Intelligent analysis algorithm for power engineering data based on improved BiLSTM

Traditional BiLSTM (Bidirectional Long Short-Term Memory) has limited processing capabilities for long-time series, insufficient adaptability to the characteristics of power engineering data, and inadequate accuracy in predicting problems in specific application scenarios. This paper introduces an a...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 15320 - 16
Main Authors Xu, Yuanyuan, Yang, Jiapeng, Cai, Xin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.05.2025
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traditional BiLSTM (Bidirectional Long Short-Term Memory) has limited processing capabilities for long-time series, insufficient adaptability to the characteristics of power engineering data, and inadequate accuracy in predicting problems in specific application scenarios. This paper introduces an attention mechanism to improve BiLSTM’s ability to capture long time series, integrate the time series of power engineering data, and design an intelligent analysis algorithm that adapts to multi-dimensional features. Experimental results show that in load forecasting, the mean square errors of the improved BiLSTM in summer and winter are 0.02 and 0.025 respectively, and R 2 are 0.985 and 0.982 respectively. In equipment fault diagnosis, the accuracy of improved BiLSTM under current, voltage, temperature and pressure is significantly higher than that of models such as GRU.(Gated Recurrent Unit) This paper improves BiLSTM, combines multi-dimensional feature fusion and multi-head self-attention mechanism, and optimizes it according to the characteristics of power engineering data, enhance noise robustness, and reduce noise impact by 8%. Although the training time and memory are slightly increased, the convergence speed is faster. The improved BiLSTM power engineering data analysis algorithm significantly improves the accuracy and robustness of tasks such as power load forecasting and equipment fault diagnosis by introducing self attention mechanism and multi-dimensional feature fusion. It is more adaptable in complex temporal patterns and multi-source data modeling.
AbstractList Traditional BiLSTM (Bidirectional Long Short-Term Memory) has limited processing capabilities for long-time series, insufficient adaptability to the characteristics of power engineering data, and inadequate accuracy in predicting problems in specific application scenarios. This paper introduces an attention mechanism to improve BiLSTM’s ability to capture long time series, integrate the time series of power engineering data, and design an intelligent analysis algorithm that adapts to multi-dimensional features. Experimental results show that in load forecasting, the mean square errors of the improved BiLSTM in summer and winter are 0.02 and 0.025 respectively, and R 2 are 0.985 and 0.982 respectively. In equipment fault diagnosis, the accuracy of improved BiLSTM under current, voltage, temperature and pressure is significantly higher than that of models such as GRU.(Gated Recurrent Unit) This paper improves BiLSTM, combines multi-dimensional feature fusion and multi-head self-attention mechanism, and optimizes it according to the characteristics of power engineering data, enhance noise robustness, and reduce noise impact by 8%. Although the training time and memory are slightly increased, the convergence speed is faster. The improved BiLSTM power engineering data analysis algorithm significantly improves the accuracy and robustness of tasks such as power load forecasting and equipment fault diagnosis by introducing self attention mechanism and multi-dimensional feature fusion. It is more adaptable in complex temporal patterns and multi-source data modeling.
Abstract Traditional BiLSTM (Bidirectional Long Short-Term Memory) has limited processing capabilities for long-time series, insufficient adaptability to the characteristics of power engineering data, and inadequate accuracy in predicting problems in specific application scenarios. This paper introduces an attention mechanism to improve BiLSTM’s ability to capture long time series, integrate the time series of power engineering data, and design an intelligent analysis algorithm that adapts to multi-dimensional features. Experimental results show that in load forecasting, the mean square errors of the improved BiLSTM in summer and winter are 0.02 and 0.025 respectively, and R2 are 0.985 and 0.982 respectively. In equipment fault diagnosis, the accuracy of improved BiLSTM under current, voltage, temperature and pressure is significantly higher than that of models such as GRU.(Gated Recurrent Unit) This paper improves BiLSTM, combines multi-dimensional feature fusion and multi-head self-attention mechanism, and optimizes it according to the characteristics of power engineering data, enhance noise robustness, and reduce noise impact by 8%. Although the training time and memory are slightly increased, the convergence speed is faster. The improved BiLSTM power engineering data analysis algorithm significantly improves the accuracy and robustness of tasks such as power load forecasting and equipment fault diagnosis by introducing self attention mechanism and multi-dimensional feature fusion. It is more adaptable in complex temporal patterns and multi-source data modeling.
Traditional BiLSTM (Bidirectional Long Short-Term Memory) has limited processing capabilities for long-time series, insufficient adaptability to the characteristics of power engineering data, and inadequate accuracy in predicting problems in specific application scenarios. This paper introduces an attention mechanism to improve BiLSTM's ability to capture long time series, integrate the time series of power engineering data, and design an intelligent analysis algorithm that adapts to multi-dimensional features. Experimental results show that in load forecasting, the mean square errors of the improved BiLSTM in summer and winter are 0.02 and 0.025 respectively, and R are 0.985 and 0.982 respectively. In equipment fault diagnosis, the accuracy of improved BiLSTM under current, voltage, temperature and pressure is significantly higher than that of models such as GRU.(Gated Recurrent Unit) This paper improves BiLSTM, combines multi-dimensional feature fusion and multi-head self-attention mechanism, and optimizes it according to the characteristics of power engineering data, enhance noise robustness, and reduce noise impact by 8%. Although the training time and memory are slightly increased, the convergence speed is faster. The improved BiLSTM power engineering data analysis algorithm significantly improves the accuracy and robustness of tasks such as power load forecasting and equipment fault diagnosis by introducing self attention mechanism and multi-dimensional feature fusion. It is more adaptable in complex temporal patterns and multi-source data modeling.
Traditional BiLSTM (Bidirectional Long Short-Term Memory) has limited processing capabilities for long-time series, insufficient adaptability to the characteristics of power engineering data, and inadequate accuracy in predicting problems in specific application scenarios. This paper introduces an attention mechanism to improve BiLSTM's ability to capture long time series, integrate the time series of power engineering data, and design an intelligent analysis algorithm that adapts to multi-dimensional features. Experimental results show that in load forecasting, the mean square errors of the improved BiLSTM in summer and winter are 0.02 and 0.025 respectively, and R2 are 0.985 and 0.982 respectively. In equipment fault diagnosis, the accuracy of improved BiLSTM under current, voltage, temperature and pressure is significantly higher than that of models such as GRU.(Gated Recurrent Unit) This paper improves BiLSTM, combines multi-dimensional feature fusion and multi-head self-attention mechanism, and optimizes it according to the characteristics of power engineering data, enhance noise robustness, and reduce noise impact by 8%. Although the training time and memory are slightly increased, the convergence speed is faster. The improved BiLSTM power engineering data analysis algorithm significantly improves the accuracy and robustness of tasks such as power load forecasting and equipment fault diagnosis by introducing self attention mechanism and multi-dimensional feature fusion. It is more adaptable in complex temporal patterns and multi-source data modeling.Traditional BiLSTM (Bidirectional Long Short-Term Memory) has limited processing capabilities for long-time series, insufficient adaptability to the characteristics of power engineering data, and inadequate accuracy in predicting problems in specific application scenarios. This paper introduces an attention mechanism to improve BiLSTM's ability to capture long time series, integrate the time series of power engineering data, and design an intelligent analysis algorithm that adapts to multi-dimensional features. Experimental results show that in load forecasting, the mean square errors of the improved BiLSTM in summer and winter are 0.02 and 0.025 respectively, and R2 are 0.985 and 0.982 respectively. In equipment fault diagnosis, the accuracy of improved BiLSTM under current, voltage, temperature and pressure is significantly higher than that of models such as GRU.(Gated Recurrent Unit) This paper improves BiLSTM, combines multi-dimensional feature fusion and multi-head self-attention mechanism, and optimizes it according to the characteristics of power engineering data, enhance noise robustness, and reduce noise impact by 8%. Although the training time and memory are slightly increased, the convergence speed is faster. The improved BiLSTM power engineering data analysis algorithm significantly improves the accuracy and robustness of tasks such as power load forecasting and equipment fault diagnosis by introducing self attention mechanism and multi-dimensional feature fusion. It is more adaptable in complex temporal patterns and multi-source data modeling.
ArticleNumber 15320
Author Xu, Yuanyuan
Cai, Xin
Yang, Jiapeng
Author_xml – sequence: 1
  givenname: Yuanyuan
  surname: Xu
  fullname: Xu, Yuanyuan
  organization: College of Control Engineering, Xinjiang Institute of Engineering
– sequence: 2
  givenname: Jiapeng
  surname: Yang
  fullname: Yang, Jiapeng
  organization: College of Control Engineering, Xinjiang Institute of Engineering
– sequence: 3
  givenname: Xin
  surname: Cai
  fullname: Cai, Xin
  email: xuyuanyuan0511@163.com
  organization: College of Electrical Engineering, Xinjiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40312528$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvFDEQhC0URELIH-CA5shlgl_z6CNEQFZahAThbPXYPYNXs_Zizwbl3-NkQsQJX9yyvqqWq16ykxADMfZa8EvBVf8ua9FAX3PZ1ACaQ909Y2eS66aWSsqTf-ZTdpHzjpfTSNACXrBTzZWQjezP2LdNWGie_URhqTDgfJd9rnCeYvLLz301xlQd4m9KFYXJB6Lkw1Q5XLAaMJOrYqj8_pDibZk_-O33my-v2PMR50wXj_c5-_Hp483Vdb39-nlz9X5bWy34UretJSV5bx2gcIMQfIDOwTgAag3QaKBupKYH2yiwnAY-cGx5Bw5BWYHqnG1WXxdxZw7J7zHdmYjePDzENBlMi7czGeV6wh5AaiU1kkDXKtVKO3DRAbaieL1dvcpPfh0pL2bvsy3BYKB4zEaJEnIrBW8L-uYRPQ57ck-L_2ZaALkCNsWcE41PiODmvjuzdmdKd-ahO9MVkVpF-XCfMCWzi8dU-sj_U_0BN4OaTg
Cites_doi 10.1007/s11356-022-21115-y
10.1007/s11063-022-11013-2
10.1109/TNNLS.2021.3136768
10.1007/s11042-021-11767-2
10.1007/s10845-022-01954-9
10.5109/7326959
10.1145/3679013
10.1111/exsy.13539
10.1093/comjnl/bxac013
10.1109/TSG.2022.3166600
10.1049/gtd2.13026
10.1016/j.epsr.2022.107923
10.1007/s11203-022-09269-5
10.1049/gtd2.13112
10.1021/acs.energyfuels.2c01543
10.1109/TNNLS.2021.3137178
10.1002/bse.3010
10.3934/mbe.2023552
10.1007/s00521-021-06370-3
10.1016/j.aei.2024.102644
10.21595/jve.2022.22271
10.2478/ijanmc-2024-0005
10.1364/OE.472981
10.1007/s10845-023-02106-3
10.1109/TPAMI.2023.3250241
10.1080/15325008.2023.2181883
10.1109/MSP.2022.3142719
10.1007/s11042-019-08453-9
10.1016/j.gltp.2022.04.020
10.1109/ACCESS.2022.3185747
10.1007/s13042-023-01973-9
10.1007/s11269-022-03414-8
10.1007/s11760-022-02186-3
10.1016/j.jeconom.2022.04.007
10.1038/s41593-024-01668-6
10.1049/gtd2.13083
10.1007/s42967-021-00138-1
10.31763/ijrcs.v2i4.888
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
DBID C6C
AAYXX
CITATION
NPM
7X8
DOA
DOI 10.1038/s41598-025-99409-7
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 16
ExternalDocumentID oai_doaj_org_article_3d8ea89924324ae1ad63362cb0179a61
40312528
10_1038_s41598_025_99409_7
Genre Journal Article
GrantInformation_xml – fundername: Key Research and Development Tasks for Science and Technology Department of Xinjiang Uygur Autonomous Region
  grantid: under Grant 2022B01020; under Grant 2022B01020; under Grant 2022B01020
– fundername: Fundamental Research Funds for Universities of Xinjiang Uygur Autonomous Region
  grantid: under Grant XJEUD2023P133; under Grant XJEUD2023P133; under Grant XJEUD2023P133
– fundername: Fundamental Research Funds for Universities of Xinjiang Uygur Autonomous Region
  grantid: under Grant XJEUD2023P133
– fundername: Key Research and Development Tasks for Science and Technology Department of Xinjiang Uygur Autonomous Region
  grantid: under Grant 2022B01020
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PHGZM
NPM
PJZUB
PPXIY
PQGLB
7X8
PUEGO
ID FETCH-LOGICAL-c410t-66ce3208cd9a1db110b97d9fb9a4499549e7fe589c539c0eb0b0a6079da93c1a3
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Wed Aug 27 01:23:52 EDT 2025
Fri Jul 11 18:22:12 EDT 2025
Mon Jul 21 05:31:04 EDT 2025
Sun Jul 06 05:06:32 EDT 2025
Fri May 02 01:12:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Improved BiLSTM
Attention mechanism
Power engineering data
Load forecasting
Equipment fault diagnosis
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-66ce3208cd9a1db110b97d9fb9a4499549e7fe589c539c0eb0b0a6079da93c1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/3d8ea89924324ae1ad63362cb0179a61
PMID 40312528
PQID 3199462106
PQPubID 23479
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_3d8ea89924324ae1ad63362cb0179a61
proquest_miscellaneous_3199462106
pubmed_primary_40312528
crossref_primary_10_1038_s41598_025_99409_7
springer_journals_10_1038_s41598_025_99409_7
PublicationCentury 2000
PublicationDate 2025-05-02
PublicationDateYYYYMMDD 2025-05-02
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Portfolio
References Y Wang (99409_CR25) 2022; 24
X Liu (99409_CR30) 2023; 34
Q Zhang (99409_CR15) 2022; 29
J Shobana (99409_CR26) 2023; 66
S Gupta (99409_CR33) 2022; 81
C Drago (99409_CR22) 2022; 31
S Chen (99409_CR29) 2024; 56
P Purwono (99409_CR36) 2022; 2
99409_CR43
PN Thanh (99409_CR11) 2022; 10
VD Juyal (99409_CR8) 2024; 11
Y Pan (99409_CR19) 2022; 4
MW Mufana (99409_CR3) 2022; 7
99409_CR9
99409_CR41
IE Nielsen (99409_CR38) 2022; 39
G Clara (99409_CR24) 2024; 25
K Zhang (99409_CR21) 2022; 16
99409_CR4
TP Nguyen (99409_CR13) 2022; 208
Y Guo (99409_CR5) 2023; 55
EM Kuyumani (99409_CR6) 2023; 51
C Wang (99409_CR1) 2022; 13
AE Angulo (99409_CR20) 2022; 36
L Huang (99409_CR34) 2023; 45
Y Zang (99409_CR27) 2022; 30
99409_CR14
HW Xu (99409_CR16) 2024; 35
Y Sun (99409_CR31) 2024; 15
99409_CR32
X Zhang (99409_CR7) 2023; 39
PN Thanh (99409_CR12) 2024; 62
J Wen (99409_CR18) 2023; 26
LN Driscoll (99409_CR40) 2024; 27
X Zhang (99409_CR44) 2023; 235
C Garbin (99409_CR28) 2020; 79
J Wu (99409_CR17) 2023; 37
A Jentzen (99409_CR37) 2022; 23
C Tian (99409_CR2) 2023; 20
PJM Ali (99409_CR35) 2022; 10
L Ren (99409_CR23) 2022; 34
Y Yang (99409_CR39) 2022; 34
W Zheng (99409_CR42) 2022; 34
TN Da (99409_CR10) 2024; 41
References_xml – volume: 29
  start-page: 75664
  issue: 50
  year: 2022
  ident: 99409_CR15
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-022-21115-y
– volume: 55
  start-page: 3377
  issue: 3
  year: 2023
  ident: 99409_CR5
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-022-11013-2
– volume: 34
  start-page: 6456
  issue: 9
  year: 2022
  ident: 99409_CR23
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2021.3136768
– volume: 81
  start-page: 4241
  issue: 3
  year: 2022
  ident: 99409_CR33
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-021-11767-2
– volume: 34
  start-page: 885
  issue: 2
  year: 2023
  ident: 99409_CR30
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-022-01954-9
– volume: 11
  start-page: 3243
  issue: 4
  year: 2024
  ident: 99409_CR8
  publication-title: Evergreen
  doi: 10.5109/7326959
– volume: 56
  start-page: 1
  issue: 12
  year: 2024
  ident: 99409_CR29
  publication-title: ACM Comput. Surveys
  doi: 10.1145/3679013
– volume: 41
  start-page: e13539
  issue: 7
  year: 2024
  ident: 99409_CR10
  publication-title: Expert Syst.
  doi: 10.1111/exsy.13539
– volume: 66
  start-page: 1279
  issue: 5
  year: 2023
  ident: 99409_CR26
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxac013
– volume: 25
  start-page: 1
  issue: 204
  year: 2024
  ident: 99409_CR24
  publication-title: J. Mach. Learn. Res.
– volume: 13
  start-page: 2703
  issue: 4
  year: 2022
  ident: 99409_CR1
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2022.3166600
– ident: 99409_CR9
  doi: 10.1049/gtd2.13026
– volume: 208
  start-page: 107923
  year: 2022
  ident: 99409_CR13
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2022.107923
– ident: 99409_CR32
  doi: 10.1007/s11203-022-09269-5
– ident: 99409_CR14
  doi: 10.1049/gtd2.13112
– volume: 36
  start-page: 7908
  issue: 14
  year: 2022
  ident: 99409_CR20
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.2c01543
– volume: 34
  start-page: 7034
  issue: 10
  year: 2022
  ident: 99409_CR42
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2021.3137178
– volume: 31
  start-page: 2107
  issue: 5
  year: 2022
  ident: 99409_CR22
  publication-title: Bus. Strategy Environ.
  doi: 10.1002/bse.3010
– volume: 20
  start-page: 12404
  issue: 7
  year: 2023
  ident: 99409_CR2
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2023552
– volume: 34
  start-page: 391
  issue: 1
  year: 2022
  ident: 99409_CR39
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06370-3
– volume: 62
  start-page: 102644
  year: 2024
  ident: 99409_CR12
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2024.102644
– volume: 24
  start-page: 666
  issue: 4
  year: 2022
  ident: 99409_CR25
  publication-title: J. VibroEng.
  doi: 10.21595/jve.2022.22271
– ident: 99409_CR43
  doi: 10.2478/ijanmc-2024-0005
– volume: 30
  start-page: 46626
  issue: 26
  year: 2022
  ident: 99409_CR27
  publication-title: Opt. Express
  doi: 10.1364/OE.472981
– volume: 35
  start-page: 1207
  issue: 3
  year: 2024
  ident: 99409_CR16
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-023-02106-3
– volume: 45
  start-page: 10173
  issue: 8
  year: 2023
  ident: 99409_CR34
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2023.3250241
– volume: 51
  start-page: 746
  issue: 8
  year: 2023
  ident: 99409_CR6
  publication-title: Electr. Power Compon. Syst.
  doi: 10.1080/15325008.2023.2181883
– volume: 39
  start-page: 73
  issue: 4
  year: 2022
  ident: 99409_CR38
  publication-title: IEEE. Signal. Process. Mag.
  doi: 10.1109/MSP.2022.3142719
– volume: 39
  start-page: 1932
  issue: 1
  year: 2023
  ident: 99409_CR7
  publication-title: IEEE Trans. Power Syst.
– volume: 79
  start-page: 12777
  issue: 19
  year: 2020
  ident: 99409_CR28
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-019-08453-9
– volume: 23
  start-page: 1
  issue: 260
  year: 2022
  ident: 99409_CR37
  publication-title: J. Mach. Learn. Res.
– ident: 99409_CR41
  doi: 10.1016/j.gltp.2022.04.020
– volume: 10
  start-page: 68686
  year: 2022
  ident: 99409_CR11
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2022.3185747
– volume: 15
  start-page: 1375
  issue: 4
  year: 2024
  ident: 99409_CR31
  publication-title: Int. J. Mach. Learn. Cybernet.
  doi: 10.1007/s13042-023-01973-9
– volume: 7
  start-page: 102
  issue: 1
  year: 2022
  ident: 99409_CR3
  publication-title: IDOSR J. Appl. Sci.
– volume: 37
  start-page: 937
  issue: 2
  year: 2023
  ident: 99409_CR17
  publication-title: Water Resour. Manage
  doi: 10.1007/s11269-022-03414-8
– volume: 16
  start-page: 2211
  issue: 8
  year: 2022
  ident: 99409_CR21
  publication-title: Signal. Image Video Process.
  doi: 10.1007/s11760-022-02186-3
– volume: 235
  start-page: 280
  issue: 1
  year: 2023
  ident: 99409_CR44
  publication-title: J. Econ.
  doi: 10.1016/j.jeconom.2022.04.007
– volume: 27
  start-page: 1349
  issue: 7
  year: 2024
  ident: 99409_CR40
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-024-01668-6
– volume: 10
  start-page: 85
  issue: 1
  year: 2022
  ident: 99409_CR35
  publication-title: ARO-The Sci. J. Koya Univ.
– ident: 99409_CR4
  doi: 10.1049/gtd2.13083
– volume: 26
  start-page: 20
  issue: 1
  year: 2023
  ident: 99409_CR18
  publication-title: Int. J. Comput. Sci. Eng.
– volume: 4
  start-page: 728
  issue: 2
  year: 2022
  ident: 99409_CR19
  publication-title: Commun. Appl. Math. Comput.
  doi: 10.1007/s42967-021-00138-1
– volume: 2
  start-page: 739
  issue: 4
  year: 2022
  ident: 99409_CR36
  publication-title: Int. J. Rob. Control Syst.
  doi: 10.31763/ijrcs.v2i4.888
SSID ssj0000529419
Score 2.4520555
Snippet Traditional BiLSTM (Bidirectional Long Short-Term Memory) has limited processing capabilities for long-time series, insufficient adaptability to the...
Abstract Traditional BiLSTM (Bidirectional Long Short-Term Memory) has limited processing capabilities for long-time series, insufficient adaptability to the...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 15320
SubjectTerms 639/166
639/301
639/33
639/4077
639/624
639/638
639/705
639/766
639/925
Attention mechanism
Equipment fault diagnosis
Humanities and Social Sciences
Improved BiLSTM
Load forecasting
multidisciplinary
Power engineering data
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLfGEBIXxPh8MFCQuEFEmqRpcmRPTAMxDrBJu0VOk26ToJ323g789zhp-9DEhLRbVaVtZLv-iO2fAd7WzqFtkuDYioZr7QzHFAx3NlZI6i_UKvc7H34zB8f6y0l9sgVy7oUpRfsF0rKo6bk67MOKDE1uBpM1d45iEt7cgbsZuj1L9dIsN-cqOXOlKzf1xwhlb3j0mg0qUP03-Zf_5EaLydl_CA8mX5F9HHe3A1upfwT3xumRvx_D988bOM01wwlchOHP04EC_rNfjNxRdpGHoLH0F3SQ5ZJQlm1XZEPPzsuZAl3vnX_9cXT4BI73Px0tD_g0IoG3uhJrbkyblBS2jQ6rGMiWB9dE1wWHRPecwktNl2rr2lq5VqQggkAjGhfRqbZC9RS2-6FPz4FJdLELndb0Fh1FxGBUIrsWhO1QdGYB72ai-YsRCcOXDLayfiSxJxL7QmLfLGAv03WzMqNYlxvD5amfuOpVtAkp4JMZFhBThdEoMqhtyGoCTbWANzNXPEl9TmVgn4arlVcZ0thQuErbejaya_MpTXpK1tIu4P3MPz_9mKv_7PjF7Za_hPsyi1SufZS7sL2-vEqvyD9Zh9dFIP8ALJzduA
  priority: 102
  providerName: Springer Nature
Title Intelligent analysis algorithm for power engineering data based on improved BiLSTM
URI https://link.springer.com/article/10.1038/s41598-025-99409-7
https://www.ncbi.nlm.nih.gov/pubmed/40312528
https://www.proquest.com/docview/3199462106
https://doaj.org/article/3d8ea89924324ae1ad63362cb0179a61
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagCIlLxZvlsTISN7Dq2I4fx91Vq7KiFepD2ps1jp1SCbJVd3vg3zOOs0sRCC6cEllRMvpm4pnx2N8Q8q52DqxJnEHDDVPKaQYpaOZsrACnv1DLfN756Fgfnqv5ol7cavWV94QVeuAC3J6MNgEmBSJTx0GqIGqJk24TsilBSXzQ591Kpgqrt3CqcsMpGS7t3go9VT5NJmrmHCY1zPziiXrC_j9Fmb9VSHvHc_CQ7A4RI50USR-RO6l7TO6XHpLfn5CTj1tSzTWFgWKEwteLJab9X75RDErpVW6FRtNP6kGaN4bS7MEiXXb0sl9ZwPvp5afTs6On5Pxg_2x2yIZGCaxRFV8zrZskBbdNdFDFgB49OBNdGxwg-rmQl0ybauuaWrqGp8ADB82Ni-BkU4F8Rna6ZZdeECrAxTa0SuFbVOQRgpYJvVvgtgXe6hF5vwHNXxU-DN_XsaX1BWKPEPseYm9GZJpx3T6Zuaz7AdSwHzTs_6XhEXm70YpH288FDejS8mblZSY21pi0oljPi7q2n1I4W4la2BH5sNGfH37P1V8kfvk_JH5FHohsaHlfpHhNdtbXN-kNxi7rMCZ3zcKMyb3JZH46x-t0__jzCY7O9Gzcm_APcCHsew
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVKEaIXxDcLFIzEDSwc23HsI1212sJuD7CVerPGsdNWgqTqbg_994ydZBFqhdRbFDmJNePMm_HMPBPysbQWTBU5g5pXTCmrGUSvmTWhADR_vpSp33lxpGfH6ttJebJFxNgLk4v2M6VlNtNjddiXFQJNagYTJbMWYxJW3SP30dfWqYxrqqebfZWUuVKFHfpjuDS3PPoPBmWq_tv8yxu50Qw5B4_Jo8FXpF_72T0hW7F9Sh70p0dePyM_Djd0mmsKA7kIhV-nHQb8Z78puqP0Ih2CRuNf0kGaSkJpwq5Au5ae5z0FvN47n_9cLp6T44P95XTGhiMSWK0KvmZa11EKbupgoQgesdzbKtjGW0C5pxRerJpYGluX0tY8eu45aF7ZAFbWBcgXZLvt2viKUAE2NL5RCt-iAg_gtYyIa56bBnijJ-TTKDR30TNhuJzBlsb1InYoYpdF7KoJ2Uty3YxMLNb5Rnd56gatOhlMBAz4RKIFhFhA0BIBtfbJTIAuJuTDqBWHqz6lMqCN3dXKyURprDFcxWm97NW1-ZRCOyVKYSbk86g_N_yYq__M-PXdhr8nD2fLxdzND4--vyE7Ii2vVAcp3pLt9eVV3EVfZe3f5cX5B8Fc4Kc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIhAXxJvlaSRuYHBix7GPdGHVQlshaKXerHHslEqQrLrbA_-esZMsQlRI3KLISawZZ74Zz8xngJeVtWjqKDg2ouZKWc0xes2tCQWS-fOVTP3OB4d691h9PKlOtkBPvTC5aD9TWmYzPVWHvV0R0KRmsLLi1lJMwus3y9Begavkb4sUdM31fLO3krJXqrBjj4yQ5pLH_8ChTNd_mY_5V340w87iFtwc_UX2bpjhbdiK3R24Npwg-fMufNnbUGquGY4EIwy_n_YU9H_7wcglZct0EBqLv4kHWSoLZQm_Aus7dpb3Feh652z_69HBPThefDia7_LxmATeqEKsudZNlKUwTbBYBE947m0dbOstkuxTGi_WbayMbSppGxG98AK1qG1AK5sC5X3Y7vouPgRWog2tb5Wit6ggAnotI2GbF6ZF0eoZvJqE5pYDG4bLWWxp3CBiRyJ2WcSunsFOkutmZGKyzjf681M3atbJYCJS0FcmakCMBQYtCVQbn0wF6mIGLyatOFr5KZ2BXewvVk4mWmNNIStN68Ggrs2nFNmqsirNDF5P-nPjz7n6x4wf_d_w53D98_uF2987_PQYbpRpdaVSyPIJbK_PL-JTclfW_llem78ACKHhsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+analysis+algorithm+for+power+engineering+data+based+on+improved+BiLSTM&rft.jtitle=Scientific+reports&rft.au=Xu%2C+Yuanyuan&rft.au=Yang%2C+Jiapeng&rft.au=Cai%2C+Xin&rft.date=2025-05-02&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=15320&rft_id=info:doi/10.1038%2Fs41598-025-99409-7&rft_id=info%3Apmid%2F40312528&rft.externalDocID=40312528
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon