Removal of hexanal in cooking fume by combination of storage and plasma-catalytic oxidation on alkali-modified Co-Mn solid solution
Cooking oil fumes as an important source of volatile organic compounds in metropolitan areas are poisonous to the environment and human health. In this study, the removal of hexanal (a representative of cooking fume) using “storage-plasma catalytic oxidation” at ambient conditions has been investiga...
Saved in:
Published in | Chemosphere (Oxford) Vol. 220; pp. 738 - 747 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cooking oil fumes as an important source of volatile organic compounds in metropolitan areas are poisonous to the environment and human health. In this study, the removal of hexanal (a representative of cooking fume) using “storage-plasma catalytic oxidation” at ambient conditions has been investigated. Alkali-modified Co-Mn catalysts were synthesized by coprecipitation method and further characterized by XRD, SEM, N2 adsorption–desorption, H2-TPR, O2-TPD and XPS techniques. It was clearly shown that the Na modification afforded a remarkable enhancement in the hexanal storage capacity, which is ascribed to the formation of surface hydroxyls that resulted in the chemical adsorption. Moreover, the plasma-catalytic oxidation results showed 99.4% hexanal removal and 85.7% CO2 selectivity at a GHSV of 47700 h−1. XPS results revealed that Na modification promoted the formation of more abundant Co3+, Mn3+ cations and surface adsorbed oxygen species, thus facilitated the oxidation process. In-situ FTIR results revealed that Na modification could trigger disproportionation reaction, resulting in the transformation of adsorbed hexanal into alcohol and carboxylic acid thus further speeds up the oxidation rate. This work provides a low-cost, highly efficient and energy-consuming approach for the removal of gaseous cooking fume by storage and plasma catalytic oxidation cycle at room temperature.
Na modification led to the formation of hydroxyl group, promoted chemical adsorption of hexanal, thus facilitated the catalytic oxidation reaction. [Display omitted]
•Alkali-modified Co-Mn solid solution catalysts were successfully prepared by coprecipitation method.•CoMn-Na shows superior hexanal storage capacity due to the surface hydroxyls that resulted in the chemical adsorption.•Disproportionation of hexanal into alcohol and carboxylic acid further speeds up the oxidation rate.•The “storage-plasma oxidation” system offers a highly efficient and energy-consuming approach for VOCs removal in the cooking fume. |
---|---|
AbstractList | Cooking oil fumes as an important source of volatile organic compounds in metropolitan areas are poisonous to the environment and human health. In this study, the removal of hexanal (a representative of cooking fume) using “storage-plasma catalytic oxidation” at ambient conditions has been investigated. Alkali-modified Co-Mn catalysts were synthesized by coprecipitation method and further characterized by XRD, SEM, N2 adsorption–desorption, H2-TPR, O2-TPD and XPS techniques. It was clearly shown that the Na modification afforded a remarkable enhancement in the hexanal storage capacity, which is ascribed to the formation of surface hydroxyls that resulted in the chemical adsorption. Moreover, the plasma-catalytic oxidation results showed 99.4% hexanal removal and 85.7% CO2 selectivity at a GHSV of 47700 h−1. XPS results revealed that Na modification promoted the formation of more abundant Co3+, Mn3+ cations and surface adsorbed oxygen species, thus facilitated the oxidation process. In-situ FTIR results revealed that Na modification could trigger disproportionation reaction, resulting in the transformation of adsorbed hexanal into alcohol and carboxylic acid thus further speeds up the oxidation rate. This work provides a low-cost, highly efficient and energy-consuming approach for the removal of gaseous cooking fume by storage and plasma catalytic oxidation cycle at room temperature.
Na modification led to the formation of hydroxyl group, promoted chemical adsorption of hexanal, thus facilitated the catalytic oxidation reaction. [Display omitted]
•Alkali-modified Co-Mn solid solution catalysts were successfully prepared by coprecipitation method.•CoMn-Na shows superior hexanal storage capacity due to the surface hydroxyls that resulted in the chemical adsorption.•Disproportionation of hexanal into alcohol and carboxylic acid further speeds up the oxidation rate.•The “storage-plasma oxidation” system offers a highly efficient and energy-consuming approach for VOCs removal in the cooking fume. Cooking oil fumes as an important source of volatile organic compounds in metropolitan areas are poisonous to the environment and human health. In this study, the removal of hexanal (a representative of cooking fume) using "storage-plasma catalytic oxidation" at ambient conditions has been investigated. Alkali-modified Co-Mn catalysts were synthesized by coprecipitation method and further characterized by XRD, SEM, N adsorption-desorption, H -TPR, O -TPD and XPS techniques. It was clearly shown that the Na modification afforded a remarkable enhancement in the hexanal storage capacity, which is ascribed to the formation of surface hydroxyls that resulted in the chemical adsorption. Moreover, the plasma-catalytic oxidation results showed 99.4% hexanal removal and 85.7% CO selectivity at a GHSV of 47700 h . XPS results revealed that Na modification promoted the formation of more abundant Co , Mn cations and surface adsorbed oxygen species, thus facilitated the oxidation process. In-situ FTIR results revealed that Na modification could trigger disproportionation reaction, resulting in the transformation of adsorbed hexanal into alcohol and carboxylic acid thus further speeds up the oxidation rate. This work provides a low-cost, highly efficient and energy-consuming approach for the removal of gaseous cooking fume by storage and plasma catalytic oxidation cycle at room temperature. Cooking oil fumes as an important source of volatile organic compounds in metropolitan areas are poisonous to the environment and human health. In this study, the removal of hexanal (a representative of cooking fume) using “storage-plasma catalytic oxidation” at ambient conditions has been investigated. Alkali-modified Co-Mn catalysts were synthesized by coprecipitation method and further characterized by XRD, SEM, N₂ adsorption–desorption, H₂-TPR, O₂-TPD and XPS techniques. It was clearly shown that the Na modification afforded a remarkable enhancement in the hexanal storage capacity, which is ascribed to the formation of surface hydroxyls that resulted in the chemical adsorption. Moreover, the plasma-catalytic oxidation results showed 99.4% hexanal removal and 85.7% CO₂ selectivity at a GHSV of 47700 h⁻¹. XPS results revealed that Na modification promoted the formation of more abundant Co³⁺, Mn³⁺ cations and surface adsorbed oxygen species, thus facilitated the oxidation process. In-situ FTIR results revealed that Na modification could trigger disproportionation reaction, resulting in the transformation of adsorbed hexanal into alcohol and carboxylic acid thus further speeds up the oxidation rate. This work provides a low-cost, highly efficient and energy-consuming approach for the removal of gaseous cooking fume by storage and plasma catalytic oxidation cycle at room temperature. Cooking oil fumes as an important source of volatile organic compounds in metropolitan areas are poisonous to the environment and human health. In this study, the removal of hexanal (a representative of cooking fume) using "storage-plasma catalytic oxidation" at ambient conditions has been investigated. Alkali-modified Co-Mn catalysts were synthesized by coprecipitation method and further characterized by XRD, SEM, N2 adsorption-desorption, H2-TPR, O2-TPD and XPS techniques. It was clearly shown that the Na modification afforded a remarkable enhancement in the hexanal storage capacity, which is ascribed to the formation of surface hydroxyls that resulted in the chemical adsorption. Moreover, the plasma-catalytic oxidation results showed 99.4% hexanal removal and 85.7% CO2 selectivity at a GHSV of 47700 h-1. XPS results revealed that Na modification promoted the formation of more abundant Co3+, Mn3+ cations and surface adsorbed oxygen species, thus facilitated the oxidation process. In-situ FTIR results revealed that Na modification could trigger disproportionation reaction, resulting in the transformation of adsorbed hexanal into alcohol and carboxylic acid thus further speeds up the oxidation rate. This work provides a low-cost, highly efficient and energy-consuming approach for the removal of gaseous cooking fume by storage and plasma catalytic oxidation cycle at room temperature.Cooking oil fumes as an important source of volatile organic compounds in metropolitan areas are poisonous to the environment and human health. In this study, the removal of hexanal (a representative of cooking fume) using "storage-plasma catalytic oxidation" at ambient conditions has been investigated. Alkali-modified Co-Mn catalysts were synthesized by coprecipitation method and further characterized by XRD, SEM, N2 adsorption-desorption, H2-TPR, O2-TPD and XPS techniques. It was clearly shown that the Na modification afforded a remarkable enhancement in the hexanal storage capacity, which is ascribed to the formation of surface hydroxyls that resulted in the chemical adsorption. Moreover, the plasma-catalytic oxidation results showed 99.4% hexanal removal and 85.7% CO2 selectivity at a GHSV of 47700 h-1. XPS results revealed that Na modification promoted the formation of more abundant Co3+, Mn3+ cations and surface adsorbed oxygen species, thus facilitated the oxidation process. In-situ FTIR results revealed that Na modification could trigger disproportionation reaction, resulting in the transformation of adsorbed hexanal into alcohol and carboxylic acid thus further speeds up the oxidation rate. This work provides a low-cost, highly efficient and energy-consuming approach for the removal of gaseous cooking fume by storage and plasma catalytic oxidation cycle at room temperature. |
Author | Shangguan, Wenfeng Yao, Xin Wei, Zhidong Chen, Mingxia Gao, Mengxiang |
Author_xml | – sequence: 1 givenname: Xin surname: Yao fullname: Yao, Xin – sequence: 2 givenname: Mengxiang surname: Gao fullname: Gao, Mengxiang – sequence: 3 givenname: Zhidong surname: Wei fullname: Wei, Zhidong – sequence: 4 givenname: Mingxia orcidid: 0000-0001-8775-0987 surname: Chen fullname: Chen, Mingxia – sequence: 5 givenname: Wenfeng surname: Shangguan fullname: Shangguan, Wenfeng email: shangguan@sjtu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30611072$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFv1DAQhS1URLeFv4DMjUsWj5M4yQmhFbRIRUgIztbEnnS9dewlTqrumT9Owm4lxIVe_Gzpe2-seRfsLMRAjL0BsQYB6t1ubbbUx7Tf0kBrKaBeg1z0GVtBXTUZyKY-YyshijJTZV6es4uUdkLM5rJ5wc5zoQBEJVfs17c56B49jx3f0gOG-eoCNzHeuXDLu6kn3h7md9-6gKOLYSHTGAe8JY7B8r3H1GNmcER_GJ3h8cHZExk4-jv0LuujdZ0jyzcx-xJ4it7Z5ZwW7iV73qFP9Oqkl-zHp4_fN9fZzderz5sPN5kpQIyZaqq8aKFWWFFZgSLI2w47U1YVUF2hzEVdFgpBWtWWQlFnEQoStUVrm67NL9nbY-5-iD8nSqPuXTLkPQaKU9JSStGIJhfF_1FQ85-gltWMvj6hU9uT1fvB9Tgc9OOOZ-D9ETBDTGmgThs3_lnQOKDzGoReWtU7_VeremlVg1x0Tmj-SXgc8hTv5uilebP3jgadjKNgyLqBzKhtdE9I-Q0PjcWq |
CitedBy_id | crossref_primary_10_1016_j_psep_2022_06_054 crossref_primary_10_1016_j_seppur_2022_122621 crossref_primary_10_1016_j_cej_2023_146677 crossref_primary_10_1016_j_jes_2023_08_019 crossref_primary_10_1016_j_jhazmat_2019_121428 crossref_primary_10_1007_s42452_020_03968_5 crossref_primary_10_1016_j_jes_2020_06_008 crossref_primary_10_3390_catal10080907 crossref_primary_10_1016_j_envres_2024_118472 crossref_primary_10_1016_j_apcatb_2022_121276 crossref_primary_10_1016_j_jece_2022_107665 crossref_primary_10_1021_acs_iecr_0c01764 crossref_primary_10_1016_j_jece_2022_107721 crossref_primary_10_2139_ssrn_4118425 crossref_primary_10_1016_j_buildenv_2022_109701 crossref_primary_10_3390_atmos15050563 crossref_primary_10_1016_j_jre_2023_01_009 crossref_primary_10_1021_acs_est_1c06948 crossref_primary_10_1016_j_cej_2019_122587 crossref_primary_10_1007_s13530_022_00163_4 crossref_primary_10_1016_j_cej_2019_123709 crossref_primary_10_1016_j_jes_2022_08_008 crossref_primary_10_1007_s11270_023_06653_6 crossref_primary_10_1016_j_seppur_2022_121687 crossref_primary_10_1021_acs_est_2c02227 crossref_primary_10_1002_eem2_12256 crossref_primary_10_1016_j_jhazmat_2020_123554 crossref_primary_10_1016_j_jhazmat_2021_125038 crossref_primary_10_1016_j_jhazmat_2021_126028 crossref_primary_10_1016_j_seppur_2022_122099 crossref_primary_10_1007_s11090_024_10505_4 crossref_primary_10_1016_j_scitotenv_2022_154290 crossref_primary_10_1021_acsami_0c10818 crossref_primary_10_1016_j_jcis_2024_02_149 crossref_primary_10_1016_j_jes_2022_10_045 crossref_primary_10_1016_j_catcom_2022_106535 crossref_primary_10_1021_acsami_0c22297 crossref_primary_10_1016_j_jhazmat_2022_129852 crossref_primary_10_1021_acs_iecr_2c04086 crossref_primary_10_1021_acscatal_0c03196 crossref_primary_10_1021_acsestengg_4c00671 |
Cites_doi | 10.1016/j.apcata.2018.05.039 10.1016/j.cej.2017.06.130 10.1002/anie.201202034 10.1016/S1872-2067(11)60391-4 10.1016/j.cej.2015.07.050 10.1016/j.atmosenv.2004.09.052 10.1016/j.apcatb.2015.01.032 10.1016/j.catcom.2012.08.003 10.1016/j.cattod.2015.10.040 10.1016/j.atmosenv.2016.09.037 10.1039/C5TA09370H 10.1016/j.atmosenv.2013.01.061 10.1021/cs5006663 10.1016/j.apsusc.2016.12.207 10.1007/s10562-014-1340-3 10.1021/acs.energyfuels.7b01657 10.1016/j.jhazmat.2017.05.013 10.1016/S1352-2310(00)00538-0 10.1016/j.atmosenv.2011.08.036 10.1021/acs.iecr.8b00191 10.1039/C4CY01141D 10.1021/jf001084y 10.1016/j.apcatb.2013.04.051 10.1021/acs.jpcc.5b11600 10.1016/j.envpol.2017.04.033 10.1016/j.jcat.2013.05.016 10.1021/es4056627 10.1021/es4019892 10.1016/j.cattod.2015.02.003 10.1016/j.jhazmat.2010.11.003 10.1016/j.chemosphere.2018.06.035 10.1016/j.buildenv.2017.08.045 10.1007/s10874-015-9298-0 10.1016/j.buildenv.2017.07.031 10.1016/j.apcatb.2011.03.021 10.1016/j.jhazmat.2016.10.045 10.1021/cs3001072 10.1016/j.ceramint.2011.09.024 10.1038/nature13774 10.1016/j.cej.2012.06.103 10.1016/j.jcou.2017.07.014 10.1021/es0614518 10.1021/es011275x 10.1016/j.scitotenv.2017.02.124 10.1016/j.envres.2018.05.038 10.1016/j.apcatb.2013.09.008 10.1039/C3CY01102J 10.1021/cm062984i 10.1021/es3045949 10.1016/j.apcata.2017.04.010 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.chemosphere.2018.12.201 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
EndPage | 747 |
ExternalDocumentID | 30611072 10_1016_j_chemosphere_2018_12_201 S0045653518325438 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c410t-69734b186a7e5716e13bfafc5771e87a2308546a12d6b506efda14e08dadd9fb3 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 1879-1298 |
IngestDate | Fri Jul 11 15:17:34 EDT 2025 Thu Aug 07 14:45:38 EDT 2025 Thu Apr 03 07:00:33 EDT 2025 Thu Apr 24 23:09:54 EDT 2025 Tue Jul 01 02:33:36 EDT 2025 Fri Feb 23 02:48:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Alkali modification Storage-oxidation Non-thermal plasma Catalysis Cooking fume |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-69734b186a7e5716e13bfafc5771e87a2308546a12d6b506efda14e08dadd9fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8775-0987 |
PMID | 30611072 |
PQID | 2164101827 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2220909304 proquest_miscellaneous_2164101827 pubmed_primary_30611072 crossref_citationtrail_10_1016_j_chemosphere_2018_12_201 crossref_primary_10_1016_j_chemosphere_2018_12_201 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2018_12_201 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hu, Chen, Zhao, Li, Si, Song, Li (bib11) 2017; 540 Peng, Lan, Lin, Kuo (bib26) 2017; 324 Zhang, Han, He, Xu, Zhao, Zhang, Bai (bib46) 2017; 227 Huang, Ho, Ho, Lee, Yu, Louie (bib14) 2011; 186 Zhu, Wang, Zhu, Koga (bib54) 2001; 49 Lu, Li, Huang, Chen, Sun (bib22) 2017; 400 Wang, Zhang, He, Liu, Wang (bib35) 2016; 120 Xu, Xie, Si, Zhang, Yang (bib37) 2018; 166 Montanari, Matarrese, Artioli, Busca (bib23) 2011; 105 Bai, Li (bib2) 2014; 4 Liu, Li, Shi, Liu, Zhu, Jang (bib20) 2014; 4 Li, Fan, Shi, Liu, Zhou, Shangguan (bib17) 2015; 256 Zhang, Li, Wang, He (bib44) 2014; 48 Zhao, Hu, Wang, Ding, He, Zhang, Shen, Lü, Liu, Fu (bib50) 2015; 72 Wan, Wu, To, Chan, Chao (bib32) 2011; 45 Dong (bib7) 2010; 4 Xiang, Wang, Stevanovic, Jing, Lou, Tao, Li, Liu, Yu, Wang (bib36) 2017; 125 Xu, Wang, Xu, Wu, Chen, Fu, Ye (bib40) 2016; 283 Zhang, Liu, Zhai, Ariga, Yi, Liu, Asakura, Flytzanistephanopoulos, He (bib45) 2012; 51 Wang, Cheng, Lang, Wen, Wang, Yao (bib33) 2016; 145 Zhao, Hu, Slanina, Zhang (bib51) 2007; 41 Nie, Yu, Li, Cheng, Liu, Jaroniec (bib25) 2013; 47 Mugica, Chow, Sanchez, Arriaga, Egami, Vega (bib24) 2001; 35 Zheng, Cass, Schauer, Edgerton (bib52) 2002; 36 Yao, Li, Fan, Zhang, Chen, Shangguan (bib41) 2018; 57 Wang, Xiang, Stevanovic, Ristovski, Salimi, Gao, Wang, Li (bib34) 2017; 589 Yu, Li, Xu, Xiao (bib43) 2013; 47 Barakat, Gravejat, Guaitella, Thevenet, Rousseau (bib3) 2014; 147 Riffet, Contrerasgarcía, Carrasco, Calatayud (bib27) 2016; 120 Shi, Chen, Li, Crocker, Wang, Zhu (bib28) 2012; 200–202 Feng, Chen, Meng, Liu, Fang, Wang, Wan, Guan (bib10) 2016; 399 Zhang, Ye, Yuan, Cai, Xiao, Liu, Zhao, Yang, He (bib48) 2018; 566 Yi, Yang, Tang, Zhao, Xie, Feng, Ma, Cui (bib42) 2017; 31 Einaga, Teraoka, Ogata (bib9) 2013; 305 Ji, Xu, Huang, He, Liu, Liu, Xie, Feng, Shu, Zhan (bib15) 2017; 327 Zou, Xu, Wang, Chen, Shangguan (bib55) 2015; 5 Abdullahi, Delgado-Saborit, Harrison (bib1) 2013; 71 Tang, Li, Li, Liu, Wu, Chen (bib30) 2014; 144 Zhu, Gao, Qin, Zeng, Qu, Zheng, Tu (bib53) 2015; 170–171 Chen, Tong, Hui, Qinqin, Jie, Xiao, Zheng (bib5) 2012; 33 Zhang, Gao, Creamer, Cao, Li (bib47) 2017; 338 Liu, Dai, Deng, Du, Li, Zhao, Wang, Gao, Yang, Guo (bib19) 2013; 140–141 Lorite, Martín-González, Romero, García, Fierro, Fernández (bib21) 2012; 38 Xu, Song, Chou (bib38) 2012; 2 Huang, Fan, Long, Li, Qiu, Zhao, Tong, Ji (bib13) 2016; 4 Chen, Wang, Yu, Wu, Fan, Xiao, Zheng (bib6) 2012; 28 Shi, Wang, Zhu, Chen, Au (bib29) 2012; 28 Li, Cheng, Yuan, Lai, Hung (bib18) 2018; 208 Teresa, Bandosz, Allen, Wood, Rosenberg (bib31) 2007; 19 Huang, Zhang, Bozzetti, Ho, Cao, Han, Daellenbach, Slowik, Platt, Canonaco, Zotter, Wolf, Pieber, Bruns, Crippa, Ciarelli, Piazzalunga, Schwikowski, Abbaszade, Schnelle-Kreis, Zimmermann, An, Szidat, Baltensperger, Haddad, Prévôt (bib12) 2014; 514 Le, Min, Lee, Kim, Park (bib16) 2016; 293 Zhang, Jiang, Shangguan (bib49) 2016; 264 Xu, Yang, Chen, Wang, Nie, Qi, Lian, Chen, Wu (bib39) 2017; 21 Bi, Sheng, Peng, Chen, Fu (bib4) 2005; 39 Du, Gao, Chen, Stevanovic, Ristovski, Wang, Wang (bib8) 2017; 123 Hu (10.1016/j.chemosphere.2018.12.201_bib11) 2017; 540 Montanari (10.1016/j.chemosphere.2018.12.201_bib23) 2011; 105 Nie (10.1016/j.chemosphere.2018.12.201_bib25) 2013; 47 Lu (10.1016/j.chemosphere.2018.12.201_bib22) 2017; 400 Xu (10.1016/j.chemosphere.2018.12.201_bib38) 2012; 2 Zhang (10.1016/j.chemosphere.2018.12.201_bib44) 2014; 48 Zou (10.1016/j.chemosphere.2018.12.201_bib55) 2015; 5 Xu (10.1016/j.chemosphere.2018.12.201_bib37) 2018; 166 Yi (10.1016/j.chemosphere.2018.12.201_bib42) 2017; 31 Zhao (10.1016/j.chemosphere.2018.12.201_bib50) 2015; 72 Liu (10.1016/j.chemosphere.2018.12.201_bib20) 2014; 4 Zhang (10.1016/j.chemosphere.2018.12.201_bib46) 2017; 227 Zhang (10.1016/j.chemosphere.2018.12.201_bib48) 2018; 566 Chen (10.1016/j.chemosphere.2018.12.201_bib6) 2012; 28 Chen (10.1016/j.chemosphere.2018.12.201_bib5) 2012; 33 Huang (10.1016/j.chemosphere.2018.12.201_bib14) 2011; 186 Zhang (10.1016/j.chemosphere.2018.12.201_bib47) 2017; 338 Shi (10.1016/j.chemosphere.2018.12.201_bib28) 2012; 200–202 Teresa (10.1016/j.chemosphere.2018.12.201_bib31) 2007; 19 Zhu (10.1016/j.chemosphere.2018.12.201_bib54) 2001; 49 Shi (10.1016/j.chemosphere.2018.12.201_bib29) 2012; 28 Li (10.1016/j.chemosphere.2018.12.201_bib17) 2015; 256 Dong (10.1016/j.chemosphere.2018.12.201_bib7) 2010; 4 Barakat (10.1016/j.chemosphere.2018.12.201_bib3) 2014; 147 Einaga (10.1016/j.chemosphere.2018.12.201_bib9) 2013; 305 Bai (10.1016/j.chemosphere.2018.12.201_bib2) 2014; 4 Zhang (10.1016/j.chemosphere.2018.12.201_bib49) 2016; 264 Lorite (10.1016/j.chemosphere.2018.12.201_bib21) 2012; 38 Wang (10.1016/j.chemosphere.2018.12.201_bib34) 2017; 589 Abdullahi (10.1016/j.chemosphere.2018.12.201_bib1) 2013; 71 Tang (10.1016/j.chemosphere.2018.12.201_bib30) 2014; 144 Bi (10.1016/j.chemosphere.2018.12.201_bib4) 2005; 39 Riffet (10.1016/j.chemosphere.2018.12.201_bib27) 2016; 120 Du (10.1016/j.chemosphere.2018.12.201_bib8) 2017; 123 Li (10.1016/j.chemosphere.2018.12.201_bib18) 2018; 208 Huang (10.1016/j.chemosphere.2018.12.201_bib12) 2014; 514 Zhu (10.1016/j.chemosphere.2018.12.201_bib53) 2015; 170–171 Wang (10.1016/j.chemosphere.2018.12.201_bib35) 2016; 120 Ji (10.1016/j.chemosphere.2018.12.201_bib15) 2017; 327 Feng (10.1016/j.chemosphere.2018.12.201_bib10) 2016; 399 Wan (10.1016/j.chemosphere.2018.12.201_bib32) 2011; 45 Xiang (10.1016/j.chemosphere.2018.12.201_bib36) 2017; 125 Zhang (10.1016/j.chemosphere.2018.12.201_bib45) 2012; 51 Peng (10.1016/j.chemosphere.2018.12.201_bib26) 2017; 324 Wang (10.1016/j.chemosphere.2018.12.201_bib33) 2016; 145 Mugica (10.1016/j.chemosphere.2018.12.201_bib24) 2001; 35 Huang (10.1016/j.chemosphere.2018.12.201_bib13) 2016; 4 Yu (10.1016/j.chemosphere.2018.12.201_bib43) 2013; 47 Liu (10.1016/j.chemosphere.2018.12.201_bib19) 2013; 140–141 Xu (10.1016/j.chemosphere.2018.12.201_bib39) 2017; 21 Zhao (10.1016/j.chemosphere.2018.12.201_bib51) 2007; 41 Yao (10.1016/j.chemosphere.2018.12.201_bib41) 2018; 57 Le (10.1016/j.chemosphere.2018.12.201_bib16) 2016; 293 Zheng (10.1016/j.chemosphere.2018.12.201_bib52) 2002; 36 Xu (10.1016/j.chemosphere.2018.12.201_bib40) 2016; 283 |
References_xml | – volume: 170–171 start-page: 293 year: 2015 end-page: 300 ident: bib53 article-title: Plasma-catalytic removal of formaldehyde over Cu–Ce catalysts in a dielectric barrier discharge reactor publication-title: Appl. Catal. B s – volume: 51 start-page: 9628 year: 2012 end-page: 9632 ident: bib45 article-title: Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures publication-title: Angew. Chem. – volume: 123 start-page: 564 year: 2017 end-page: 574 ident: bib8 article-title: Particle exposure level and potential health risks of domestic Chinese cooking publication-title: Build. Environ. – volume: 144 start-page: 1900 year: 2014 end-page: 1910 ident: bib30 article-title: Synergistic effects in porous Mn–Co mixed oxide nanorods enhance catalytic deep oxidation of benzene publication-title: Catal. Lett. – volume: 540 start-page: 57 year: 2017 end-page: 67 ident: bib11 article-title: Toluene catalytic combustion over copper modified Mn 0.5 Ce 0.5 O x solid solution sponge-like structures publication-title: Appl. Catal. A Gen. – volume: 72 start-page: 1 year: 2015 end-page: 18 ident: bib50 article-title: Composition profiles of organic aerosols from Chinese residential cooking: case study in urban Guangzhou, south China publication-title: J. Atmos. Chem. – volume: 38 start-page: 1427 year: 2012 end-page: 1434 ident: bib21 article-title: Electrostatic charge dependence on surface hydroxylation for different Al2O3 powders publication-title: Ceram. Int. – volume: 41 start-page: 99 year: 2007 end-page: 105 ident: bib51 article-title: Chemical compositions of fine particulate organic matter emitted from Chinese cooking publication-title: Environ. Sci. Technol. – volume: 399 year: 2016 ident: bib10 article-title: K-Mn supported on three-dimensionally ordered macroporous La 0.8 Ce 0.2 FeO 3 catalysts for the catalytic combustion of soot publication-title: Appl. Surf. Sci. – volume: 264 start-page: 270 year: 2016 end-page: 278 ident: bib49 article-title: Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review publication-title: Catal. Today – volume: 48 start-page: 5816 year: 2014 ident: bib44 article-title: Sodium-promoted Pd/TiO2 for catalytic oxidation of formaldehyde at ambient temperature publication-title: Environ. Sci. Technol. – volume: 227 start-page: 24 year: 2017 ident: bib46 article-title: Chemical characteristic of PM2.5 emission and inhalational carcinogenic risk of domestic Chinese cooking publication-title: Environ. Pollut. – volume: 4 start-page: 2589 year: 2014 end-page: 2598 ident: bib20 article-title: Ozone catalytic oxidation of adsorbed benzene over AgMn/HZSM-5 catalysts at room temperature publication-title: Catal. Sci. Technol. – volume: 140–141 start-page: 493 year: 2013 end-page: 505 ident: bib19 article-title: In situ poly(methyl methacrylate)-templating generation and excellent catalytic performance of MnO x/3DOM LaMnO 3 for the combustion of toluene and methanol publication-title: Appl. Catal. B s – volume: 71 start-page: 260 year: 2013 end-page: 294 ident: bib1 article-title: Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: a review publication-title: Atmos. Environ. – volume: 305 start-page: 227 year: 2013 end-page: 237 ident: bib9 article-title: Catalytic oxidation of benzene by ozone over manganese oxides supported on USY zeolite publication-title: J. Catal. – volume: 589 start-page: 173 year: 2017 end-page: 181 ident: bib34 article-title: Role of Chinese cooking emissions on ambient air quality and human health publication-title: Sci. Total Environ. – volume: 49 start-page: 4790 year: 2001 end-page: 4794 ident: bib54 article-title: Analysis of cooking oil fumes by ultraviolet spectrometry and gas chromatography-mass spectrometry publication-title: J. Agric. Food Chem. – volume: 36 start-page: 2361 year: 2002 ident: bib52 article-title: Source apportionment of PM2.5 in the Southeastern United States using solvent-extractable organic compounds as tracers publication-title: Environ. Sci. Technol. – volume: 208 start-page: 808 year: 2018 end-page: 817 ident: bib18 article-title: Removing volatile organic compounds in cooking fume by nano-sized TiO2 photocatalytic reaction combined with ozone oxidation technique publication-title: Chemosphere – volume: 19 start-page: 2500 year: 2007 end-page: 2511 ident: bib31 article-title: Silica−Polyamine-Based carbon composite adsorbents as media for effective hydrogen sulfide adsorption/oxidation publication-title: Chem. Mater. – volume: 338 start-page: 102 year: 2017 end-page: 123 ident: bib47 article-title: Adsorption of VOCs onto engineered carbon materials: a review publication-title: J. Hazard Mater. – volume: 105 start-page: 15 year: 2011 end-page: 23 ident: bib23 article-title: FT-IR study of the surface redox states on platinum-potassium-alumina catalysts publication-title: Appl. Catal., B – volume: 400 start-page: 277 year: 2017 end-page: 282 ident: bib22 article-title: Efficient MnO x -Co 3 O 4 -CeO 2 catalysts for formaldehyde elimination publication-title: Appl. Surf. Sci. – volume: 39 start-page: 477 year: 2005 end-page: 487 ident: bib4 article-title: Size distribution of alkanes and polycyclic aromatic hydrocarbons (PAHs) in urban and rural atmospheres of Guangzhou, China publication-title: Atmos. Environ. – volume: 293 start-page: 1 year: 2016 end-page: 7 ident: bib16 article-title: CO and CO 2 methanation over supported Ni catalysts publication-title: Catal. Today – volume: 145 start-page: 299 year: 2016 end-page: 307 ident: bib33 article-title: Characterization of volatile organic compounds from different cooking emissions publication-title: Atmos. Environ. – volume: 28 start-page: 881 year: 2012 end-page: 887 ident: bib6 article-title: Removal of hexanal by a combination of non-thermal plasma and natural mordnite publication-title: Chin. J. Inorg. Chem. – volume: 45 start-page: 6141 year: 2011 end-page: 6148 ident: bib32 article-title: Ultrafine particles, and PM 2.5 generated from cooking in homes publication-title: Atmos. Environ. – volume: 324 start-page: 160 year: 2017 ident: bib26 article-title: Effects of cooking method, cooking oil, and food type on aldehyde emissions in cooking oil fumes publication-title: J. Hazard Mater. – volume: 166 start-page: 167 year: 2018 ident: bib37 article-title: Photocatalytic degradation of cooking fume on a TiO2-coated carbon nanotubes composite filter publication-title: Environ. Res. – volume: 120 year: 2016 ident: bib35 article-title: Effect of doping metals on OMS-2/γ-Al2O3 catalysts for plasma-catalytic removal of o-xylene publication-title: J. Phys. Chem. C – volume: 186 start-page: 344 year: 2011 end-page: 351 ident: bib14 article-title: Characteristics and health impacts of VOCs and carbonyls associated with residential cooking activities in Hong Kong publication-title: J. Hazard Mater. – volume: 21 start-page: 200 year: 2017 end-page: 210 ident: bib39 article-title: CO2 methanation over Ca doped ordered mesoporous Ni-Al composite oxide catalysts: the promoting effect of basic modifier publication-title: J. CO2 Util. – volume: 4 start-page: 1851 year: 2010 end-page: 1856 ident: bib7 article-title: Study of hexanal decomposition with plasma-catalysis technology over MnO_x/SBA-15 catalysts publication-title: Chin. J. Environ. Eng. – volume: 125 year: 2017 ident: bib36 article-title: Assessing impacts of factors on carbonyl compounds emissions produced from several typical Chinese cooking publication-title: Build. Environ. – volume: 5 start-page: 1084 year: 2015 end-page: 1092 ident: bib55 article-title: The synergistic effect in Co–Ce oxides for catalytic oxidation of diesel soot publication-title: Catal. Sci. Technol. – volume: 4 start-page: 2753 year: 2014 end-page: 2762 ident: bib2 article-title: Positive effects of K+ ions on three-dimensional mesoporous Ag/Co3O4 catalyst for HCHO oxidation publication-title: ACS Catal. – volume: 35 start-page: 1729 year: 2001 end-page: 1734 ident: bib24 article-title: Speciated non-methane organic compounds emissions from food cooking in Mexico publication-title: Atmos. Environ. – volume: 2 start-page: 1331 year: 2012 end-page: 1342 ident: bib38 article-title: One-pot synthesis of ordered mesoporous NiO–CaO–Al2O3 composite oxides for catalyzing CO2 reforming of CH4 publication-title: ACS Catal. – volume: 57 start-page: 4214 year: 2018 end-page: 4224 ident: bib41 article-title: Plasma catalytic removal of hexanal over Co–Mn solid solution: effect of preparation method and synergistic reaction of ozone publication-title: Ind. Eng. Chem. Res. – volume: 566 start-page: 104 year: 2018 end-page: 112 ident: bib48 article-title: Excellent low-temperature catalytic performance of nanosheet Co-Mn oxides for total benzene oxidation publication-title: Appl. Catal. A Gen. – volume: 31 year: 2017 ident: bib42 article-title: Performance and pathways of toluene degradation over Co/13X by different processes based on nonthermal plasma publication-title: Energy Fuels – volume: 28 start-page: 18 year: 2012 end-page: 22 ident: bib29 article-title: Mn x Co 3 − x O 4 solid solution as high-efficient catalysts for low-temperature oxidation of formaldehyde publication-title: Catal. Commun. – volume: 514 start-page: 218 year: 2014 ident: bib12 article-title: High secondary aerosol contribution to particulate pollution during haze events in China publication-title: Nature – volume: 200–202 start-page: 729 year: 2012 end-page: 737 ident: bib28 article-title: Catalytic formaldehyde removal by “storage-oxidation” cycling process over supported silver catalysts publication-title: Chem. Eng. J. – volume: 283 start-page: 276 year: 2016 end-page: 284 ident: bib40 article-title: Plasma-catalysis of metal loaded SBA-15 for toluene removal: comparison of continuously introduced and adsorption-discharge plasma system publication-title: Chem. Eng. J. – volume: 120 year: 2016 ident: bib27 article-title: Alkali ion incorporation into V2O5: a non-covalent interactions analysis publication-title: J. Phys. Chem. C – volume: 147 start-page: 302 year: 2014 end-page: 313 ident: bib3 article-title: Oxidation of isopropanol and acetone adsorbed on TiO 2 under plasma generated ozone flow: gas phase and adsorbed species monitoring publication-title: Appl. Catal., B – volume: 256 start-page: 178 year: 2015 end-page: 185 ident: bib17 article-title: Modified manganese oxide octahedral molecular sieves M′-OMS-2 (M′=Co,Ce,Cu) as catalysts in post plasma-catalysis for acetaldehyde degradation publication-title: Catal. Today – volume: 47 start-page: 2777 year: 2013 ident: bib25 article-title: Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde publication-title: Environ. Sci. Technol. – volume: 47 start-page: 9928 year: 2013 end-page: 9933 ident: bib43 article-title: NaOH-modified ceramic honeycomb with enhanced formaldehyde adsorption and removal performance publication-title: Environ. Sci. Technol. – volume: 4 start-page: 3648 year: 2016 end-page: 3654 ident: bib13 article-title: Alkali-modified non-precious metal 3D-NiCo2O4 nanosheets for efficient formaldehyde oxidation at low temperature publication-title: J. Mater. Chem. A – volume: 327 year: 2017 ident: bib15 article-title: Mesoporous TiO 2 under VUV irradiation: enhanced photocatalytic oxidation for VOCs degradation at room temperature publication-title: Chem. Eng. J. – volume: 33 start-page: 941 year: 2012 end-page: 951 ident: bib5 article-title: Removal of hexanal by non-thermal plasma and MnOx/γ-Al2O3 combination publication-title: Chin. J. Catal. – volume: 566 start-page: 104 year: 2018 ident: 10.1016/j.chemosphere.2018.12.201_bib48 article-title: Excellent low-temperature catalytic performance of nanosheet Co-Mn oxides for total benzene oxidation publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2018.05.039 – volume: 327 year: 2017 ident: 10.1016/j.chemosphere.2018.12.201_bib15 article-title: Mesoporous TiO 2 under VUV irradiation: enhanced photocatalytic oxidation for VOCs degradation at room temperature publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.06.130 – volume: 51 start-page: 9628 year: 2012 ident: 10.1016/j.chemosphere.2018.12.201_bib45 article-title: Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures publication-title: Angew. Chem. doi: 10.1002/anie.201202034 – volume: 33 start-page: 941 year: 2012 ident: 10.1016/j.chemosphere.2018.12.201_bib5 article-title: Removal of hexanal by non-thermal plasma and MnOx/γ-Al2O3 combination publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(11)60391-4 – volume: 283 start-page: 276 year: 2016 ident: 10.1016/j.chemosphere.2018.12.201_bib40 article-title: Plasma-catalysis of metal loaded SBA-15 for toluene removal: comparison of continuously introduced and adsorption-discharge plasma system publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.07.050 – volume: 39 start-page: 477 year: 2005 ident: 10.1016/j.chemosphere.2018.12.201_bib4 article-title: Size distribution of alkanes and polycyclic aromatic hydrocarbons (PAHs) in urban and rural atmospheres of Guangzhou, China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2004.09.052 – volume: 293 start-page: 1 year: 2016 ident: 10.1016/j.chemosphere.2018.12.201_bib16 article-title: CO and CO 2 methanation over supported Ni catalysts publication-title: Catal. Today – volume: 170–171 start-page: 293 year: 2015 ident: 10.1016/j.chemosphere.2018.12.201_bib53 article-title: Plasma-catalytic removal of formaldehyde over Cu–Ce catalysts in a dielectric barrier discharge reactor publication-title: Appl. Catal. B s doi: 10.1016/j.apcatb.2015.01.032 – volume: 28 start-page: 18 year: 2012 ident: 10.1016/j.chemosphere.2018.12.201_bib29 article-title: Mn x Co 3 − x O 4 solid solution as high-efficient catalysts for low-temperature oxidation of formaldehyde publication-title: Catal. Commun. doi: 10.1016/j.catcom.2012.08.003 – volume: 264 start-page: 270 year: 2016 ident: 10.1016/j.chemosphere.2018.12.201_bib49 article-title: Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review publication-title: Catal. Today doi: 10.1016/j.cattod.2015.10.040 – volume: 4 start-page: 1851 year: 2010 ident: 10.1016/j.chemosphere.2018.12.201_bib7 article-title: Study of hexanal decomposition with plasma-catalysis technology over MnO_x/SBA-15 catalysts publication-title: Chin. J. Environ. Eng. – volume: 145 start-page: 299 year: 2016 ident: 10.1016/j.chemosphere.2018.12.201_bib33 article-title: Characterization of volatile organic compounds from different cooking emissions publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.09.037 – volume: 4 start-page: 3648 year: 2016 ident: 10.1016/j.chemosphere.2018.12.201_bib13 article-title: Alkali-modified non-precious metal 3D-NiCo2O4 nanosheets for efficient formaldehyde oxidation at low temperature publication-title: J. Mater. Chem. A doi: 10.1039/C5TA09370H – volume: 28 start-page: 881 year: 2012 ident: 10.1016/j.chemosphere.2018.12.201_bib6 article-title: Removal of hexanal by a combination of non-thermal plasma and natural mordnite publication-title: Chin. J. Inorg. Chem. – volume: 71 start-page: 260 year: 2013 ident: 10.1016/j.chemosphere.2018.12.201_bib1 article-title: Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: a review publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2013.01.061 – volume: 4 start-page: 2753 year: 2014 ident: 10.1016/j.chemosphere.2018.12.201_bib2 article-title: Positive effects of K+ ions on three-dimensional mesoporous Ag/Co3O4 catalyst for HCHO oxidation publication-title: ACS Catal. doi: 10.1021/cs5006663 – volume: 400 start-page: 277 year: 2017 ident: 10.1016/j.chemosphere.2018.12.201_bib22 article-title: Efficient MnO x -Co 3 O 4 -CeO 2 catalysts for formaldehyde elimination publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.12.207 – volume: 144 start-page: 1900 year: 2014 ident: 10.1016/j.chemosphere.2018.12.201_bib30 article-title: Synergistic effects in porous Mn–Co mixed oxide nanorods enhance catalytic deep oxidation of benzene publication-title: Catal. Lett. doi: 10.1007/s10562-014-1340-3 – volume: 31 year: 2017 ident: 10.1016/j.chemosphere.2018.12.201_bib42 article-title: Performance and pathways of toluene degradation over Co/13X by different processes based on nonthermal plasma publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.7b01657 – volume: 338 start-page: 102 year: 2017 ident: 10.1016/j.chemosphere.2018.12.201_bib47 article-title: Adsorption of VOCs onto engineered carbon materials: a review publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2017.05.013 – volume: 35 start-page: 1729 year: 2001 ident: 10.1016/j.chemosphere.2018.12.201_bib24 article-title: Speciated non-methane organic compounds emissions from food cooking in Mexico publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(00)00538-0 – volume: 45 start-page: 6141 year: 2011 ident: 10.1016/j.chemosphere.2018.12.201_bib32 article-title: Ultrafine particles, and PM 2.5 generated from cooking in homes publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.08.036 – volume: 57 start-page: 4214 year: 2018 ident: 10.1016/j.chemosphere.2018.12.201_bib41 article-title: Plasma catalytic removal of hexanal over Co–Mn solid solution: effect of preparation method and synergistic reaction of ozone publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b00191 – volume: 5 start-page: 1084 year: 2015 ident: 10.1016/j.chemosphere.2018.12.201_bib55 article-title: The synergistic effect in Co–Ce oxides for catalytic oxidation of diesel soot publication-title: Catal. Sci. Technol. doi: 10.1039/C4CY01141D – volume: 49 start-page: 4790 year: 2001 ident: 10.1016/j.chemosphere.2018.12.201_bib54 article-title: Analysis of cooking oil fumes by ultraviolet spectrometry and gas chromatography-mass spectrometry publication-title: J. Agric. Food Chem. doi: 10.1021/jf001084y – volume: 140–141 start-page: 493 year: 2013 ident: 10.1016/j.chemosphere.2018.12.201_bib19 article-title: In situ poly(methyl methacrylate)-templating generation and excellent catalytic performance of MnO x/3DOM LaMnO 3 for the combustion of toluene and methanol publication-title: Appl. Catal. B s doi: 10.1016/j.apcatb.2013.04.051 – volume: 120 year: 2016 ident: 10.1016/j.chemosphere.2018.12.201_bib27 article-title: Alkali ion incorporation into V2O5: a non-covalent interactions analysis publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b11600 – volume: 227 start-page: 24 year: 2017 ident: 10.1016/j.chemosphere.2018.12.201_bib46 article-title: Chemical characteristic of PM2.5 emission and inhalational carcinogenic risk of domestic Chinese cooking publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.04.033 – volume: 305 start-page: 227 year: 2013 ident: 10.1016/j.chemosphere.2018.12.201_bib9 article-title: Catalytic oxidation of benzene by ozone over manganese oxides supported on USY zeolite publication-title: J. Catal. doi: 10.1016/j.jcat.2013.05.016 – volume: 48 start-page: 5816 year: 2014 ident: 10.1016/j.chemosphere.2018.12.201_bib44 article-title: Sodium-promoted Pd/TiO2 for catalytic oxidation of formaldehyde at ambient temperature publication-title: Environ. Sci. Technol. doi: 10.1021/es4056627 – volume: 47 start-page: 9928 year: 2013 ident: 10.1016/j.chemosphere.2018.12.201_bib43 article-title: NaOH-modified ceramic honeycomb with enhanced formaldehyde adsorption and removal performance publication-title: Environ. Sci. Technol. doi: 10.1021/es4019892 – volume: 256 start-page: 178 year: 2015 ident: 10.1016/j.chemosphere.2018.12.201_bib17 article-title: Modified manganese oxide octahedral molecular sieves M′-OMS-2 (M′=Co,Ce,Cu) as catalysts in post plasma-catalysis for acetaldehyde degradation publication-title: Catal. Today doi: 10.1016/j.cattod.2015.02.003 – volume: 186 start-page: 344 year: 2011 ident: 10.1016/j.chemosphere.2018.12.201_bib14 article-title: Characteristics and health impacts of VOCs and carbonyls associated with residential cooking activities in Hong Kong publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2010.11.003 – volume: 208 start-page: 808 year: 2018 ident: 10.1016/j.chemosphere.2018.12.201_bib18 article-title: Removing volatile organic compounds in cooking fume by nano-sized TiO2 photocatalytic reaction combined with ozone oxidation technique publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.06.035 – volume: 125 year: 2017 ident: 10.1016/j.chemosphere.2018.12.201_bib36 article-title: Assessing impacts of factors on carbonyl compounds emissions produced from several typical Chinese cooking publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.08.045 – volume: 72 start-page: 1 year: 2015 ident: 10.1016/j.chemosphere.2018.12.201_bib50 article-title: Composition profiles of organic aerosols from Chinese residential cooking: case study in urban Guangzhou, south China publication-title: J. Atmos. Chem. doi: 10.1007/s10874-015-9298-0 – volume: 120 year: 2016 ident: 10.1016/j.chemosphere.2018.12.201_bib35 article-title: Effect of doping metals on OMS-2/γ-Al2O3 catalysts for plasma-catalytic removal of o-xylene publication-title: J. Phys. Chem. C – volume: 123 start-page: 564 year: 2017 ident: 10.1016/j.chemosphere.2018.12.201_bib8 article-title: Particle exposure level and potential health risks of domestic Chinese cooking publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.07.031 – volume: 105 start-page: 15 year: 2011 ident: 10.1016/j.chemosphere.2018.12.201_bib23 article-title: FT-IR study of the surface redox states on platinum-potassium-alumina catalysts publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2011.03.021 – volume: 324 start-page: 160 year: 2017 ident: 10.1016/j.chemosphere.2018.12.201_bib26 article-title: Effects of cooking method, cooking oil, and food type on aldehyde emissions in cooking oil fumes publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2016.10.045 – volume: 2 start-page: 1331 year: 2012 ident: 10.1016/j.chemosphere.2018.12.201_bib38 article-title: One-pot synthesis of ordered mesoporous NiO–CaO–Al2O3 composite oxides for catalyzing CO2 reforming of CH4 publication-title: ACS Catal. doi: 10.1021/cs3001072 – volume: 38 start-page: 1427 year: 2012 ident: 10.1016/j.chemosphere.2018.12.201_bib21 article-title: Electrostatic charge dependence on surface hydroxylation for different Al2O3 powders publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2011.09.024 – volume: 514 start-page: 218 year: 2014 ident: 10.1016/j.chemosphere.2018.12.201_bib12 article-title: High secondary aerosol contribution to particulate pollution during haze events in China publication-title: Nature doi: 10.1038/nature13774 – volume: 200–202 start-page: 729 year: 2012 ident: 10.1016/j.chemosphere.2018.12.201_bib28 article-title: Catalytic formaldehyde removal by “storage-oxidation” cycling process over supported silver catalysts publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.06.103 – volume: 21 start-page: 200 year: 2017 ident: 10.1016/j.chemosphere.2018.12.201_bib39 article-title: CO2 methanation over Ca doped ordered mesoporous Ni-Al composite oxide catalysts: the promoting effect of basic modifier publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2017.07.014 – volume: 41 start-page: 99 year: 2007 ident: 10.1016/j.chemosphere.2018.12.201_bib51 article-title: Chemical compositions of fine particulate organic matter emitted from Chinese cooking publication-title: Environ. Sci. Technol. doi: 10.1021/es0614518 – volume: 36 start-page: 2361 year: 2002 ident: 10.1016/j.chemosphere.2018.12.201_bib52 article-title: Source apportionment of PM2.5 in the Southeastern United States using solvent-extractable organic compounds as tracers publication-title: Environ. Sci. Technol. doi: 10.1021/es011275x – volume: 589 start-page: 173 year: 2017 ident: 10.1016/j.chemosphere.2018.12.201_bib34 article-title: Role of Chinese cooking emissions on ambient air quality and human health publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.02.124 – volume: 166 start-page: 167 year: 2018 ident: 10.1016/j.chemosphere.2018.12.201_bib37 article-title: Photocatalytic degradation of cooking fume on a TiO2-coated carbon nanotubes composite filter publication-title: Environ. Res. doi: 10.1016/j.envres.2018.05.038 – volume: 147 start-page: 302 year: 2014 ident: 10.1016/j.chemosphere.2018.12.201_bib3 article-title: Oxidation of isopropanol and acetone adsorbed on TiO 2 under plasma generated ozone flow: gas phase and adsorbed species monitoring publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2013.09.008 – volume: 4 start-page: 2589 year: 2014 ident: 10.1016/j.chemosphere.2018.12.201_bib20 article-title: Ozone catalytic oxidation of adsorbed benzene over AgMn/HZSM-5 catalysts at room temperature publication-title: Catal. Sci. Technol. doi: 10.1039/C3CY01102J – volume: 19 start-page: 2500 year: 2007 ident: 10.1016/j.chemosphere.2018.12.201_bib31 article-title: Silica−Polyamine-Based carbon composite adsorbents as media for effective hydrogen sulfide adsorption/oxidation publication-title: Chem. Mater. doi: 10.1021/cm062984i – volume: 47 start-page: 2777 year: 2013 ident: 10.1016/j.chemosphere.2018.12.201_bib25 article-title: Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde publication-title: Environ. Sci. Technol. doi: 10.1021/es3045949 – volume: 540 start-page: 57 year: 2017 ident: 10.1016/j.chemosphere.2018.12.201_bib11 article-title: Toluene catalytic combustion over copper modified Mn 0.5 Ce 0.5 O x solid solution sponge-like structures publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2017.04.010 – volume: 399 year: 2016 ident: 10.1016/j.chemosphere.2018.12.201_bib10 article-title: K-Mn supported on three-dimensionally ordered macroporous La 0.8 Ce 0.2 FeO 3 catalysts for the catalytic combustion of soot publication-title: Appl. Surf. Sci. |
SSID | ssj0001659 |
Score | 2.464478 |
Snippet | Cooking oil fumes as an important source of volatile organic compounds in metropolitan areas are poisonous to the environment and human health. In this study,... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 738 |
SubjectTerms | adsorption alcohols Alkali modification ambient temperature carbon dioxide carboxylic acids Catalysis catalysts cations cooking cooking fats and oils Cooking fume coprecipitation Fourier transform infrared spectroscopy human health manganese metropolitan areas Non-thermal plasma oxidation oxygen scanning electron microscopy sodium Storage-oxidation volatile organic compounds X-ray diffraction X-ray photoelectron spectroscopy |
Title | Removal of hexanal in cooking fume by combination of storage and plasma-catalytic oxidation on alkali-modified Co-Mn solid solution |
URI | https://dx.doi.org/10.1016/j.chemosphere.2018.12.201 https://www.ncbi.nlm.nih.gov/pubmed/30611072 https://www.proquest.com/docview/2164101827 https://www.proquest.com/docview/2220909304 |
Volume | 220 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NaxUxEA-l4sdFtGr7_CgpeF2bZJNsAr2UR8tTaQ9iobeQbLK62rf7sK_Qd-nFf7wz-9EqqBS87BcTEjKzk98k80HIW25Y6b22WRECHjNG-KWSURk3QbAqcF12UWlHx3p2Ij-cqtM1Mh1jYdCtctD9vU7vtPXwZXeYzd1FXWOML6KRXKFQKpljwK-UBUr5u6tbNw-uVQ-BpcqQ-gHZufXxgnmZt-cYv48ZM7nBnUEx1If5wxr1NwzarUWHT8jjAUTS_X6cT8laajbIw-lYu22D3D_oklGvnpGfn6BvkCbaVvQrxrLAY93QErdtmy-0AtVEwwre52Aid1xCSnSZBEVDfRPpAvD13GfdPs8KOqTtZR0Hyob6s--A5LN5G-sK0CydttlRQ0Gg60hHsX5OTg4PPk9n2VB4ISslZ8tM2yKXgRvti6TAoEo8D5WvSlUUPJnCg9lilNSei6iDYjpV0XOZmImgLW0V8hdkvWmbtEWo9d6aksfAfJTeMCtE0FjJEKCXz42aEDNOtSuHrORYHOPMje5n39wvXHLIJccF3idE3DRd9Kk57tJob-Sn-03OHCwhd2m-M8qAA5bi4YpvUntx7gTYnZj9TBT_oBGCWWZzJidksxegm5GD6YamuHj5fwN8RR7B1fa-Ra_J-vLHRXoDsGkZtrv_Ypvc23__cXZ8DZJeGbc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEZQLggJlKQ9XgmOo7cSOI5UDWlptabcH1Eq9GTt2aKCbrNitYC9c-En8QWbyaEECVAn1lMSyY8vz8Df2eIaQ51yz3FqVRalzeMzoQaSClhHXTrDCcZU3t9LGB2p0lLw9lsdL5Ed_FwbdKjvd3-r0Rlt3JZvdbG5OyxLv-CIaiSUypUxi3XlW7oXFF7DbZq923wCRXwixs304HEVdaoEoTzibRypL48RxrWwaJJgMgceusEUu05QHnVoA5lomynLhlZNMhcJbngSmPeiDrHAx_PcauZ6AusC0CS-_XfiVcCVbzJ3ICId3k2xcOJUBISb1DAMGYIhOrnErUnQJaf6wKP4N9DaL384dcrtDrfR1OzF3yVKoVsnKsE8Wt0pubDfRrxf3yPd30DewL60LeoKXZ-C1rGiO-8TVB1qALqRuAd8TsMkbtsCa6KMJmo3aytMpAPqJjZqNpQV0SOuvpe9qVtSefgLTIZrUviwAPtNhHY0rChJUetrL0X1ydCXkeECWq7oKDwnNrM10zr1j1idWs0wIpzB1ImA9G2s5ILqfapN3YdAxG8ep6f3dPppfqGSQSoYLfA6IOG86bWOBXKbRVk9P8xtjG1izLtN8o-cBAyTF0xxbhfpsZgQYuhhuTaT_qCMEy1gWs2RA1loGOh852Ipo-4tH_zfAZ2RldDjeN_u7B3vr5BaUZK1j02OyPP98Fp4AZpu7p42MUPL-qoXyJ4P3VXc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Removal+of+hexanal+in+cooking+fume+by+combination+of+storage+and+plasma-catalytic+oxidation+on+alkali-modified+Co-Mn+solid+solution&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Yao%2C+Xin&rft.au=Gao%2C+Mengxiang&rft.au=Wei%2C+Zhidong&rft.au=Chen%2C+Mingxia&rft.date=2019-04-01&rft.pub=Elsevier+Ltd&rft.issn=0045-6535&rft.eissn=1879-1298&rft.volume=220&rft.spage=738&rft.epage=747&rft_id=info:doi/10.1016%2Fj.chemosphere.2018.12.201&rft.externalDocID=S0045653518325438 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |