Intelligent analysis algorithm for power engineering data based on improved BiLSTM
Traditional BiLSTM (Bidirectional Long Short-Term Memory) has limited processing capabilities for long-time series, insufficient adaptability to the characteristics of power engineering data, and inadequate accuracy in predicting problems in specific application scenarios. This paper introduces an a...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 15320 - 16 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.05.2025
Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traditional BiLSTM (Bidirectional Long Short-Term Memory) has limited processing capabilities for long-time series, insufficient adaptability to the characteristics of power engineering data, and inadequate accuracy in predicting problems in specific application scenarios. This paper introduces an attention mechanism to improve BiLSTM’s ability to capture long time series, integrate the time series of power engineering data, and design an intelligent analysis algorithm that adapts to multi-dimensional features. Experimental results show that in load forecasting, the mean square errors of the improved BiLSTM in summer and winter are 0.02 and 0.025 respectively, and R
2
are 0.985 and 0.982 respectively. In equipment fault diagnosis, the accuracy of improved BiLSTM under current, voltage, temperature and pressure is significantly higher than that of models such as GRU.(Gated Recurrent Unit) This paper improves BiLSTM, combines multi-dimensional feature fusion and multi-head self-attention mechanism, and optimizes it according to the characteristics of power engineering data, enhance noise robustness, and reduce noise impact by 8%. Although the training time and memory are slightly increased, the convergence speed is faster. The improved BiLSTM power engineering data analysis algorithm significantly improves the accuracy and robustness of tasks such as power load forecasting and equipment fault diagnosis by introducing self attention mechanism and multi-dimensional feature fusion. It is more adaptable in complex temporal patterns and multi-source data modeling. |
---|---|
AbstractList | Traditional BiLSTM (Bidirectional Long Short-Term Memory) has limited processing capabilities for long-time series, insufficient adaptability to the characteristics of power engineering data, and inadequate accuracy in predicting problems in specific application scenarios. This paper introduces an attention mechanism to improve BiLSTM’s ability to capture long time series, integrate the time series of power engineering data, and design an intelligent analysis algorithm that adapts to multi-dimensional features. Experimental results show that in load forecasting, the mean square errors of the improved BiLSTM in summer and winter are 0.02 and 0.025 respectively, and R
2
are 0.985 and 0.982 respectively. In equipment fault diagnosis, the accuracy of improved BiLSTM under current, voltage, temperature and pressure is significantly higher than that of models such as GRU.(Gated Recurrent Unit) This paper improves BiLSTM, combines multi-dimensional feature fusion and multi-head self-attention mechanism, and optimizes it according to the characteristics of power engineering data, enhance noise robustness, and reduce noise impact by 8%. Although the training time and memory are slightly increased, the convergence speed is faster. The improved BiLSTM power engineering data analysis algorithm significantly improves the accuracy and robustness of tasks such as power load forecasting and equipment fault diagnosis by introducing self attention mechanism and multi-dimensional feature fusion. It is more adaptable in complex temporal patterns and multi-source data modeling. Abstract Traditional BiLSTM (Bidirectional Long Short-Term Memory) has limited processing capabilities for long-time series, insufficient adaptability to the characteristics of power engineering data, and inadequate accuracy in predicting problems in specific application scenarios. This paper introduces an attention mechanism to improve BiLSTM’s ability to capture long time series, integrate the time series of power engineering data, and design an intelligent analysis algorithm that adapts to multi-dimensional features. Experimental results show that in load forecasting, the mean square errors of the improved BiLSTM in summer and winter are 0.02 and 0.025 respectively, and R2 are 0.985 and 0.982 respectively. In equipment fault diagnosis, the accuracy of improved BiLSTM under current, voltage, temperature and pressure is significantly higher than that of models such as GRU.(Gated Recurrent Unit) This paper improves BiLSTM, combines multi-dimensional feature fusion and multi-head self-attention mechanism, and optimizes it according to the characteristics of power engineering data, enhance noise robustness, and reduce noise impact by 8%. Although the training time and memory are slightly increased, the convergence speed is faster. The improved BiLSTM power engineering data analysis algorithm significantly improves the accuracy and robustness of tasks such as power load forecasting and equipment fault diagnosis by introducing self attention mechanism and multi-dimensional feature fusion. It is more adaptable in complex temporal patterns and multi-source data modeling. Traditional BiLSTM (Bidirectional Long Short-Term Memory) has limited processing capabilities for long-time series, insufficient adaptability to the characteristics of power engineering data, and inadequate accuracy in predicting problems in specific application scenarios. This paper introduces an attention mechanism to improve BiLSTM's ability to capture long time series, integrate the time series of power engineering data, and design an intelligent analysis algorithm that adapts to multi-dimensional features. Experimental results show that in load forecasting, the mean square errors of the improved BiLSTM in summer and winter are 0.02 and 0.025 respectively, and R are 0.985 and 0.982 respectively. In equipment fault diagnosis, the accuracy of improved BiLSTM under current, voltage, temperature and pressure is significantly higher than that of models such as GRU.(Gated Recurrent Unit) This paper improves BiLSTM, combines multi-dimensional feature fusion and multi-head self-attention mechanism, and optimizes it according to the characteristics of power engineering data, enhance noise robustness, and reduce noise impact by 8%. Although the training time and memory are slightly increased, the convergence speed is faster. The improved BiLSTM power engineering data analysis algorithm significantly improves the accuracy and robustness of tasks such as power load forecasting and equipment fault diagnosis by introducing self attention mechanism and multi-dimensional feature fusion. It is more adaptable in complex temporal patterns and multi-source data modeling. Traditional BiLSTM (Bidirectional Long Short-Term Memory) has limited processing capabilities for long-time series, insufficient adaptability to the characteristics of power engineering data, and inadequate accuracy in predicting problems in specific application scenarios. This paper introduces an attention mechanism to improve BiLSTM's ability to capture long time series, integrate the time series of power engineering data, and design an intelligent analysis algorithm that adapts to multi-dimensional features. Experimental results show that in load forecasting, the mean square errors of the improved BiLSTM in summer and winter are 0.02 and 0.025 respectively, and R2 are 0.985 and 0.982 respectively. In equipment fault diagnosis, the accuracy of improved BiLSTM under current, voltage, temperature and pressure is significantly higher than that of models such as GRU.(Gated Recurrent Unit) This paper improves BiLSTM, combines multi-dimensional feature fusion and multi-head self-attention mechanism, and optimizes it according to the characteristics of power engineering data, enhance noise robustness, and reduce noise impact by 8%. Although the training time and memory are slightly increased, the convergence speed is faster. The improved BiLSTM power engineering data analysis algorithm significantly improves the accuracy and robustness of tasks such as power load forecasting and equipment fault diagnosis by introducing self attention mechanism and multi-dimensional feature fusion. It is more adaptable in complex temporal patterns and multi-source data modeling.Traditional BiLSTM (Bidirectional Long Short-Term Memory) has limited processing capabilities for long-time series, insufficient adaptability to the characteristics of power engineering data, and inadequate accuracy in predicting problems in specific application scenarios. This paper introduces an attention mechanism to improve BiLSTM's ability to capture long time series, integrate the time series of power engineering data, and design an intelligent analysis algorithm that adapts to multi-dimensional features. Experimental results show that in load forecasting, the mean square errors of the improved BiLSTM in summer and winter are 0.02 and 0.025 respectively, and R2 are 0.985 and 0.982 respectively. In equipment fault diagnosis, the accuracy of improved BiLSTM under current, voltage, temperature and pressure is significantly higher than that of models such as GRU.(Gated Recurrent Unit) This paper improves BiLSTM, combines multi-dimensional feature fusion and multi-head self-attention mechanism, and optimizes it according to the characteristics of power engineering data, enhance noise robustness, and reduce noise impact by 8%. Although the training time and memory are slightly increased, the convergence speed is faster. The improved BiLSTM power engineering data analysis algorithm significantly improves the accuracy and robustness of tasks such as power load forecasting and equipment fault diagnosis by introducing self attention mechanism and multi-dimensional feature fusion. It is more adaptable in complex temporal patterns and multi-source data modeling. |
ArticleNumber | 15320 |
Author | Xu, Yuanyuan Cai, Xin Yang, Jiapeng |
Author_xml | – sequence: 1 givenname: Yuanyuan surname: Xu fullname: Xu, Yuanyuan organization: College of Control Engineering, Xinjiang Institute of Engineering – sequence: 2 givenname: Jiapeng surname: Yang fullname: Yang, Jiapeng organization: College of Control Engineering, Xinjiang Institute of Engineering – sequence: 3 givenname: Xin surname: Cai fullname: Cai, Xin email: xuyuanyuan0511@163.com organization: College of Electrical Engineering, Xinjiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40312528$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtvFDEQhC0URELIH-CA5shlgl_z6CNEQFZahAThbPXYPYNXs_Zizwbl3-NkQsQJX9yyvqqWq16ykxADMfZa8EvBVf8ua9FAX3PZ1ACaQ909Y2eS66aWSsqTf-ZTdpHzjpfTSNACXrBTzZWQjezP2LdNWGie_URhqTDgfJd9rnCeYvLLz301xlQd4m9KFYXJB6Lkw1Q5XLAaMJOrYqj8_pDibZk_-O33my-v2PMR50wXj_c5-_Hp483Vdb39-nlz9X5bWy34UretJSV5bx2gcIMQfIDOwTgAag3QaKBupKYH2yiwnAY-cGx5Bw5BWYHqnG1WXxdxZw7J7zHdmYjePDzENBlMi7czGeV6wh5AaiU1kkDXKtVKO3DRAbaieL1dvcpPfh0pL2bvsy3BYKB4zEaJEnIrBW8L-uYRPQ57ck-L_2ZaALkCNsWcE41PiODmvjuzdmdKd-ahO9MVkVpF-XCfMCWzi8dU-sj_U_0BN4OaTg |
Cites_doi | 10.1007/s11356-022-21115-y 10.1007/s11063-022-11013-2 10.1109/TNNLS.2021.3136768 10.1007/s11042-021-11767-2 10.1007/s10845-022-01954-9 10.5109/7326959 10.1145/3679013 10.1111/exsy.13539 10.1093/comjnl/bxac013 10.1109/TSG.2022.3166600 10.1049/gtd2.13026 10.1016/j.epsr.2022.107923 10.1007/s11203-022-09269-5 10.1049/gtd2.13112 10.1021/acs.energyfuels.2c01543 10.1109/TNNLS.2021.3137178 10.1002/bse.3010 10.3934/mbe.2023552 10.1007/s00521-021-06370-3 10.1016/j.aei.2024.102644 10.21595/jve.2022.22271 10.2478/ijanmc-2024-0005 10.1364/OE.472981 10.1007/s10845-023-02106-3 10.1109/TPAMI.2023.3250241 10.1080/15325008.2023.2181883 10.1109/MSP.2022.3142719 10.1007/s11042-019-08453-9 10.1016/j.gltp.2022.04.020 10.1109/ACCESS.2022.3185747 10.1007/s13042-023-01973-9 10.1007/s11269-022-03414-8 10.1007/s11760-022-02186-3 10.1016/j.jeconom.2022.04.007 10.1038/s41593-024-01668-6 10.1049/gtd2.13083 10.1007/s42967-021-00138-1 10.31763/ijrcs.v2i4.888 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). |
DBID | C6C AAYXX CITATION NPM 7X8 DOA |
DOI | 10.1038/s41598-025-99409-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_3d8ea89924324ae1ad63362cb0179a61 40312528 10_1038_s41598_025_99409_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Key Research and Development Tasks for Science and Technology Department of Xinjiang Uygur Autonomous Region grantid: under Grant 2022B01020; under Grant 2022B01020; under Grant 2022B01020 – fundername: Fundamental Research Funds for Universities of Xinjiang Uygur Autonomous Region grantid: under Grant XJEUD2023P133; under Grant XJEUD2023P133; under Grant XJEUD2023P133 – fundername: Fundamental Research Funds for Universities of Xinjiang Uygur Autonomous Region grantid: under Grant XJEUD2023P133 – fundername: Key Research and Development Tasks for Science and Technology Department of Xinjiang Uygur Autonomous Region grantid: under Grant 2022B01020 |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION PHGZM NPM PJZUB PPXIY PQGLB 7X8 PUEGO |
ID | FETCH-LOGICAL-c410t-66ce3208cd9a1db110b97d9fb9a4499549e7fe589c539c0eb0b0a6079da93c1a3 |
IEDL.DBID | DOA |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:23:52 EDT 2025 Fri Jul 11 18:22:12 EDT 2025 Mon Jul 21 05:31:04 EDT 2025 Sun Jul 06 05:06:32 EDT 2025 Fri May 02 01:12:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Improved BiLSTM Attention mechanism Power engineering data Load forecasting Equipment fault diagnosis |
Language | English |
License | 2025. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-66ce3208cd9a1db110b97d9fb9a4499549e7fe589c539c0eb0b0a6079da93c1a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/3d8ea89924324ae1ad63362cb0179a61 |
PMID | 40312528 |
PQID | 3199462106 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3d8ea89924324ae1ad63362cb0179a61 proquest_miscellaneous_3199462106 pubmed_primary_40312528 crossref_primary_10_1038_s41598_025_99409_7 springer_journals_10_1038_s41598_025_99409_7 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-02 |
PublicationDateYYYYMMDD | 2025-05-02 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Portfolio |
References | Y Wang (99409_CR25) 2022; 24 X Liu (99409_CR30) 2023; 34 Q Zhang (99409_CR15) 2022; 29 J Shobana (99409_CR26) 2023; 66 S Gupta (99409_CR33) 2022; 81 C Drago (99409_CR22) 2022; 31 S Chen (99409_CR29) 2024; 56 P Purwono (99409_CR36) 2022; 2 99409_CR43 PN Thanh (99409_CR11) 2022; 10 VD Juyal (99409_CR8) 2024; 11 Y Pan (99409_CR19) 2022; 4 MW Mufana (99409_CR3) 2022; 7 99409_CR9 99409_CR41 IE Nielsen (99409_CR38) 2022; 39 G Clara (99409_CR24) 2024; 25 K Zhang (99409_CR21) 2022; 16 99409_CR4 TP Nguyen (99409_CR13) 2022; 208 Y Guo (99409_CR5) 2023; 55 EM Kuyumani (99409_CR6) 2023; 51 C Wang (99409_CR1) 2022; 13 AE Angulo (99409_CR20) 2022; 36 L Huang (99409_CR34) 2023; 45 Y Zang (99409_CR27) 2022; 30 99409_CR14 HW Xu (99409_CR16) 2024; 35 Y Sun (99409_CR31) 2024; 15 99409_CR32 X Zhang (99409_CR7) 2023; 39 PN Thanh (99409_CR12) 2024; 62 J Wen (99409_CR18) 2023; 26 LN Driscoll (99409_CR40) 2024; 27 X Zhang (99409_CR44) 2023; 235 C Garbin (99409_CR28) 2020; 79 J Wu (99409_CR17) 2023; 37 A Jentzen (99409_CR37) 2022; 23 C Tian (99409_CR2) 2023; 20 PJM Ali (99409_CR35) 2022; 10 L Ren (99409_CR23) 2022; 34 Y Yang (99409_CR39) 2022; 34 W Zheng (99409_CR42) 2022; 34 TN Da (99409_CR10) 2024; 41 |
References_xml | – volume: 29 start-page: 75664 issue: 50 year: 2022 ident: 99409_CR15 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-022-21115-y – volume: 55 start-page: 3377 issue: 3 year: 2023 ident: 99409_CR5 publication-title: Neural Process. Lett. doi: 10.1007/s11063-022-11013-2 – volume: 34 start-page: 6456 issue: 9 year: 2022 ident: 99409_CR23 publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2021.3136768 – volume: 81 start-page: 4241 issue: 3 year: 2022 ident: 99409_CR33 publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-021-11767-2 – volume: 34 start-page: 885 issue: 2 year: 2023 ident: 99409_CR30 publication-title: J. Intell. Manuf. doi: 10.1007/s10845-022-01954-9 – volume: 11 start-page: 3243 issue: 4 year: 2024 ident: 99409_CR8 publication-title: Evergreen doi: 10.5109/7326959 – volume: 56 start-page: 1 issue: 12 year: 2024 ident: 99409_CR29 publication-title: ACM Comput. Surveys doi: 10.1145/3679013 – volume: 41 start-page: e13539 issue: 7 year: 2024 ident: 99409_CR10 publication-title: Expert Syst. doi: 10.1111/exsy.13539 – volume: 66 start-page: 1279 issue: 5 year: 2023 ident: 99409_CR26 publication-title: Comput. J. doi: 10.1093/comjnl/bxac013 – volume: 25 start-page: 1 issue: 204 year: 2024 ident: 99409_CR24 publication-title: J. Mach. Learn. Res. – volume: 13 start-page: 2703 issue: 4 year: 2022 ident: 99409_CR1 publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2022.3166600 – ident: 99409_CR9 doi: 10.1049/gtd2.13026 – volume: 208 start-page: 107923 year: 2022 ident: 99409_CR13 publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2022.107923 – ident: 99409_CR32 doi: 10.1007/s11203-022-09269-5 – ident: 99409_CR14 doi: 10.1049/gtd2.13112 – volume: 36 start-page: 7908 issue: 14 year: 2022 ident: 99409_CR20 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.2c01543 – volume: 34 start-page: 7034 issue: 10 year: 2022 ident: 99409_CR42 publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2021.3137178 – volume: 31 start-page: 2107 issue: 5 year: 2022 ident: 99409_CR22 publication-title: Bus. Strategy Environ. doi: 10.1002/bse.3010 – volume: 20 start-page: 12404 issue: 7 year: 2023 ident: 99409_CR2 publication-title: Math. Biosci. Eng. doi: 10.3934/mbe.2023552 – volume: 34 start-page: 391 issue: 1 year: 2022 ident: 99409_CR39 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06370-3 – volume: 62 start-page: 102644 year: 2024 ident: 99409_CR12 publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2024.102644 – volume: 24 start-page: 666 issue: 4 year: 2022 ident: 99409_CR25 publication-title: J. VibroEng. doi: 10.21595/jve.2022.22271 – ident: 99409_CR43 doi: 10.2478/ijanmc-2024-0005 – volume: 30 start-page: 46626 issue: 26 year: 2022 ident: 99409_CR27 publication-title: Opt. Express doi: 10.1364/OE.472981 – volume: 35 start-page: 1207 issue: 3 year: 2024 ident: 99409_CR16 publication-title: J. Intell. Manuf. doi: 10.1007/s10845-023-02106-3 – volume: 45 start-page: 10173 issue: 8 year: 2023 ident: 99409_CR34 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2023.3250241 – volume: 51 start-page: 746 issue: 8 year: 2023 ident: 99409_CR6 publication-title: Electr. Power Compon. Syst. doi: 10.1080/15325008.2023.2181883 – volume: 39 start-page: 73 issue: 4 year: 2022 ident: 99409_CR38 publication-title: IEEE. Signal. Process. Mag. doi: 10.1109/MSP.2022.3142719 – volume: 39 start-page: 1932 issue: 1 year: 2023 ident: 99409_CR7 publication-title: IEEE Trans. Power Syst. – volume: 79 start-page: 12777 issue: 19 year: 2020 ident: 99409_CR28 publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-019-08453-9 – volume: 23 start-page: 1 issue: 260 year: 2022 ident: 99409_CR37 publication-title: J. Mach. Learn. Res. – ident: 99409_CR41 doi: 10.1016/j.gltp.2022.04.020 – volume: 10 start-page: 68686 year: 2022 ident: 99409_CR11 publication-title: IEEE Access. doi: 10.1109/ACCESS.2022.3185747 – volume: 15 start-page: 1375 issue: 4 year: 2024 ident: 99409_CR31 publication-title: Int. J. Mach. Learn. Cybernet. doi: 10.1007/s13042-023-01973-9 – volume: 7 start-page: 102 issue: 1 year: 2022 ident: 99409_CR3 publication-title: IDOSR J. Appl. Sci. – volume: 37 start-page: 937 issue: 2 year: 2023 ident: 99409_CR17 publication-title: Water Resour. Manage doi: 10.1007/s11269-022-03414-8 – volume: 16 start-page: 2211 issue: 8 year: 2022 ident: 99409_CR21 publication-title: Signal. Image Video Process. doi: 10.1007/s11760-022-02186-3 – volume: 235 start-page: 280 issue: 1 year: 2023 ident: 99409_CR44 publication-title: J. Econ. doi: 10.1016/j.jeconom.2022.04.007 – volume: 27 start-page: 1349 issue: 7 year: 2024 ident: 99409_CR40 publication-title: Nat. Neurosci. doi: 10.1038/s41593-024-01668-6 – volume: 10 start-page: 85 issue: 1 year: 2022 ident: 99409_CR35 publication-title: ARO-The Sci. J. Koya Univ. – ident: 99409_CR4 doi: 10.1049/gtd2.13083 – volume: 26 start-page: 20 issue: 1 year: 2023 ident: 99409_CR18 publication-title: Int. J. Comput. Sci. Eng. – volume: 4 start-page: 728 issue: 2 year: 2022 ident: 99409_CR19 publication-title: Commun. Appl. Math. Comput. doi: 10.1007/s42967-021-00138-1 – volume: 2 start-page: 739 issue: 4 year: 2022 ident: 99409_CR36 publication-title: Int. J. Rob. Control Syst. doi: 10.31763/ijrcs.v2i4.888 |
SSID | ssj0000529419 |
Score | 2.4520555 |
Snippet | Traditional BiLSTM (Bidirectional Long Short-Term Memory) has limited processing capabilities for long-time series, insufficient adaptability to the... Abstract Traditional BiLSTM (Bidirectional Long Short-Term Memory) has limited processing capabilities for long-time series, insufficient adaptability to the... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 15320 |
SubjectTerms | 639/166 639/301 639/33 639/4077 639/624 639/638 639/705 639/766 639/925 Attention mechanism Equipment fault diagnosis Humanities and Social Sciences Improved BiLSTM Load forecasting multidisciplinary Power engineering data Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLfGEBIXxPh8MFCQuEFEmqRpcmRPTAMxDrBJu0VOk26ToJ323g789zhp-9DEhLRbVaVtZLv-iO2fAd7WzqFtkuDYioZr7QzHFAx3NlZI6i_UKvc7H34zB8f6y0l9sgVy7oUpRfsF0rKo6bk67MOKDE1uBpM1d45iEt7cgbsZuj1L9dIsN-cqOXOlKzf1xwhlb3j0mg0qUP03-Zf_5EaLydl_CA8mX5F9HHe3A1upfwT3xumRvx_D988bOM01wwlchOHP04EC_rNfjNxRdpGHoLH0F3SQ5ZJQlm1XZEPPzsuZAl3vnX_9cXT4BI73Px0tD_g0IoG3uhJrbkyblBS2jQ6rGMiWB9dE1wWHRPecwktNl2rr2lq5VqQggkAjGhfRqbZC9RS2-6FPz4FJdLELndb0Fh1FxGBUIrsWhO1QdGYB72ai-YsRCcOXDLayfiSxJxL7QmLfLGAv03WzMqNYlxvD5amfuOpVtAkp4JMZFhBThdEoMqhtyGoCTbWANzNXPEl9TmVgn4arlVcZ0thQuErbejaya_MpTXpK1tIu4P3MPz_9mKv_7PjF7Za_hPsyi1SufZS7sL2-vEqvyD9Zh9dFIP8ALJzduA priority: 102 providerName: Springer Nature |
Title | Intelligent analysis algorithm for power engineering data based on improved BiLSTM |
URI | https://link.springer.com/article/10.1038/s41598-025-99409-7 https://www.ncbi.nlm.nih.gov/pubmed/40312528 https://www.proquest.com/docview/3199462106 https://doaj.org/article/3d8ea89924324ae1ad63362cb0179a61 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagCIlLxZvlsTISN7Dq2I4fx91Vq7KiFepD2ps1jp1SCbJVd3vg3zOOs0sRCC6cEllRMvpm4pnx2N8Q8q52DqxJnEHDDVPKaQYpaOZsrACnv1DLfN756Fgfnqv5ol7cavWV94QVeuAC3J6MNgEmBSJTx0GqIGqJk24TsilBSXzQ591Kpgqrt3CqcsMpGS7t3go9VT5NJmrmHCY1zPziiXrC_j9Fmb9VSHvHc_CQ7A4RI50USR-RO6l7TO6XHpLfn5CTj1tSzTWFgWKEwteLJab9X75RDErpVW6FRtNP6kGaN4bS7MEiXXb0sl9ZwPvp5afTs6On5Pxg_2x2yIZGCaxRFV8zrZskBbdNdFDFgB49OBNdGxwg-rmQl0ybauuaWrqGp8ADB82Ni-BkU4F8Rna6ZZdeECrAxTa0SuFbVOQRgpYJvVvgtgXe6hF5vwHNXxU-DN_XsaX1BWKPEPseYm9GZJpx3T6Zuaz7AdSwHzTs_6XhEXm70YpH288FDejS8mblZSY21pi0oljPi7q2n1I4W4la2BH5sNGfH37P1V8kfvk_JH5FHohsaHlfpHhNdtbXN-kNxi7rMCZ3zcKMyb3JZH46x-t0__jzCY7O9Gzcm_APcCHsew |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVKEaIXxDcLFIzEDSwc23HsI1212sJuD7CVerPGsdNWgqTqbg_994ydZBFqhdRbFDmJNePMm_HMPBPysbQWTBU5g5pXTCmrGUSvmTWhADR_vpSp33lxpGfH6ttJebJFxNgLk4v2M6VlNtNjddiXFQJNagYTJbMWYxJW3SP30dfWqYxrqqebfZWUuVKFHfpjuDS3PPoPBmWq_tv8yxu50Qw5B4_Jo8FXpF_72T0hW7F9Sh70p0dePyM_Djd0mmsKA7kIhV-nHQb8Z78puqP0Ih2CRuNf0kGaSkJpwq5Au5ae5z0FvN47n_9cLp6T44P95XTGhiMSWK0KvmZa11EKbupgoQgesdzbKtjGW0C5pxRerJpYGluX0tY8eu45aF7ZAFbWBcgXZLvt2viKUAE2NL5RCt-iAg_gtYyIa56bBnijJ-TTKDR30TNhuJzBlsb1InYoYpdF7KoJ2Uty3YxMLNb5Rnd56gatOhlMBAz4RKIFhFhA0BIBtfbJTIAuJuTDqBWHqz6lMqCN3dXKyURprDFcxWm97NW1-ZRCOyVKYSbk86g_N_yYq__M-PXdhr8nD2fLxdzND4--vyE7Ii2vVAcp3pLt9eVV3EVfZe3f5cX5B8Fc4Kc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIhAXxJvlaSRuYHBix7GPdGHVQlshaKXerHHslEqQrLrbA_-esZMsQlRI3KLISawZZ74Zz8xngJeVtWjqKDg2ouZKWc0xes2tCQWS-fOVTP3OB4d691h9PKlOtkBPvTC5aD9TWmYzPVWHvV0R0KRmsLLi1lJMwus3y9Begavkb4sUdM31fLO3krJXqrBjj4yQ5pLH_8ChTNd_mY_5V340w87iFtwc_UX2bpjhbdiK3R24Npwg-fMufNnbUGquGY4EIwy_n_YU9H_7wcglZct0EBqLv4kHWSoLZQm_Aus7dpb3Feh652z_69HBPThefDia7_LxmATeqEKsudZNlKUwTbBYBE947m0dbOstkuxTGi_WbayMbSppGxG98AK1qG1AK5sC5X3Y7vouPgRWog2tb5Wit6ggAnotI2GbF6ZF0eoZvJqE5pYDG4bLWWxp3CBiRyJ2WcSunsFOkutmZGKyzjf681M3atbJYCJS0FcmakCMBQYtCVQbn0wF6mIGLyatOFr5KZ2BXewvVk4mWmNNIStN68Ggrs2nFNmqsirNDF5P-nPjz7n6x4wf_d_w53D98_uF2987_PQYbpRpdaVSyPIJbK_PL-JTclfW_llem78ACKHhsA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+analysis+algorithm+for+power+engineering+data+based+on+improved+BiLSTM&rft.jtitle=Scientific+reports&rft.au=Xu%2C+Yuanyuan&rft.au=Yang%2C+Jiapeng&rft.au=Cai%2C+Xin&rft.date=2025-05-02&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=15320&rft_id=info:doi/10.1038%2Fs41598-025-99409-7&rft_id=info%3Apmid%2F40312528&rft.externalDocID=40312528 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |