Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: A technical and statistical review
With the advancement in tissue engineering, researchers are working hard on new techniques to fabricate more advanced scaffolds from biocompatible polymers with enhanced porosity, appropriate mechanical strength, diverse shapes and sizes for potential applications in biomedical field in general and...
Saved in:
Published in | Journal of Saudi Chemical Society Vol. 24; no. 2; pp. 186 - 215 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2020
Springer |
Subjects | |
Online Access | Get full text |
ISSN | 1319-6103 |
DOI | 10.1016/j.jscs.2020.01.002 |
Cover
Loading…
Abstract | With the advancement in tissue engineering, researchers are working hard on new techniques to fabricate more advanced scaffolds from biocompatible polymers with enhanced porosity, appropriate mechanical strength, diverse shapes and sizes for potential applications in biomedical field in general and tissue engineering in particular. These techniques include electrospinning, solution blow spinning, centrifugal spinning, particulate leaching (salt leaching), freeze-drying, lithography, self-assembly, phase separation, gas foaming, melt molding, 3-D printing, fiber mesh and solvent casting. In this article we have summarized the scaffold’s fabrication techniques from biocompatible polymers that are reported so far, the recent advances in these techniques, characterization of the physicochemical properties of scaffolds and their potential applications in the biomedical field and tissue engineering. The article will help both newcomers and experts working in the biomedical implant fabrication to not only find their desired information in one document but also understand the fabrication techniques and the parameters that control the success of biocompatible polymeric scaffolds. Furthermore, a static analysis of the work published in all forms on the most innovative techniques is also presented. The data is taken from Scopus, restricting the search to biomedical fields and tissue engineering. |
---|---|
AbstractList | With the advancement in tissue engineering, researchers are working hard on new techniques to fabricate more advanced scaffolds from biocompatible polymers with enhanced porosity, appropriate mechanical strength, diverse shapes and sizes for potential applications in biomedical field in general and tissue engineering in particular. These techniques include electrospinning, solution blow spinning, centrifugal spinning, particulate leaching (salt leaching), freeze-drying, lithography, self-assembly, phase separation, gas foaming, melt molding, 3-D printing, fiber mesh and solvent casting. In this article we have summarized the scaffold’s fabrication techniques from biocompatible polymers that are reported so far, the recent advances in these techniques, characterization of the physicochemical properties of scaffolds and their potential applications in the biomedical field and tissue engineering. The article will help both newcomers and experts working in the biomedical implant fabrication to not only find their desired information in one document but also understand the fabrication techniques and the parameters that control the success of biocompatible polymeric scaffolds. Furthermore, a static analysis of the work published in all forms on the most innovative techniques is also presented. The data is taken from Scopus, restricting the search to biomedical fields and tissue engineering. With the advancement in tissue engineering, researchers are working hard on new techniques to fabricate more advanced scaffolds from biocompatible polymers with enhanced porosity, appropriate mechanical strength, diverse shapes and sizes for potential applications in biomedical field in general and tissue engineering in particular. These techniques include electrospinning, solution blow spinning, centrifugal spinning, particulate leaching (salt leaching), freeze-drying, lithography, self-assembly, phase separation, gas foaming, melt molding, 3-D printing, fiber mesh and solvent casting. In this article we have summarized the scaffold’s fabrication techniques from biocompatible polymers that are reported so far, the recent advances in these techniques, characterization of the physicochemical properties of scaffolds and their potential applications in the biomedical field and tissue engineering. The article will help both newcomers and experts working in the biomedical implant fabrication to not only find their desired information in one document but also understand the fabrication techniques and the parameters that control the success of biocompatible polymeric scaffolds. Furthermore, a static analysis of the work published in all forms on the most innovative techniques is also presented. The data is taken from Scopus, restricting the search to biomedical fields and tissue engineering. Keywords: Biocompatible polymeric Scaffolds, Scaffolds fabrication techniques, Tissue engineering, Biomedical application |
Author | Rao Kummara, Madhusudana Soo Han, Sung Alghyamah, Abdul-Aziz A Amjid Afridi, Mohammad Haider, Sajjad Khan, Naeem Alrahlah, Ali Jan Iftikhar, Faiza Bano, Bushra Haider, Adnan Khan, Rawaiz Kamal, Tahseen |
Author_xml | – sequence: 1 givenname: Adnan surname: Haider fullname: Haider, Adnan organization: Department of Chemistry, Kohat University of Science and Technology, Kohat 26000, KP, Pakistan – sequence: 2 givenname: Sajjad surname: Haider fullname: Haider, Sajjad email: shaider@ksu.edu.sa organization: Department of Chemical Engineering, College of Engineering, King Saud University, P.O BOX 800, Riyadh 11421, KSA, Saudi Arabia – sequence: 3 givenname: Madhusudana surname: Rao Kummara fullname: Rao Kummara, Madhusudana organization: Department of Nano, Medical and Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 712-749, South Korea – sequence: 4 givenname: Tahseen surname: Kamal fullname: Kamal, Tahseen organization: Department of Chemistry, Faculty of Science, King Abdul Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia – sequence: 5 givenname: Abdul-Aziz A surname: Alghyamah fullname: Alghyamah, Abdul-Aziz A organization: Department of Chemical Engineering, College of Engineering, King Saud University, P.O BOX 800, Riyadh 11421, KSA, Saudi Arabia – sequence: 6 givenname: Faiza surname: Jan Iftikhar fullname: Jan Iftikhar, Faiza organization: Department of Chemistry, Quaid Azam University, Islamabad, Pakistan – sequence: 7 givenname: Bushra surname: Bano fullname: Bano, Bushra organization: Institute of Basic Medical Science, Khyber Medical University, Peshawar, KP, Pakistan – sequence: 8 givenname: Naeem surname: Khan fullname: Khan, Naeem organization: Department of Chemistry, Kohat University of Science and Technology, Kohat 26000, KP, Pakistan – sequence: 9 givenname: Mohammad surname: Amjid Afridi fullname: Amjid Afridi, Mohammad organization: Department of Pathology, Gajju Khan Medical College, Swab, KP, Pakistan – sequence: 10 givenname: Sung surname: Soo Han fullname: Soo Han, Sung email: sshan@yu.ac.kr organization: Department of Nano, Medical and Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 712-749, South Korea – sequence: 11 givenname: Ali surname: Alrahlah fullname: Alrahlah, Ali organization: Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia – sequence: 12 givenname: Rawaiz surname: Khan fullname: Khan, Rawaiz organization: Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia |
BookMark | eNp9UclO5DAQ9QGkYfuBOfkHOriy4Yzm0kIsLSFxmTlbZbsMjtJxsAOI3-CLcbp7LnPAF8t-i6reO2VHYxiJsZ8gChDQXvZFn0wqSlGKQkAhRHnETqCCbtWCqH6wi5R6sZyrzJAn7HNt33A0lLgf-fxMPBl0Lgw2cYc6eoOzDxkh8zz6l9fMe01-fOLaBxO2U0b1QHwKw8eWYuI42sXFx4WwJZv1A8dpGg5Gv_j64LUDMjvNGUjz7h3pzdP7OTt2OCS6ONxn7O_tzZ_r-9XD493mev2wMjWIedWaqrG2Nbq8wtKVCFKjg6aqDLZWSHAd5ES0Jqkl1GBk19RdK7uqFFqQs9UZ2-x9bcBeTdFvMX6ogF7tPkJ8UhjzYAMp25Jumk4Lg1WN1GDdaDC6BWh0V8vFS-69TAwpRXLK-Hm38RzRDwqEWupRvVrqUUs9SoDK9WRp-Z_03yjfin7vRZQDyqFFlYyn3KP1kcycN_Dfyb8AGu6xOQ |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2022_09_058 crossref_primary_10_1002_med_21672 crossref_primary_10_1016_j_mtbio_2023_100823 crossref_primary_10_3390_polym16050720 crossref_primary_10_3390_polym12091863 crossref_primary_10_1016_j_matpr_2020_11_622 crossref_primary_10_1016_j_yexcr_2024_113926 crossref_primary_10_1002_pen_25776 crossref_primary_10_1016_j_eti_2021_101675 crossref_primary_10_1590_0001_3765202120201140 crossref_primary_10_1016_j_heliyon_2024_e29244 crossref_primary_10_7759_cureus_68644 crossref_primary_10_3390_jcs6090262 crossref_primary_10_1016_j_mtchem_2023_101818 crossref_primary_10_1016_j_mtcomm_2024_109149 crossref_primary_10_1016_j_procbio_2022_12_012 crossref_primary_10_3389_fbioe_2021_630488 crossref_primary_10_1021_acsami_1c02686 crossref_primary_10_1016_j_actbio_2022_09_052 crossref_primary_10_1016_j_cej_2022_140494 crossref_primary_10_1007_s42247_023_00486_z crossref_primary_10_1080_00914037_2024_2374387 crossref_primary_10_1002_adem_202201743 crossref_primary_10_1016_j_jorganchem_2024_123087 crossref_primary_10_3390_biomimetics9030153 crossref_primary_10_1007_s40684_023_00565_w crossref_primary_10_3390_polym13081342 crossref_primary_10_1007_s10439_024_03479_z crossref_primary_10_2174_1381612829666230816100631 crossref_primary_10_1007_s42114_023_00808_z crossref_primary_10_1016_j_eurpolymj_2021_110834 crossref_primary_10_1007_s10853_023_08798_5 crossref_primary_10_1016_j_ijpharm_2024_124238 crossref_primary_10_1016_j_mtbio_2024_101341 crossref_primary_10_1016_j_clet_2021_100218 crossref_primary_10_3390_ma13133010 crossref_primary_10_1002_pen_26460 crossref_primary_10_1002_pat_5806 crossref_primary_10_2174_1389201023666220329162910 crossref_primary_10_1080_10408436_2022_2080640 crossref_primary_10_1557_s43580_024_01012_x crossref_primary_10_2139_ssrn_3974806 crossref_primary_10_1016_j_colsurfa_2022_129977 crossref_primary_10_3390_polym14030397 crossref_primary_10_1002_advs_202105373 crossref_primary_10_1021_acsomega_3c09599 crossref_primary_10_1002_adhm_202400833 crossref_primary_10_1007_s40964_023_00505_9 crossref_primary_10_1002_pen_26293 crossref_primary_10_1080_00914037_2022_2124252 crossref_primary_10_3389_fcvm_2022_847554 crossref_primary_10_1039_D3TB01847D crossref_primary_10_1088_1758_5090_ad6374 crossref_primary_10_1007_s10439_022_02996_z crossref_primary_10_1007_s40883_020_00166_y crossref_primary_10_3389_fphys_2023_1148932 crossref_primary_10_1016_j_bioadv_2023_213528 crossref_primary_10_3390_polym13152563 crossref_primary_10_1002_adfm_202010609 crossref_primary_10_1134_S1990519X23050061 crossref_primary_10_1016_j_jfutfo_2023_11_001 crossref_primary_10_3390_jcm12226962 crossref_primary_10_52547_ibj_25_6_408 crossref_primary_10_3390_pharmaceutics15010255 crossref_primary_10_2298_TSCI221126071P crossref_primary_10_3390_pharmaceutics16030359 crossref_primary_10_1016_j_mtcomm_2024_111248 crossref_primary_10_1021_acsomega_4c01069 crossref_primary_10_1088_1758_5090_acfdd0 crossref_primary_10_3390_polym15051087 crossref_primary_10_3390_cells10082016 crossref_primary_10_1063_5_0228259 crossref_primary_10_48084_etasr_4711 crossref_primary_10_1002_pol_20210418 crossref_primary_10_3390_biomimetics8050442 crossref_primary_10_7759_cureus_71694 crossref_primary_10_1016_j_ceramint_2022_06_067 crossref_primary_10_1002_app_56391 crossref_primary_10_3390_ma14144051 crossref_primary_10_2139_ssrn_4594745 crossref_primary_10_1016_j_seppur_2023_125199 crossref_primary_10_3390_pharmaceutics16081095 crossref_primary_10_20883_medical_e712 crossref_primary_10_1002_adhm_202203268 crossref_primary_10_1016_j_jmapro_2023_10_032 crossref_primary_10_1007_s13204_021_02221_8 crossref_primary_10_1016_j_jmrt_2022_03_089 crossref_primary_10_1016_j_mtchem_2024_102016 crossref_primary_10_1080_09506608_2021_1946236 crossref_primary_10_3390_biomimetics8010016 crossref_primary_10_3390_bioengineering8020024 crossref_primary_10_3390_fib12100092 crossref_primary_10_3390_polym14183719 crossref_primary_10_1016_j_mtcomm_2022_103417 crossref_primary_10_3390_polym14050852 crossref_primary_10_69709_BIOMATC_2024_121030 crossref_primary_10_1039_D4RA00075G crossref_primary_10_1088_1748_605X_ad6ac5 crossref_primary_10_3390_gels9060501 crossref_primary_10_3390_pharmaceutics15061662 crossref_primary_10_3390_cells10113189 crossref_primary_10_1088_2057_1976_ad1e75 crossref_primary_10_1002_bip_23626 crossref_primary_10_1016_j_hybadv_2025_100381 crossref_primary_10_1002_pen_26123 crossref_primary_10_1007_s10924_022_02747_0 crossref_primary_10_1016_j_ijbiomac_2024_132820 crossref_primary_10_1002_adhm_202403743 crossref_primary_10_1016_j_mtcomm_2021_102536 crossref_primary_10_1016_j_eurpolymj_2024_113616 crossref_primary_10_3390_medicina59010104 crossref_primary_10_1016_j_bioadv_2024_213926 crossref_primary_10_1177_1528083720976348 crossref_primary_10_3389_fphys_2021_705256 crossref_primary_10_1007_s00289_022_04442_5 crossref_primary_10_3390_pharmaceutics14112500 crossref_primary_10_1007_s10924_024_03264_y crossref_primary_10_1016_j_rineng_2023_101685 crossref_primary_10_3390_bioengineering9050195 crossref_primary_10_1016_j_colsurfb_2023_113282 crossref_primary_10_1016_j_mtla_2020_100785 crossref_primary_10_1021_acsabm_3c00778 crossref_primary_10_1021_acsabm_4c00362 crossref_primary_10_3390_pharmaceutics14020306 crossref_primary_10_1007_s40735_025_00953_6 crossref_primary_10_1016_j_msec_2021_112576 crossref_primary_10_3390_mi14071437 |
Cites_doi | 10.1001/jama.285.5.573 10.1039/c2sm25536g 10.3390/ma8031009 10.2147/IJN.S38635 10.1016/j.bpj.2009.11.001 10.1073/pnas.94.1.23 10.1002/wnan.26 10.1089/ten.tea.2008.0025 10.1021/nl103567y 10.1073/pnas.142309999 10.1016/j.matchemphys.2011.04.043 10.1002/jbm.10121 10.1007/s10853-006-7065-y 10.1021/mz500049x 10.1007/s00253-004-1580-z 10.1002/jbm.a.30232 10.1002/app.34410 10.1016/j.ejpb.2016.03.021 10.1021/bm900093r 10.1080/15583724.2014.935858 10.1080/00914037.2015.1119688 10.1115/1.2891228 10.1016/S0142-9612(03)00052-8 10.3390/ma9040272 10.1186/1556-276X-9-314 10.1038/nnano.2010.246 10.5588/ijtld.15.0071 10.1146/annurev.cellbio.011209.122036 10.1007/s10965-013-0105-9 10.1016/j.apsusc.2014.03.161 10.3390/molecules17033243 10.1023/B:ABME.0000017544.36001.8e 10.15302/J-ENG-2015061 10.1016/j.copbio.2011.04.005 10.1002/jbm.a.34326 10.1039/C6RA17718B 10.1016/S1369-7021(11)70058-X 10.1242/jcs.018093 10.1529/biophysj.106.089730 10.1116/1.2121729 10.1021/bm049753u 10.1002/anie.200462993 10.1109/iCBEB.2012.220 10.1002/(SICI)1097-4636(2000)53:1<1::AID-JBM1>3.0.CO;2-R 10.1039/C5RA19406G 10.1002/mabi.200700278 10.22203/eCM.v005a03 10.1016/S1573-4285(06)80003-7 10.1021/nl101355x 10.1016/j.biomaterials.2008.12.009 10.1155/2011/290602 10.1016/S0092-8674(02)00971-6 10.1515/aut-2004-040205 10.1007/s10965-013-0158-9 10.1016/S0021-9797(02)00163-7 10.1007/s10856-005-4711-x 10.5051/jpis.2013.43.6.251 10.1002/jbm.820270207 10.2144/000114245 10.1016/S0142-9612(02)00223-5 10.1016/j.actbio.2008.03.019 10.1039/c2ra20736b 10.1080/19443994.2015.1085915 10.1002/cphc.200301014 10.1089/ten.teb.2012.0361 10.1002/app.43379 10.1016/S0928-4931(01)00338-1 10.1080/07373937.2011.596299 10.1016/j.ceramint.2014.06.028 10.1002/adfm.200800662 10.1110/ps.9.6.1095 10.1586/17434440.3.6.835 10.1016/0032-3861(96)87287-9 10.1007/s10853-006-2873-7 10.1016/j.actbio.2009.12.007 10.1016/S0142-9612(98)00021-0 10.1016/j.msec.2013.11.026 10.1016/j.polymer.2016.04.018 10.1073/pnas.97.5.1970 10.1002/mabi.200300100 10.1080/00914037.2015.1129948 10.1126/scitranslmed.3004890 10.1163/156856207779996931 10.1007/s10856-011-4374-8 10.1016/S1773-2247(14)50069-X 10.1007/s00898-996-0002-3 10.1021/bm015533u 10.1016/j.matlet.2016.04.101 10.5301/ijao.5000307 10.1021/mz300297g 10.1016/0032-3861(94)90953-9 10.1016/j.vacuum.2012.03.025 10.1590/1516-1439.269414 10.1089/107632701300003269 10.1016/j.colsurfb.2012.09.017 10.3390/jfb3010173 10.1016/S0142-9612(02)00562-8 10.3390/jfb3040799 10.1155/2013/404210 10.1126/science.8493529 10.1038/nbt874 10.1089/ten.teb.2012.0437 10.1016/j.materresbull.2015.10.042 10.1002/biot.201300302 10.1016/S0142-9612(00)00447-6 10.1016/j.actbio.2009.10.051 10.1080/19443994.2014.926840 10.1016/0142-9612(96)85754-1 10.1016/S0266-3538(00)00241-4 10.1016/j.msec.2015.06.002 10.1016/j.biomaterials.2004.01.066 10.1073/pnas.97.12.6728 10.1016/j.radphyschem.2007.05.013 10.1002/adfm.200700587 10.1039/C5RA20963C 10.1016/S1369-7021(11)70117-1 10.1155/2015/281909 10.1016/j.polymdegradstab.2004.10.005 10.1177/039139881003300804 10.1016/j.actbio.2010.03.004 10.1016/S0734-9750(02)00026-5 10.1016/j.biomaterials.2012.12.020 10.1089/ten.tec.2009.0397 10.1007/s13726-012-0019-0 10.1002/app.42326 10.1039/C6TB02083F 10.1016/j.msec.2014.10.074 10.1163/156856297X00588 |
ContentType | Journal Article |
Copyright | 2020 King Saud University |
Copyright_xml | – notice: 2020 King Saud University |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jscs.2020.01.002 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EndPage | 215 |
ExternalDocumentID | oai_doaj_org_article_d6eb559b0ca34ae5a45b1cb6115b948d 10_1016_j_jscs_2020_01_002 S1319610320300028 |
GroupedDBID | --K 0R~ 0SF 1B1 4.4 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAFWJ AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE ADMUD AENEX AEXQZ AFPKN AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV DU5 E3Z EBS EJD EP3 FDB FNPLU GROUPED_DOAJ HH5 HZ~ IPNFZ IXB KQ8 M41 NCXOZ O-L O9- OK1 OZT RIG ROL SES SSZ XH2 ~S- AAJSJ AASML AAYWO AAYXX ABEEZ ABWVN ACRPL ACULB ACVFH ADCNI ADNMO ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP C6C CITATION SOJ |
ID | FETCH-LOGICAL-c410t-6c35dd6cb27a2f2a18baf1533ca6d081f91101bbe8b8141c89549689320b0efd3 |
IEDL.DBID | IXB |
ISSN | 1319-6103 |
IngestDate | Wed Aug 27 01:04:52 EDT 2025 Tue Jul 01 00:44:11 EDT 2025 Thu Apr 24 23:06:40 EDT 2025 Thu Jul 20 20:17:58 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | PCLEEP PEU SLA PCLA UC PLDLA-AAc PELA HFP Tg PLLA-TMC TIPS PBS FGF HGF POE μCP LIFT PGA LOM RGD PCA DCM μm MAG 1D PLDLA PCL SEM PGS PLCL PPC PLA hMSC HDFs CJP AFM DLP AJS SMCs nHA-I PPL FDM PHBHV EBM 2D SFF THF PLLA FTIR TGF-α PLT DMD XPS DMF Biocompatible polymeric Scaffolds LENS Nm SFT SLS/SLM BMP EGF Tissue engineering nHA VEGF PEGDA IGF Scaffolds fabrication techniques EVOH ECM rpm HEMA NIL BET 3D FAK PLGA PEG PMMA PE DNA PDGF Biomedical application HA PVA PPF-PLLA PAM |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-6c35dd6cb27a2f2a18baf1533ca6d081f91101bbe8b8141c89549689320b0efd3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1319610320300028 |
PageCount | 30 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d6eb559b0ca34ae5a45b1cb6115b948d crossref_citationtrail_10_1016_j_jscs_2020_01_002 crossref_primary_10_1016_j_jscs_2020_01_002 elsevier_sciencedirect_doi_10_1016_j_jscs_2020_01_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Saudi Chemical Society |
PublicationYear | 2020 |
Publisher | Elsevier B.V Springer |
Publisher_xml | – name: Elsevier B.V – name: Springer |
References | Tang, Zhuang, Zhang, Cheng, Li (b0215) 2015; 132 Thomson, Wake, Yaszemski, Mikos (b0610) 1995 Edwards, Mitchell, Matthews, Ingham, Russell (b0680) 2004; 4 Hou, Grijpma, Feijen (b0070) 2003; 24 Badrossamay, McIlwee, Goss, Parker (b0285) 2010; 10 Oliveira, Moraes, Costa, Afonso, Mattoso, Orts, Medeiros (b0220) 2011; 122 Yu, Hua, Yang, Fu, Teng, Niu, Zhao, Yi (b0305) 2016; 6 Jeong EJ, Lee JW, Yeon SJ, Kwark YJ, Rhee SH, Park WH, Kim SH, Lee KY, Fabrication of Nanopatterned Surfaces for Tissue Engineering. 2012 28-30 May 2012: Publisher. Bae, Haider, Selim, Kang, Kim, Kang (b0170) 2013; 20 Selhuber-Unkel, Erdmann, López-García, Kessler, Schwarz (b0025) 2010; 98 Rajgarhia, Benavides, Jana (b0240) 2016; 93 Zhang, Zhang, Wu, Ding (b0310) 2006; 41 Fahad S. Al-Mubaddel MOA, Sajjad Haider, Adnan Haider, Waheed A. Almasry, Ahmed Sadeq Al-Fatesh. Synthesis of chitosan based semi-IPN hydrogels using epichlorohydrine as crosslinker to study the adsorption kinetics of Rhodamine B. Desalination and Water Treatment. 2016;57:17523–36. Chatterjee, Kraigsley, Bolikal, Kohn, Simon (b0575) 2012; 3 Zhu, Ji, Shen (b0495) 2004; 5 Bhamidipati, Scurto, Detamore (b0560) 2013; 19 Ekerdt, Segalman, Schaffer (b0110) 2013; 8 Chen, Ushida, Tateishi (b0420) 2001; 22 Chen Ning Zhu, Biao (b0605) 2013 Abdal-hay, Hamdy, Lim (b0260) 2014; 40 Poursamar, Hatami, Lehner, da Silva, Ferreira, Antunes (b0570) 2016; 65 Nam, Yoon, Park (b0080) 2000; 53 Liu, Ma (b0090) 2004; 32 Bencherif, Braschler, Renaud (b0330) 2013; 43 Tuzlakoglu, Alves, Mano, Reis (b0665) 2004; 4 Sachlos EC, J. T. Making tissue engineering scaffolds work. Review on the application of solid free from fabrication technology to the production of tissue engineering scaffolds. European cells and materials. 2003;5:29-40. Pezeshki Modaress, Mirzadeh, Zandi (b0345) 2012; 21 McGuigan EDAaAP. Micropatterning strategies to engineer controlled cell and tissue architecture in vitro. BioTechniques. 2015;58:13–23. Autissier, Le Visage, Pouzet, Chaubet, Letourneur (b0415) 2010; 6 Peck, Dusserre, McAllister, L'Heureux (b0035) 2011; 14 Haider, Versace, Gupta, Kang (b0205) 2016 Siva AS, Ansari M. A Review on Bone Scaffold Fabrication Methods. 2015 Couet, Samuel, Kopyshev, Santer, Biesalski (b0500) 2005; 44 Eda, Robyn, Daphne, Fred, Selçuk, Wei (b0695) 2010; 2 Khorasani, Mirzadeh, Irani (b0700) 2008; 77 Selhuber-Unkel, Erdmann, López-García, Kessler, Schwarz, Spatz (b0435) 2010; 98 Soliman, Pagliari, Rinaldi, Forte, Fiaccavento, Pagliari, Franzese, Minieri, Di Nardo, Licoccia (b0050) 2010; 6 Park, Kim, Kim, Yang, Park (b0615) 2008; 4 Smith, Liu, Smith, Ma (b0300) 2009; 1 An, Teoh, Suntornnond, Chua (b0655) 2015; 1 Zhang (b0480) 2002; 20 Altman, Lee, Rich, Zhang (b0505) 2000; 9 Sung, Meredith, Johnson, Galis (b0760) 2004; 25 Filipczak, Janik, Kozicki, Ulanski, Rosiak Janusz, Pajewski Leonardo, Olkowski, Wozniak, Chroscicka, Lewandowska-Szumiel (b0370) 2005 Poursamar, Hatami, Lehner, da Silva, Ferreira, Antunes (b0565) 2015; 48 Haider, Al-Zeghayer, Ahmed Ali, Haider, Mahmood, Al-Masry, Imran, Aijaz (b0160) 2013; 20 Cima, Vacanti, Vacanti, Ingber, Mooney, Langer (b0120) 1991; 113 Khang, Ravishankar, Krishnaswamy, Anderson, Cone, Liu, Qian, Balachandran (b0290) 2016 Nagahama, Ouchi, Ohya (b0030) 2008; 18 Mohanty, Larsen, Trifol, Szabo, Burri, Canali, Dufva, Emnéus, Wolff (b0650) 2015; 55 Kisiday, Jin, Kurz, Hung, Semino, Zhang, Grodzinsky (b0490) 2002; 99 Langer, Vacanti (b0740) 1993; 260 Zhang, Cui (b0745) 2012; 17 Lu, Li, Chen (b0075) 2013; 8 Hynes (b0100) 2002; 110 Lee, Khang, Lee, Lee (b0705) 2003; 259 Arnold, Cavalcanti-Adam, Glass, Blümmel, Eck, Kantlehner, Kessler, Spatz (b0455) 2004; 5 Zohora, Azim (b0685) 2014; 10 Loh, Choong (b0390) 2013; 19 Brahatheeswaran Dhandayuthapani, Maekawa, Sakthi Kumar (b0140) 2011; 2011 da Silva Parize, de Oliveira, Foschini, Marconcini, Mattoso (b0225) 2016; 133 Martínez-Pérez, Olivas-Armendariz, Castro-Carmona, García-Casillas (b0555) 2011 Singh, Singh, Soo Han (b0640) 2016; 1 Matthews, Wnek, Simpson, Bowlin (b0770) 2002; 3 A.G. Mikos G. Sarakinos J.P. Vacanti R.S. Langer L.G. Cima, Biocompatible polymer membranes and methods of preparation of three dimensional membrane structures, Google Patents, 1996. Mikos, Thorsen, Czerwonka, Bao, Langer, Winslow, Vacanti (b0675) 1994; 35 Izadifar, Chen, Kulyk (b0135) 2012; 3 Santos, Medeiros, Blaker, Medeiros (b0210) 2016; 176 Nigam, Mahanta (b0600) 2014; 2014 Abdal-hay, Oh, Yousef, Pant, Vanegas, Lim (b0250) 2014; 307 Lavik, Langer (b0005) 2004; 65 Atala, Kasper, Mikos (b0010) 2012; 4 Chen, Peng, Wu, Tan (b0200) 2016; 9 Dehghani, Annabi (b0595) 2011; 22 Sloan, Mwandumba, Kamdolozi, Shani, Chisale, Dutton, Khoo, Allain, Davies (b0625) 2015; 19 Lee, Debasitis, Lee, Lee, Fischer, Edminster, Park, Yoo (b0630) 2009; 30 Altomare, Riehle, Gadegaard, Tanzi, Farè (b0470) 2010; 33 Stupp (b0515) 2010; 10 Asti, Gioglio (b0735) 2014; 37 Benavides, Jana, Reneker (b0235) 2012; 1 Giordano, Wu, Borland, Cima, Sachs, Cima (b0350) 1997; 8 Más, Cattani, Rangel, Ribeiro, Cruz, Leite, Nascente, Duek (b0720) 2014; 17 Haider, Gupta, Kang (b0185) 2014; 9 Holmes, de Lacalle, Su, Liu, Rich, Zhang (b0485) 2000; 97 Mikos, Bao, Cima, Ingber, Vacanti, Langer (b0130) 1993; 27 Goldberg, Langer, Jia (b0150) 2007; 18 Plikk, Målberg, Albertsson (b0340) 2009; 10 Liu, Nakagawa, Kato, Chaudhary, Tadé (b0405) 2011; 129 Lao, Wang, Zhu, Zhang, Gao (b0045) 2011; 22 Smith, Beck, Ma (b0540) 2007 Sherwood, Riley, Palazzolo, Brown, Monkhouse, Coates, Griffith, Landeen, Ratcliffe (b0375) 2002; 23 Cavalcanti-Adam, Volberg, Micoulet, Kessler, Geiger, Spatz (b0460) 2007; 92 Draghi, Resta, Pirozzolo, Tanzi (b0325) 2005; 16 Ishaug-Riley, Crane-Kruger, Yaszemski, Mikos (b0380) 1998; 19 Murphy, Skardal, Atala (b0635) 2013; 101 Garg, Singh, Arora, Murthy (b0395) 2012; 29 Niklason, Langer (b0145) 2001; 285 Gardel, Schneider, Aratyn-Schaus, Waterman (b0105) 2010; 26 Haider, Binagag, Haider, Mahmood, Shah, Al-Masry, Khan, Ramay (b0180) 2015; 55 Hooper JP. Centrifugal spinneret. US Patent 1500931 A. 1924. Dhandayuthapani, Yoshida, Maekawa, Kumar (b0755) 2011; 2011 Catauro, Bollino, Papale, Lamanna (b0715) 2014; 36 Ganguly, Nail, Alexeenko (b0055) 2012; 86 Martins, Pham, Malafaya, Sousa, Gomes, Raphael, Kasper, Reis, Mikos (b0660) 2009; 15 Subia, Kundu, Kundu (b0535) 2010 Obrien (b0730) 2011; 14 Haider A, Haider S, Kang I-K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry. Yen-Chen, David (b0585) 2005 Marano, Barker, Raimi-Abraham, Missaghi, Rajabi-Siahboomi, Craig (b0280) 2016; 103 Mikos, Temenoff, Temmser (b0520) 2004 Wang, Li, Li, Ding, Liu, Li, Chen (b0725) 2015; 8 Ghosh, Jana (b0245) 2015; 5 Langer (b0125) 1994 Chen, Ushida, Tateishi (b0425) 2001; 17 Catauro, Bollino, Papale, Gallicchio, Pacifico (b0710) 2014; 24 Aram, Mehdipour-Ataei (b0400) 2016; 65 Haider, Kim, Huh, Kang (b0190) 2015; 2015 Shastri, Martin, Langer (b0670) 2000; 97 Behrens, Casey, Sikorski, Wu, Tutak, Sandler, Kofinas (b0230) 2014; 3 Feng, Lin, Wang, Liu, Liu, Zhu, Zhang, Xu (b0295) 2016; 74 Ramakrishna, Mayer, Wintermantel, Leong (b0750) 2001; 61 Zhang, Lu (b0275) 2014; 54 Salerno, Iannace, Netti (b0590) 2008; 8 Pisano, Barresi, Fissore (b0020) 2011; 29 Jungwoo Lee, Kotov (b0015) 2008; 1 Chung, Ingle, Montero, Kim, King (b0040) 2010; 6 Lin, Tong, Zhang, Hu, Fang (b0765) 2007 Ma, Choi (b0315) 2001; 7 Naznin, Min (b0065) 2012; 4 Li, Thouas, Chen (b0620) 2012; 2 Harburger, Calderwood (b0095) 2009; 122 Shum, Li, Mak (b0320) 2005; 87 Liu, Chen, Gustafson, Miller, Waletzki, Yaszemski, Lu (b0550) 2015; 5 Shin, Borah, Haider, Kim, Huh, Kang (b0195) 2013; 2013 Koch, Kuhn, Sorg, Gruene, Schlie, Gaebel, Polchow, Reimers, Stoelting, Ma, Vogt, Steinhoff, Chichkov (b0645) 2010; 5 Zhang, Rich (b0510) 1997; 94 Heijkants, Van Tienen, De Groot, Pennings, Buma, Veth, Schouten (b0060) 2006; 41 Zhang (b0475) 2003; 21 Hua, Lee, Son, Lee (b0525) 2002; 2 Al-Mubaddel, Aijaz, Haider, Haider, Almasry, Al-Fatesh (b0175) 2016; 57 Jianhua, Toshio, Naoto, Takayasu, Takashi, Baolin, Masao (b0690) 2009; 4 Abdal-hay, Sheikh, Lim (b0255) 2013; 102 Britland, Perridge, Denyer, Morgan, Curtis, Wilkinson (b0445) 1996; 1 Wang, Pieper, Peters, van Blitterswijk, Lamme (b0355) 2005; 74 Dragusin, Van Vlierberghe, Dubruel, Dierick, Van Hoorebeke, Declercq, Cornelissen, Stancu (b0410) 2012; 8 Tutak, Sarkar, Lin-Gibson, Farooque, Jyotsnendu, Wang, Kohn, Bolikal, Simon (b0265) 2013; 34 Yoshito I. Chapter 1 Scope of Tissue Engineering. In: Yoshito I, editor. Interface Science and Technology. Volume 8: Elsevier; 2006. p. 1-89. Wei, Ma (b0085) 2008; 18 Dvir, Timko, Kohane, Langer (b0155) 2011; 6 Vozzi, Flaim, Ahluwalia, Bhatia (b0360) 2003; 24 Schugens, Maquet, Grandfils, Jerome, Teyssie (b0545) 1996; 37 Hu, Yim, Reano, Leong, Pang (b0450) 2005; 23 Athanasiou, Niederauer, Agrawal (b0115) 1996; 17 Weigel, Schinkel, Lendlein (b0365) 2006; 3 Sloan (10.1016/j.jscs.2020.01.002_b0625) 2015; 19 Abdal-hay (10.1016/j.jscs.2020.01.002_b0260) 2014; 40 Loh (10.1016/j.jscs.2020.01.002_b0390) 2013; 19 10.1016/j.jscs.2020.01.002_b0165 10.1016/j.jscs.2020.01.002_b0440 Sung (10.1016/j.jscs.2020.01.002_b0760) 2004; 25 Abdal-hay (10.1016/j.jscs.2020.01.002_b0250) 2014; 307 Mohanty (10.1016/j.jscs.2020.01.002_b0650) 2015; 55 Edwards (10.1016/j.jscs.2020.01.002_b0680) 2004; 4 Nigam (10.1016/j.jscs.2020.01.002_b0600) 2014; 2014 Zhang (10.1016/j.jscs.2020.01.002_b0745) 2012; 17 Autissier (10.1016/j.jscs.2020.01.002_b0415) 2010; 6 Hynes (10.1016/j.jscs.2020.01.002_b0100) 2002; 110 Dhandayuthapani (10.1016/j.jscs.2020.01.002_b0755) 2011; 2011 Ghosh (10.1016/j.jscs.2020.01.002_b0245) 2015; 5 Abdal-hay (10.1016/j.jscs.2020.01.002_b0255) 2013; 102 Bhamidipati (10.1016/j.jscs.2020.01.002_b0560) 2013; 19 Rajgarhia (10.1016/j.jscs.2020.01.002_b0240) 2016; 93 Yen-Chen (10.1016/j.jscs.2020.01.002_b0585) 2005 Chatterjee (10.1016/j.jscs.2020.01.002_b0575) 2012; 3 Zhang (10.1016/j.jscs.2020.01.002_b0310) 2006; 41 Atala (10.1016/j.jscs.2020.01.002_b0010) 2012; 4 Hou (10.1016/j.jscs.2020.01.002_b0070) 2003; 24 10.1016/j.jscs.2020.01.002_b0335 Eda (10.1016/j.jscs.2020.01.002_b0695) 2010; 2 Peck (10.1016/j.jscs.2020.01.002_b0035) 2011; 14 Niklason (10.1016/j.jscs.2020.01.002_b0145) 2001; 285 Lavik (10.1016/j.jscs.2020.01.002_b0005) 2004; 65 Jianhua (10.1016/j.jscs.2020.01.002_b0690) 2009; 4 Hua (10.1016/j.jscs.2020.01.002_b0525) 2002; 2 Catauro (10.1016/j.jscs.2020.01.002_b0710) 2014; 24 Yu (10.1016/j.jscs.2020.01.002_b0305) 2016; 6 Wei (10.1016/j.jscs.2020.01.002_b0085) 2008; 18 Smith (10.1016/j.jscs.2020.01.002_b0540) 2007 Filipczak (10.1016/j.jscs.2020.01.002_b0370) 2005 Asti (10.1016/j.jscs.2020.01.002_b0735) 2014; 37 Shastri (10.1016/j.jscs.2020.01.002_b0670) 2000; 97 10.1016/j.jscs.2020.01.002_b0580 da Silva Parize (10.1016/j.jscs.2020.01.002_b0225) 2016; 133 Poursamar (10.1016/j.jscs.2020.01.002_b0570) 2016; 65 Jungwoo Lee (10.1016/j.jscs.2020.01.002_b0015) 2008; 1 Shum (10.1016/j.jscs.2020.01.002_b0320) 2005; 87 Behrens (10.1016/j.jscs.2020.01.002_b0230) 2014; 3 10.1016/j.jscs.2020.01.002_b0465 Plikk (10.1016/j.jscs.2020.01.002_b0340) 2009; 10 Selhuber-Unkel (10.1016/j.jscs.2020.01.002_b0025) 2010; 98 Giordano (10.1016/j.jscs.2020.01.002_b0350) 1997; 8 Subia (10.1016/j.jscs.2020.01.002_b0535) 2010 An (10.1016/j.jscs.2020.01.002_b0655) 2015; 1 Badrossamay (10.1016/j.jscs.2020.01.002_b0285) 2010; 10 Tuzlakoglu (10.1016/j.jscs.2020.01.002_b0665) 2004; 4 Dvir (10.1016/j.jscs.2020.01.002_b0155) 2011; 6 Zhang (10.1016/j.jscs.2020.01.002_b0510) 1997; 94 Catauro (10.1016/j.jscs.2020.01.002_b0715) 2014; 36 Khorasani (10.1016/j.jscs.2020.01.002_b0700) 2008; 77 Haider (10.1016/j.jscs.2020.01.002_b0185) 2014; 9 Zhang (10.1016/j.jscs.2020.01.002_b0475) 2003; 21 Chen Ning Zhu (10.1016/j.jscs.2020.01.002_b0605) 2013 Naznin (10.1016/j.jscs.2020.01.002_b0065) 2012; 4 Martínez-Pérez (10.1016/j.jscs.2020.01.002_b0555) 2011 Li (10.1016/j.jscs.2020.01.002_b0620) 2012; 2 Ma (10.1016/j.jscs.2020.01.002_b0315) 2001; 7 Liu (10.1016/j.jscs.2020.01.002_b0550) 2015; 5 Lao (10.1016/j.jscs.2020.01.002_b0045) 2011; 22 Lee (10.1016/j.jscs.2020.01.002_b0705) 2003; 259 Ekerdt (10.1016/j.jscs.2020.01.002_b0110) 2013; 8 Shin (10.1016/j.jscs.2020.01.002_b0195) 2013; 2013 Langer (10.1016/j.jscs.2020.01.002_b0740) 1993; 260 Mikos (10.1016/j.jscs.2020.01.002_b0675) 1994; 35 Dehghani (10.1016/j.jscs.2020.01.002_b0595) 2011; 22 Liu (10.1016/j.jscs.2020.01.002_b0090) 2004; 32 Lee (10.1016/j.jscs.2020.01.002_b0630) 2009; 30 Haider (10.1016/j.jscs.2020.01.002_b0190) 2015; 2015 Brahatheeswaran Dhandayuthapani (10.1016/j.jscs.2020.01.002_b0140) 2011; 2011 Langer (10.1016/j.jscs.2020.01.002_b0125) 1994 Garg (10.1016/j.jscs.2020.01.002_b0395) 2012; 29 Haider (10.1016/j.jscs.2020.01.002_b0205) 2016 Oliveira (10.1016/j.jscs.2020.01.002_b0220) 2011; 122 Tutak (10.1016/j.jscs.2020.01.002_b0265) 2013; 34 Zhang (10.1016/j.jscs.2020.01.002_b0480) 2002; 20 Thomson (10.1016/j.jscs.2020.01.002_b0610) 1995 Soliman (10.1016/j.jscs.2020.01.002_b0050) 2010; 6 Lin (10.1016/j.jscs.2020.01.002_b0765) 2007 Stupp (10.1016/j.jscs.2020.01.002_b0515) 2010; 10 Pisano (10.1016/j.jscs.2020.01.002_b0020) 2011; 29 Koch (10.1016/j.jscs.2020.01.002_b0645) 2010; 5 Gardel (10.1016/j.jscs.2020.01.002_b0105) 2010; 26 Wang (10.1016/j.jscs.2020.01.002_b0355) 2005; 74 Britland (10.1016/j.jscs.2020.01.002_b0445) 1996; 1 Cima (10.1016/j.jscs.2020.01.002_b0120) 1991; 113 Chen (10.1016/j.jscs.2020.01.002_b0200) 2016; 9 Santos (10.1016/j.jscs.2020.01.002_b0210) 2016; 176 Más (10.1016/j.jscs.2020.01.002_b0720) 2014; 17 Zhang (10.1016/j.jscs.2020.01.002_b0275) 2014; 54 10.1016/j.jscs.2020.01.002_b0530 Matthews (10.1016/j.jscs.2020.01.002_b0770) 2002; 3 Cavalcanti-Adam (10.1016/j.jscs.2020.01.002_b0460) 2007; 92 Selhuber-Unkel (10.1016/j.jscs.2020.01.002_b0435) 2010; 98 Holmes (10.1016/j.jscs.2020.01.002_b0485) 2000; 97 Bencherif (10.1016/j.jscs.2020.01.002_b0330) 2013; 43 Liu (10.1016/j.jscs.2020.01.002_b0405) 2011; 129 Vozzi (10.1016/j.jscs.2020.01.002_b0360) 2003; 24 Heijkants (10.1016/j.jscs.2020.01.002_b0060) 2006; 41 Marano (10.1016/j.jscs.2020.01.002_b0280) 2016; 103 Hu (10.1016/j.jscs.2020.01.002_b0450) 2005; 23 Chung (10.1016/j.jscs.2020.01.002_b0040) 2010; 6 Mikos (10.1016/j.jscs.2020.01.002_b0130) 1993; 27 Lu (10.1016/j.jscs.2020.01.002_b0075) 2013; 8 Altman (10.1016/j.jscs.2020.01.002_b0505) 2000; 9 Haider (10.1016/j.jscs.2020.01.002_b0160) 2013; 20 Zhu (10.1016/j.jscs.2020.01.002_b0495) 2004; 5 Sherwood (10.1016/j.jscs.2020.01.002_b0375) 2002; 23 Wang (10.1016/j.jscs.2020.01.002_b0725) 2015; 8 Nagahama (10.1016/j.jscs.2020.01.002_b0030) 2008; 18 Schugens (10.1016/j.jscs.2020.01.002_b0545) 1996; 37 10.1016/j.jscs.2020.01.002_b0385 Khang (10.1016/j.jscs.2020.01.002_b0290) 2016 Smith (10.1016/j.jscs.2020.01.002_b0300) 2009; 1 Park (10.1016/j.jscs.2020.01.002_b0615) 2008; 4 Martins (10.1016/j.jscs.2020.01.002_b0660) 2009; 15 Athanasiou (10.1016/j.jscs.2020.01.002_b0115) 1996; 17 Obrien (10.1016/j.jscs.2020.01.002_b0730) 2011; 14 Goldberg (10.1016/j.jscs.2020.01.002_b0150) 2007; 18 Feng (10.1016/j.jscs.2020.01.002_b0295) 2016; 74 Arnold (10.1016/j.jscs.2020.01.002_b0455) 2004; 5 Chen (10.1016/j.jscs.2020.01.002_b0420) 2001; 22 Zohora (10.1016/j.jscs.2020.01.002_b0685) 2014; 10 Izadifar (10.1016/j.jscs.2020.01.002_b0135) 2012; 3 Poursamar (10.1016/j.jscs.2020.01.002_b0565) 2015; 48 Mikos (10.1016/j.jscs.2020.01.002_b0520) 2004 Haider (10.1016/j.jscs.2020.01.002_b0180) 2015; 55 Aram (10.1016/j.jscs.2020.01.002_b0400) 2016; 65 Bae (10.1016/j.jscs.2020.01.002_b0170) 2013; 20 Weigel (10.1016/j.jscs.2020.01.002_b0365) 2006; 3 Nam (10.1016/j.jscs.2020.01.002_b0080) 2000; 53 10.1016/j.jscs.2020.01.002_b0270 Singh (10.1016/j.jscs.2020.01.002_b0640) 2016; 1 Kisiday (10.1016/j.jscs.2020.01.002_b0490) 2002; 99 Ramakrishna (10.1016/j.jscs.2020.01.002_b0750) 2001; 61 Altomare (10.1016/j.jscs.2020.01.002_b0470) 2010; 33 Salerno (10.1016/j.jscs.2020.01.002_b0590) 2008; 8 10.1016/j.jscs.2020.01.002_b0430 Harburger (10.1016/j.jscs.2020.01.002_b0095) 2009; 122 Ishaug-Riley (10.1016/j.jscs.2020.01.002_b0380) 1998; 19 Tang (10.1016/j.jscs.2020.01.002_b0215) 2015; 132 Couet (10.1016/j.jscs.2020.01.002_b0500) 2005; 44 Benavides (10.1016/j.jscs.2020.01.002_b0235) 2012; 1 Chen (10.1016/j.jscs.2020.01.002_b0425) 2001; 17 Murphy (10.1016/j.jscs.2020.01.002_b0635) 2013; 101 Ganguly (10.1016/j.jscs.2020.01.002_b0055) 2012; 86 Dragusin (10.1016/j.jscs.2020.01.002_b0410) 2012; 8 Al-Mubaddel (10.1016/j.jscs.2020.01.002_b0175) 2016; 57 Pezeshki Modaress (10.1016/j.jscs.2020.01.002_b0345) 2012; 21 Draghi (10.1016/j.jscs.2020.01.002_b0325) 2005; 16 |
References_xml | – year: 2010 ident: b0535 article-title: Biomaterial Scaffold Fabrication Techniques For Potential Tissue Engineering Applications – volume: 8 start-page: 1009 year: 2015 ident: b0725 article-title: Gelatin tight-coated poly(lactide-co-glycolide) scaffold incorporating rhBMP-2 for bone tissue engineering publication-title: Materials – volume: 54 start-page: 677 year: 2014 end-page: 701 ident: b0275 article-title: Centrifugal spinning: An alternative approach to fabricate nanofibers at high speed and low cost publication-title: Polym. Rev. – volume: 102 start-page: 635 year: 2013 end-page: 643 ident: b0255 article-title: Air jet spinning of hydroxyapatite/poly(lactic acid) hybrid nanocomposite membrane mats for bone tissue engineering publication-title: Colloids Surf., B – volume: 1 start-page: 261 year: 2015 end-page: 268 ident: b0655 article-title: Design and 3D printing of scaffolds and tissues publication-title: Engineering – volume: 176 start-page: 122 year: 2016 end-page: 126 ident: b0210 article-title: Aqueous solution blow spinning of poly(vinyl alcohol) micro- and nanofibers publication-title: Mater. Lett. – volume: 7 start-page: 23 year: 2001 end-page: 33 ident: b0315 article-title: Biodegradable polymer scaffolds with well-defined interconnected spherical pore network publication-title: Tissue Eng. – volume: 4 year: 2012 ident: b0065 article-title: PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation publication-title: Biofabrication – volume: 21 start-page: 191 year: 2012 end-page: 200 ident: b0345 article-title: Fabrication of a porous wall and higher interconnectivity scaffold comprising gelatin/chitosan via combination of salt-leaching and lyophilization methods publication-title: Iran. Polym. J. – volume: 20 start-page: 1 year: 2013 end-page: 11 ident: b0160 article-title: Highly aligned narrow diameter chitosan electrospun nanofibers publication-title: J. Polym. Res. – volume: 2013 start-page: 9 year: 2013 ident: b0195 article-title: Fabrication of pamidronic acid-immobilized TiO2/hydroxyapatite composite nanofiber mats for biomedical applications publication-title: J. Nanomater. – volume: 57 start-page: 17523 year: 2016 end-page: 17536 ident: b0175 article-title: Synthesis of chitosan based semi-IPN hydrogels using epichlorohydrine as crosslinker to study the adsorption kinetics of Rhodamine B publication-title: Desalin. Water Treat. – volume: 307 start-page: 69 year: 2014 end-page: 76 ident: b0250 article-title: In vitro deposition of Ca-P nanoparticles on air jet spinning nylon 6 nanofibers scaffold for bone tissue engineering publication-title: Appl. Surf. Sci. – volume: 132 start-page: n/a-n/a year: 2015 ident: b0215 article-title: Generation of nanofibers via electrostatic-Induction-assisted solution blow spinning publication-title: J. Appl. Polym. Sci. – reference: McGuigan EDAaAP. Micropatterning strategies to engineer controlled cell and tissue architecture in vitro. BioTechniques. 2015;58:13–23. – volume: 24 start-page: 1937 year: 2003 end-page: 1947 ident: b0070 article-title: Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique publication-title: Biomaterials – volume: 18 start-page: 3566 year: 2008 end-page: 3582 ident: b0085 article-title: Nanostructured biomaterials for regeneration publication-title: Adv. Funct. Mater. – start-page: 245 year: 1995 end-page: 274 ident: b0610 article-title: Biodegradable polymer scaffolds to regenerate organs publication-title: Biopolymers II – volume: 3 start-page: 799 year: 2012 end-page: 838 ident: b0135 article-title: Strategic design and fabrication of engineered scaffolds for articular cartilage repair publication-title: J. Funct. Biomater. – volume: 4 year: 2012 ident: b0010 article-title: Engineering complex tissues publication-title: Sci. Transl. Med. – volume: 65 start-page: 1 year: 2004 end-page: 8 ident: b0005 article-title: Tissue engineering: current state and perspectives publication-title: Appl. Microbiol. Biotechnol. – volume: 113 start-page: 143 year: 1991 end-page: 151 ident: b0120 article-title: Tissue engineering by cell transplantation using degradable polymer substrates publication-title: J. Biomech. Eng. – volume: 29 start-page: 1920 year: 2011 end-page: 1931 ident: b0020 article-title: Innovation in monitoring food freeze drying publication-title: Drying Technol. – volume: 101 start-page: 272 year: 2013 end-page: 284 ident: b0635 article-title: Evaluation of hydrogels for bio-printing applications publication-title: J. Biomed. Mater. Res. Part A – volume: 16 start-page: 1093 year: 2005 end-page: 1097 ident: b0325 article-title: Microspheres leaching for scaffold porosity control publication-title: J. Mater. Sci. - Mater. Med. – start-page: 155 year: 2005 end-page: 167 ident: b0585 article-title: Gas Foaming to Fabricate Polymer Scaffolds in Tissue Engineering. Scaffolding In Tissue Engineering – volume: 24 start-page: 320 year: 2014 end-page: 325 ident: b0710 article-title: Synthesis and chemical characterization of new silica polyethylene glycol hybrid nanocomposite materials for controlled drug delivery publication-title: J. Drug Deliv. Sci. Technol. – year: 2016 ident: b0290 article-title: Engineering anisotropic biphasic Janus-type polymer nanofiber scaffold networks via centrifugal jet spinning publication-title: J. Biomed. Mater. Res. Part B: Appl Biomater. – volume: 36 start-page: 20 year: 2014 end-page: 24 ident: b0715 article-title: Investigation of the sample preparation and curing treatment effects on mechanical properties and bioactivity of silica rich metakaolin geopolymer publication-title: Mater. Sci. Eng., C – volume: 8 start-page: 9589 year: 2012 end-page: 9602 ident: b0410 article-title: Novel gelatin–PHEMA porous scaffolds for tissue engineering applications publication-title: Soft Matter – year: 2016 ident: b0205 article-title: Pamidronic acid-grafted nHA/PLGA hybrid nanofiber scaffolds as suppressant to osteoclastic cells viability and promoter to osteoblastic cells activity publication-title: J. Mater. Chem. B – volume: 1 start-page: 226 year: 2009 end-page: 236 ident: b0300 article-title: Nanostructured polymer scaffolds for tissue engineering and regenerative medicine publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. – volume: 92 start-page: 2964 year: 2007 end-page: 2974 ident: b0460 article-title: Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands publication-title: Biophys. J. – volume: 65 start-page: 315 year: 2016 end-page: 322 ident: b0570 article-title: Potential application of gelatin scaffolds prepared through in situ gas foaming in skin tissue engineering publication-title: Int. J. Polym. Mater. Polym. Biomater. – volume: 32 start-page: 477 year: 2004 end-page: 486 ident: b0090 article-title: Polymeric Scaffolds for bone tissue engineering publication-title: Ann. Biomed. Eng. – reference: Yoshito I. Chapter 1 Scope of Tissue Engineering. In: Yoshito I, editor. Interface Science and Technology. Volume 8: Elsevier; 2006. p. 1-89. – reference: Fahad S. Al-Mubaddel MOA, Sajjad Haider, Adnan Haider, Waheed A. Almasry, Ahmed Sadeq Al-Fatesh. Synthesis of chitosan based semi-IPN hydrogels using epichlorohydrine as crosslinker to study the adsorption kinetics of Rhodamine B. Desalination and Water Treatment. 2016;57:17523–36. – volume: 30 start-page: 1587 year: 2009 end-page: 1595 ident: b0630 article-title: Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication publication-title: Biomaterials – volume: 4 year: 2009 ident: b0690 article-title: Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts publication-title: Biomed. Mater. – volume: 98 start-page: 543 year: 2010 end-page: 551 ident: b0025 article-title: Spatz cell adhesion strength is controlled by intermolecular spacing of adhesion receptors publication-title: Biophys. J. – volume: 110 start-page: 673 year: 2002 end-page: 687 ident: b0100 article-title: Integrins: bidirectional, allosteric signaling machines publication-title: Cell – volume: 5 start-page: 847 year: 2010 end-page: 854 ident: b0645 article-title: Laser printing of skin cells and human stem cells publication-title: Tissue Eng. Part C Methods – volume: 61 start-page: 1189 year: 2001 end-page: 1224 ident: b0750 article-title: Biomedical applications of polymer-composite materials: a review publication-title: Compos. Sci. Technol. – volume: 19 start-page: 485 year: 2013 end-page: 502 ident: b0390 article-title: Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size publication-title: Tissue Eng. Part B: Rev. – start-page: 743 year: 2004 ident: b0520 article-title: Synthetic Bioresorbable polymer scaffolds publication-title: : An Introduction To Material In Medicine – volume: 43 start-page: 251 year: 2013 end-page: 261 ident: b0330 article-title: Advances in the design of macroporous polymer scaffolds for potential applications in dentistry publication-title: J. Period. Implant Sci. – volume: 17 start-page: 1523 year: 2014 end-page: 1534 ident: b0720 article-title: Surface characterization and osteoblast-like Cells culture on collagen modified PLDLA scaffolds publication-title: Mater. Res. – volume: 2 start-page: 161 year: 2002 end-page: 167 ident: b0525 article-title: Macroporous poly(L-lactide) scaffold 1. Preparation of a macroporous scaffold by liquid–liquid phase separation of a PLLA–dioxane–water system publication-title: J. Biomed. Mater. Res. – reference: Haider A, Haider S, Kang I-K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry. – volume: 5 start-page: 105313 year: 2015 end-page: 105318 ident: b0245 article-title: Bi-component inorganic oxide nanofibers from gas jet fiber spinning process publication-title: RSC Adv. – volume: 3 start-page: 249 year: 2014 end-page: 254 ident: b0230 article-title: In situ deposition of plga nanofibers via solution blow spinning publication-title: ACS Macro Lett. – volume: 29 start-page: 1 year: 2012 end-page: 63 ident: b0395 article-title: Scaffold: a novel carrier for cell and drug publication-title: Delivery – volume: 2 start-page: 8229 year: 2012 end-page: 8242 ident: b0620 article-title: Biodegradable soft elastomers: synthesis/properties of materials and fabrication of scaffolds publication-title: RSC Adv. – volume: 77 start-page: 280 year: 2008 end-page: 287 ident: b0700 article-title: Plasma surface modification of poly (l-lactic acid) and poly (lactic-co-glycolic acid) films for improvement of nerve cells adhesion publication-title: Radiat. Phys. Chem. – volume: 8 start-page: 1411 year: 2013 end-page: 1423 ident: b0110 article-title: Spatial organization of cell-adhesive ligands for advanced cell culture publication-title: Biotechnol. J. – volume: 37 start-page: 187 year: 2014 end-page: 205 ident: b0735 article-title: Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation publication-title: Int. J. Artificial Organs – volume: 94 start-page: 23 year: 1997 end-page: 28 ident: b0510 article-title: Direct conversion of an oligopeptide from a β-sheet to an α-helix: A model for amyloid formation publication-title: Proc. Natl. Acad. Sci. – volume: 10 year: 2014 ident: b0685 article-title: Biomaterials as porous scaffolds for tissue engineering applications: A review publication-title: Eur. Sci. J. – volume: 10 start-page: 4783 year: 2010 end-page: 4786 ident: b0515 article-title: Self-assembly and biomaterials publication-title: Nano Lett. – volume: 259 start-page: 228 year: 2003 end-page: 235 ident: b0705 article-title: The effect of surface wettability on induction and growth of neurites from the PC-12 cell on a polymer surface publication-title: J. Colloid Interface Sci. – volume: 6 start-page: 1227 year: 2010 end-page: 1237 ident: b0050 article-title: Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning publication-title: Acta Biomater. – volume: 48 start-page: 63 year: 2015 end-page: 70 ident: b0565 article-title: Gelatin porous scaffolds fabricated using a modified gas foaming technique: characterisation and cytotoxicity assessment publication-title: Mater. Sci. Eng., C – volume: 40 start-page: 15403 year: 2014 end-page: 15409 ident: b0260 article-title: Facile preparation of titanium dioxide micro/nanofibers and tubular structures by air jet spinning publication-title: Ceram. Int. – volume: 33 start-page: 535 year: 2010 ident: b0470 article-title: Microcontact printing of fibronectin on a biodegradable polymeric surface for skeletal muscle cell orientation publication-title: Int. J. Artif. Organs – volume: 4 start-page: 811 year: 2004 end-page: 819 ident: b0665 article-title: Production and characterization of chitosan fibers and 3-D fiber mesh scaffolds for tissue engineering applications publication-title: Macromol. Biosci. – volume: 14 start-page: 218 year: 2011 end-page: 224 ident: b0035 article-title: Tissue engineering by self-assembly publication-title: Mater. Today – volume: 24 start-page: 2533 year: 2003 end-page: 2540 ident: b0360 article-title: Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition publication-title: Biomaterials – start-page: 275 year: 2011 end-page: 294 ident: b0555 article-title: Scaffolds for tissue engineering via thermally induced phase separation publication-title: Adv. Regener. Med. InTech – volume: 8 start-page: 655 year: 2008 end-page: 664 ident: b0590 article-title: Open-pore biodegradable foams prepared via gas foaming and microparticulate templating publication-title: Macromol. Biosci. – volume: 22 start-page: 1873 year: 2011 end-page: 1884 ident: b0045 article-title: Poly (lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering publication-title: J. Mater. Sci. - Mater. Med. – volume: 133 year: 2016 ident: b0225 article-title: Poly(lactic acid) fibers obtained by solution blow spinning: Effect of a greener solvent on the fiber diameter publication-title: J. Appl. Polymer Sci. – volume: 8 start-page: 63 year: 1997 end-page: 75 ident: b0350 article-title: Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing publication-title: J. Biomater. Sci. Polym. Ed. – start-page: 110 year: 2005 ident: b0370 article-title: Porous polymeric scaffolds for bone regeneration publication-title: e-Polymers – volume: 17 start-page: 3243 year: 2012 end-page: 3258 ident: b0745 article-title: Biodegradability and biocompatibility study of poly (chitosan-g-lactic acid) scaffolds publication-title: Molecules – volume: 2014 year: 2014 ident: b0600 article-title: An overview of various biomimetic scaffolds: Challenges and applications in tissue engineering publication-title: J. Tissue Sci. Eng. – volume: 6 start-page: 110557 year: 2016 end-page: 110565 ident: b0305 article-title: Fabrication and characterization of electrospinning/3D printing bone tissue engineering scaffold publication-title: RSC Adv. – volume: 122 start-page: 159 year: 2009 end-page: 163 ident: b0095 article-title: Integrin signalling at a glance publication-title: J. Cell Sci. – volume: 97 start-page: 1970 year: 2000 end-page: 1975 ident: b0670 article-title: Macroporous polymer foams by hydrocarbon templating publication-title: Proc. Natl. Acad. Sci. – volume: 2011 year: 2011 ident: b0755 article-title: Polymeric scaffolds in tissue engineering application: a review publication-title: Int. J. Polymer Sci. – volume: 15 start-page: 295 year: 2009 end-page: 305 ident: b0660 article-title: The role of lipase and α-amylase in the degradation of starch/poly(ɛ-caprolactone) fiber meshes and the osteogenic differentiation of cultured marrow stromal cells publication-title: Tissue Eng. Part A – volume: 5 start-page: 383 year: 2004 end-page: 388 ident: b0455 article-title: Activation of integrin function by nanopatterned adhesive interfaces publication-title: ChemPhysChem – volume: 20 start-page: 1 year: 2013 end-page: 7 ident: b0170 article-title: Fabrication of highly porous PMMA electrospun fibers and their application in the removal of phenol and iodine publication-title: J. Polym. Res. – volume: 17 start-page: 93 year: 1996 end-page: 102 ident: b0115 article-title: Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers publication-title: Biomaterials – reference: Siva AS, Ansari M. A Review on Bone Scaffold Fabrication Methods. 2015 – volume: 9 start-page: 1095 year: 2000 end-page: 1105 ident: b0505 article-title: Conformational behavior of ionic self-complementary peptides publication-title: Protein Sci. – volume: 27 start-page: 183 year: 1993 end-page: 189 ident: b0130 article-title: Preparation of poly (glycolic acid) bonded fiber structures for cell attachment and transplantation publication-title: J. Biomed. Mater. Res. – volume: 5 start-page: 100824 year: 2015 end-page: 100833 ident: b0550 article-title: Tunable tissue scaffolds fabricated by in situ crosslink in phase separation system publication-title: RSC Adv. – volume: 53 start-page: 1 year: 2000 end-page: 7 ident: b0080 article-title: A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive publication-title: J. Biomed. Mater. Res. – volume: 18 start-page: 241 year: 2007 end-page: 268 ident: b0150 article-title: Nanostructured materials for applications in drug delivery and tissue engineering publication-title: J. Biomater. Sci. Polym. Ed. – volume: 9 start-page: 314- year: 2014 ident: b0185 article-title: PLGA/nHA hybrid nanofiber scaffold as a nanocargo carrier of insulin for accelerating bone tissue regeneration publication-title: Nanoscale Res. Lett. – volume: 2015 start-page: 12 year: 2015 ident: b0190 article-title: BMP-2 grafted nHA/PLGA hybrid nanofiber scaffold stimulates osteoblastic cells growth publication-title: Biomed Res. Int. – year: 2007 ident: b0540 article-title: Nanofibrous Scaffolds and their Biological Effects. Nanotechnologies for the Life Sciences – volume: 122 start-page: 3396 year: 2011 end-page: 3405 ident: b0220 article-title: Nano and submicrometric fibers of poly(D, L-lactide) obtained by solution blow spinning: Process and solution variables publication-title: J. Appl. Polym. Sci. – volume: 23 start-page: 2984 year: 2005 end-page: 2989 ident: b0450 article-title: Effects of nanoimprinted patterns in tissue-culture polystyrene on cell behavior publication-title: J. Vacuum Sci. Technol. A, Vacuum, Surfaces, Films – volume: 285 start-page: 573 year: 2001 end-page: 576 ident: b0145 article-title: PRospects for organ and tissue replacement publication-title: JAMA – volume: 260 start-page: 920 year: 1993 end-page: 926 ident: b0740 article-title: Tissue engineering publication-title: Science – volume: 4 start-page: 1198 year: 2008 end-page: 1207 ident: b0615 article-title: Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration publication-title: Acta Biomater. – volume: 55 start-page: 1609 year: 2015 end-page: 1619 ident: b0180 article-title: Adsorption kinetic and isotherm of methylene blue, safranin T and rhodamine B onto electrospun ethylenediamine-grafted-polyacrylonitrile nanofibers membrane publication-title: Desalin. Water Treat. – volume: 1 start-page: 1032 year: 2012 end-page: 1036 ident: b0235 article-title: Nanofibers from scalable gas jet process publication-title: ACS Macro Lett. – volume: 74 start-page: 523 year: 2005 end-page: 532 ident: b0355 article-title: Synthetic scaffold morphology controls human dermal connective tissue formation publication-title: J. Biomed. Mater. Res. Part A – volume: 41 start-page: 1725 year: 2006 end-page: 1731 ident: b0310 article-title: Fabrication of three dimensional polymeric scaffolds with spherical pores publication-title: J. Mater. Sci. – reference: Hooper JP. Centrifugal spinneret. US Patent 1500931 A. 1924. – volume: 65 start-page: 358 year: 2016 end-page: 375 ident: b0400 article-title: A review on the micro-and nanoporous polymeric foams: Preparation and properties publication-title: Int. J. Polym. Mater. Polym. Biomater. – volume: 103 start-page: 84 year: 2016 end-page: 94 ident: b0280 article-title: Development of micro-fibrous solid dispersions of poorly water-soluble drugs in sucrose using temperature-controlled centrifugal spinning publication-title: Eur. J. Pharm. Biopharm. – volume: 2 year: 2010 ident: b0695 article-title: Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification publication-title: Biofabrication. – volume: 1 start-page: 2 year: 2016 end-page: 17 ident: b0640 article-title: 3D Printing of Scaffold for cells delivery: advances in skin tissue engineering publication-title: Polymers – volume: 35 start-page: 1068 year: 1994 end-page: 1077 ident: b0675 article-title: Preparation and characterization of poly (L-lactic acid) foams publication-title: Polymer – volume: 1 start-page: 61 year: 2008 end-page: 86 ident: b0015 article-title: Three-dimensional cell culture matrices: state of the art publication-title: Tissue Eng. Part B: Rev. – volume: 19 start-page: 1405 year: 1998 end-page: 1412 ident: b0380 article-title: Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers publication-title: Biomaterials – volume: 41 start-page: 2423 year: 2006 end-page: 2428 ident: b0060 article-title: Preparation of a polyurethane scaffold for tissue engineering made by a combination of salt leaching and freeze-drying of dioxane publication-title: J. Mater. Sci. – volume: 37 start-page: 1027 year: 1996 end-page: 1038 ident: b0545 article-title: Biodegradable and macroporous polylactide implants for cell transplantation: 1. Preparation of macroporous polylactide supports by solid-liquid phase separation publication-title: Polymer – volume: 14 start-page: 88 year: 2011 end-page: 95 ident: b0730 article-title: Biomaterials & scaffolds for tissue engineering publication-title: Mater. Today – volume: 18 start-page: 1220 year: 2008 end-page: 1231 ident: b0030 article-title: Temperature-induced hydrogels through self-assembly of cholesterol-substituted star PEG-b-PLLA copolymers: an injectable Scaffold for tissue engineering publication-title: Adv. Funct. Mater. – volume: 55 start-page: 569 year: 2015 end-page: 578 ident: b0650 article-title: Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds publication-title: Mater. Sci. Eng., C – volume: 17 start-page: 63 year: 2001 end-page: 69 ident: b0425 article-title: Development of biodegradable porous scaffolds for tissue engineering publication-title: Mater. Sci. Eng., C – volume: 6 start-page: 1958 year: 2010 end-page: 1967 ident: b0040 article-title: Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning publication-title: Acta Biomater. – volume: 5 start-page: 1933 year: 2004 end-page: 1939 ident: b0495 article-title: Biomacromolecules electrostatic self-assembly on 3-dimensional tissue engineering scaffold publication-title: Biomacromolecules – volume: 3 start-page: 232 year: 2002 end-page: 238 ident: b0770 article-title: Electrospinning of Collagen Nanofibers publication-title: Biomacromolecules – volume: 19 start-page: 904 year: 2015 end-page: 911 ident: b0625 article-title: Vitamin D deficiency in Malawian adults with pulmonary tuberculosis: risk factors and treatment outcomes publication-title: Int. J. Tubercul. Lung Disease – volume: 10 start-page: 2257 year: 2010 end-page: 2261 ident: b0285 article-title: Nanofiber assembly by rotary jet-spinning publication-title: Nano Lett. – volume: 44 start-page: 3297 year: 2005 end-page: 3301 ident: b0500 article-title: Peptide-polymer hybrid nanotubes publication-title: Angew. Chem. Int. Ed. – volume: 34 start-page: 2389 year: 2013 end-page: 2398 ident: b0265 article-title: The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds publication-title: Biomaterials – volume: 2011 year: 2011 ident: b0140 article-title: Polymeric Scaffolds in tissue engineering application: a review publication-title: Int. J. Polymer Sci. – volume: 6 start-page: 13 year: 2011 end-page: 22 ident: b0155 article-title: Nanotechnological strategies for engineering complex tissues publication-title: Nat Nano – volume: 3 start-page: 835 year: 2006 end-page: 851 ident: b0365 article-title: Design and preparation of polymeric scaffolds for tissue engineering publication-title: Expert Rev. Med. Devices – reference: Sachlos EC, J. T. Making tissue engineering scaffolds work. Review on the application of solid free from fabrication technology to the production of tissue engineering scaffolds. European cells and materials. 2003;5:29-40. – reference: Jeong EJ, Lee JW, Yeon SJ, Kwark YJ, Rhee SH, Park WH, Kim SH, Lee KY, Fabrication of Nanopatterned Surfaces for Tissue Engineering. 2012 28-30 May 2012: Publisher. – start-page: 146 year: 2007 end-page: 152 ident: b0765 article-title: The mechanical properties of bone tissue engineering scaffold fabricating via selective laser sintering publication-title: Life System Modeling and Simulation: International Conference, LSMS 2007, Shanghai, China, September 14–17, 2007 Proceedings – volume: 20 start-page: 321 year: 2002 end-page: 339 ident: b0480 article-title: Emerging biological materials through molecular self-assembly publication-title: Biotechnol. Adv. – volume: 10 start-page: 1259 year: 2009 end-page: 1264 ident: b0340 article-title: Design of resorbable porous tubular copolyester scaffolds for use in nerve regeneration publication-title: Biomacromolecules – volume: 8 start-page: 337 year: 2013 end-page: 350 ident: b0075 article-title: Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering publication-title: Int. J. Nanomed. – volume: 25 start-page: 5735 year: 2004 end-page: 5742 ident: b0760 article-title: The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis publication-title: Biomaterials – volume: 23 start-page: 4739 year: 2002 end-page: 4751 ident: b0375 article-title: A three-dimensional osteochondral composite scaffold for articular cartilage repair publication-title: Biomaterials – volume: 74 start-page: 319 year: 2016 end-page: 324 ident: b0295 article-title: Preparation, ferromagnetic and photocatalytic performance of NiO and hollow Co3O4 fibers through centrifugal-spinning technique publication-title: Mater. Res. Bull. – year: 1994 ident: b0125 article-title: Biodegradable polymer scaffolds for tissue engineering publication-title: Nat. Biotechnol. – volume: 21 start-page: 1171 year: 2003 end-page: 1178 ident: b0475 article-title: Fabrication of novel biomaterials through molecular self-assembly publication-title: Nat Biotech. – volume: 129 start-page: 488 year: 2011 end-page: 494 ident: b0405 article-title: Enzyme encapsulation in freeze-dried bionanocomposites prepared from chitosan and xanthan gum blend publication-title: Mater. Chem. Phys. – volume: 1 start-page: 1 year: 1996 end-page: 15 ident: b0445 article-title: Morphogenetic guidance cues can interact synergistically and hierarchically in steering nerve cell growth publication-title: Experiment. Biol. Online – volume: 19 start-page: 221 year: 2013 end-page: 232 ident: b0560 article-title: The future of carbon dioxide for polymer processing in tissue engineering publication-title: Tissue Eng. Part B, Rev. – volume: 3 start-page: 173 year: 2012 end-page: 182 ident: b0575 article-title: Gas-foamed scaffold gradients for combinatorial screening in 3D publication-title: J. Funct. Biomater. – volume: 86 start-page: 1739 year: 2012 end-page: 1747 ident: b0055 article-title: Rarefied gas dynamics aspects of pharmaceutical freeze-drying publication-title: Vacuum – volume: 4 start-page: 86 year: 2004 end-page: 94 ident: b0680 article-title: Design of nonwoven scaffold structures for tissue engineering of the anterior cruciate ligament publication-title: AUTEX Res. J. – reference: A.G. Mikos G. Sarakinos J.P. Vacanti R.S. Langer L.G. Cima, Biocompatible polymer membranes and methods of preparation of three dimensional membrane structures, Google Patents, 1996. – volume: 22 start-page: 661 year: 2011 end-page: 666 ident: b0595 article-title: Engineering porous scaffolds using gas-based techniques publication-title: Curr. Opin. Biotechnol. – volume: 98 start-page: 543 year: 2010 end-page: 551 ident: b0435 article-title: Cell adhesion strength is controlled by intermolecular spacing of adhesion receptors publication-title: Biophys. J. – volume: 87 start-page: 487 year: 2005 end-page: 493 ident: b0320 article-title: Fabrication and structural characterization of porous biodegradable poly(dl-lactic-co-glycolic acid) scaffolds with controlled range of pore sizes publication-title: Polym. Degrad. Stab. – volume: 93 start-page: 142 year: 2016 end-page: 151 ident: b0240 article-title: Morphology control of bi-component polymer nanofibers produced by gas jet process publication-title: Polymer – volume: 97 start-page: 6728 year: 2000 end-page: 6733 ident: b0485 article-title: Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds publication-title: Proc. Natl. Acad. Sci. – volume: 99 start-page: 9996 year: 2002 end-page: 10001 ident: b0490 article-title: Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair publication-title: PNAS – year: 2013 ident: b0605 article-title: Biofabrication of Tissue Scaffolds in book Advances in Biomaterials Science and Biomedical Applications – volume: 6 start-page: 3640 year: 2010 end-page: 3648 ident: b0415 article-title: Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process publication-title: Acta Biomater. – volume: 22 start-page: 2563 year: 2001 end-page: 2567 ident: b0420 article-title: Preparation of poly(l-lactic acid) and poly(dl-lactic-co-glycolic acid) foams by use of ice microparticulates publication-title: Biomaterials – volume: 26 start-page: 315 year: 2010 end-page: 333 ident: b0105 article-title: Mechanical integration of actin and adhesion dynamics in cell migration publication-title: Annu. Rev. Cell Dev. Biol. – volume: 9 start-page: 272 year: 2016 ident: b0200 article-title: Electrospun 3D fibrous Scaffolds for chronic wound repair publication-title: Materials. – volume: 285 start-page: 573 year: 2001 ident: 10.1016/j.jscs.2020.01.002_b0145 article-title: PRospects for organ and tissue replacement publication-title: JAMA doi: 10.1001/jama.285.5.573 – volume: 8 start-page: 9589 year: 2012 ident: 10.1016/j.jscs.2020.01.002_b0410 article-title: Novel gelatin–PHEMA porous scaffolds for tissue engineering applications publication-title: Soft Matter doi: 10.1039/c2sm25536g – year: 2016 ident: 10.1016/j.jscs.2020.01.002_b0290 article-title: Engineering anisotropic biphasic Janus-type polymer nanofiber scaffold networks via centrifugal jet spinning publication-title: J. Biomed. Mater. Res. Part B: Appl Biomater. – volume: 2011 year: 2011 ident: 10.1016/j.jscs.2020.01.002_b0140 article-title: Polymeric Scaffolds in tissue engineering application: a review publication-title: Int. J. Polymer Sci. – volume: 8 start-page: 1009 year: 2015 ident: 10.1016/j.jscs.2020.01.002_b0725 article-title: Gelatin tight-coated poly(lactide-co-glycolide) scaffold incorporating rhBMP-2 for bone tissue engineering publication-title: Materials doi: 10.3390/ma8031009 – volume: 8 start-page: 337 year: 2013 ident: 10.1016/j.jscs.2020.01.002_b0075 article-title: Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S38635 – volume: 98 start-page: 543 year: 2010 ident: 10.1016/j.jscs.2020.01.002_b0435 article-title: Cell adhesion strength is controlled by intermolecular spacing of adhesion receptors publication-title: Biophys. J. doi: 10.1016/j.bpj.2009.11.001 – volume: 94 start-page: 23 year: 1997 ident: 10.1016/j.jscs.2020.01.002_b0510 article-title: Direct conversion of an oligopeptide from a β-sheet to an α-helix: A model for amyloid formation publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.94.1.23 – volume: 1 start-page: 226 year: 2009 ident: 10.1016/j.jscs.2020.01.002_b0300 article-title: Nanostructured polymer scaffolds for tissue engineering and regenerative medicine publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. doi: 10.1002/wnan.26 – volume: 15 start-page: 295 year: 2009 ident: 10.1016/j.jscs.2020.01.002_b0660 article-title: The role of lipase and α-amylase in the degradation of starch/poly(ɛ-caprolactone) fiber meshes and the osteogenic differentiation of cultured marrow stromal cells publication-title: Tissue Eng. Part A doi: 10.1089/ten.tea.2008.0025 – volume: 10 start-page: 4783 year: 2010 ident: 10.1016/j.jscs.2020.01.002_b0515 article-title: Self-assembly and biomaterials publication-title: Nano Lett. doi: 10.1021/nl103567y – volume: 99 start-page: 9996 year: 2002 ident: 10.1016/j.jscs.2020.01.002_b0490 article-title: Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair publication-title: PNAS doi: 10.1073/pnas.142309999 – volume: 129 start-page: 488 year: 2011 ident: 10.1016/j.jscs.2020.01.002_b0405 article-title: Enzyme encapsulation in freeze-dried bionanocomposites prepared from chitosan and xanthan gum blend publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2011.04.043 – volume: 2 start-page: 161 year: 2002 ident: 10.1016/j.jscs.2020.01.002_b0525 article-title: Macroporous poly(L-lactide) scaffold 1. Preparation of a macroporous scaffold by liquid–liquid phase separation of a PLLA–dioxane–water system publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.10121 – volume: 41 start-page: 2423 year: 2006 ident: 10.1016/j.jscs.2020.01.002_b0060 article-title: Preparation of a polyurethane scaffold for tissue engineering made by a combination of salt leaching and freeze-drying of dioxane publication-title: J. Mater. Sci. doi: 10.1007/s10853-006-7065-y – volume: 3 start-page: 249 year: 2014 ident: 10.1016/j.jscs.2020.01.002_b0230 article-title: In situ deposition of plga nanofibers via solution blow spinning publication-title: ACS Macro Lett. doi: 10.1021/mz500049x – volume: 65 start-page: 1 year: 2004 ident: 10.1016/j.jscs.2020.01.002_b0005 article-title: Tissue engineering: current state and perspectives publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-004-1580-z – volume: 74 start-page: 523 year: 2005 ident: 10.1016/j.jscs.2020.01.002_b0355 article-title: Synthetic scaffold morphology controls human dermal connective tissue formation publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.30232 – volume: 122 start-page: 3396 year: 2011 ident: 10.1016/j.jscs.2020.01.002_b0220 article-title: Nano and submicrometric fibers of poly(D, L-lactide) obtained by solution blow spinning: Process and solution variables publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.34410 – start-page: 110 year: 2005 ident: 10.1016/j.jscs.2020.01.002_b0370 article-title: Porous polymeric scaffolds for bone regeneration publication-title: e-Polymers – volume: 103 start-page: 84 year: 2016 ident: 10.1016/j.jscs.2020.01.002_b0280 article-title: Development of micro-fibrous solid dispersions of poorly water-soluble drugs in sucrose using temperature-controlled centrifugal spinning publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2016.03.021 – volume: 10 start-page: 1259 year: 2009 ident: 10.1016/j.jscs.2020.01.002_b0340 article-title: Design of resorbable porous tubular copolyester scaffolds for use in nerve regeneration publication-title: Biomacromolecules doi: 10.1021/bm900093r – ident: 10.1016/j.jscs.2020.01.002_b0165 – volume: 54 start-page: 677 year: 2014 ident: 10.1016/j.jscs.2020.01.002_b0275 article-title: Centrifugal spinning: An alternative approach to fabricate nanofibers at high speed and low cost publication-title: Polym. Rev. doi: 10.1080/15583724.2014.935858 – year: 1994 ident: 10.1016/j.jscs.2020.01.002_b0125 article-title: Biodegradable polymer scaffolds for tissue engineering publication-title: Nat. Biotechnol. – volume: 65 start-page: 315 year: 2016 ident: 10.1016/j.jscs.2020.01.002_b0570 article-title: Potential application of gelatin scaffolds prepared through in situ gas foaming in skin tissue engineering publication-title: Int. J. Polym. Mater. Polym. Biomater. doi: 10.1080/00914037.2015.1119688 – volume: 98 start-page: 543 year: 2010 ident: 10.1016/j.jscs.2020.01.002_b0025 article-title: Spatz cell adhesion strength is controlled by intermolecular spacing of adhesion receptors publication-title: Biophys. J. doi: 10.1016/j.bpj.2009.11.001 – volume: 113 start-page: 143 year: 1991 ident: 10.1016/j.jscs.2020.01.002_b0120 article-title: Tissue engineering by cell transplantation using degradable polymer substrates publication-title: J. Biomech. Eng. doi: 10.1115/1.2891228 – volume: 24 start-page: 2533 year: 2003 ident: 10.1016/j.jscs.2020.01.002_b0360 article-title: Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00052-8 – volume: 9 start-page: 272 year: 2016 ident: 10.1016/j.jscs.2020.01.002_b0200 article-title: Electrospun 3D fibrous Scaffolds for chronic wound repair publication-title: Materials. doi: 10.3390/ma9040272 – volume: 9 start-page: 314- year: 2014 ident: 10.1016/j.jscs.2020.01.002_b0185 article-title: PLGA/nHA hybrid nanofiber scaffold as a nanocargo carrier of insulin for accelerating bone tissue regeneration publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-9-314 – volume: 6 start-page: 13 year: 2011 ident: 10.1016/j.jscs.2020.01.002_b0155 article-title: Nanotechnological strategies for engineering complex tissues publication-title: Nat Nano doi: 10.1038/nnano.2010.246 – volume: 19 start-page: 904 year: 2015 ident: 10.1016/j.jscs.2020.01.002_b0625 article-title: Vitamin D deficiency in Malawian adults with pulmonary tuberculosis: risk factors and treatment outcomes publication-title: Int. J. Tubercul. Lung Disease doi: 10.5588/ijtld.15.0071 – volume: 26 start-page: 315 year: 2010 ident: 10.1016/j.jscs.2020.01.002_b0105 article-title: Mechanical integration of actin and adhesion dynamics in cell migration publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.011209.122036 – volume: 20 start-page: 1 year: 2013 ident: 10.1016/j.jscs.2020.01.002_b0160 article-title: Highly aligned narrow diameter chitosan electrospun nanofibers publication-title: J. Polym. Res. doi: 10.1007/s10965-013-0105-9 – volume: 307 start-page: 69 year: 2014 ident: 10.1016/j.jscs.2020.01.002_b0250 article-title: In vitro deposition of Ca-P nanoparticles on air jet spinning nylon 6 nanofibers scaffold for bone tissue engineering publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.03.161 – volume: 17 start-page: 3243 year: 2012 ident: 10.1016/j.jscs.2020.01.002_b0745 article-title: Biodegradability and biocompatibility study of poly (chitosan-g-lactic acid) scaffolds publication-title: Molecules doi: 10.3390/molecules17033243 – volume: 32 start-page: 477 year: 2004 ident: 10.1016/j.jscs.2020.01.002_b0090 article-title: Polymeric Scaffolds for bone tissue engineering publication-title: Ann. Biomed. Eng. doi: 10.1023/B:ABME.0000017544.36001.8e – volume: 1 start-page: 261 year: 2015 ident: 10.1016/j.jscs.2020.01.002_b0655 article-title: Design and 3D printing of scaffolds and tissues publication-title: Engineering doi: 10.15302/J-ENG-2015061 – volume: 22 start-page: 661 year: 2011 ident: 10.1016/j.jscs.2020.01.002_b0595 article-title: Engineering porous scaffolds using gas-based techniques publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2011.04.005 – volume: 101 start-page: 272 year: 2013 ident: 10.1016/j.jscs.2020.01.002_b0635 article-title: Evaluation of hydrogels for bio-printing applications publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.34326 – volume: 6 start-page: 110557 year: 2016 ident: 10.1016/j.jscs.2020.01.002_b0305 article-title: Fabrication and characterization of electrospinning/3D printing bone tissue engineering scaffold publication-title: RSC Adv. doi: 10.1039/C6RA17718B – volume: 14 start-page: 88 year: 2011 ident: 10.1016/j.jscs.2020.01.002_b0730 article-title: Biomaterials & scaffolds for tissue engineering publication-title: Mater. Today doi: 10.1016/S1369-7021(11)70058-X – volume: 29 start-page: 1 year: 2012 ident: 10.1016/j.jscs.2020.01.002_b0395 article-title: Scaffold: a novel carrier for cell and drug publication-title: Delivery – volume: 122 start-page: 159 year: 2009 ident: 10.1016/j.jscs.2020.01.002_b0095 article-title: Integrin signalling at a glance publication-title: J. Cell Sci. doi: 10.1242/jcs.018093 – volume: 92 start-page: 2964 year: 2007 ident: 10.1016/j.jscs.2020.01.002_b0460 article-title: Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands publication-title: Biophys. J. doi: 10.1529/biophysj.106.089730 – volume: 23 start-page: 2984 year: 2005 ident: 10.1016/j.jscs.2020.01.002_b0450 article-title: Effects of nanoimprinted patterns in tissue-culture polystyrene on cell behavior publication-title: J. Vacuum Sci. Technol. A, Vacuum, Surfaces, Films doi: 10.1116/1.2121729 – volume: 5 start-page: 1933 year: 2004 ident: 10.1016/j.jscs.2020.01.002_b0495 article-title: Biomacromolecules electrostatic self-assembly on 3-dimensional tissue engineering scaffold publication-title: Biomacromolecules doi: 10.1021/bm049753u – volume: 44 start-page: 3297 year: 2005 ident: 10.1016/j.jscs.2020.01.002_b0500 article-title: Peptide-polymer hybrid nanotubes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200462993 – ident: 10.1016/j.jscs.2020.01.002_b0440 doi: 10.1109/iCBEB.2012.220 – volume: 53 start-page: 1 year: 2000 ident: 10.1016/j.jscs.2020.01.002_b0080 article-title: A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive publication-title: J. Biomed. Mater. Res. doi: 10.1002/(SICI)1097-4636(2000)53:1<1::AID-JBM1>3.0.CO;2-R – volume: 5 start-page: 100824 year: 2015 ident: 10.1016/j.jscs.2020.01.002_b0550 article-title: Tunable tissue scaffolds fabricated by in situ crosslink in phase separation system publication-title: RSC Adv. doi: 10.1039/C5RA19406G – volume: 8 start-page: 655 year: 2008 ident: 10.1016/j.jscs.2020.01.002_b0590 article-title: Open-pore biodegradable foams prepared via gas foaming and microparticulate templating publication-title: Macromol. Biosci. doi: 10.1002/mabi.200700278 – ident: 10.1016/j.jscs.2020.01.002_b0530 doi: 10.22203/eCM.v005a03 – ident: 10.1016/j.jscs.2020.01.002_b0580 doi: 10.1016/S1573-4285(06)80003-7 – volume: 10 start-page: 2257 year: 2010 ident: 10.1016/j.jscs.2020.01.002_b0285 article-title: Nanofiber assembly by rotary jet-spinning publication-title: Nano Lett. doi: 10.1021/nl101355x – volume: 30 start-page: 1587 year: 2009 ident: 10.1016/j.jscs.2020.01.002_b0630 article-title: Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.12.009 – volume: 2011 year: 2011 ident: 10.1016/j.jscs.2020.01.002_b0755 article-title: Polymeric scaffolds in tissue engineering application: a review publication-title: Int. J. Polymer Sci. doi: 10.1155/2011/290602 – volume: 110 start-page: 673 year: 2002 ident: 10.1016/j.jscs.2020.01.002_b0100 article-title: Integrins: bidirectional, allosteric signaling machines publication-title: Cell doi: 10.1016/S0092-8674(02)00971-6 – volume: 4 start-page: 86 year: 2004 ident: 10.1016/j.jscs.2020.01.002_b0680 article-title: Design of nonwoven scaffold structures for tissue engineering of the anterior cruciate ligament publication-title: AUTEX Res. J. doi: 10.1515/aut-2004-040205 – volume: 20 start-page: 1 year: 2013 ident: 10.1016/j.jscs.2020.01.002_b0170 article-title: Fabrication of highly porous PMMA electrospun fibers and their application in the removal of phenol and iodine publication-title: J. Polym. Res. doi: 10.1007/s10965-013-0158-9 – volume: 259 start-page: 228 year: 2003 ident: 10.1016/j.jscs.2020.01.002_b0705 article-title: The effect of surface wettability on induction and growth of neurites from the PC-12 cell on a polymer surface publication-title: J. Colloid Interface Sci. doi: 10.1016/S0021-9797(02)00163-7 – volume: 16 start-page: 1093 year: 2005 ident: 10.1016/j.jscs.2020.01.002_b0325 article-title: Microspheres leaching for scaffold porosity control publication-title: J. Mater. Sci. - Mater. Med. doi: 10.1007/s10856-005-4711-x – volume: 43 start-page: 251 year: 2013 ident: 10.1016/j.jscs.2020.01.002_b0330 article-title: Advances in the design of macroporous polymer scaffolds for potential applications in dentistry publication-title: J. Period. Implant Sci. doi: 10.5051/jpis.2013.43.6.251 – volume: 27 start-page: 183 year: 1993 ident: 10.1016/j.jscs.2020.01.002_b0130 article-title: Preparation of poly (glycolic acid) bonded fiber structures for cell attachment and transplantation publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.820270207 – ident: 10.1016/j.jscs.2020.01.002_b0465 doi: 10.2144/000114245 – volume: 2 year: 2010 ident: 10.1016/j.jscs.2020.01.002_b0695 article-title: Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification publication-title: Biofabrication. – volume: 23 start-page: 4739 year: 2002 ident: 10.1016/j.jscs.2020.01.002_b0375 article-title: A three-dimensional osteochondral composite scaffold for articular cartilage repair publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00223-5 – volume: 4 start-page: 1198 year: 2008 ident: 10.1016/j.jscs.2020.01.002_b0615 article-title: Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration publication-title: Acta Biomater. doi: 10.1016/j.actbio.2008.03.019 – volume: 2 start-page: 8229 year: 2012 ident: 10.1016/j.jscs.2020.01.002_b0620 article-title: Biodegradable soft elastomers: synthesis/properties of materials and fabrication of scaffolds publication-title: RSC Adv. doi: 10.1039/c2ra20736b – ident: 10.1016/j.jscs.2020.01.002_b0430 doi: 10.1080/19443994.2015.1085915 – volume: 5 start-page: 383 year: 2004 ident: 10.1016/j.jscs.2020.01.002_b0455 article-title: Activation of integrin function by nanopatterned adhesive interfaces publication-title: ChemPhysChem doi: 10.1002/cphc.200301014 – volume: 19 start-page: 221 year: 2013 ident: 10.1016/j.jscs.2020.01.002_b0560 article-title: The future of carbon dioxide for polymer processing in tissue engineering publication-title: Tissue Eng. Part B, Rev. doi: 10.1089/ten.teb.2012.0361 – volume: 133 year: 2016 ident: 10.1016/j.jscs.2020.01.002_b0225 article-title: Poly(lactic acid) fibers obtained by solution blow spinning: Effect of a greener solvent on the fiber diameter publication-title: J. Appl. Polymer Sci. doi: 10.1002/app.43379 – volume: 17 start-page: 63 year: 2001 ident: 10.1016/j.jscs.2020.01.002_b0425 article-title: Development of biodegradable porous scaffolds for tissue engineering publication-title: Mater. Sci. Eng., C doi: 10.1016/S0928-4931(01)00338-1 – volume: 29 start-page: 1920 year: 2011 ident: 10.1016/j.jscs.2020.01.002_b0020 article-title: Innovation in monitoring food freeze drying publication-title: Drying Technol. doi: 10.1080/07373937.2011.596299 – volume: 2014 year: 2014 ident: 10.1016/j.jscs.2020.01.002_b0600 article-title: An overview of various biomimetic scaffolds: Challenges and applications in tissue engineering publication-title: J. Tissue Sci. Eng. – volume: 40 start-page: 15403 year: 2014 ident: 10.1016/j.jscs.2020.01.002_b0260 article-title: Facile preparation of titanium dioxide micro/nanofibers and tubular structures by air jet spinning publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2014.06.028 – volume: 18 start-page: 3566 year: 2008 ident: 10.1016/j.jscs.2020.01.002_b0085 article-title: Nanostructured biomaterials for regeneration publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200800662 – volume: 9 start-page: 1095 year: 2000 ident: 10.1016/j.jscs.2020.01.002_b0505 article-title: Conformational behavior of ionic self-complementary peptides publication-title: Protein Sci. doi: 10.1110/ps.9.6.1095 – start-page: 146 year: 2007 ident: 10.1016/j.jscs.2020.01.002_b0765 article-title: The mechanical properties of bone tissue engineering scaffold fabricating via selective laser sintering – volume: 3 start-page: 835 year: 2006 ident: 10.1016/j.jscs.2020.01.002_b0365 article-title: Design and preparation of polymeric scaffolds for tissue engineering publication-title: Expert Rev. Med. Devices doi: 10.1586/17434440.3.6.835 – volume: 37 start-page: 1027 year: 1996 ident: 10.1016/j.jscs.2020.01.002_b0545 article-title: Biodegradable and macroporous polylactide implants for cell transplantation: 1. Preparation of macroporous polylactide supports by solid-liquid phase separation publication-title: Polymer doi: 10.1016/0032-3861(96)87287-9 – year: 2010 ident: 10.1016/j.jscs.2020.01.002_b0535 – volume: 41 start-page: 1725 year: 2006 ident: 10.1016/j.jscs.2020.01.002_b0310 article-title: Fabrication of three dimensional polymeric scaffolds with spherical pores publication-title: J. Mater. Sci. doi: 10.1007/s10853-006-2873-7 – volume: 1 start-page: 2 year: 2016 ident: 10.1016/j.jscs.2020.01.002_b0640 article-title: 3D Printing of Scaffold for cells delivery: advances in skin tissue engineering publication-title: Polymers – volume: 6 start-page: 1958 year: 2010 ident: 10.1016/j.jscs.2020.01.002_b0040 article-title: Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.12.007 – volume: 19 start-page: 1405 year: 1998 ident: 10.1016/j.jscs.2020.01.002_b0380 article-title: Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers publication-title: Biomaterials doi: 10.1016/S0142-9612(98)00021-0 – volume: 36 start-page: 20 year: 2014 ident: 10.1016/j.jscs.2020.01.002_b0715 article-title: Investigation of the sample preparation and curing treatment effects on mechanical properties and bioactivity of silica rich metakaolin geopolymer publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2013.11.026 – volume: 4 year: 2012 ident: 10.1016/j.jscs.2020.01.002_b0065 article-title: PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation publication-title: Biofabrication – volume: 93 start-page: 142 year: 2016 ident: 10.1016/j.jscs.2020.01.002_b0240 article-title: Morphology control of bi-component polymer nanofibers produced by gas jet process publication-title: Polymer doi: 10.1016/j.polymer.2016.04.018 – volume: 97 start-page: 1970 year: 2000 ident: 10.1016/j.jscs.2020.01.002_b0670 article-title: Macroporous polymer foams by hydrocarbon templating publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.97.5.1970 – volume: 4 start-page: 811 year: 2004 ident: 10.1016/j.jscs.2020.01.002_b0665 article-title: Production and characterization of chitosan fibers and 3-D fiber mesh scaffolds for tissue engineering applications publication-title: Macromol. Biosci. doi: 10.1002/mabi.200300100 – volume: 65 start-page: 358 year: 2016 ident: 10.1016/j.jscs.2020.01.002_b0400 article-title: A review on the micro-and nanoporous polymeric foams: Preparation and properties publication-title: Int. J. Polym. Mater. Polym. Biomater. doi: 10.1080/00914037.2015.1129948 – volume: 4 year: 2009 ident: 10.1016/j.jscs.2020.01.002_b0690 article-title: Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts publication-title: Biomed. Mater. – volume: 4 year: 2012 ident: 10.1016/j.jscs.2020.01.002_b0010 article-title: Engineering complex tissues publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3004890 – volume: 18 start-page: 241 year: 2007 ident: 10.1016/j.jscs.2020.01.002_b0150 article-title: Nanostructured materials for applications in drug delivery and tissue engineering publication-title: J. Biomater. Sci. Polym. Ed. doi: 10.1163/156856207779996931 – volume: 1 start-page: 61 year: 2008 ident: 10.1016/j.jscs.2020.01.002_b0015 article-title: Three-dimensional cell culture matrices: state of the art publication-title: Tissue Eng. Part B: Rev. – volume: 22 start-page: 1873 year: 2011 ident: 10.1016/j.jscs.2020.01.002_b0045 article-title: Poly (lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering publication-title: J. Mater. Sci. - Mater. Med. doi: 10.1007/s10856-011-4374-8 – volume: 24 start-page: 320 year: 2014 ident: 10.1016/j.jscs.2020.01.002_b0710 article-title: Synthesis and chemical characterization of new silica polyethylene glycol hybrid nanocomposite materials for controlled drug delivery publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/S1773-2247(14)50069-X – volume: 1 start-page: 1 year: 1996 ident: 10.1016/j.jscs.2020.01.002_b0445 article-title: Morphogenetic guidance cues can interact synergistically and hierarchically in steering nerve cell growth publication-title: Experiment. Biol. Online doi: 10.1007/s00898-996-0002-3 – volume: 3 start-page: 232 year: 2002 ident: 10.1016/j.jscs.2020.01.002_b0770 article-title: Electrospinning of Collagen Nanofibers publication-title: Biomacromolecules doi: 10.1021/bm015533u – volume: 57 start-page: 17523 year: 2016 ident: 10.1016/j.jscs.2020.01.002_b0175 article-title: Synthesis of chitosan based semi-IPN hydrogels using epichlorohydrine as crosslinker to study the adsorption kinetics of Rhodamine B publication-title: Desalin. Water Treat. doi: 10.1080/19443994.2015.1085915 – ident: 10.1016/j.jscs.2020.01.002_b0270 – volume: 176 start-page: 122 year: 2016 ident: 10.1016/j.jscs.2020.01.002_b0210 article-title: Aqueous solution blow spinning of poly(vinyl alcohol) micro- and nanofibers publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.04.101 – volume: 37 start-page: 187 year: 2014 ident: 10.1016/j.jscs.2020.01.002_b0735 article-title: Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation publication-title: Int. J. Artificial Organs doi: 10.5301/ijao.5000307 – ident: 10.1016/j.jscs.2020.01.002_b0335 – volume: 1 start-page: 1032 year: 2012 ident: 10.1016/j.jscs.2020.01.002_b0235 article-title: Nanofibers from scalable gas jet process publication-title: ACS Macro Lett. doi: 10.1021/mz300297g – volume: 35 start-page: 1068 year: 1994 ident: 10.1016/j.jscs.2020.01.002_b0675 article-title: Preparation and characterization of poly (L-lactic acid) foams publication-title: Polymer doi: 10.1016/0032-3861(94)90953-9 – volume: 86 start-page: 1739 year: 2012 ident: 10.1016/j.jscs.2020.01.002_b0055 article-title: Rarefied gas dynamics aspects of pharmaceutical freeze-drying publication-title: Vacuum doi: 10.1016/j.vacuum.2012.03.025 – volume: 17 start-page: 1523 year: 2014 ident: 10.1016/j.jscs.2020.01.002_b0720 article-title: Surface characterization and osteoblast-like Cells culture on collagen modified PLDLA scaffolds publication-title: Mater. Res. doi: 10.1590/1516-1439.269414 – volume: 7 start-page: 23 year: 2001 ident: 10.1016/j.jscs.2020.01.002_b0315 article-title: Biodegradable polymer scaffolds with well-defined interconnected spherical pore network publication-title: Tissue Eng. doi: 10.1089/107632701300003269 – year: 2007 ident: 10.1016/j.jscs.2020.01.002_b0540 – volume: 102 start-page: 635 year: 2013 ident: 10.1016/j.jscs.2020.01.002_b0255 article-title: Air jet spinning of hydroxyapatite/poly(lactic acid) hybrid nanocomposite membrane mats for bone tissue engineering publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2012.09.017 – volume: 3 start-page: 173 year: 2012 ident: 10.1016/j.jscs.2020.01.002_b0575 article-title: Gas-foamed scaffold gradients for combinatorial screening in 3D publication-title: J. Funct. Biomater. doi: 10.3390/jfb3010173 – volume: 24 start-page: 1937 year: 2003 ident: 10.1016/j.jscs.2020.01.002_b0070 article-title: Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00562-8 – volume: 3 start-page: 799 year: 2012 ident: 10.1016/j.jscs.2020.01.002_b0135 article-title: Strategic design and fabrication of engineered scaffolds for articular cartilage repair publication-title: J. Funct. Biomater. doi: 10.3390/jfb3040799 – volume: 2013 start-page: 9 year: 2013 ident: 10.1016/j.jscs.2020.01.002_b0195 article-title: Fabrication of pamidronic acid-immobilized TiO2/hydroxyapatite composite nanofiber mats for biomedical applications publication-title: J. Nanomater. doi: 10.1155/2013/404210 – volume: 260 start-page: 920 year: 1993 ident: 10.1016/j.jscs.2020.01.002_b0740 article-title: Tissue engineering publication-title: Science doi: 10.1126/science.8493529 – volume: 21 start-page: 1171 year: 2003 ident: 10.1016/j.jscs.2020.01.002_b0475 article-title: Fabrication of novel biomaterials through molecular self-assembly publication-title: Nat Biotech. doi: 10.1038/nbt874 – volume: 19 start-page: 485 year: 2013 ident: 10.1016/j.jscs.2020.01.002_b0390 article-title: Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size publication-title: Tissue Eng. Part B: Rev. doi: 10.1089/ten.teb.2012.0437 – volume: 74 start-page: 319 year: 2016 ident: 10.1016/j.jscs.2020.01.002_b0295 article-title: Preparation, ferromagnetic and photocatalytic performance of NiO and hollow Co3O4 fibers through centrifugal-spinning technique publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2015.10.042 – volume: 8 start-page: 1411 year: 2013 ident: 10.1016/j.jscs.2020.01.002_b0110 article-title: Spatial organization of cell-adhesive ligands for advanced cell culture publication-title: Biotechnol. J. doi: 10.1002/biot.201300302 – start-page: 155 year: 2005 ident: 10.1016/j.jscs.2020.01.002_b0585 – start-page: 275 year: 2011 ident: 10.1016/j.jscs.2020.01.002_b0555 article-title: Scaffolds for tissue engineering via thermally induced phase separation publication-title: Adv. Regener. Med. InTech – volume: 22 start-page: 2563 year: 2001 ident: 10.1016/j.jscs.2020.01.002_b0420 article-title: Preparation of poly(l-lactic acid) and poly(dl-lactic-co-glycolic acid) foams by use of ice microparticulates publication-title: Biomaterials doi: 10.1016/S0142-9612(00)00447-6 – volume: 6 start-page: 1227 year: 2010 ident: 10.1016/j.jscs.2020.01.002_b0050 article-title: Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.10.051 – volume: 55 start-page: 1609 year: 2015 ident: 10.1016/j.jscs.2020.01.002_b0180 article-title: Adsorption kinetic and isotherm of methylene blue, safranin T and rhodamine B onto electrospun ethylenediamine-grafted-polyacrylonitrile nanofibers membrane publication-title: Desalin. Water Treat. doi: 10.1080/19443994.2014.926840 – volume: 17 start-page: 93 year: 1996 ident: 10.1016/j.jscs.2020.01.002_b0115 article-title: Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers publication-title: Biomaterials doi: 10.1016/0142-9612(96)85754-1 – volume: 61 start-page: 1189 year: 2001 ident: 10.1016/j.jscs.2020.01.002_b0750 article-title: Biomedical applications of polymer-composite materials: a review publication-title: Compos. Sci. Technol. doi: 10.1016/S0266-3538(00)00241-4 – volume: 55 start-page: 569 year: 2015 ident: 10.1016/j.jscs.2020.01.002_b0650 article-title: Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2015.06.002 – volume: 25 start-page: 5735 year: 2004 ident: 10.1016/j.jscs.2020.01.002_b0760 article-title: The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.01.066 – volume: 97 start-page: 6728 year: 2000 ident: 10.1016/j.jscs.2020.01.002_b0485 article-title: Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.97.12.6728 – volume: 77 start-page: 280 year: 2008 ident: 10.1016/j.jscs.2020.01.002_b0700 article-title: Plasma surface modification of poly (l-lactic acid) and poly (lactic-co-glycolic acid) films for improvement of nerve cells adhesion publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2007.05.013 – volume: 18 start-page: 1220 year: 2008 ident: 10.1016/j.jscs.2020.01.002_b0030 article-title: Temperature-induced hydrogels through self-assembly of cholesterol-substituted star PEG-b-PLLA copolymers: an injectable Scaffold for tissue engineering publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200700587 – volume: 5 start-page: 105313 year: 2015 ident: 10.1016/j.jscs.2020.01.002_b0245 article-title: Bi-component inorganic oxide nanofibers from gas jet fiber spinning process publication-title: RSC Adv. doi: 10.1039/C5RA20963C – volume: 14 start-page: 218 year: 2011 ident: 10.1016/j.jscs.2020.01.002_b0035 article-title: Tissue engineering by self-assembly publication-title: Mater. Today doi: 10.1016/S1369-7021(11)70117-1 – volume: 2015 start-page: 12 year: 2015 ident: 10.1016/j.jscs.2020.01.002_b0190 article-title: BMP-2 grafted nHA/PLGA hybrid nanofiber scaffold stimulates osteoblastic cells growth publication-title: Biomed Res. Int. doi: 10.1155/2015/281909 – volume: 87 start-page: 487 year: 2005 ident: 10.1016/j.jscs.2020.01.002_b0320 article-title: Fabrication and structural characterization of porous biodegradable poly(dl-lactic-co-glycolic acid) scaffolds with controlled range of pore sizes publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2004.10.005 – volume: 33 start-page: 535 year: 2010 ident: 10.1016/j.jscs.2020.01.002_b0470 article-title: Microcontact printing of fibronectin on a biodegradable polymeric surface for skeletal muscle cell orientation publication-title: Int. J. Artif. Organs doi: 10.1177/039139881003300804 – volume: 6 start-page: 3640 year: 2010 ident: 10.1016/j.jscs.2020.01.002_b0415 article-title: Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.03.004 – volume: 20 start-page: 321 year: 2002 ident: 10.1016/j.jscs.2020.01.002_b0480 article-title: Emerging biological materials through molecular self-assembly publication-title: Biotechnol. Adv. doi: 10.1016/S0734-9750(02)00026-5 – volume: 34 start-page: 2389 year: 2013 ident: 10.1016/j.jscs.2020.01.002_b0265 article-title: The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.12.020 – volume: 5 start-page: 847 year: 2010 ident: 10.1016/j.jscs.2020.01.002_b0645 article-title: Laser printing of skin cells and human stem cells publication-title: Tissue Eng. Part C Methods doi: 10.1089/ten.tec.2009.0397 – volume: 21 start-page: 191 year: 2012 ident: 10.1016/j.jscs.2020.01.002_b0345 article-title: Fabrication of a porous wall and higher interconnectivity scaffold comprising gelatin/chitosan via combination of salt-leaching and lyophilization methods publication-title: Iran. Polym. J. doi: 10.1007/s13726-012-0019-0 – volume: 132 start-page: n/a-n/a year: 2015 ident: 10.1016/j.jscs.2020.01.002_b0215 article-title: Generation of nanofibers via electrostatic-Induction-assisted solution blow spinning publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.42326 – start-page: 743 year: 2004 ident: 10.1016/j.jscs.2020.01.002_b0520 article-title: Synthetic Bioresorbable polymer scaffolds – start-page: 245 year: 1995 ident: 10.1016/j.jscs.2020.01.002_b0610 article-title: Biodegradable polymer scaffolds to regenerate organs – year: 2016 ident: 10.1016/j.jscs.2020.01.002_b0205 article-title: Pamidronic acid-grafted nHA/PLGA hybrid nanofiber scaffolds as suppressant to osteoclastic cells viability and promoter to osteoblastic cells activity publication-title: J. Mater. Chem. B doi: 10.1039/C6TB02083F – ident: 10.1016/j.jscs.2020.01.002_b0385 – volume: 48 start-page: 63 year: 2015 ident: 10.1016/j.jscs.2020.01.002_b0565 article-title: Gelatin porous scaffolds fabricated using a modified gas foaming technique: characterisation and cytotoxicity assessment publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2014.10.074 – volume: 10 year: 2014 ident: 10.1016/j.jscs.2020.01.002_b0685 article-title: Biomaterials as porous scaffolds for tissue engineering applications: A review publication-title: Eur. Sci. J. – volume: 8 start-page: 63 year: 1997 ident: 10.1016/j.jscs.2020.01.002_b0350 article-title: Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing publication-title: J. Biomater. Sci. Polym. Ed. doi: 10.1163/156856297X00588 – year: 2013 ident: 10.1016/j.jscs.2020.01.002_b0605 |
SSID | ssj0000070208 |
Score | 2.5414855 |
Snippet | With the advancement in tissue engineering, researchers are working hard on new techniques to fabricate more advanced scaffolds from biocompatible polymers... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 186 |
SubjectTerms | Biocompatible polymeric Scaffolds Biomedical application Scaffolds fabrication techniques Tissue engineering |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09b9swECWKLOlSNB9F3SYBh2yBUFIiJbmbYzQIMmRKgGwEjyILB4YcRO7Qv5FfnDuSMjS5S0dJFCXwEbxH3t07xi4ByqYMvirmwTaFajQUQJlc0kmrHVrceYhqn_f17aO6e9JPk1JfFBOW5IHTwP3oag_IekE4WynrtVUapIMamQzMVdvR6os2b7KZSsS3oeqTcbcl57g_ElXOmEnBXc-DI63uUkTNznymMlqlKN4_MU4Tg3PzmX3KTJEv0h8esQ--P2aHy7FA2wl7WyT__cBXPUcexwdnQ9isu4EHC6_5MI7vVFoHTkHuvzmsNjHyfLuCtecvm_VfOrvmtu94dBvwlJJP6PGJf_snX-S-4gNsTclIUecZr1MKzCl7vPn1sLwtcomFwikptkXtKt11tUPEbBlKK1uwgSigs3WHbCHgWigkgG-hlUq6lryCNXKcUoDwoau-sIN-0_uvjHuvhXQVkGdSQQmtAl_VUIqmsQi6njE5DrFxWX-cymCszRho9mwIFkOwGCENwjJjV7t3XpL6xt7W14TcriUpZ8cbOJ9Mnk_mX_NpxvSIu8kkJJEL7Gq15-Pf_sfHv7OP1GWKCj9jB9vXP_4cSc8WLuL8fgeqSQEc priority: 102 providerName: Directory of Open Access Journals |
Title | Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: A technical and statistical review |
URI | https://dx.doi.org/10.1016/j.jscs.2020.01.002 https://doaj.org/article/d6eb559b0ca34ae5a45b1cb6115b948d |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaCZGiXoukDdR8Gh26FYJIiJbmbYiQIPHRJA3gjeBQZKDAkw3KG_o3-4vIoynCXDBlFHSmBdzge7_EdId8BRCm8y7OlN2UmSwUZYCUXt9woG07cpY9on7-K23u53qjNGVlNtTCYVpl0_6jTo7ZOI4u0m4td2y7uOEoP4sEFOcWrQ9DDuaxiEd_m6uhnQTwbERvTIX2GE1LtzJjm9ThYRO0WLKJ3Ju_KdD5FGP-TY-rk6Ll5S94km5HW429dkjPXvSOvVlOrtvfkbz1G8gfadjRYdHSwxvt-2wzUG9gntxw94rUOFNPdHyi0fcxBP7SwdXTXb_-gF5uarqExgEDH4nzkIz2JdP-kdVorvgjUWJYUEZ_D81gM84Hc31z_Xt1mqdlCZiVnh6ywuWqawgbeGeGF4RUYj8agNUUT7AYftCLjAK6CiktuK4wPFsHaEQyY803-kZx3fec-EeqcYtzmgDFKCQIqCS4vQLCyNIH9akb4tMXaJiRybIix1VPK2aNGtmhki2ZcB7bMyI_jnN2Iw_Es9RVy7kiJGNpxoN8_6CREuikchPsUMGtyaZwyUgG3UAQbGZayamZETXzX_4lkWKp95uOfXzjvC3mNT2NK-Fdyftg_uW_B4jnAnFzU9fpuPY8eg3kU8H8y5AMs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbSdEiXok_U6YtDt0IwSZGS3M0xGjhtmqUJ4I3gUWSgwJAMyx3yN_KLy6Mow10ydBTFowTe4Xi8x3eEfAEQpfAuz2belJksFWSAlVzccqNsOHFnPqJ9XhXLG_ljpVZHZDHWwmBaZdL9g06P2jqNTNNuTjdNM_3NUXoQDy7IKV4dnpCnwRoosX_Dxeps72hBQBsRO9MhQYYUqXhmyPO66y3CdgsW4TuTe2U8oCKO_8E5dXD2nL8gz5PRSOfDf70kR659RU4WY6-21-RhPoTye9q0NJh0tLfG-25d99Qb2Ca_HN0DtvYU891vKTRdTELfNbB2dNOt79GNTU1b0xhBoEN1PjKSHoS6v9F5Wiu-CLOxLilCPofnoRrmDbk5_369WGap20JmJWe7rLC5quvCBuYZ4YXhFRiP1qA1RR0MBx_UIuMAroKKS24rDBAWwdwRDJjzdf6WHLdd694R6pxi3OaAQUoJAioJLi9AsLI0gf9qQvi4xdomKHLsiLHWY87ZnUa2aGSLZlwHtkzI1z3NZgDieHT2GXJuPxNBtONAt73VSYp0XTgIFypg1uTSOGWkAm6hCEYyzGRVT4ga-a7_kcmwVPPIx0__k-4zOVle_7rUlxdXP9-TZ_hmyA__QI532z_uYzB_dvApivdf_nUDyg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+the+scaffolds+fabrication+techniques+using+biocompatible+polymers+and+their+biomedical+application%3A+A+technical+and+statistical+review&rft.jtitle=Journal+of+Saudi+Chemical+Society&rft.au=Haider%2C+Adnan&rft.au=Haider%2C+Sajjad&rft.au=Rao+Kummara%2C+Madhusudana&rft.au=Kamal%2C+Tahseen&rft.date=2020-02-01&rft.pub=Elsevier+B.V&rft.issn=1319-6103&rft.volume=24&rft.issue=2&rft.spage=186&rft.epage=215&rft_id=info:doi/10.1016%2Fj.jscs.2020.01.002&rft.externalDocID=S1319610320300028 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1319-6103&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1319-6103&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1319-6103&client=summon |