Tunable Schottky barrier in van der Waals heterojunction composed of graphene and SiCP4 from first principle calculations

•The Schottky contact formed between graphene and SiCP4 is studied.•The barrier height and contact type can be tuned by changing the interlayer distance.•The charge transfer theory can be used to explain the change of Schottky barrier.•The Schottky barrier can be controlled by applying a vertical el...

Full description

Saved in:
Bibliographic Details
Published inResults in physics Vol. 44; p. 106189
Main Authors Zhang, Shaofeng, Wang, Zhaowu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The Schottky contact formed between graphene and SiCP4 is studied.•The barrier height and contact type can be tuned by changing the interlayer distance.•The charge transfer theory can be used to explain the change of Schottky barrier.•The Schottky barrier can be controlled by applying a vertical electric field. The contact type between graphene and semiconducting two-dimensional materials is a crucial factor in determining the performance of nanoscale electronic devices based on two-dimensional materials. Recently, SiCP4 is proposed to have high charge mobility plus high stability. In this work, we study the contact type between graphene and SiCP4. The Schottky barrier is formed between graphene and SiCP4. By changing the interlayer distance, the Schottky barrier can be tuned in a wide range. The charge transfer at the interface induces a reverse shift between the bands of graphene and SiCP4. The amount of charge transfer can be used to explain the change in the Schottky barrier. Furthermore, the Schottky barrier can be controlled by applying a vertical electric field. The tunable Schottky barrier provides a guide for the design of the nanodevice based on graphene and SiCP4.
AbstractList The contact type between graphene and semiconducting two-dimensional materials is a crucial factor in determining the performance of nanoscale electronic devices based on two-dimensional materials. Recently, SiCP4 is proposed to have high charge mobility plus high stability. In this work, we study the contact type between graphene and SiCP4. The Schottky barrier is formed between graphene and SiCP4. By changing the interlayer distance, the Schottky barrier can be tuned in a wide range. The charge transfer at the interface induces a reverse shift between the bands of graphene and SiCP4. The amount of charge transfer can be used to explain the change in the Schottky barrier. Furthermore, the Schottky barrier can be controlled by applying a vertical electric field. The tunable Schottky barrier provides a guide for the design of the nanodevice based on graphene and SiCP4.
•The Schottky contact formed between graphene and SiCP4 is studied.•The barrier height and contact type can be tuned by changing the interlayer distance.•The charge transfer theory can be used to explain the change of Schottky barrier.•The Schottky barrier can be controlled by applying a vertical electric field. The contact type between graphene and semiconducting two-dimensional materials is a crucial factor in determining the performance of nanoscale electronic devices based on two-dimensional materials. Recently, SiCP4 is proposed to have high charge mobility plus high stability. In this work, we study the contact type between graphene and SiCP4. The Schottky barrier is formed between graphene and SiCP4. By changing the interlayer distance, the Schottky barrier can be tuned in a wide range. The charge transfer at the interface induces a reverse shift between the bands of graphene and SiCP4. The amount of charge transfer can be used to explain the change in the Schottky barrier. Furthermore, the Schottky barrier can be controlled by applying a vertical electric field. The tunable Schottky barrier provides a guide for the design of the nanodevice based on graphene and SiCP4.
ArticleNumber 106189
Author Wang, Zhaowu
Zhang, Shaofeng
Author_xml – sequence: 1
  givenname: Shaofeng
  orcidid: 0000-0003-4617-5749
  surname: Zhang
  fullname: Zhang, Shaofeng
  organization: School of Physics and Engineering, Longmen Laboratory, Henan University of Science and Technology, Luoyang 471023, China
– sequence: 2
  givenname: Zhaowu
  surname: Wang
  fullname: Wang, Zhaowu
  email: wangzhaowu@haust.edu.cn
  organization: School of Physics and Engineering, Longmen Laboratory, Henan University of Science and Technology, Luoyang 471023, China
BookMark eNp9kc9q3DAQh01IIGmSF-hJL7BbybYsC3opS_8EAi0kpUcxGo2zcr2SkbWBfftos6WUHnLSMPD9NDPfu-o8xEBV9V7wteCi-zCukw_zuuZ1XRqd6PVZdVXXQqwapdX5P_VldbssI-eFaqUU4qo6PO4D2InYA25jzr8PzEJKnhLzgT1DYK6UvwCmhW0pU4rjPmD2MTCMuzku5Fgc2FOCeUuBGATHHvzmR8uGFHds8GnJbC7joZ_LJwgT7ic48stNdTGUWLr9815XP798ftx8W91__3q3-XS_wlbwvOo6LlSvrcJa1WSF7HTfKCmlknYYrOPIoe1AgLWNta4jDVYiKiTkEiRvrqu7U66LMJoyyw7SwUTw5rUR05OBlD1OZKxGaloQLWjeCgW97LUmcr1wGtueSlZ9ysIUlyXR8DdPcHN0YUZzdGGOLszJRYH6_yD0-fUGOYGf3kY_nlAqB3ouVsyCngKS84kwlw38W_gL3TGpIQ
CitedBy_id crossref_primary_10_1080_00150193_2024_2325905
Cites_doi 10.1038/nnano.2014.207
10.1103/PhysRevB.54.11169
10.1103/PhysRevLett.114.066803
10.1021/acs.jpclett.1c03708
10.1063/5.0033241
10.1063/1.4858400
10.1002/wcms.1266
10.1088/1361-6528/ab5de1
10.1088/1674-4926/41/7/071901
10.1088/1361-6633/abf1d4
10.1103/PhysRevB.104.165421
10.1103/PhysRevB.59.1758
10.1126/science.aac9439
10.1002/adfm.201604093
10.1016/0927-0256(96)00008-0
10.1039/C7CP03960C
10.1021/acs.jpclett.1c00682
10.1016/j.apsusc.2020.148389
10.1021/nn500676t
10.1103/PhysRevB.50.17953
10.1002/adma.201805417
10.1016/j.apsusc.2020.146749
10.1103/PhysRevB.102.075414
10.1021/acsanm.9b01164
10.1016/j.mseb.2017.03.011
10.1039/C9TC03213D
10.1103/PhysRevB.101.235419
10.1103/PhysRevApplied.12.064061
10.1063/5.0004278
10.1021/jp212181h
10.1039/C4NR03670K
10.1038/natrevmats.2016.61
10.1063/1.4982690
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rinp.2022.106189
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2211-3797
ExternalDocumentID oai_doaj_org_article_b9ce34a14a90417a85899eed81d9c48e
10_1016_j_rinp_2022_106189
S2211379722008105
GroupedDBID --K
0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
SES
SSZ
XH2
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c410t-6601789b7c272eb156983755575bffbd0c0a46a1abb3bbd6e9ab5cc7cec05a503
IEDL.DBID DOA
ISSN 2211-3797
IngestDate Wed Aug 27 01:28:22 EDT 2025
Thu Apr 24 23:07:40 EDT 2025
Tue Jul 01 02:27:46 EDT 2025
Tue Jul 25 20:57:52 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Two-dimensional materials
Density functional theory
Schottky contact
SiCP4
Van der Waals heterojunction
Graphene
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-6601789b7c272eb156983755575bffbd0c0a46a1abb3bbd6e9ab5cc7cec05a503
ORCID 0000-0003-4617-5749
OpenAccessLink https://doaj.org/article/b9ce34a14a90417a85899eed81d9c48e
ParticipantIDs doaj_primary_oai_doaj_org_article_b9ce34a14a90417a85899eed81d9c48e
crossref_primary_10_1016_j_rinp_2022_106189
crossref_citationtrail_10_1016_j_rinp_2022_106189
elsevier_sciencedirect_doi_10_1016_j_rinp_2022_106189
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Results in physics
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Kresse, Furthmuller (b0130) 1996; 6
Zheng, Gao, Han, Chen (b0035) 2021; 2
Kresse, Furthmuller (b0125) 1996; 54
Khandelwal, Mani, Karigerasi, Lahiri (b0110) 2017; 221
Ding, Zhang, Zhao, Xiang, Zhang, Zu (b0040) 2019; 12
Kresse, Joubert (b0135) 1999; 59
Tung (b0060) 2014; 1
Fiori, Bonaccorso, Iannaccone, Palacios, Neumaier, Seabaugh (b0010) 2014; 9
Novoselov, Mishchenko, Carvalho, Castro Neto (b0005) 2016; 353
Mohanta, Sarkar (b0160) 2021; 540
Yu, Ong, Li, Xu, Zhang, Zhang (b0100) 2017; 27
Mohanta, Sarkar (b0170) 2020; 526
Geng, Yuan, Yang, Tang, Zhang, Yang (b0020) 2019; 7
Carvalho, Wang, Zhu, Rodin, Su, Castro Neto (b0105) 2016; 1
Cao, Zhou, Wang, Ang, Ang (b0025) 2021; 118
Binh, Nguyen, Vu, Nguyen (b0050) 2021; 12
Srinivasu, Ghosh (b0095) 2012; 116
Nguyen, Obeid, Bafekry, Idrees, Vu, Phuc (b0165) 2020; 102
Blochl (b0120) 1994; 50
Sopiha, Malyi, Persson (b0090) 2019; 2
Mohanta, Arora, Sarkar (b0150) 2021; 104
Sun, Chou, Ren, Zhao, Yu, Tang (b0080) 2017; 110
Jakhar, Singh, Kumar, Tankeshwar (b0055) 2020; 31
Shih, Wang, Son, Jin, Blankschtein, Strano (b0075) 2014; 8
Kang, Zuo, Zhang, Wang, Zhang (b0140) 2020; 116
Lee, Zhong (b0085) 2014; 6
Wang, Sun, Yang (b0115) 2022; 13
Nguyen, Idrees, Phuc, Hieu, Binh, Amin (b0155) 2020; 101
Padilha, Fazzio, da Silva (b0070) 2015; 114
Dai, Liu, Zhang (b0145) 2019; 31
Du (b0015) 2016; 6
Kaur, Kumar, Srivastava, Tankeshwar (b0030) 2017; 19
Wang, Liu, Li, Quhe, Yang, Guo (b0065) 2021; 84
Zhang, Zhang, Wei, Jiang, Wang, Gong (b0045) 2020; 41
Tung (10.1016/j.rinp.2022.106189_b0060) 2014; 1
Kresse (10.1016/j.rinp.2022.106189_b0130) 1996; 6
Mohanta (10.1016/j.rinp.2022.106189_b0170) 2020; 526
Blochl (10.1016/j.rinp.2022.106189_b0120) 1994; 50
Ding (10.1016/j.rinp.2022.106189_b0040) 2019; 12
Binh (10.1016/j.rinp.2022.106189_b0050) 2021; 12
Kaur (10.1016/j.rinp.2022.106189_b0030) 2017; 19
Sopiha (10.1016/j.rinp.2022.106189_b0090) 2019; 2
Zhang (10.1016/j.rinp.2022.106189_b0045) 2020; 41
Carvalho (10.1016/j.rinp.2022.106189_b0105) 2016; 1
Fiori (10.1016/j.rinp.2022.106189_b0010) 2014; 9
Cao (10.1016/j.rinp.2022.106189_b0025) 2021; 118
Zheng (10.1016/j.rinp.2022.106189_b0035) 2021; 2
Geng (10.1016/j.rinp.2022.106189_b0020) 2019; 7
Khandelwal (10.1016/j.rinp.2022.106189_b0110) 2017; 221
Dai (10.1016/j.rinp.2022.106189_b0145) 2019; 31
Mohanta (10.1016/j.rinp.2022.106189_b0160) 2021; 540
Kresse (10.1016/j.rinp.2022.106189_b0135) 1999; 59
Shih (10.1016/j.rinp.2022.106189_b0075) 2014; 8
Srinivasu (10.1016/j.rinp.2022.106189_b0095) 2012; 116
Yu (10.1016/j.rinp.2022.106189_b0100) 2017; 27
Nguyen (10.1016/j.rinp.2022.106189_b0155) 2020; 101
Wang (10.1016/j.rinp.2022.106189_b0115) 2022; 13
Mohanta (10.1016/j.rinp.2022.106189_b0150) 2021; 104
Nguyen (10.1016/j.rinp.2022.106189_b0165) 2020; 102
Novoselov (10.1016/j.rinp.2022.106189_b0005) 2016; 353
Wang (10.1016/j.rinp.2022.106189_b0065) 2021; 84
Du (10.1016/j.rinp.2022.106189_b0015) 2016; 6
Lee (10.1016/j.rinp.2022.106189_b0085) 2014; 6
Sun (10.1016/j.rinp.2022.106189_b0080) 2017; 110
Kresse (10.1016/j.rinp.2022.106189_b0125) 1996; 54
Padilha (10.1016/j.rinp.2022.106189_b0070) 2015; 114
Jakhar (10.1016/j.rinp.2022.106189_b0055) 2020; 31
Kang (10.1016/j.rinp.2022.106189_b0140) 2020; 116
References_xml – volume: 9
  start-page: 768
  year: 2014
  end-page: 779
  ident: b0010
  article-title: Electronics based on two-dimensional materials
  publication-title: Nat Nanotechnol
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: b0135
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys Rev B
– volume: 118
  year: 2021
  ident: b0025
  article-title: Two-dimensional van der Waals electrical contact to monolayer MoSi
  publication-title: Appl Phys Lett
– volume: 12
  year: 2019
  ident: b0040
  article-title: NbS
  publication-title: Phys Rev Appl
– volume: 27
  start-page: 1604093
  year: 2017
  ident: b0100
  article-title: Analyzing the carrier mobility in transition-metal dichalcogenide MoS
  publication-title: Adv Funct Mater
– volume: 353
  start-page: aac9439
  year: 2016
  ident: b0005
  article-title: 2D materials and van der Waals heterostructures
  publication-title: Science
– volume: 114
  year: 2015
  ident: b0070
  article-title: van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating
  publication-title: Phys Rev Lett
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: b0130
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput Mater Sci
– volume: 13
  start-page: 190
  year: 2022
  end-page: 197
  ident: b0115
  article-title: SiCP
  publication-title: J Phys Chem Lett
– volume: 101
  year: 2020
  ident: b0155
  article-title: Interlayer coupling and electric field controllable Schottky barriers and contact types in graphene/PbI
  publication-title: Phys Rev B
– volume: 116
  start-page: 5951
  year: 2012
  end-page: 5956
  ident: b0095
  article-title: Graphyne and graphdiyne: promising materials for nanoelectronics and energy storage applications
  publication-title: J Phys Chem C
– volume: 221
  start-page: 17
  year: 2017
  end-page: 34
  ident: b0110
  article-title: Phosphorene–the two-dimensional black phosphorous: properties, synthesis and applications
  publication-title: Mater Sci Eng B
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: b0120
  article-title: Projector augmented-wave method
  publication-title: Phys Rev B
– volume: 41
  year: 2020
  ident: b0045
  article-title: Contact engineering for two-dimensional semiconductors
  publication-title: J Semicond
– volume: 19
  start-page: 22023
  year: 2017
  end-page: 22032
  ident: b0030
  article-title: van der Waals heterostructures based on allotropes of phosphorene and MoSe
  publication-title: Phys Chem Chem Phys
– volume: 1
  year: 2014
  ident: b0060
  article-title: The physics and chemistry of the Schottky barrier height
  publication-title: Appl Phys Rev
– volume: 2
  year: 2021
  ident: b0035
  article-title: Ohmic contact engineering for two-dimensional materials
  publication-title: Cell Rep Phys Sci
– volume: 104
  year: 2021
  ident: b0150
  article-title: Effective modulation of ohmic contact and carrier concentration in a graphene-MgX (X=S, Se) van der Waals heterojunction with tunable band-gap opening via strain and electric field
  publication-title: Phys Rev B
– volume: 7
  start-page: 11056
  year: 2019
  end-page: 11067
  ident: b0020
  article-title: Graphene van der Waals heterostructures for high-performance photodetectors
  publication-title: J Mater Chem C
– volume: 84
  year: 2021
  ident: b0065
  article-title: Schottky barrier heights in two-dimensional field-effect transistors: from theory to experiment
  publication-title: Rep Prog Phys
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: b0125
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys Rev B
– volume: 110
  year: 2017
  ident: b0080
  article-title: Tunable Schottky barrier in van der Waals heterostructures of graphene and g-GaN
  publication-title: Appl Phys Lett
– volume: 6
  start-page: 13283
  year: 2014
  end-page: 13300
  ident: b0085
  article-title: Nanoelectronic circuits based on two-dimensional atomic layer crystals
  publication-title: Nanoscale
– volume: 6
  start-page: 551
  year: 2016
  end-page: 570
  ident: b0015
  article-title: In silico engineering of graphene-based van der Waals heterostructured nanohybrids for electronics and energy applications
  publication-title: Wires Comput Mol Sci
– volume: 102
  year: 2020
  ident: b0165
  article-title: Interfacial characteristics, schottky contact, and optical performance of a graphene/Ga
  publication-title: Phys Rev B
– volume: 31
  start-page: 1805417
  year: 2019
  ident: b0145
  article-title: Strain engineering of 2D materials: issues and opportunities at the interface
  publication-title: Adv Mater
– volume: 526
  year: 2020
  ident: b0170
  article-title: Giant tunability in electrical contacts and doping via inconsiderable normal electric field strength or gating for a high-performance in ultrathin field effect transistors based on 2D BX/graphene (X = P, As) van der Waals heterobilayer
  publication-title: Appl Surf Sci
– volume: 8
  start-page: 5790
  year: 2014
  end-page: 5798
  ident: b0075
  article-title: Tuning on–off current ratio and field-effect mobility in a MoS
  publication-title: ACS Nano
– volume: 31
  year: 2020
  ident: b0055
  article-title: Pressure and electric field tuning of Schottky contacts in PdSe
  publication-title: Nanotechnology
– volume: 2
  start-page: 5614
  year: 2019
  end-page: 5624
  ident: b0090
  article-title: First-principles mapping of the electronic properties of two-dimensional materials for strain-tunable nanoelectronics
  publication-title: ACS Appl Nano Mater
– volume: 1
  start-page: 1
  year: 2016
  end-page: 16
  ident: b0105
  article-title: Phosphorene: from theory to applications
  publication-title: Nat Rev Mater
– volume: 12
  start-page: 3934
  year: 2021
  end-page: 3940
  ident: b0050
  article-title: Interfacial electronic properties and tunable contact types in graphene/janus MoGeSiN
  publication-title: J Phys Chem Lett
– volume: 116
  year: 2020
  ident: b0140
  article-title: Stacking order driving bandgap and conductance of graphene/C
  publication-title: Appl Phys Lett
– volume: 540
  year: 2021
  ident: b0160
  article-title: 2D HfN
  publication-title: Appl Surf Sci
– volume: 9
  start-page: 768
  year: 2014
  ident: 10.1016/j.rinp.2022.106189_b0010
  article-title: Electronics based on two-dimensional materials
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2014.207
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.rinp.2022.106189_b0125
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.54.11169
– volume: 114
  year: 2015
  ident: 10.1016/j.rinp.2022.106189_b0070
  article-title: van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.114.066803
– volume: 13
  start-page: 190
  year: 2022
  ident: 10.1016/j.rinp.2022.106189_b0115
  article-title: SiCP4 monolayer with a direct band gap and high carrier mobility for photocatalytic water splitting
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.1c03708
– volume: 118
  year: 2021
  ident: 10.1016/j.rinp.2022.106189_b0025
  article-title: Two-dimensional van der Waals electrical contact to monolayer MoSi2N4
  publication-title: Appl Phys Lett
  doi: 10.1063/5.0033241
– volume: 2
  year: 2021
  ident: 10.1016/j.rinp.2022.106189_b0035
  article-title: Ohmic contact engineering for two-dimensional materials
  publication-title: Cell Rep Phys Sci
– volume: 1
  year: 2014
  ident: 10.1016/j.rinp.2022.106189_b0060
  article-title: The physics and chemistry of the Schottky barrier height
  publication-title: Appl Phys Rev
  doi: 10.1063/1.4858400
– volume: 6
  start-page: 551
  year: 2016
  ident: 10.1016/j.rinp.2022.106189_b0015
  article-title: In silico engineering of graphene-based van der Waals heterostructured nanohybrids for electronics and energy applications
  publication-title: Wires Comput Mol Sci
  doi: 10.1002/wcms.1266
– volume: 31
  year: 2020
  ident: 10.1016/j.rinp.2022.106189_b0055
  article-title: Pressure and electric field tuning of Schottky contacts in PdSe2/ZT-MoSe2 van der Waals heterostructure
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab5de1
– volume: 41
  year: 2020
  ident: 10.1016/j.rinp.2022.106189_b0045
  article-title: Contact engineering for two-dimensional semiconductors
  publication-title: J Semicond
  doi: 10.1088/1674-4926/41/7/071901
– volume: 84
  year: 2021
  ident: 10.1016/j.rinp.2022.106189_b0065
  article-title: Schottky barrier heights in two-dimensional field-effect transistors: from theory to experiment
  publication-title: Rep Prog Phys
  doi: 10.1088/1361-6633/abf1d4
– volume: 104
  year: 2021
  ident: 10.1016/j.rinp.2022.106189_b0150
  article-title: Effective modulation of ohmic contact and carrier concentration in a graphene-MgX (X=S, Se) van der Waals heterojunction with tunable band-gap opening via strain and electric field
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.104.165421
– volume: 59
  start-page: 1758
  year: 1999
  ident: 10.1016/j.rinp.2022.106189_b0135
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.59.1758
– volume: 353
  start-page: aac9439
  year: 2016
  ident: 10.1016/j.rinp.2022.106189_b0005
  article-title: 2D materials and van der Waals heterostructures
  publication-title: Science
  doi: 10.1126/science.aac9439
– volume: 27
  start-page: 1604093
  year: 2017
  ident: 10.1016/j.rinp.2022.106189_b0100
  article-title: Analyzing the carrier mobility in transition-metal dichalcogenide MoS2 field-effect transistors
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201604093
– volume: 6
  start-page: 15
  year: 1996
  ident: 10.1016/j.rinp.2022.106189_b0130
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput Mater Sci
  doi: 10.1016/0927-0256(96)00008-0
– volume: 19
  start-page: 22023
  year: 2017
  ident: 10.1016/j.rinp.2022.106189_b0030
  article-title: van der Waals heterostructures based on allotropes of phosphorene and MoSe2
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C7CP03960C
– volume: 12
  start-page: 3934
  year: 2021
  ident: 10.1016/j.rinp.2022.106189_b0050
  article-title: Interfacial electronic properties and tunable contact types in graphene/janus MoGeSiN4 heterostructures
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.1c00682
– volume: 540
  year: 2021
  ident: 10.1016/j.rinp.2022.106189_b0160
  article-title: 2D HfN2/graphene interface based Schottky device: Unmatched controllability in electrical contacts and carrier concentration via electrostatic gating and out-of-plane strain
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2020.148389
– volume: 8
  start-page: 5790
  year: 2014
  ident: 10.1016/j.rinp.2022.106189_b0075
  article-title: Tuning on–off current ratio and field-effect mobility in a MoS2–graphene heterostructure via Schottky barrier modulation
  publication-title: ACS Nano
  doi: 10.1021/nn500676t
– volume: 50
  start-page: 17953
  year: 1994
  ident: 10.1016/j.rinp.2022.106189_b0120
  article-title: Projector augmented-wave method
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.50.17953
– volume: 31
  start-page: 1805417
  year: 2019
  ident: 10.1016/j.rinp.2022.106189_b0145
  article-title: Strain engineering of 2D materials: issues and opportunities at the interface
  publication-title: Adv Mater
  doi: 10.1002/adma.201805417
– volume: 526
  year: 2020
  ident: 10.1016/j.rinp.2022.106189_b0170
  article-title: Giant tunability in electrical contacts and doping via inconsiderable normal electric field strength or gating for a high-performance in ultrathin field effect transistors based on 2D BX/graphene (X = P, As) van der Waals heterobilayer
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2020.146749
– volume: 102
  year: 2020
  ident: 10.1016/j.rinp.2022.106189_b0165
  article-title: Interfacial characteristics, schottky contact, and optical performance of a graphene/Ga2SSe van der Waals heterostructure: strain engineering and electric field tunability
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.102.075414
– volume: 2
  start-page: 5614
  year: 2019
  ident: 10.1016/j.rinp.2022.106189_b0090
  article-title: First-principles mapping of the electronic properties of two-dimensional materials for strain-tunable nanoelectronics
  publication-title: ACS Appl Nano Mater
  doi: 10.1021/acsanm.9b01164
– volume: 221
  start-page: 17
  year: 2017
  ident: 10.1016/j.rinp.2022.106189_b0110
  article-title: Phosphorene–the two-dimensional black phosphorous: properties, synthesis and applications
  publication-title: Mater Sci Eng B
  doi: 10.1016/j.mseb.2017.03.011
– volume: 7
  start-page: 11056
  year: 2019
  ident: 10.1016/j.rinp.2022.106189_b0020
  article-title: Graphene van der Waals heterostructures for high-performance photodetectors
  publication-title: J Mater Chem C
  doi: 10.1039/C9TC03213D
– volume: 101
  year: 2020
  ident: 10.1016/j.rinp.2022.106189_b0155
  article-title: Interlayer coupling and electric field controllable Schottky barriers and contact types in graphene/PbI2 heterostructures
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.101.235419
– volume: 12
  year: 2019
  ident: 10.1016/j.rinp.2022.106189_b0040
  article-title: NbS2: a promising p-type ohmic contact for two-dimensional materials
  publication-title: Phys Rev Appl
  doi: 10.1103/PhysRevApplied.12.064061
– volume: 116
  year: 2020
  ident: 10.1016/j.rinp.2022.106189_b0140
  article-title: Stacking order driving bandgap and conductance of graphene/C3B (C3N) van der Waals heterostructures
  publication-title: Appl Phys Lett
  doi: 10.1063/5.0004278
– volume: 116
  start-page: 5951
  year: 2012
  ident: 10.1016/j.rinp.2022.106189_b0095
  article-title: Graphyne and graphdiyne: promising materials for nanoelectronics and energy storage applications
  publication-title: J Phys Chem C
  doi: 10.1021/jp212181h
– volume: 6
  start-page: 13283
  year: 2014
  ident: 10.1016/j.rinp.2022.106189_b0085
  article-title: Nanoelectronic circuits based on two-dimensional atomic layer crystals
  publication-title: Nanoscale
  doi: 10.1039/C4NR03670K
– volume: 1
  start-page: 1
  year: 2016
  ident: 10.1016/j.rinp.2022.106189_b0105
  article-title: Phosphorene: from theory to applications
  publication-title: Nat Rev Mater
  doi: 10.1038/natrevmats.2016.61
– volume: 110
  year: 2017
  ident: 10.1016/j.rinp.2022.106189_b0080
  article-title: Tunable Schottky barrier in van der Waals heterostructures of graphene and g-GaN
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4982690
SSID ssj0001645511
Score 2.2494228
Snippet •The Schottky contact formed between graphene and SiCP4 is studied.•The barrier height and contact type can be tuned by changing the interlayer distance.•The...
The contact type between graphene and semiconducting two-dimensional materials is a crucial factor in determining the performance of nanoscale electronic...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 106189
SubjectTerms Density functional theory
Graphene
Schottky contact
SiCP4
Two-dimensional materials
Van der Waals heterojunction
SummonAdditionalLinks – databaseName: ScienceDirect Free and Delayed Access Titles
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhUOilNP2g2yZlDr0Vdy1LsuxjsjSEHkohCd2bkWSpdVrsZdc55N93RpbTzSWH3IzR2GZmGL2RZ94w9kl7WUivaKCJC5mk3p6Ki5BZy5WtQiAqQ6q2-F5eXMtva7U-YKu5F4bKKlPsn2J6jNbpzjJpc7npuuVlgbmL0LUu6Bc-jzymQlaxiW999v-cpZQICijvovUZCaTemanMa9v1RFtZFF8oOaJp73v7U6Tx39um9rae85fsRcKMcDp91hE78P0r9izWbrrda3Z3dRsboIAYNcfxzx1Ys6VBdND1gEAZWrz8adDP4DcVvww3uJeRPYDqyYedb2EIEJmrMfCB6Vu47FY_JFDrCYQO8SFs5jN5QJu6NPJr94Zdn3-9Wl1kaaJC5iTPx6zE9EtXtdWu0AVGaVXWmKAqhZjNhmDb3OVGloYba4W1belrY5Vz2nmXK6Ny8ZYd9kPv3zEwolXBGd2WtZJGWuM9dyiM8EDYSuQLxmc9Ni7RjdPUi7_NXFd205DuG9J9M-l-wT7fy2wmso1HV5-Ree5XElF2vDFsfzXJUxpbOy-k4dLUueTaVAoTTMQFCNNrJyu_YGo2bvPA7_BR3SMvf_9EuQ_sOQ2snw5xjtnhuL31JwhrRvsx-u0_jjL2BQ
  priority: 102
  providerName: Elsevier
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS90wFA5OEfYypnPsuk3Og2-j0h9J0zyMsclEBEXQy3wrSZpsVWm1t8Luf79z2tQpiE--ldIk9Jwk5zvh5PsY25WOp9wJEjSxPuJ0t6dIMh8ZkwhTeE9UhlRtcZIfzvnRhbhYYZPcUTDg4snUjvSk5t313t_b5Tdc8F__12p1dUPck2m6RxlOoV6xNYxMkhbqcYD7w5lLzhEgUA6WpsTeJ5UM92ie7uZRrBoo_R-ErAdh6OAtexPwI3wfHb7BVlyzydaHOk67eMeW53fDZSggds2-v1qC0R2J0kHdAIJmqPDxl8Z_hz9UCNNeYlwj3wDVlrcLV0HrYWCxxk0QdFPBWb1_yoGuoYCvESvCzXQ-D-hfG-S_FltsfvDzfP8wCuoKkeVJ3Ec5pmKyUEbaVKa4Y4tcYbIqBOI3472pYhtrnutEG5MZU-VOaSOsldbZWGgRZ-_ZatM27gMDnVXCWy2rXAmuudHOJRYbI1TITJHFM5ZMdixtoB4nBYzrcqoxuyzJ9iXZvhxtP2Nf7tvcjMQbz379g9xz_yWRZg8v2u53GdZgaZR1GdcJ1yrG2aELgckmYgSE7Mryws2YmJxbBvwx4grsqn5m8O2XGPwje01K9uPpzie22nd37jPind7sDJP4H6IO_mU
  priority: 102
  providerName: Scholars Portal
Title Tunable Schottky barrier in van der Waals heterojunction composed of graphene and SiCP4 from first principle calculations
URI https://dx.doi.org/10.1016/j.rinp.2022.106189
https://doaj.org/article/b9ce34a14a90417a85899eed81d9c48e
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iCF7EJ64v5uBNqn0kTXtcF8UHivjAvZUkTbCrdJfd7sF_70zblZ704iWUkjRlZsh8E2a-YexEWh5yK6ihiXEep9qeJIicp3UgdOIcURlStsVDfP3Kb4di2Gn1RTlhDT1wI7hznRobcRVwlfo8kCoRGCHgwY44KzU8sXT6os_rBFP17UrMEQpQtBWGxNMnU9lWzDTJXdOiJLLKMDyjkIh6vHe8Uk3e33FOHYdztcHWW6QI_eYPN9mSLbfYap2xaWbb7OtlXpc9AfFoVtXHF2g1pfZzUJSA8BhyfHxTaF3wTikv4xF6MNICUBb5eGZzGDuo-arxuANV5vBcDB45UMEJuAJRIUwWN_GAmjRto6_ZDnu9unwZXHttHwXP8MCvvBiDLpmkWppQhng2izjFsFQIRGraOZ37xlc8VoHSOtI6j22qtDBGGmt8oYQf7bLlclzaPQYqyoUzSuZxKrjiWlkbGFyMoCDSSeT3WLCQY2ZaknHqdfGZLbLJRhnJPiPZZ43se-z0Z82kodj4dfYFqednJtFj1y_QaLLWaLK_jKbHxEK5WYs0GgSBnyp-2Xz_PzY_YGvUs765xzlky9V0bo8Q2VT6mK30757e7o5rY8bxZniB4z1PvgGBN_l9
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQXxFMszzlwQ2HjxI6TI11RbaFUSN2KvVm2Y0MKSla76aH_npnEKculB26RlUmimdH4G2fmG8beKS8y4SUNNHEhEdTbU_I8JNZyacsQiMqQqi3OiuWF-LyW6wO2mHphqKwyxv4xpg_ROq7Mozbnm6aZn2eYu-SqUhn9wufEY3oH0YCi-Q0n66O_By2FQFRAiRcJJCQRm2fGOq9t0xJvZZZ9oOyIxr3vbVADj__ePrW39xw_ZA8iaISP43c9Yge-fczuDsWbbveEXa-uhg4oIErNvv91DdZsaRIdNC0gUoYaL78bdDT4SdUv3SVuZmQQoILybudr6AIM1NUY-cC0NZw3i28CqPcEQoMAETbToTygUV2c-bV7yi6OP60WyySOVEic4GmfFJh_qbKyymUqwzAtiwozVCkRtNkQbJ261IjCcGNtbm1d-MpY6Zxy3qXSyDR_xg7brvXPGZi8lsEZVReVFEZY4z13KIz4ILdlns4Yn_SoXeQbp7EXv_VUWHapSfeadK9H3c_Y-xuZzci2cevdR2SemzuJKXtY6LY_dHQVbSvnc2G4MFUquDKlxAwTgQHi9MqJ0s-YnIyr_3E8fFRzy8tf_KfcW3Zvufp6qk9Pzr68ZPdpev14ovOKHfbbK_8aMU5v3ww-_Afvovkk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+Schottky+barrier+in+van+der+Waals+heterojunction+composed+of+graphene+and+SiCP4+from+first+principle+calculations&rft.jtitle=Results+in+physics&rft.au=Shaofeng+Zhang&rft.au=Zhaowu+Wang&rft.date=2023-01-01&rft.pub=Elsevier&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=44&rft.spage=106189&rft_id=info:doi/10.1016%2Fj.rinp.2022.106189&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b9ce34a14a90417a85899eed81d9c48e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon