary_10_2139_ssrn_4066209
crossref_primary_10_1016_j_cej_2022_137672
crossref_primary_10_1021_acs_jpclett_1c03021
crossref_primary_10_1002_inf2_12246
crossref_primary_10_1021_acsami_3c17813
crossref_primary_10_1039_D2TA09627G
crossref_primary_10_1021_acsaem_2c00615
crossref_primary_10_1002_aenm_202201320
crossref_primary_10_1016_j_isci_2021_103365
crossref_primary_10_1016_j_joule_2023_02_014
crossref_primary_10_1002_solr_202100097
crossref_primary_10_1016_j_ceramint_2024_05_144
crossref_primary_10_1021_acs_langmuir_2c01214
crossref_primary_10_1021_acs_cgd_1c00045
crossref_primary_10_1002_admi_202200447
crossref_primary_10_1016_j_surfin_2022_102477
crossref_primary_10_7498_aps_72_20230593
crossref_primary_10_1002_solr_202300369
crossref_primary_10_1021_acsaem_4c00555
crossref_primary_10_1002_ange_202110603
crossref_primary_10_1002_adom_202300873
crossref_primary_10_1002_aenm_202103933
crossref_primary_10_1002_cssc_202301761
crossref_primary_10_1016_j_energy_2022_124640
crossref_primary_10_1002_adfm_202109321
crossref_primary_10_1016_j_jssc_2024_124780
crossref_primary_10_1016_j_apsusc_2022_156229
crossref_primary_10_1039_D2TA09434G
crossref_primary_10_1039_D1NJ04214A
crossref_primary_10_1039_D3NJ04596J
crossref_primary_10_1016_j_mattod_2021_05_016
crossref_primary_10_1002_smtd_202201255
crossref_primary_10_2494_photopolymer_34_263
crossref_primary_10_3390_cryst12060792
crossref_primary_10_1039_D2TA03559F
crossref_primary_10_1021_acs_jpcc_1c02350
crossref_primary_10_1016_j_optmat_2020_110511
crossref_primary_10_1016_j_solener_2021_06_060
crossref_primary_10_1002_anie_202412515
crossref_primary_10_1039_D0TA09096D
crossref_primary_10_1002_sstr_202000050
crossref_primary_10_1039_D2TA00653G
crossref_primary_10_1007_s42823_023_00578_0
crossref_primary_10_1021_acsami_1c04439
crossref_primary_10_1016_j_jechem_2022_07_035
crossref_primary_10_1039_D1TC03834F
crossref_primary_10_1016_j_jechem_2021_07_014
crossref_primary_10_1021_acs_energyfuels_2c02864
crossref_primary_10_1088_1361_6463_abd728
crossref_primary_10_2139_ssrn_3904962
crossref_primary_10_1016_j_esci_2024_100273
crossref_primary_10_1016_j_cej_2023_143273
crossref_primary_10_1016_j_jechem_2021_07_011
crossref_primary_10_1016_j_mattod_2023_05_006
crossref_primary_10_1002_agt2_19
crossref_primary_10_1016_j_materresbull_2021_111622
crossref_primary_10_1039_D1SE00713K
crossref_primary_10_1002_solr_202100458
crossref_primary_10_1021_acs_accounts_1c00343
crossref_primary_10_3390_nano12142396
crossref_primary_10_1002_cplu_202200021
crossref_primary_10_1016_j_commatsci_2023_112215
crossref_primary_10_1021_acs_jpclett_0c02151
crossref_primary_10_1039_D1TC05963G
crossref_primary_10_1016_j_xcrp_2021_100395
crossref_primary_10_1021_acsami_2c09586
crossref_primary_10_1002_cssc_202001680
crossref_primary_10_1016_j_xcrp_2023_101726
crossref_primary_10_1002_anie_202110603
crossref_primary_10_1002_ente_202300611
crossref_primary_10_1002_solr_202200020
crossref_primary_10_1016_j_jallcom_2023_171441
crossref_primary_10_7498_aps_70_20210145
crossref_primary_10_1002_solr_202200656
crossref_primary_10_1093_nsr_nwab075
crossref_primary_10_1021_acsami_4c02980
crossref_primary_10_1063_5_0150712
crossref_primary_10_1109_TED_2021_3057029
crossref_primary_10_3390_pr11061852
crossref_primary_10_1002_adfm_202111894
crossref_primary_10_1002_aenm_202100728
crossref_primary_10_1021_acsami_2c13658
crossref_primary_10_1002_solr_202400225
crossref_primary_10_1021_acs_jpclett_1c02490
crossref_primary_10_1039_D1EE03192A
crossref_primary_10_1016_j_optmat_2020_110456
crossref_primary_10_1021_acsnanoscienceau_3c00026
crossref_primary_10_1063_5_0192047
crossref_primary_10_1002_solr_202200030
crossref_primary_10_1002_chem_202300566
crossref_primary_10_1016_j_solener_2021_10_008
crossref_primary_10_1021_acsami_5c01130
crossref_primary_10_1021_acsphotonics_4c01281
crossref_primary_10_7498_aps_70_20210651
crossref_primary_10_1021_acsaelm_3c01156
crossref_primary_10_1021_acsami_1c23637
crossref_primary_10_1002_ange_202412515
crossref_primary_10_1002_inf2_12322
crossref_primary_10_1002_eem2_12543
crossref_primary_10_1016_j_jallcom_2023_171291
crossref_primary_10_1039_D1TA10388A
crossref_primary_10_1039_D2TC04045J
crossref_primary_10_1002_adom_202200423
crossref_primary_10_1016_j_nanoen_2022_107792
crossref_primary_10_1039_D3CP00285C
Cites_doi 10.1016/j.nanoen.2019.104249
10.1021/acs.chemmater.8b03709
10.1002/anie.201910800
10.1002/adma.201803422
10.1002/solr.201800164
10.1002/solr.201900109
10.1002/advs.201801123
10.1002/adma.201604545
10.1126/science.1254050
10.1016/j.nanoen.2017.08.048
10.1002/adma.201905143
10.1021/acsphotonics.8b00783
10.1021/acsami.9b12179
10.1039/C9TC00374F
10.1002/adma.201900605
10.1002/adfm.201803269
10.1021/acs.chemmater.8b01808
10.1002/adma.201802763
10.1039/C8TA08900K
10.1039/C9TA01151J
10.1039/C8TA07968D
10.1021/acs.jpclett.6b01576
10.1002/smll.201801460
10.1002/aenm.201501310
10.1002/aenm.201803785
10.1002/adfm.201604944
10.1021/acs.chemmater.9b02248
10.1002/aenm.201703246
10.1039/C9TA03336J
10.1038/s41467-018-06915-6
10.1007/BF01507527
10.1002/solr.201700188
10.1021/acs.nanolett.9b01553
10.1016/j.solener.2018.06.041
10.1021/jz501896w
10.1021/acs.jpclett.6b00002
10.1021/acs.nanolett.7b00050
10.1002/adma.201902851
10.1002/adfm.201804660
10.1038/s41566-019-0398-2
10.1021/acsami.7b14039
10.1039/C9TA08465G
10.1002/advs.201801117
10.1016/j.nanoen.2017.02.019
10.1021/acs.nanolett.9b02277
10.1021/acsami.9b03413
10.1002/aenm.201502202
10.1002/adma.201705393
10.1039/C8NR00758F
10.1002/aenm.201800007
10.1002/adma.201904735
10.1039/C9TA05948B
10.1039/C9EE02043H
10.1002/ange.201800019
10.1002/aenm.201700946
10.1021/acs.jpclett.7b01067
10.1002/solr.201800325
10.1016/j.nanoen.2018.08.012
10.1002/solr.201800239
10.1039/C7TA11154A
10.1002/anie.201814024
10.1002/anie.201504379
10.1023/A:1022836800820
10.1021/acsenergylett.7b00751
10.1038/s41563-017-0006-0
10.1016/j.nanoen.2019.01.034
10.1002/adma.201605290
10.1039/C9TA10899H
10.1016/j.joule.2018.08.011
10.1021/acs.jpclett.7b00134
10.1021/acsenergylett.7b00239
10.1002/aenm.201800504
10.1002/adma.201802509
10.1039/C4CS00458B
10.1002/advs.201800509
10.1039/C8TA04590A
10.1002/solr.201800139
10.1016/j.joule.2018.10.011
10.1016/j.nanoen.2015.12.013
10.1021/acs.chemrev.8b00336
10.1002/solr.201700180
10.1002/aenm.201800758
10.1039/C8TA02899K
10.1126/science.aap9282
10.1021/jacs.7b13229
10.1002/solr.201900091
10.1002/adma.201901152
10.1016/j.nanoen.2019.104015
10.1021/jacs.8b05949
10.1016/j.mtener.2017.09.016
10.1021/jacs.8b06050
10.1021/acsenergylett.7b00508
10.1039/C5TA06398A
10.1039/C9EE01479A
10.1002/anie.201807270
10.1038/nenergy.2016.152
10.1016/j.electacta.2018.07.044
10.1039/c3ee43822h
10.1021/ja411509g
10.1002/anie.201901081
10.1021/acsaem.8b00972
10.1126/sciadv.1700841
10.1126/science.aav8680
10.1016/j.nanoen.2019.02.075
10.1016/j.mtener.2017.07.014
10.1021/acs.jpclett.5b00968
10.1002/aenm.201900896
10.1039/C8TA09838G
10.1039/C8TA09855G
10.1002/aenm.201703054
10.1021/acsenergylett.7b00591
10.1002/aenm.201502458
10.1016/j.nanoen.2019.04.066
10.1002/smll.201603996
10.1002/aenm.201802346
10.1021/acsnano.8b00267
10.1021/acs.jpclett.8b01553
10.1002/adfm.201905163
10.1021/jacs.8b07927
10.1038/s41467-018-05454-4
10.1002/solr.201800216
10.1016/j.joule.2019.07.015
10.1002/adfm.201804427
10.1021/jacs.6b10227
10.1016/j.nanoen.2018.12.097
10.1021/jacs.9b06940
10.1002/anie.201801837
10.1038/s41560-018-0153-9
10.1016/j.joule.2018.05.004
10.1021/acs.jpclett.7b01851
10.1021/acsami.9b09171
10.1002/adfm.201101632
10.1038/nature12509
10.1016/j.jpowsour.2017.05.050
10.1039/C9TA08564E
10.1039/C8TA03811B
10.1002/adma.201601505
10.1039/C6TA09582H
10.1002/aenm.201901685
10.1021/acs.jpcc.8b09482
10.1002/aenm.201900555
10.1021/acsami.9b03622
10.1021/acs.jpclett.8b03481
10.1002/aenm.201802080
10.1002/aenm.201803572
10.1016/j.isci.2018.08.005
10.1002/solr.201800188
10.1126/science.aah5557
10.1002/adma.201800855
10.1021/acsami.8b00358
10.1021/acs.jpcc.7b06268
10.1021/acsenergylett.8b00270
10.1016/j.mtener.2018.03.006
10.1021/acsaem.8b01430
10.1038/s41467-018-04636-4
10.1002/adfm.201808986
10.1039/C8TA09859J
10.1021/acs.jpclett.5b02597
10.1016/j.nanoen.2018.11.053
10.1038/nenergy.2015.16
10.1002/solr.201900212
10.1016/j.nanoen.2019.02.049
10.1126/science.aaa2725
10.1038/s41467-018-03169-0
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/d0ee00215a
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 1996
ExternalDocumentID 10_1039_D0EE00215A
d0ee00215a
GroupedDBID 0-7
0R
29G
4.4
5GY
70
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
M4U
N9A
O-G
O9-
P2P
RCNCU
RIG
RPMJG
RRC
RSCEA
SKA
SLH
TOV
UCJ
0R~
70~
AAJAE
AARTK
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c410t-72de45308902b866b45fcbd43b8bc4d82d95a9ef7626cf6d5eb1a3ab3528909d3
ISSN 1754-5692
IngestDate Mon Jun 30 11:59:47 EDT 2025
Tue Jul 01 01:45:45 EDT 2025
Thu Apr 24 23:04:32 EDT 2025
Wed Nov 11 00:27:43 EST 2020
Sat Jan 08 03:53:11 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c410t-72de45308902b866b45fcbd43b8bc4d82d95a9ef7626cf6d5eb1a3ab3528909d3
Notes Xinqi Li received her Bachelor's Degree in 2019 from Soochow University. She is currently a master postgraduate in the College of Chemistry, Chemical Engineering and Material science, Soochow University, under the supervision of Prof. Yaowen Li. Her research interests focus on all-inorganic perovskite solar cells.
Yaowen Li is a professor at Soochow University. He received his Bachelor's and PhD degrees in the Department of Chemistry from Jilin University (2005 and 2010, respectively). In the period from 2011 to 2014, he collaborated with Prof. Liwei Chen as a postdoctoral scientist at SINANO, Chinese Academy of Sciences. Then he joined Prof. Yang Yang's group of UCLA as a visiting scholar (2015-2016). His present research interests are organic and perovskite materials and devices, and their commercialization technology.
Weijie Chen received his Bachelor's Degree in 2016 from Soochow University. He is currently a PhD student in the College of Chemistry, Chemical Engineering and Materials Science, Soochow University, under the supervision of Prof. Yongfang Li and Prof. Yaowen Li. His research interests focus on all-inorganic perovskite solar cells and all-inorganic perovskite/organic integrated solar cells.
Yongfang Li is a professor at the Institute of Chemistry, Chinese Academy of Sciences and Soochow University. He received his PhD in the Department of Chemistry from Fudan University (1986), and did postdoctoral research at ICCAS (1986-1988). He then became staff (1988) and was promoted to professor at ICCAS (1993). He was elected as a member of the Chinese Academy of Sciences in 2013. He did his visiting research at the Institute for Molecular Science, Japan (1988-1991), and at the University of California at Santa Barbara (1997-1998). His present research interests are photovoltaic materials and devices for polymer solar cells.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2565-2748
0000-0001-7229-582X
PQID 2423788850
PQPubID 2047494
PageCount 26
ParticipantIDs proquest_journals_2423788850
crossref_citationtrail_10_1039_D0EE00215A
crossref_primary_10_1039_D0EE00215A
rsc_primary_d0ee00215a
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 20200101
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Bai (D0EE00215A-(cit89)/*[position()=1]) 2017; 34
Yang (D0EE00215A-(cit165)/*[position()=1]) 2019; 3
Zhang (D0EE00215A-(cit86)/*[position()=1]) 2018; 8
Liang (D0EE00215A-(cit24)/*[position()=1]) 2016; 138
Lau (D0EE00215A-(cit139)/*[position()=1]) 2018; 6
Liu (D0EE00215A-(cit62)/*[position()=1]) 2018; 6
Hsiao (D0EE00215A-(cit79)/*[position()=1]) 2016; 28
Bai (D0EE00215A-(cit97)/*[position()=1]) 2019; 31
Li (D0EE00215A-(cit96)/*[position()=1]) 2018; 6
Yu (D0EE00215A-(cit104)/*[position()=1]) 2018; 6
Zhang (D0EE00215A-(cit40)/*[position()=1]) 2018; 10
Zeng (D0EE00215A-(cit156)/*[position()=1]) 2018; 30
Zhang (D0EE00215A-(cit163)/*[position()=1]) 2019; 7
Goldschmidt (D0EE00215A-(cit46)/*[position()=1]) 1926; 14
Liu (D0EE00215A-(cit119)/*[position()=1]) 2017; 41
Zai (D0EE00215A-(cit108)/*[position()=1]) 2018; 6
Yan (D0EE00215A-(cit110)/*[position()=1]) 2018; 30
Nam (D0EE00215A-(cit131)/*[position()=1]) 2017; 17
Boyd (D0EE00215A-(cit10)/*[position()=1]) 2019; 119
Kulbak (D0EE00215A-(cit58)/*[position()=1]) 2016; 7
Xu (D0EE00215A-(cit34)/*[position()=1]) 2018; 8
Zhao (D0EE00215A-(cit69)/*[position()=1]) 2019; 29
Ma (D0EE00215A-(cit83)/*[position()=1]) 2017; 121
Wang (D0EE00215A-(cit43)/*[position()=1]) 2019; 59
Rao (D0EE00215A-(cit61)/*[position()=1]) 2018; 8
Liang (D0EE00215A-(cit130)/*[position()=1]) 2018; 8
Shao (D0EE00215A-(cit148)/*[position()=1]) 2019; 58
Yuan (D0EE00215A-(cit158)/*[position()=1]) 2018; 2
Wang (D0EE00215A-(cit106)/*[position()=1]) 2018; 9
Lin (D0EE00215A-(cit35)/*[position()=1]) 2017; 29
Mariotti (D0EE00215A-(cit53)/*[position()=1]) 2018; 10
Parida (D0EE00215A-(cit154)/*[position()=1]) 2019; 7
Ye (D0EE00215A-(cit142)/*[position()=1]) 2019; 31
Liu (D0EE00215A-(cit101)/*[position()=1]) 2019; 7
Eperon (D0EE00215A-(cit9)/*[position()=1]) 2014; 7
Ye (D0EE00215A-(cit63)/*[position()=1]) 2019; 3
Hutter (D0EE00215A-(cit49)/*[position()=1]) 2017; 2
Sun (D0EE00215A-(cit129)/*[position()=1]) 2019; 9
Li (D0EE00215A-(cit7)/*[position()=1]) 2018; 122
Zhang (D0EE00215A-(cit162)/*[position()=1]) 2018; 5
Dong (D0EE00215A-(cit84)/*[position()=1]) 2018; 2
Deng (D0EE00215A-(cit123)/*[position()=1]) 2018; 3
Lin (D0EE00215A-(cit42)/*[position()=1]) 2018; 17
Zhou (D0EE00215A-(cit33)/*[position()=1]) 2014; 345
Marronnier (D0EE00215A-(cit50)/*[position()=1]) 2018; 12
Tong (D0EE00215A-(cit80)/*[position()=1]) 2019; 65
Zhang (D0EE00215A-(cit93)/*[position()=1]) 2018; 8
Chen (D0EE00215A-(cit26)/*[position()=1]) 2018; 30
Li (D0EE00215A-(cit140)/*[position()=1]) 2017; 360
Yang (D0EE00215A-(cit8)/*[position()=1]) 2016; 1
Wang (D0EE00215A-(cit66)/*[position()=1]) 2018; 9
Yuan (D0EE00215A-(cit102)/*[position()=1]) 2018; 6
Tian (D0EE00215A-(cit115)/*[position()=1]) 2019; 31
Guo (D0EE00215A-(cit124)/*[position()=1]) 2019; 7
Yin (D0EE00215A-(cit55)/*[position()=1]) 2014; 5
Wu (D0EE00215A-(cit121)/*[position()=1]) 2019; 31
Guo (D0EE00215A-(cit167)/*[position()=1]) 2019; 7
Zhang (D0EE00215A-(cit22)/*[position()=1]) 2019; 58
Stranks (D0EE00215A-(cit29)/*[position()=1]) 2017; 2
Xu (D0EE00215A-(cit32)/*[position()=1]) 2018; 28
Gao (D0EE00215A-(cit111)/*[position()=1]) 2018; 5
Subhani (D0EE00215A-(cit113)/*[position()=1]) 2019; 9
Shi (D0EE00215A-(cit1)/*[position()=1]) 2015; 347
Liu (D0EE00215A-(cit125)/*[position()=1]) 2018; 283
Sun (D0EE00215A-(cit45)/*[position()=1]) 2018; 140
Wang (D0EE00215A-(cit67)/*[position()=1]) 2018; 2
Duan (D0EE00215A-(cit12)/*[position()=1]) 2018; 7
Zhao (D0EE00215A-(cit85)/*[position()=1]) 2018; 30
Tai (D0EE00215A-(cit151)/*[position()=1]) 2019; 7
Lee (D0EE00215A-(cit6)/*[position()=1]) 2018; 9
Kim (D0EE00215A-(cit160)/*[position()=1]) 2019; 11
Guo (D0EE00215A-(cit134)/*[position()=1]) 2019; 11
Beal (D0EE00215A-(cit52)/*[position()=1]) 2016; 7
Heo (D0EE00215A-(cit73)/*[position()=1]) 2019; 11
Duan (D0EE00215A-(cit27)/*[position()=1]) 2018; 130
Lu (D0EE00215A-(cit146)/*[position()=1]) 2018; 1
Lee (D0EE00215A-(cit14)/*[position()=1]) 2015; 5
Zhang (D0EE00215A-(cit39)/*[position()=1]) 2017; 3
Luo (D0EE00215A-(cit65)/*[position()=1]) 2016; 7
Eperon (D0EE00215A-(cit60)/*[position()=1]) 2015; 3
Tang (D0EE00215A-(cit90)/*[position()=1]) 2016; 21
Liu (D0EE00215A-(cit37)/*[position()=1]) 2018; 140
Rodová (D0EE00215A-(cit57)/*[position()=1]) 2003; 71
Wang (D0EE00215A-(cit95)/*[position()=1]) 2019; 31
Ouedraogo (D0EE00215A-(cit16)/*[position()=1]) 2020; 67
Guo (D0EE00215A-(cit18)/*[position()=1]) 2016; 6
Lee (D0EE00215A-(cit5)/*[position()=1]) 2018; 7
Li (D0EE00215A-(cit54)/*[position()=1]) 2017; 7
Wang (D0EE00215A-(cit147)/*[position()=1]) 2018; 140
Wang (D0EE00215A-(cit164)/*[position()=1]) 2019; 365
Liu (D0EE00215A-(cit78)/*[position()=1]) 2013; 501
Yin (D0EE00215A-(cit72)/*[position()=1]) 2018; 28
Li (D0EE00215A-(cit143)/*[position()=1]) 2018; 9
Wang (D0EE00215A-(cit94)/*[position()=1]) 2018; 2
Li (D0EE00215A-(cit128)/*[position()=1]) 2018; 2
Duan (D0EE00215A-(cit103)/*[position()=1]) 2018; 8
Huang (D0EE00215A-(cit91)/*[position()=1]) 2019; 7
Liu (D0EE00215A-(cit126)/*[position()=1]) 2018; 14
Dastidar (D0EE00215A-(cit44)/*[position()=1]) 2017; 8
Zeng (D0EE00215A-(cit15)/*[position()=1]) 2019; 3
Liu (D0EE00215A-(cit118)/*[position()=1]) 2019; 9
Bai (D0EE00215A-(cit87)/*[position()=1]) 2018; 52
Han (D0EE00215A-(cit120)/*[position()=1]) 2019; 3
Wang (D0EE00215A-(cit137)/*[position()=1]) 2019; 58
Chen (D0EE00215A-(cit19)/*[position()=1]) 2018; 2
Sutton (D0EE00215A-(cit23)/*[position()=1]) 2016; 6
Wang (D0EE00215A-(cit138)/*[position()=1]) 2019; 19
Lin (D0EE00215A-(cit81)/*[position()=1]) 2019; 29
Luo (D0EE00215A-(cit149)/*[position()=1]) 2018; 360
Zhou (D0EE00215A-(cit152)/*[position()=1]) 2015; 54
Jena (D0EE00215A-(cit47)/*[position()=1]) 2018; 30
Chen (D0EE00215A-(cit82)/*[position()=1]) 2017; 29
Ma (D0EE00215A-(cit127)/*[position()=1]) 2019; 7
Ouyang (D0EE00215A-(cit30)/*[position()=1]) 2019; 29
Nam (D0EE00215A-(cit20)/*[position()=1]) 2018; 5
Zhao (D0EE00215A-(cit64)/*[position()=1]) 2018; 140
Fu (D0EE00215A-(cit4)/*[position()=1]) 2019; 12
Saliba (D0EE00215A-(cit13)/*[position()=1]) 2016; 354
Fu (D0EE00215A-(cit141)/*[position()=1]) 2018; 6
Cowan (D0EE00215A-(cit117)/*[position()=1]) 2012; 22
Jiang (D0EE00215A-(cit36)/*[position()=1]) 2019; 13
Yuan (D0EE00215A-(cit157)/*[position()=1]) 2018; 2
Zhou (D0EE00215A-(cit56)/*[position()=1]) 2017; 8
Tai (D0EE00215A-(cit17)/*[position()=1]) 2019; 12
Liao (D0EE00215A-(cit161)/*[position()=1]) 2018; 171
Zhang (D0EE00215A-(cit166)/*[position()=1]) 2019; 11
Subhani (D0EE00215A-(cit51)/*[position()=1]) 2019; 61
Wang (D0EE00215A-(cit74)/*[position()=1]) 2019; 7
Yang (D0EE00215A-(cit114)/*[position()=1]) 2019; 57
Lau (D0EE00215A-(cit136)/*[position()=1]) 2017; 2
Bai (D0EE00215A-(cit135)/*[position()=1]) 2018; 3
Shpatz Dayan (D0EE00215A-(cit144)/*[position()=1]) 2018; 30
Bao (D0EE00215A-(cit122)/*[position()=1]) 2018; 30
Xue (D0EE00215A-(cit150)/*[position()=1]) 2019; 141
Liu (D0EE00215A-(cit116)/*[position()=1]) 2019; 56
Mali (D0EE00215A-(cit168)/*[position()=1]) 2019; 19
Jiang (D0EE00215A-(cit38)/*[position()=1]) 2018; 2
Ding (D0EE00215A-(cit41)/*[position()=1]) 2018; 6
Shen (D0EE00215A-(cit25)/*[position()=1]) 2018; 14
Ma (D0EE00215A-(cit75)/*[position()=1]) 2016; 6
Li (D0EE00215A-(cit59)/*[position()=1]) 2017; 13
Zhang (D0EE00215A-(cit155)/*[position()=1]) 2019; 7
Liao (D0EE00215A-(cit68)/*[position()=1]) 2017; 5
Fan (D0EE00215A-(cit71)/*[position()=1]) 2019; 3
Becker (D0EE00215A-(cit48)/*[position()=1]) 2019; 9
Kulbak (D0EE00215A-(cit99)/*[position()=1]) 2015; 6
Xiao (D0EE00215A-(cit92)/*[position()=1]) 2017; 27
Teng (D0EE00215A-(cit98)/*[position()=1]) 2018; 10
Zhu (D0EE00215A-(cit112)/*[position()=1]) 2018; 1
Zhao (D0EE00215A-(cit2)/*[position()=1]) 2016; 45
Zhu (D0EE00215A-(cit105)/*[position()=1]) 2018; 8
Xiang (D0EE00215A-(cit21)/*[position()=1]) 2019
Chen (D0EE00215A-(cit88)/*[position()=1]) 2013; 136
Yang (D0EE00215A-(cit133)/*[position()=1]) 2018; 57
Hu (D0EE00215A-(cit132)/*[position()=1]) 2017; 2
Jiang (D0EE00215A-(cit70)/*[position()=1]) 2018; 5
Park (D0EE00215A-(cit11)/*[position()=1]) 2016; 1
Dong (D0EE00215A-(cit76)/*[position()=1]) 2019; 59
Li (D0EE00215A-(cit145)/*[position()=1]) 2018; 10
Duan (D0EE00215A-(cit100)/*[position()=1]) 2018; 57
Wang (D0EE00215A-(cit159)/*[position()=1]) 2018; 8
Zhao (D0EE00215A-(cit28)/*[position()=1]) 2019; 58
Nam (D0EE00215A-(cit109)/*[position()=1]) 2017; 8
Lau (D0EE00215A-(cit153)/*[position()=1]) 2019; 9
Chen (D0EE00215A-(cit77)/*[position()=1]) 2019; 3
Zhang (D0EE00215A-(cit107)/*[position()=1]) 2018; 9
Wang (D0EE00215A-(cit31)/*[position()=1]) 2019; 3
References_xml – volume: 67
  start-page: 104249
  year: 2020
  ident: D0EE00215A-(cit16)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104249
– volume: 30
  start-page: 8017
  year: 2018
  ident: D0EE00215A-(cit144)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03709
– volume: 58
  start-page: 16691
  year: 2019
  ident: D0EE00215A-(cit28)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201910800
– volume: 30
  start-page: 1803422
  year: 2018
  ident: D0EE00215A-(cit122)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803422
– volume: 2
  start-page: 1800164
  year: 2018
  ident: D0EE00215A-(cit128)/*[position()=1]
  publication-title: Sol. RRL
  doi: 10.1002/solr.201800164
– volume: 3
  start-page: 1900109
  year: 2019
  ident: D0EE00215A-(cit63)/*[position()=1]
  publication-title: Sol. RRL
  doi: 10.1002/solr.201900109
– volume: 5
  start-page: 1801123
  year: 2018
  ident: D0EE00215A-(cit162)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801123
– volume: 29
  start-page: 1604545
  year: 2017
  ident: D0EE00215A-(cit35)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604545
– volume: 345
  start-page: 542
  year: 2014
  ident: D0EE00215A-(cit33)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1254050
– volume: 41
  start-page: 75
  year: 2017
  ident: D0EE00215A-(cit119)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.048
– volume: 31
  start-page: 1905143
  year: 2019
  ident: D0EE00215A-(cit142)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905143
– volume: 5
  start-page: 4104
  year: 2018
  ident: D0EE00215A-(cit111)/*[position()=1]
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.8b00783
– volume: 11
  start-page: 43066
  year: 2019
  ident: D0EE00215A-(cit73)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b12179
– volume: 7
  start-page: 3852
  year: 2019
  ident: D0EE00215A-(cit163)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC00374F
– volume: 31
  start-page: 1900605
  year: 2019
  ident: D0EE00215A-(cit121)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900605
– volume: 28
  start-page: 1803269
  year: 2018
  ident: D0EE00215A-(cit72)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803269
– volume: 30
  start-page: 6668
  year: 2018
  ident: D0EE00215A-(cit47)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01808
– volume: 30
  start-page: 1802763
  year: 2018
  ident: D0EE00215A-(cit85)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802763
– volume: 6
  start-page: 24324
  year: 2018
  ident: D0EE00215A-(cit102)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08900K
– volume: 7
  start-page: 12635
  year: 2019
  ident: D0EE00215A-(cit101)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01151J
– volume: 6
  start-page: 19810
  year: 2018
  ident: D0EE00215A-(cit104)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA07968D
– volume: 7
  start-page: 3603
  year: 2016
  ident: D0EE00215A-(cit65)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b01576
– volume: 14
  start-page: 1801460
  year: 2018
  ident: D0EE00215A-(cit126)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201801460
– volume: 5
  start-page: 1501310
  year: 2015
  ident: D0EE00215A-(cit14)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501310
– volume: 9
  start-page: 1803785
  year: 2019
  ident: D0EE00215A-(cit113)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803785
– volume: 27
  start-page: 1604944
  year: 2017
  ident: D0EE00215A-(cit92)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604944
– volume: 31
  start-page: 6231
  year: 2019
  ident: D0EE00215A-(cit95)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b02248
– volume: 14
  start-page: 1801460
  year: 2018
  ident: D0EE00215A-(cit25)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201801460
– volume: 8
  start-page: 1703246
  year: 2018
  ident: D0EE00215A-(cit93)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703246
– volume: 7
  start-page: 19008
  year: 2019
  ident: D0EE00215A-(cit167)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03336J
– volume: 9
  start-page: 4544
  year: 2018
  ident: D0EE00215A-(cit66)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06915-6
– volume: 14
  start-page: 477
  year: 1926
  ident: D0EE00215A-(cit46)/*[position()=1]
  publication-title: Naturwissenschaften
  doi: 10.1007/BF01507527
– volume: 2
  start-page: 1700188
  year: 2018
  ident: D0EE00215A-(cit19)/*[position()=1]
  publication-title: Sol. RRL
  doi: 10.1002/solr.201700188
– volume: 19
  start-page: 5176
  year: 2019
  ident: D0EE00215A-(cit138)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01553
– volume: 171
  start-page: 279
  year: 2018
  ident: D0EE00215A-(cit161)/*[position()=1]
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.06.041
– volume: 5
  start-page: 3625
  year: 2014
  ident: D0EE00215A-(cit55)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz501896w
– volume: 7
  start-page: 746
  year: 2016
  ident: D0EE00215A-(cit52)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00002
– volume: 17
  start-page: 2028
  year: 2017
  ident: D0EE00215A-(cit131)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00050
– start-page: 1902851
  year: 2019
  ident: D0EE00215A-(cit21)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902851
– volume: 29
  start-page: 1804660
  year: 2019
  ident: D0EE00215A-(cit30)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201804660
– volume: 13
  start-page: 460
  year: 2019
  ident: D0EE00215A-(cit36)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-019-0398-2
– volume: 10
  start-page: 3750
  year: 2018
  ident: D0EE00215A-(cit53)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b14039
– volume: 7
  start-page: 22420
  year: 2019
  ident: D0EE00215A-(cit91)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA08465G
– volume: 5
  start-page: 1801117
  year: 2018
  ident: D0EE00215A-(cit70)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801117
– volume: 34
  start-page: 58
  year: 2017
  ident: D0EE00215A-(cit89)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.02.019
– volume: 19
  start-page: 6213
  year: 2019
  ident: D0EE00215A-(cit168)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b02277
– volume: 11
  start-page: 19123
  year: 2019
  ident: D0EE00215A-(cit160)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b03413
– volume: 6
  start-page: 1502202
  year: 2016
  ident: D0EE00215A-(cit75)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502202
– volume: 30
  start-page: 1705393
  year: 2018
  ident: D0EE00215A-(cit156)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705393
– volume: 10
  start-page: 6318
  year: 2018
  ident: D0EE00215A-(cit145)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR00758F
– volume: 8
  start-page: 1800007
  year: 2018
  ident: D0EE00215A-(cit159)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800007
– volume: 31
  start-page: 1904735
  year: 2019
  ident: D0EE00215A-(cit97)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904735
– volume: 7
  start-page: 18488
  year: 2019
  ident: D0EE00215A-(cit154)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA05948B
– volume: 12
  start-page: 3074
  year: 2019
  ident: D0EE00215A-(cit4)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02043H
– volume: 130
  start-page: 3849
  year: 2018
  ident: D0EE00215A-(cit27)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201800019
– volume: 7
  start-page: 1700946
  year: 2017
  ident: D0EE00215A-(cit54)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700946
– volume: 8
  start-page: 2936
  year: 2017
  ident: D0EE00215A-(cit109)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b01067
– volume: 3
  start-page: 1800325
  year: 2019
  ident: D0EE00215A-(cit31)/*[position()=1]
  publication-title: Sol. RRL
  doi: 10.1002/solr.201800325
– volume: 52
  start-page: 408
  year: 2018
  ident: D0EE00215A-(cit87)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.08.012
– volume: 3
  start-page: 1800239
  year: 2019
  ident: D0EE00215A-(cit15)/*[position()=1]
  publication-title: Sol. RRL
  doi: 10.1002/solr.201800239
– volume: 6
  start-page: 5580
  year: 2018
  ident: D0EE00215A-(cit139)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA11154A
– volume: 58
  start-page: 5587
  year: 2019
  ident: D0EE00215A-(cit148)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201814024
– volume: 54
  start-page: 9705
  year: 2015
  ident: D0EE00215A-(cit152)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201504379
– volume: 71
  start-page: 667
  year: 2003
  ident: D0EE00215A-(cit57)/*[position()=1]
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1023/A:1022836800820
– volume: 2
  start-page: 2319
  year: 2017
  ident: D0EE00215A-(cit136)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00751
– volume: 17
  start-page: 261
  year: 2018
  ident: D0EE00215A-(cit42)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-017-0006-0
– volume: 58
  start-page: 175
  year: 2019
  ident: D0EE00215A-(cit137)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.034
– volume: 29
  start-page: 1605290
  year: 2017
  ident: D0EE00215A-(cit82)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605290
– volume: 7
  start-page: 27640
  year: 2019
  ident: D0EE00215A-(cit127)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA10899H
– volume: 2
  start-page: 2450
  year: 2018
  ident: D0EE00215A-(cit158)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2018.08.011
– volume: 8
  start-page: 1278
  year: 2017
  ident: D0EE00215A-(cit44)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b00134
– volume: 2
  start-page: 1515
  year: 2017
  ident: D0EE00215A-(cit29)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00239
– volume: 8
  start-page: 1800504
  year: 2018
  ident: D0EE00215A-(cit130)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800504
– volume: 30
  start-page: 1802509
  year: 2018
  ident: D0EE00215A-(cit110)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802509
– volume: 45
  start-page: 655
  year: 2016
  ident: D0EE00215A-(cit2)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00458B
– volume: 5
  start-page: 1800509
  year: 2018
  ident: D0EE00215A-(cit20)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800509
– volume: 6
  start-page: 18258
  year: 2018
  ident: D0EE00215A-(cit41)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA04590A
– volume: 2
  start-page: 1800139
  year: 2018
  ident: D0EE00215A-(cit84)/*[position()=1]
  publication-title: Sol. RRL
  doi: 10.1002/solr.201800139
– volume: 3
  start-page: 191
  year: 2019
  ident: D0EE00215A-(cit77)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2018.10.011
– volume: 21
  start-page: 51
  year: 2016
  ident: D0EE00215A-(cit90)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.12.013
– volume: 119
  start-page: 3418
  year: 2019
  ident: D0EE00215A-(cit10)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00336
– volume: 2
  start-page: 1700180
  year: 2018
  ident: D0EE00215A-(cit67)/*[position()=1]
  publication-title: Sol. RRL
  doi: 10.1002/solr.201700180
– volume: 8
  start-page: 1800758
  year: 2018
  ident: D0EE00215A-(cit61)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800758
– volume: 6
  start-page: 13263
  year: 2018
  ident: D0EE00215A-(cit141)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02899K
– volume: 360
  start-page: 1442
  year: 2018
  ident: D0EE00215A-(cit149)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aap9282
– volume: 140
  start-page: 3825
  year: 2018
  ident: D0EE00215A-(cit37)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b13229
– volume: 3
  start-page: 1900091
  year: 2019
  ident: D0EE00215A-(cit120)/*[position()=1]
  publication-title: Sol. RRL
  doi: 10.1002/solr.201900091
– volume: 31
  start-page: 1901152
  year: 2019
  ident: D0EE00215A-(cit115)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901152
– volume: 65
  start-page: 104015
  year: 2019
  ident: D0EE00215A-(cit80)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104015
– volume: 140
  start-page: 11705
  year: 2018
  ident: D0EE00215A-(cit45)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05949
– volume: 7
  start-page: 221
  year: 2018
  ident: D0EE00215A-(cit12)/*[position()=1]
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2017.09.016
– volume: 140
  start-page: 11716
  year: 2018
  ident: D0EE00215A-(cit64)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b06050
– volume: 2
  start-page: 2219
  year: 2017
  ident: D0EE00215A-(cit132)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00508
– volume: 3
  start-page: 19688
  year: 2015
  ident: D0EE00215A-(cit60)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA06398A
– volume: 12
  start-page: 2375
  year: 2019
  ident: D0EE00215A-(cit17)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01479A
– volume: 57
  start-page: 12745
  year: 2018
  ident: D0EE00215A-(cit133)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201807270
– volume: 1
  start-page: 16152
  year: 2016
  ident: D0EE00215A-(cit11)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.152
– volume: 283
  start-page: 1115
  year: 2018
  ident: D0EE00215A-(cit125)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.07.044
– volume: 7
  start-page: 982
  year: 2014
  ident: D0EE00215A-(cit9)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee43822h
– volume: 136
  start-page: 622
  year: 2013
  ident: D0EE00215A-(cit88)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja411509g
– volume: 58
  start-page: 15596
  year: 2019
  ident: D0EE00215A-(cit22)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201901081
– volume: 1
  start-page: 4991
  year: 2018
  ident: D0EE00215A-(cit112)/*[position()=1]
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00972
– volume: 3
  start-page: e1700841
  year: 2017
  ident: D0EE00215A-(cit39)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700841
– volume: 365
  start-page: 591
  year: 2019
  ident: D0EE00215A-(cit164)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aav8680
– volume: 59
  start-page: 553
  year: 2019
  ident: D0EE00215A-(cit76)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.075
– volume: 7
  start-page: 149
  year: 2018
  ident: D0EE00215A-(cit5)/*[position()=1]
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2017.07.014
– volume: 6
  start-page: 2452
  year: 2015
  ident: D0EE00215A-(cit99)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00968
– volume: 9
  start-page: 1900896
  year: 2019
  ident: D0EE00215A-(cit129)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900896
– volume: 7
  start-page: 1227
  year: 2019
  ident: D0EE00215A-(cit124)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09838G
– volume: 7
  start-page: 2773
  year: 2019
  ident: D0EE00215A-(cit74)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09855G
– volume: 8
  start-page: 1703054
  year: 2018
  ident: D0EE00215A-(cit34)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703054
– volume: 2
  start-page: 1901
  year: 2017
  ident: D0EE00215A-(cit49)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00591
– volume: 6
  start-page: 1502458
  year: 2016
  ident: D0EE00215A-(cit18)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502458
– volume: 61
  start-page: 165
  year: 2019
  ident: D0EE00215A-(cit51)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.066
– volume: 13
  start-page: 1603996
  year: 2017
  ident: D0EE00215A-(cit59)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201603996
– volume: 8
  start-page: 1802346
  year: 2018
  ident: D0EE00215A-(cit103)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802346
– volume: 12
  start-page: 3477
  year: 2018
  ident: D0EE00215A-(cit50)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00267
– volume: 9
  start-page: 3646
  year: 2018
  ident: D0EE00215A-(cit107)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b01553
– volume: 29
  start-page: 1905163
  year: 2019
  ident: D0EE00215A-(cit81)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905163
– volume: 140
  start-page: 12345
  year: 2018
  ident: D0EE00215A-(cit147)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07927
– volume: 9
  start-page: 3021
  year: 2018
  ident: D0EE00215A-(cit6)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05454-4
– volume: 2
  start-page: 1800216
  year: 2018
  ident: D0EE00215A-(cit94)/*[position()=1]
  publication-title: Sol. RRL
  doi: 10.1002/solr.201800216
– volume: 3
  start-page: 2485
  year: 2019
  ident: D0EE00215A-(cit71)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2019.07.015
– volume: 28
  start-page: 1804427
  year: 2018
  ident: D0EE00215A-(cit32)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201804427
– volume: 138
  start-page: 15829
  year: 2016
  ident: D0EE00215A-(cit24)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b10227
– volume: 57
  start-page: 718
  year: 2019
  ident: D0EE00215A-(cit114)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.097
– volume: 141
  start-page: 13948
  year: 2019
  ident: D0EE00215A-(cit150)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b06940
– volume: 57
  start-page: 5746
  year: 2018
  ident: D0EE00215A-(cit100)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201801837
– volume: 3
  start-page: 560
  year: 2018
  ident: D0EE00215A-(cit123)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0153-9
– volume: 2
  start-page: 1356
  year: 2018
  ident: D0EE00215A-(cit38)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2018.05.004
– volume: 8
  start-page: 4122
  year: 2017
  ident: D0EE00215A-(cit56)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b01851
– volume: 11
  start-page: 33868
  year: 2019
  ident: D0EE00215A-(cit166)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b09171
– volume: 22
  start-page: 1116
  year: 2012
  ident: D0EE00215A-(cit117)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201101632
– volume: 501
  start-page: 395
  year: 2013
  ident: D0EE00215A-(cit78)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature12509
– volume: 360
  start-page: 11
  year: 2017
  ident: D0EE00215A-(cit140)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.05.050
– volume: 7
  start-page: 22675
  year: 2019
  ident: D0EE00215A-(cit151)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA08564E
– volume: 6
  start-page: 14255
  year: 2018
  ident: D0EE00215A-(cit96)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03811B
– volume: 28
  start-page: 7013
  year: 2016
  ident: D0EE00215A-(cit79)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601505
– volume: 5
  start-page: 2066
  year: 2017
  ident: D0EE00215A-(cit68)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09582H
– volume: 9
  start-page: 1901685
  year: 2019
  ident: D0EE00215A-(cit153)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901685
– volume: 122
  start-page: 24014
  year: 2018
  ident: D0EE00215A-(cit7)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b09482
– volume: 9
  start-page: 1900555
  year: 2019
  ident: D0EE00215A-(cit48)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900555
– volume: 11
  start-page: 19994
  year: 2019
  ident: D0EE00215A-(cit134)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b03622
– volume: 10
  start-page: 200
  year: 2018
  ident: D0EE00215A-(cit40)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b03481
– volume: 8
  start-page: 1802080
  year: 2018
  ident: D0EE00215A-(cit105)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802080
– volume: 9
  start-page: 1803572
  year: 2019
  ident: D0EE00215A-(cit118)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803572
– volume: 6
  start-page: 272
  year: 2018
  ident: D0EE00215A-(cit62)/*[position()=1]
  publication-title: iScience
  doi: 10.1016/j.isci.2018.08.005
– volume: 7
  start-page: 18488
  year: 2019
  ident: D0EE00215A-(cit155)/*[position()=1]
  publication-title: Sol. RRL
– volume: 2
  start-page: 1800188
  year: 2018
  ident: D0EE00215A-(cit157)/*[position()=1]
  publication-title: Sol. RRL
  doi: 10.1002/solr.201800188
– volume: 354
  start-page: 206
  year: 2016
  ident: D0EE00215A-(cit13)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aah5557
– volume: 30
  start-page: 1800855
  year: 2018
  ident: D0EE00215A-(cit26)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800855
– volume: 10
  start-page: 9541
  year: 2018
  ident: D0EE00215A-(cit98)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00358
– volume: 121
  start-page: 19642
  year: 2017
  ident: D0EE00215A-(cit83)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b06268
– volume: 3
  start-page: 970
  year: 2018
  ident: D0EE00215A-(cit135)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00270
– volume: 8
  start-page: 125
  year: 2018
  ident: D0EE00215A-(cit86)/*[position()=1]
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2018.03.006
– volume: 1
  start-page: 5872
  year: 2018
  ident: D0EE00215A-(cit146)/*[position()=1]
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b01430
– volume: 9
  start-page: 2225
  year: 2018
  ident: D0EE00215A-(cit106)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04636-4
– volume: 29
  start-page: 1808986
  year: 2019
  ident: D0EE00215A-(cit69)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808986
– volume: 6
  start-page: 23602
  year: 2018
  ident: D0EE00215A-(cit108)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09859J
– volume: 7
  start-page: 167
  year: 2016
  ident: D0EE00215A-(cit58)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02597
– volume: 56
  start-page: 184
  year: 2019
  ident: D0EE00215A-(cit116)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.053
– volume: 1
  start-page: 15016
  year: 2016
  ident: D0EE00215A-(cit8)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2015.16
– volume: 3
  start-page: 1900212
  year: 2019
  ident: D0EE00215A-(cit165)/*[position()=1]
  publication-title: Sol. RRL
  doi: 10.1002/solr.201900212
– volume: 6
  start-page: 1502458
  year: 2016
  ident: D0EE00215A-(cit23)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502458
– volume: 59
  start-page: 258
  year: 2019
  ident: D0EE00215A-(cit43)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.049
– volume: 347
  start-page: 519
  year: 2015
  ident: D0EE00215A-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaa2725
– volume: 9
  start-page: 1076
  year: 2018
  ident: D0EE00215A-(cit143)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03169-0
SSID ssj0062079
Score 2.6420698
SecondaryResourceType review_article
Snippet Recently, halide perovskites have become one of the most promising materials for solar cells owing to their outstanding photoelectric performance. Among them,...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1971
SubjectTerms Crystal defects
Crystal growth
Energy conversion efficiency
Metal halides
Morphology
Perovskites
Photoelectricity
Photovoltaic cells
Solar cells
Stability
Substrates
Title A review: crystal growth for high-performance all-inorganic perovskite solar cells
URI https://www.proquest.com/docview/2423788850
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gUeELeJjoEswQuaPJz4kpi3MgoTtwe0aeUpSmxnBFVpabMh-PXYjnMbfRi8RNVp3Kg-X3wu9vkOAM-jnBqngyjEdBAiyghHaRxrJLSgaRDINHI83Z8-85Mz-n7O5qPRVe_U0mWVHcnfW-tK_kerRmb0aqtk_0Gz7Y8agfls9GuuRsPmeiMdT33liQ3r5frXxhY2Xpi4uvrmTg9aKmK06lcGLBaoKOtGTtIyFi-vNjZ7e7ixAe6hTeJvBqn6ujDQoqNXENeUUXaYOPYlHue6-F600o_uoMC8KH8UQ9HXdPmzq0DzsmV5kafejPosRIh7WYh64YwYRYzXfe2OdE8WYT5YbUkPVVFv6QxE3YvFm2F7OnrrEo-JZUh9g2cz56-0JKkdj_Y1-9aeOnT77UQk3dgdsBua8CIcg93ph9fvzhsbzkPsWBrbf9UQ2xLxshs9dGW6-GRn3TSPcU7K6V1wx0cXcFpD5R4Y6fI-uN3jnHwAvkxhDZpX0EMG1pCBBibwOmTgADKwgwx0kIEOMg_B2dvZ6fEJ8o01kKQBrlAUKm1eS2z3mLOY84yyXGaKkizOJFVxqARLhc6NoeQy54oZg56SNLNMQAILRfbAuFyW-hGATNmdbhIo42rSSEeCS81lRONcYYbzYAJeNHOUSM86b5ufLJK_tTEBz9p7VzXXyta7DpqpTvy7uElsVGCTOQxPwJ6Z_na8wlq7cekE7G__IlmpfP9Gj34MbnXYPwDjan2pnxiftMqeegD9AeKZiVU
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review%3A+crystal+growth+for+high-performance+all-inorganic+perovskite+solar+cells&rft.jtitle=Energy+%26+environmental+science&rft.au=Chen%2C+Weijie&rft.au=Li%2C+Xinqi&rft.au=Li%2C+Yaowen&rft.au=Li%2C+Yongfang&rft.date=2020-01-01&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=13&rft.issue=7&rft.spage=1971&rft.epage=1996&rft_id=info:doi/10.1039%2FD0EE00215A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0EE00215A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon