Silver-Free Catalysis with Gold(I) Chloride Complexes
Gold(I) chloride complexes are stable, widespread precatalysts that generally require activation by halide abstraction to display useful catalytic activity. Chloride scavenging is typically performed in situ by using silver salts. This procedure, apart from mandating the use of an additional metal,...
Saved in:
Published in | Bulletin of the Chemical Society of Japan Vol. 94; no. 3; pp. 1099 - 1117 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
The Chemical Society of Japan
15.03.2021
Chemical Society of Japan |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gold(I) chloride complexes are stable, widespread precatalysts that generally require activation by halide abstraction to display useful catalytic activity. Chloride scavenging is typically performed in situ by using silver salts. This procedure, apart from mandating the use of an additional metal, often negatively impacts the reaction outcome, because Ag additives are not catalytically innocent (silver effect). Therefore, both the development of alternative chloride scavengers and the design of self-activating gold(I) chloride complexes endowed with special ligands have lately been the subject of intense research efforts. This review describes recent advances in the field of silver-free Au(I) catalysis employing gold(I) chloride complexes, with an emphasis on approaches emerged in the last decade. |
---|---|
AbstractList | Gold(I) chloride complexes are stable, widespread precatalysts that generally require activation by halide abstraction to display useful catalytic activity. Chloride scavenging is typically performed in situ by using silver salts. This procedure, apart from mandating the use of an additional metal, often negatively impacts the reaction outcome, because Ag additives are not catalytically innocent (silver effect). Therefore, both the development of alternative chloride scavengers and the design of self-activating gold(I) chloride complexes endowed with special ligands have lately been the subject of intense research efforts. This review describes recent advances in the field of silver-free Au(I) catalysis employing gold(I) chloride complexes, with an emphasis on approaches emerged in the last decade. Gold(I) chloride complexes are stable, widespread precatalysts that generally require activation by halide abstraction to display useful catalytic activity. Chloride scavenging is typically performed in situ by using silver salts. This procedure, apart from mandating the use of an additional metal, often negatively impacts the reaction outcome, because Ag additives are not catalytically innocent (silver effect). Therefore, both the development of alternative chloride scavengers and the design of self-activating gold(I) chloride complexes endowed with special ligands have lately been the subject of intense research efforts. This review describes recent advances in the field of silver-free Au(I) catalysis employing gold(I) chloride complexes, with an emphasis on approaches emerged in the last decade. This review describes recent advances in the field of silver-free Au(I) catalysis employing gold(I) chloride complexes, with an emphasis on approaches emerged in the last decade. Both the development of alternative chloride scavengers and the design of self-activating gold(I) chloride complexes endowed with special ligands are discussed in detail. |
Author | Echavarren, Antonio M Franchino, Allegra Montesinos-Magraner, Marc |
Author_xml | – sequence: 1 givenname: Allegra surname: Franchino fullname: Franchino, Allegra – sequence: 2 givenname: Marc surname: Montesinos-Magraner fullname: Montesinos-Magraner, Marc – sequence: 3 givenname: Antonio M surname: Echavarren fullname: Echavarren, Antonio M |
BookMark | eNp1kM1Lw0AQxRepYFs9eg940UPqfia73iTYWih4UM9huzuhG9Js3U3V_vemtCKInobH_N7M443QoPUtIHRJ8IRQnt0uTawnFFOMmZAnaEgYlynOGB-gIcZYpTTL2RkaxVj3Ugquhkg8u-YdQjoNAEmhO93soovJh-tWycw39np-kxSrxgdn-71fbxr4hHiOTivdRLg4zjF6nT68FI_p4mk2L-4XqeEEd2nGFLZGW7a0mPAcVJVnPLNgpKK5EXaphAImtABLrK6kBFMpUnHCck1kH3aMrg53N8G_bSF2Ze23oe1fllRQLAjFSvYUO1Am-BgDVKVxne6cb7ugXVMSXO77Kff9lN_99K70l2sT3FqH3b_83ZFfwdqZPoM3DrpdrTe6_cn1t_kLVPh8PQ |
CitedBy_id | crossref_primary_10_1021_acs_inorgchem_3c00751 crossref_primary_10_1021_acs_organomet_3c00395 crossref_primary_10_1002_chem_202303241 crossref_primary_10_3390_bios13020286 crossref_primary_10_1021_acsorginorgau_3c00021 crossref_primary_10_1021_acscatal_2c01864 crossref_primary_10_1021_jacs_1c11978 crossref_primary_10_1021_jacs_4c12063 crossref_primary_10_1002_ejoc_202200518 crossref_primary_10_1039_D2CC03056J crossref_primary_10_1002_ejic_202101067 crossref_primary_10_1039_D3DT00158J crossref_primary_10_3390_inorganics10110203 crossref_primary_10_3390_catal12111392 crossref_primary_10_1021_acs_joc_2c02932 crossref_primary_10_1002_chem_202401825 crossref_primary_10_1039_D2GC01828D crossref_primary_10_1002_ejic_202100905 crossref_primary_10_1021_acscatal_3c01660 crossref_primary_10_1021_acs_orglett_2c01974 crossref_primary_10_1021_acssuschemeng_2c01213 crossref_primary_10_1039_D4CC05193A crossref_primary_10_1021_acs_orglett_4c02091 crossref_primary_10_1039_D3QO00415E crossref_primary_10_1039_D3NJ00451A crossref_primary_10_1021_acscatal_1c05823 crossref_primary_10_1021_acscatal_2c00120 crossref_primary_10_1002_adsc_202400593 crossref_primary_10_1002_cplu_202300231 crossref_primary_10_1021_acs_orglett_4c02003 crossref_primary_10_1039_D1DT02929K crossref_primary_10_1002_cplu_202300196 crossref_primary_10_1039_D3CC01726E crossref_primary_10_1002_chem_202101751 crossref_primary_10_1002_adsc_202400193 crossref_primary_10_1021_jacs_3c06331 crossref_primary_10_1021_acs_organomet_1c00057 |
Cites_doi | 10.1002/ajoc.202000020 10.1002/chem.200902321 10.1002/chem.200401069 10.1002/chem.201001281 10.1002/(SICI)1521-3773(19980605)37:10%3C1415::AID-ANIE1415%3E3.0.CO%3B2-N 10.1021/ja061344d 10.1021/acscatal.5b01493 10.1039/b711132k 10.1002/anie.200903134 10.1002/asia.200600155 10.1021/jo501254x 10.1002/anie.200905391 10.1021/ja005570d 10.1002/anie.201902526 10.1002/anie.200604335 10.1002/chem.201201215 10.1080/00945717908069748 10.1002/anie.201210351 10.1039/c0cc02357d 10.1002/anie.200501056 10.1002/chem.201605303 10.1021/ja303862z 10.1016/0022-328X(95)00508-N 10.1073/pnas.1817194116 10.1021/acs.orglett.5b02224 10.1021/acs.organomet.7b00270 10.1039/C5OB00736D 10.1002/adsc.200606012 10.1021/ja044602k 10.1002/adsc.201300704 10.1073/pnas.0705809104 10.1038/nature05592 10.1021/om500568q 10.1039/c4qo00112e 10.1016/j.tet.2008.10.114 10.1021/jacs.8b05520 10.1039/C9CC00283A 10.1016/j.tetlet.2019.151231 10.1021/ol902116b 10.1002/chem.201604521 10.1021/cs4009144 10.1039/C6DT02181F 10.1021/jacs.7b03287 10.1021/ol0515917 10.1002/ejoc.201403153 10.1021/acs.organomet.9b00616 10.1039/b411180j 10.1021/acs.organomet.6b00675 10.1002/anie.201911662 10.1016/j.tet.2018.04.013 10.1002/ejic.200200705 10.1039/C5CC01578B 10.1002/anie.201805372 10.1021/ja406999p 10.1021/jacs.7b07651 10.1021/acs.inorgchem.8b01111 10.1002/adsc.201500729 10.1021/ja00280a056 10.1055/s-0034-1380712 10.1021/ol0480067 10.1021/ic00062a012 10.1021/jacs.9b11154 10.1021/ja00483a041 10.1021/acs.chemrev.0c00788 10.1002/anie.201903964 10.1002/asia.201501326 10.1039/C5GC00656B 10.1002/anie.202005214 10.1021/acscatal.9b00249 10.1002/adsc.201800233 10.1002/asia.201100310 10.1021/ja809403e 10.1021/ja8070072 10.1021/cs501902v 10.1002/chem.201002607 10.1002/chem.202004281 10.1002/chem.201304831 10.1021/cr500691k 10.1002/chem.201604615 10.1002/asia.201800483 10.1002/1521-3773(20021202)41:23%3C4563::AID-ANIE4563%3E3.0.CO%3B2-U 10.1002/chem.201001688 10.1021/acscatal.6b01674 10.1002/zaac.201700030 10.1021/ol060645p 10.1021/om400663a 10.1002/chem.201900938 10.1021/jacs.0c07951 10.1021/ja307948m 10.1021/cr0684319 10.1002/anie.196608463 10.1002/chem.201405889 10.1002/cber.19971300119 10.1021/ja3011397 10.1021/ol900730w 10.1002/anie.200701521 10.1002/chem.202001990 10.1016/j.trechm.2019.03.011 10.1021/acs.chemrev.0c00245 10.1038/s41467-018-04314-5 10.1002/chem.201603478 10.1039/B601547F 10.1039/C5OB01286D 10.1021/ol400803f 10.1021/ol501443m 10.1039/d0dt02743j 10.1246/bcsj.57.2600 10.1515/znb-2011-0401 10.1021/jacs.5b07998 10.1021/om1001292 10.1021/om7006002 10.1002/chem.201404487 10.1021/acs.organomet.7b00654 10.1021/jo201631x 10.15227/orgsyn.092.00117 10.1021/ja904055z 10.1021/acs.joc.5b00164 10.1039/C0CC04109B 10.1002/anie.200900737 10.1039/D0CC05999D 10.1021/acs.chemrev.8b00148 10.1002/adsc.200690009 10.1039/C4CC05904B 10.1002/anie.200353207 10.1021/acs.accounts.8b00544 10.1021/jo8014769 10.1021/ol901418c 10.1021/ja902051m 10.1039/C7DT04494A 10.1002/anie.201100740 10.1021/ol0353159 10.1039/c2gc35293a 10.1002/chem.201705051 10.1021/acs.chemrev.0c00552 10.1039/c3cs60441a 10.1002/ejic.201500892 10.1021/acscatal.8b01374 10.1039/D0DT02435J 10.1021/ol501663f 10.1039/C6DT03766F 10.1039/c0cc00018c 10.1246/cl.180810 10.1039/C6CS00023A 10.1039/C7CC06065C 10.1021/acs.accounts.5b00543 10.1039/C5CS00697J 10.1002/chem.201701301 10.1021/om301249r 10.1002/chem.201302152 10.3762/bjoc.9.294 10.1002/ejic.201101158 10.1038/nchem.331 10.1002/ejic.201200327 10.1002/anie.200701959 10.1021/acs.accounts.6b00262 10.1016/j.jorganchem.2009.09.040 10.1002/ejoc.201701259 10.1039/D0SC03604H 10.1002/cctc.201402158 10.1002/anie.200701449 10.1021/ol402825v 10.1039/C8SC05281F 10.1021/ja0637494 10.1016/j.ccr.2019.06.007 10.1002/anie.201408037 10.1002/anie.200703518 10.1016/S0022-328X(00)92589-0 10.1002/anie.201300600 |
ContentType | Journal Article |
Copyright | The Chemical Society of Japan Copyright Chemical Society of Japan 2021 |
Copyright_xml | – notice: The Chemical Society of Japan – notice: Copyright Chemical Society of Japan 2021 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1246/bcsj.20200358 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Silver-Free Catalysis with Gold(I) Chloride Complexes |
EISSN | 1348-0634 |
EndPage | 1117 |
ExternalDocumentID | 10_1246_bcsj_20200358 |
FullText_t_NoSnippeting | true |
GroupedDBID | 02 23N 5GY ABEFU ABFLS ABZEH ACCUC ACIWK ACNCT AENEX AFFNX AIDUJ ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD F5P GX1 JSI JSP P0W P2P RAD RJT RZJ SC5 TN5 TWZ UPT WH7 X XPZ -~X 0R~ 6J9 AAUAY AAYXX ABDFA ABEJV ABGNP ABJNI ABVGC ABXVV ACGFO ADIPN ADNBA ADVOB AGMDO AGORE AJNCP BCRHZ CITATION KOP NU- OJZSN OWPYF ROX ~02 7SR 8BQ 8FD H13 JG9 |
ID | FETCH-LOGICAL-c410t-6390dcad3bd0147e9f7646dec8927c5db959e35a5ed1daf88ecf91f4137a18673 |
ISSN | 0009-2673 |
IngestDate | Wed Aug 13 11:18:46 EDT 2025 Tue Jul 01 00:34:46 EDT 2025 Thu Apr 24 22:51:40 EDT 2025 Sat Apr 03 13:46:46 EDT 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Gold catalysis Au(I) chloride complexes Chloride scavenging |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c410t-6390dcad3bd0147e9f7646dec8927c5db959e35a5ed1daf88ecf91f4137a18673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://dx.doi.org/10.1246/bcsj.20200358 |
PQID | 2520512098 |
PQPubID | 1996365 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2520512098 crossref_citationtrail_10_1246_bcsj_20200358 crossref_primary_10_1246_bcsj_20200358 chemicalsocietyjapan_journals_10_1246_bcsj_20200358 |
ProviderPackageCode | RAD CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-15 |
PublicationDateYYYYMMDD | 2021-03-15 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Bulletin of the Chemical Society of Japan |
PublicationYear | 2021 |
Publisher | The Chemical Society of Japan Chemical Society of Japan |
Publisher_xml | – name: The Chemical Society of Japan – name: Chemical Society of Japan |
References | 112T. Agou, N. Wada, K. Fujisawa, T. Hosoya, Y. Mizuhata, N. Tokitoh, H. Fukumoto, T. Kubota, Inorg. Chem. 2018, 57, 9105. 10.1021/acs.inorgchem.8b0111129984577 16M. Albayer, R. Corbo, A. F. Hill, J. L. Dutton, Dalton Trans. 2018, 47, 1321. 10.1039/C7DT04494A29302667 53F. Schröder, C. Tugny, E. Salanouve, H. Clavier, L. Giordano, D. Moraleda, Y. Gimbert, V. Mouriès-Mansuy, J.-P. Goddard, L. Fensterbank, Organometallics 2014, 33, 4051. 10.1021/om500568q 150T. Scherpf, C. Schwarz, L. T. Sharf, J.-A. Zur, A. Helbig, V. H. Gessner, Angew. Chem., Int. Ed. 2018, 57, 12859. 10.1002/anie.201805372 49R. Usón, A. Laguna, M. V. Castrillo, Synth. React. Inorg. Met.-Org. Chem. 1979, 9, 317. 10.1080/00945717908069748 51A. S. K. Hashmi, M. C. Blanco, E. Kurpejović, W. Frey, J. W. Bats, Adv. Synth. Catal. 2006, 348, 709; 10.1002/adsc.200606012 Correction: A. S. K. Hashmi, M. C. Blanco, E. Kurpejović, W. Frey, J. W. Bats, Adv. Synth. Catal. 2006, 348, 792a. 10.1002/adsc.200690009 140J. S. Jones, F. P. Gabbaï, Acc. Chem. Res. 2016, 49, 857. 10.1021/acs.accounts.5b0054327092722 58C. Nevado, A. M. Echavarren, Chem.—Eur. J. 2005, 11, 3155. 10.1002/chem.20040106915779093 23E. Mizushima, T. Hayashi, M. Tanaka, Org. Lett. 2003, 5, 3349. 10.1021/ol035315912943424 6D. J. Gorin, F. D. Toste, Nature 2007, 446, 395. 10.1038/nature0559217377576 113M. Rigo, L. Hettmanczyk, F. J. L. Heutz, S. Hohloch, M. Lutz, B. Sarkar, C. Müller, Dalton Trans. 2017, 46, 86. 10.1039/C6DT03766F27897296 117M. Rigo, E. R. M. Habraken, K. Bhattacharyya, M. Weber, A. W. Ehlers, N. Mézailles, J. C. Slootweg, C. Müller, Chem.—Eur. J. 2019, 25, 8769.30994944 90C. García-Morales, B. Ranieri, I. Escofet, L. López-Suarez, C. Obradors, A. I. Konovalov, A. M. Echavarren, J. Am. Chem. Soc. 2017, 139, 13628. 10.1021/jacs.7b0765128922911 93M. Wegener, F. Huber, C. Bolli, C. Jenne, S. F. Kirsch, Chem.—Eur. J. 2015, 21, 1328. 10.1002/chem.20140448725394284 141H. Yang, F. P. Gabbaï, J. Am. Chem. Soc. 2015, 137, 13425. 10.1021/jacs.5b0799826458048 84A. Kamimura, Y. Yamane, R. Yo, T. Tanaka, H. Uno, J. Org. Chem. 2014, 79, 7696. 10.1021/jo501254x25054771 105M. Freytag, S. Ito, M. Yoshifuji, Chem.—Asian J. 2006, 1, 693. 10.1002/asia.20060015517441110 82a) A. Guérinot, W. Fang, M. Sircoglou, C. Bour, S. Bezzenine-Lafollée, V. Gandon, Angew. Chem., Int. Ed. 2013, 52, 5848. 10.1002/anie.201300600 b) W. Fang, F. Weizhen, M. Presset, A. Guérinot, C. Bour, S. Bezzenine-Lafollée, V. Gandon, Org. Synth. 2015, 92, 117. 10.15227/orgsyn.092.00117 c) C. Bour, V. Gandon, Synlett 2015, 26, 1427. 10.1055/s-0034-1380712 132S. Bontemps, G. Bouhadir, K. Miqueu, D. Bourissou, J. Am. Chem. Soc. 2006, 128, 12056. 10.1021/ja063749416967941 20G. Li, L. Zhang, Angew. Chem., Int. Ed. 2007, 46, 5156. 10.1002/anie.200701449 33B. D. Sherry, F. D. Toste, J. Am. Chem. Soc. 2004, 126, 15978. 10.1021/ja044602k15584728 148M. Alcarazo, Acc. Chem. Res. 2016, 49, 1797. 10.1021/acs.accounts.6b0026227529703 69K. Belger, N. Krause, Org. Biomol. Chem. 2015, 13, 8556. 10.1039/C5OB01286D26175224 72X. Yao, C.-J. Li, Org. Lett. 2006, 8, 1953. 10.1021/ol060645p16623593 8C. H. M. Amijs, V. López-Carrillo, M. Raducan, P. Pérez-Galán, C. Ferrer, A. M. Echavarren, J. Org. Chem. 2008, 73, 7721. 10.1021/jo801476918759485 14Z. Lu, G. B. Hammond, B. Xu, Acc. Chem. Res. 2019, 52, 1275.31002231 149L. D. M. Nicholls, M. Alcarazo, Chem. Lett. 2019, 48, 1. 10.1246/cl.180810 47D. Canseco-Gonzalez, A. Petronilho, H. Mueller-Bunz, K. Ohmatsu, T. Ooi, M. Albrecht, J. Am. Chem. Soc. 2013, 135, 13193. 10.1021/ja406999p23902160 103Multiple Bonds and Low Coordination in Phosphorus Chemistry, (Eds.: M. Regitz, O. J. Scherer), Thieme, Stuttgart, 1990. 1A. Fürstner, P. W. Davies, Angew. Chem., Int. Ed. 2007, 46, 3410. 10.1002/anie.200604335 15D. Wang, R. Cai, S. Sharma, J. Jirak, S. K. Thummanapelli, N. G. Akhmedov, H. Zhang, X. Liu, J. L. Petersen, X. Shi, J. Am. Chem. Soc. 2012, 134, 9012. 10.1021/ja303862z22563621 76M. J. Rodríguez-Álvarez, C. Vidal, J. Díez, J. García-Álvarez, Chem. Commun. 2014, 50, 12927. 10.1039/C4CC05904B 42M. Bardajía, A. Laguna, Eur. J. Inorg. Chem. 2003, 3069. 10.1002/ejic.200200705 108M. Kato, Y. Ueta, S. Ito, Chem.—Eur. J. 2021, 27, 2469. 10.1002/chem.202004281 41C. Silvestru, Gold–Heterometal Interactions and Bonds, in Modern Supramolecular Gold Chemistry: Gold-Metal Interactions and Applications (Ed.: A. Laguna), Wiley-VCH, Weinheim, 2008, pp. 181–294. 39M. Kumar, G. B. Hammond, B. Xu, Org. Lett. 2014, 16, 3452. 10.1021/ol501663f24937566 143Y.-H. Lo, F. P. Gabbaï, Angew. Chem., Int. Ed. 2019, 58, 10194. 10.1002/anie.201903964 95Y. Ito, M. Sawamura, T. Hayashi, J. Am. Chem. Soc. 1986, 108, 6405. 10.1021/ja00280a056 119D. Schweinfurth, L. Hettmanczyk, L. Suntrup, B. Sarkar, Z. Anorg. Allg. Chem. 2017, 643, 554. 10.1002/zaac.201700030 109S. Ito, M. Nanko, K. Mikami, ChemCatChem 2014, 6, 2292. 10.1002/cctc.201402158 154M. Rigoulet, S. Massou, E. D. Sosa Carrizo, S. Mallet-Ladeira, A. Amgoune, K. Miqueu, D. Bourissou, Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 46. 10.1073/pnas.181719411630567973 45S. G. Weber, F. Rominger, B. F. Straub, Eur. J. Inorg. Chem. 2012, 2863. 10.1002/ejic.201200327 80A. S. Demir, M. Emrullahoğlu, K. Buran, Chem. Commun. 2010, 46, 8032. 10.1039/c0cc02357d 81X. Wang, Z. Yao, S. Dong, F. Wei, H. Wang, Z. Xu, Org. Lett. 2013, 15, 2234. 10.1021/ol400803f23600662 13D. Zuccaccia, A. Del Zotto, W. Baratta, Coord. Chem. Rev. 2019, 396, 103. 10.1016/j.ccr.2019.06.007 66E. Tomás-Mendivil, P. Y. Toullec, J. Borge, S. Conejero, V. Michelet, V. Cadierno, ACS Catal. 2013, 3, 3086. 10.1021/cs4009144 124S. Vanicek, M. Podewitz, J. Stubbe, D. Schulze, H. Kopacka, K. Wurst, T. Müller, P. Lippmann, S. Haslinger, H. Schottenberger, K. R. Liedl, I. Ott, B. Sarkar, B. Bildstein, Chem.—Eur. J. 2018, 24, 3742. 10.1002/chem.20170505129214677 146J. S. Jones, F. P. Gabbaï, Chem.—Eur. J. 2017, 23, 1136. 10.1002/chem.20160452127813226 147L. C. Wilkins, Y. Kim, E. D. Litle, F. P. Gabbaï, Angew. Chem., Int. Ed. 2019, 58, 18266. 10.1002/anie.201911662 94a) X. Zeng, G. D. Frey, R. Kinjo, B. Donnadieu, G. Bertrand, J. Am. Chem. Soc. 2009, 131, 8690. 10.1021/ja902051m19456108 b) X. Zeng, M. Soleilhavoup, G. Bertrand, Org. Lett. 2009, 11, 3166. 10.1021/ol901418c19719176 c) R. Kinjo, B. Donnadieu, G. Bertrand, Angew. Chem., Int. Ed. 2011, 50, 5560. 10.1002/anie.201100740 d) V. Lavallo, G. D. Frey, S. Kousar, B. Donnadieu, G. Bertrand, Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 13569. 10.1073/pnas.070580910417698808 26S. Gaillard, A. M. Z. Slawin, S. P. Nolan, Chem. Commun. 2010, 46, 2742. 10.1039/c0cc00018c 48J.-E. Siewert, A. Schumann, M. Fischer, C. Schmidt, T. Taufer, C. Hering-Junghans, Dalton Trans. 2020, 49, 12354. 10.1039/D0DT02435J32845265 56M. Veguillas, G. M. Rosair, M. W. P. Bebbington, A.-L. Lee, ACS Catal. 2019, 9, 2552. 10.1021/acscatal.9b00249 85L. Hettmanczyk, D. Schulze, L. Suntrup, B. Sarkar, Organometallics 2016, 35, 3828. 10.1021/acs.organomet.6b00675 142S. Sen, I.-S. Ke, F. P. Gabbaï, Organometallics 2017, 36, 4224. 10.1021/acs.organomet.7b00654 151L. D. M. Nicholls, M. Marx, T. Hartung, E. González-Fernández, C. Golz, M. Alcarazo, ACS Catal. 2018, 8, 6079. 10.1021/acscatal.8b01374 152Y. Canac, Chem.—Asian J. 2018, 13, 1872. 10.1002/asia.201800483 36A. Gómez-Suárez, Y. Oonishi, S. Meiries, S. P. Nolan, Organometallics 2013, 32, 1106. 10.1021/om301249r 40A. Homs, I. Escofet, A. M. Echavarren, Org. Lett. 2013, 15, 5782. 10.1021/ol402825v24195441 79L.-Z. Dai, M. Shi, Chem.—Eur. J. 2010, 16, 2496. 10.1002/chem.20090232120077534 10a) M. Jia, M. Bandini, ACS Catal. 2015, 5, 1638. 10.1021/cs501902v b) J. Schießl, J. Schulmeister, A. Doppiu, E. Wörner, M. Rudolph, R. Karch, A. S. K. Hashmi, Adv. Synth. Catal. 2018, 360, 2493. 10.1002/adsc.201800233 133M. Sircoglou, S. Bontemps, M. Mercy, N. Saffon, M. Takahashi, G. Bouhadir, L. Maron, D. Bourissou, Angew. Chem., Int. Ed. 2007, 46, 8583. 10.1002/anie.200703518 63L. Rocchigiani, M. Bochmann, Chem. Rev. 2020, doi:10.1021/acs.chemrev.0c00552. 10.1021/acs.chemrev.0c00552 99A. S. K. Hashmi, J. P. Weyrauch, W. Frey, J. W. Bats, Org. Lett. 2004, 6, 4391. 10.1021/ol048006715524491 131D. You, F. P. Gabbaï, Trends Chem. 2019, 1, 485. 10.1016/j.trechm.2019.03.011 54H. Li, R. A. Widenhoefer, Org. Lett. 2009, 11, 2671. 10.1021/ol900730w19514795 92P. D. García-Fernández, J. Iglesias-Sigüenza, P. S. Rivero-Jerez, E. Díez, E. Gómez-Bengoa, R. Fernández, J. M. Lassaletta, J. Am. Chem. Soc. 2020, 142, 16082. 10.1021/jacs.0c0795132813511 120S. Klenk, S. Rupf, L. Suntrup, M. van der Meer, B. Sarkar, Organometallics 2017, 36, 2026. 10.1021/acs.organomet.7b00270 7a) D. Benitez, N. D. Shapiro, E. Tkatchouk, Y. Wang, W. A. Goddard, III, F. D. Toste, Nat. Chem. 2009, 1, 482. 10.1038/nchem.33120161015 b) M. C. Blanco Jaimes, C. R. N. Böhling, J. M. Serrano-Becerra, A. S. K. Hashmi, Angew. Chem., Int. Ed. 2013, 52, 7963. 10.1002/anie.201210351 17N. Mézailles, L. Ricard, F. Gagosz, Org. Lett. 2005, 7, 4133. 10.1021/ol051591716146370 88F. Kleinbeck, F. D. Toste, J. Am. Chem. Soc. 2009, 131, 9178. 10.1021/ja904055z19530649 115Á. Vivancos, C. Segarra, M. Albrecht, Chem. Rev. 2018, 118, 9493. 10.1021/acs.chemrev.8b0014830014699 128M. L. H. Green, J. Organomet. Chem. 1995, 500, 127. 10.1016/0022-328X(95)00508-N 74C. Vidal, M. Tomás-Gamasa, P. Destito, F. López, J. L. Mascareñas, Nat. Commun. 2018, 9, 1913. 10.1038/s41467-018-04314-529765051 134M. Sircoglou, S. Bontemps, G. Bouhadir, N. Saffon, K. Miqueu, W. Gu, M. Mercy, C.-H. Chen, B. M. Foxman, L. Maron, O. V. Ozerov, D. Bourissou, J. Am. Chem. Soc. 2008, 130, 16729. 10.1021/ja807007219554696 35R. S. Ramón, S. Gaillard, A. Poater, L. Cavallo, A. M. Z. Slawin, S. P. Nolan, Chem.—Eur. J. 2011, 17, 1238. 10.1002/chem.20100260721243690 78C. Vidal, L. Merz, J. García-Álvarez, Green Chem. 2015, 17, 3870. 10.1039/C5GC00656B 145D. You, H. Yang, S. Sen, F. P. Gabbaï, J. Am. Chem. Soc. 2018, 140, 9644. 10.1021/jacs.8b0552029979870 27S. Gaillard, J. Bosson, R. S. Ramón, P. Nun, A. M. Z. Slawin, S. P. Nolan, Chem.—Eur. J. 2010, 16, 13729. 1 You (2024012104372168100_r145) 2018; 140 Abadie (2024012104372168100_r57) 2017; 23 Straube (2024012104372168100_r127) 2020; 11 Zhu (2024012104372168100_r38) 2013; 19 Bayler (2024012104372168100_r50) 1997; 130 Almássy (2024012104372168100_r65) 2010; 29 Gaillard (2024012104372168100_r26) 2010; 46 Bontemps (2024012104372168100_r132) 2006; 128 Usón (2024012104372168100_r49) 1979; 9 Yao (2024012104372168100_r72) 2006; 8 Hettmanczyk (2024012104372168100_r85) 2016; 35 Vanicek (2024012104372168100_r124) 2018; 24 Sota (2024012104372168100_r44) 2015; 21 Green (2024012104372168100_r128) 1995; 500 Fang (2024012104372168100_r82) 2015; 92 Wegener (2024012104372168100_r93) 2015; 21 Rodríguez-Álvarez (2024012104372168100_r77) 2017; 23 Gorin (2024012104372168100_r6) 2007; 446 Rocchigiani (2024012104372168100_r63) 2020 Asiri (2024012104372168100_r2) 2016; 45 Bouhadir (2024012104372168100_r130) 2016; 45 Nesmeyanov (2024012104372168100_r31) 1980; 201 Murakami (2024012104372168100_r139) 2019; 60 Schmidbaur (2024012104372168100_r155) 2019; 58 Schröder (2024012104372168100_r53) 2014; 33 Tarselli (2024012104372168100_r59) 2007; 46 Homs (2024012104372168100_r91) 2014; 356 Mézailles (2024012104372168100_r17) 2005; 7 Feng (2024012104372168100_r73) 2012; 14 Schweinfurth (2024012104372168100_r119) 2017; 643 Belger (2024012104372168100_r69) 2015; 13 Blanco Jaimes (2024012104372168100_r7) 2013; 52 Seppänen (2024012104372168100_r153) 2020; 56 Albayer (2024012104372168100_r16) 2018; 47 Luo (2024012104372168100_r89) 2012; 134 Ricard (2024012104372168100_r19) 2007; 26 Ito (2024012104372168100_r106) 2010; 695 Wang (2024012104372168100_r9) 2012; 134 Sherry (2024012104372168100_r33) 2004; 126 Gualco (2024012104372168100_r136) 2009; 48 Hou (2024012104372168100_r102) 2019; 10 Han (2024012104372168100_r25) 2014; 16 Ito (2024012104372168100_r95) 1986; 108 Nieto-Oberhuber (2024012104372168100_r24) 2004; 43 Weber (2024012104372168100_r60) 2009; 11 Jia (2024012104372168100_r10) 2015; 5 Sen (2024012104372168100_r142) 2017; 36 Fructos (2024012104372168100_r87) 2005; 44 Milton (2024012104372168100_r98) 2004 Vivancos (2024012104372168100_r115) 2018; 118 Meera (2024012104372168100_r62) 2020; 9 Marion (2024012104372168100_r64) 2009; 131 Demir (2024012104372168100_r80) 2010; 46 Yang (2024012104372168100_r32) 1993; 32 García-Álvarez (2024012104372168100_r75) 2015 Amijs (2024012104372168100_r8) 2008; 73 Belger (2024012104372168100_r68) 2015 Ibrahim (2024012104372168100_r70) 2015; 357 Tomás-Mendivil (2024012104372168100_r66) 2013; 3 Kim (2024012104372168100_r61) 2020; 120 Nicholls (2024012104372168100_r151) 2018; 8 Klenk (2024012104372168100_r120) 2017; 36 Wolf (2024012104372168100_r97) 2020; 59 Sircoglou (2024012104372168100_r134) 2008; 130 You (2024012104372168100_r144) 2017; 139 Veit (2024012104372168100_r126) 2019; 55 You (2024012104372168100_r131) 2019; 1 Zhu (2024012104372168100_r67) 2020; 26 Klebach (2024012104372168100_r104) 1978; 100 Sircoglou (2024012104372168100_r133) 2007; 46 Kleinbeck (2024012104372168100_r88) 2009; 131 Praveen (2024012104372168100_r122) 2009 2024012104372168100_r41 Hashmi (2024012104372168100_r51) 2006; 348 Alcarazo (2024012104372168100_r148) 2016; 49 Campeau (2024012104372168100_r3) 2020 Teles (2024012104372168100_r21) 1998; 37 Benitez (2024012104372168100_r7) 2009; 1 Hashmi (2024012104372168100_r100) 2009; 48 Rigo (2024012104372168100_r113) 2017; 46 Zeng (2024012104372168100_r94) 2009; 11 Nicholls (2024012104372168100_r149) 2019; 48 Mizushima (2024012104372168100_r23) 2003; 5 Hashmi (2024012104372168100_r52) 2007; 46 Kumar (2024012104372168100_r39) 2014; 16 Gualco (2024012104372168100_r137) 2010; 16 Fang (2024012104372168100_r83) 2014; 20 Li (2024012104372168100_r20) 2007; 46 Sen (2024012104372168100_r153) 2017; 53 Hettmanczyk (2024012104372168100_r118) 2015; 51 Gaillard (2024012104372168100_r27) 2010; 16 Nevado (2024012104372168100_r58) 2005; 11 Dang (2024012104372168100_r28) 2011; 76 Li (2024012104372168100_r54) 2009; 11 Zuccaccia (2024012104372168100_r13) 2019; 396 Barrio (2024012104372168100_r29) 2016; 22 Amgoune (2024012104372168100_r129) 2011; 47 Scherpf (2024012104372168100_r150) 2018; 57 Marion (2024012104372168100_r5) 2008; 37 Jiménez-Núñez (2024012104372168100_r11) 2008; 108 Kamimura (2024012104372168100_r84) 2014; 79 Lo (2024012104372168100_r143) 2019; 58 Canac (2024012104372168100_r152) 2018; 13 Fang (2024012104372168100_r83) 2014; 1 Zhang (2024012104372168100_r43) 2020; 142 Hettmanczyk (2024012104372168100_r121) 2017; 23 Hashmi (2024012104372168100_r99) 2004; 6 Vidal (2024012104372168100_r78) 2015; 17 Wang (2024012104372168100_r81) 2013; 15 de Frémont (2024012104372168100_r18) 2006 Ito (2024012104372168100_r111) 2017 Delgado-Rebollo (2024012104372168100_r87) 2012 Rigo (2024012104372168100_r117) 2019; 25 Yang (2024012104372168100_r141) 2015; 137 Vidal (2024012104372168100_r74) 2018; 9 García-Morales (2024012104372168100_r90) 2017; 139 Jones (2024012104372168100_r140) 2016; 49 Schießl (2024012104372168100_r10) 2018; 360 Lu (2024012104372168100_r14) 2019; 52 Hashmi (2024012104372168100_r123) 2000; 122 Wilkins (2024012104372168100_r147) 2019; 58 Wang (2024012104372168100_r15) 2012; 134 Lavallo (2024012104372168100_r94) 2007; 104 Veguillas (2024012104372168100_r56) 2019; 9 Inagaki (2024012104372168100_r138) 2015; 54 Zhdanko (2024012104372168100_r46) 2015; 5 Dai (2024012104372168100_r79) 2010; 16 Märkl (2024012104372168100_r114) 1966; 5 Jones (2024012104372168100_r146) 2017; 23 Zhdanko (2024012104372168100_r30) 2012; 18 Chiarucci (2024012104372168100_r3) 2013; 9 Dorel (2024012104372168100_r2) 2015; 115 Pretorius (2024012104372168100_r96) 2016; 45 Fürstner (2024012104372168100_r1) 2007; 46 Bardajía (2024012104372168100_r42) 2003 Bour (2024012104372168100_r82) 2015; 26 Ranieri (2024012104372168100_r5) 2015; 13 Ramón (2024012104372168100_r35) 2011; 17 Canseco-Gonzalez (2024012104372168100_r47) 2013; 135 Rodríguez-Álvarez (2024012104372168100_r76) 2014; 50 Freytag (2024012104372168100_r105) 2006; 1 Ito (2024012104372168100_r110) 2016; 11 Nishida (2024012104372168100_r86) 1984; 57 Guérinot (2024012104372168100_r82) 2013; 52 Prieto (2024012104372168100_r87) 2009; 65 Straube (2024012104372168100_r127) 2020; 49 Vanicek (2024012104372168100_r125) 2019; 38 Yang (2024012104372168100_r4) 2014; 43 Kinjo (2024012104372168100_r94) 2011; 50 Ito (2024012104372168100_r107) 2011; 6 Homs (2024012104372168100_r40) 2013; 15 Li (2024012104372168100_r71) 2015; 80 Lu (2024012104372168100_r55) 2015; 17 García-Fernández (2024012104372168100_r92) 2020; 142 2024012104372168100_r103 Sherry (2024012104372168100_r34) 2006; 128 Kato (2024012104372168100_r108) 2021; 27 Fernández (2024012104372168100_r65) 2013; 32 Marichev (2024012104372168100_r116) 2018; 74 Schmidbaur (2024012104372168100_r12) 2011; 66 Zeng (2024012104372168100_r94) 2009; 131 Zhu (2024012104372168100_r37) 2016; 6 Weber (2024012104372168100_r45) 2012 2024012104372168100_r101 Siewert (2024012104372168100_r48) 2020; 49 Sircoglou (2024012104372168100_r135) 2009; 48 Mizushima (2024012104372168100_r22) 2002; 41 Gómez-Suárez (2024012104372168100_r36) 2013; 32 Rigoulet (2024012104372168100_r154) 2019; 116 Agou (2024012104372168100_r112) 2018; 57 Ito (2024012104372168100_r109) 2014; 6 |
References_xml | – reference: 111S. Ito, T. Shinozaki, K. Mikami, Eur. J. Org. Chem. 2017, 6889. 10.1002/ejoc.201701259 – reference: 18P. de Frémont, E. D. Stevens, M. R. Fructos, M. M. Díaz-Requejo, P. J. Pérez, S. P. Nolan, Chem. Commun. 2006, 2045. 10.1039/B601547F – reference: 19L. Ricard, F. Gagosz, Organometallics 2007, 26, 4704. 10.1021/om7006002 – reference: 130G. Bouhadir, D. Bourissou, Chem. Soc. Rev. 2016, 45, 1065. 10.1039/C5CS00697J26567634 – reference: 137P. Gualco, M. Mercy, S. Ladeira, Y. Coppel, L. Maron, A. Amgoune, D. Bourissou, Chem.—Eur. J. 2010, 16, 10808. 10.1002/chem.20100128120677199 – reference: 55Z. Lu, J. Han, G. B. Hammond, B. Xu, Org. Lett. 2015, 17, 4534. 10.1021/acs.orglett.5b0222426335841 – reference: 5a) B. Ranieri, I. Escofet, A. M. Echavarren, Org. Biomol. Chem. 2015, 13, 7103. 10.1039/C5OB00736D26055272 b) N. Marion, S. P. Nolan, Chem. Soc. Rev. 2008, 37, 1776. 10.1039/b711132k18762827 – reference: 34B. D. Sherry, L. Maus, B. N. Laforteza, F. D. Toste, J. Am. Chem. Soc. 2006, 128, 8132. 10.1021/ja061344d16787066 – reference: 103Multiple Bonds and Low Coordination in Phosphorus Chemistry, (Eds.: M. Regitz, O. J. Scherer), Thieme, Stuttgart, 1990. – reference: 66E. Tomás-Mendivil, P. Y. Toullec, J. Borge, S. Conejero, V. Michelet, V. Cadierno, ACS Catal. 2013, 3, 3086. 10.1021/cs4009144 – reference: 114G. Märkl, Angew. Chem., Int. Ed. Engl. 1966, 5, 846. 10.1002/anie.196608463 – reference: 135M. Sircoglou, M. Mercy, N. Saffon, Y. Coppel, G. Bouhadir, L. Maron, D. Bourissou, Angew. Chem., Int. Ed. 2009, 48, 3454. 10.1002/anie.200900737 – reference: 147L. C. Wilkins, Y. Kim, E. D. Litle, F. P. Gabbaï, Angew. Chem., Int. Ed. 2019, 58, 18266. 10.1002/anie.201911662 – reference: 22E. Mizushima, K. Sato, T. Hayashi, M. Tanaka, Angew. Chem., Int. Ed. 2002, 41, 4563. 10.1002/1521-3773(20021202)41:23%3C4563::AID-ANIE4563%3E3.0.CO%3B2-U – reference: 10a) M. Jia, M. Bandini, ACS Catal. 2015, 5, 1638. 10.1021/cs501902v b) J. Schießl, J. Schulmeister, A. Doppiu, E. Wörner, M. Rudolph, R. Karch, A. S. K. Hashmi, Adv. Synth. Catal. 2018, 360, 2493. 10.1002/adsc.201800233 – reference: 89Y. Luo, K. Ji, Y. Li, L. Zhang, J. Am. Chem. Soc. 2012, 134, 17412. 10.1021/ja307948m23039251 – reference: 84A. Kamimura, Y. Yamane, R. Yo, T. Tanaka, H. Uno, J. Org. Chem. 2014, 79, 7696. 10.1021/jo501254x25054771 – reference: 50A. Bayler, A. Bauer, H. Schmidbaur, Chem. Ber. 1997, 130, 115. 10.1002/cber.19971300119 – reference: 73E. Feng, Y. Zhou, F. Zhao, X. Chen, L. Zhang, H. Jiang, H. Liu, Green Chem. 2012, 14, 1888. 10.1039/c2gc35293a – reference: 31A. N. Nesmeyanov, E. G. Perevalova, Y. T. Struchkov, M. Y. Antipin, K. I. Grandberg, V. P. Dyadhenko, J. Organomet. Chem. 1980, 201, 343. 10.1016/S0022-328X(00)92589-0 – reference: 30A. Zhdanko, M. Ströbele, M. E. Maier, Chem.—Eur. J. 2012, 18, 14732. 10.1002/chem.20120121523018523 – reference: 60D. Weber, M. R. Gagné, Org. Lett. 2009, 11, 4962. 10.1021/ol902116b19807117 – reference: 63L. Rocchigiani, M. Bochmann, Chem. Rev. 2020, doi:10.1021/acs.chemrev.0c00552. 10.1021/acs.chemrev.0c00552 – reference: 126P. Veit, C. Volkert, C. Förster, V. Ksenofontov, S. Schlicher, M. Bauer, K. Heinze, Chem. Commun. 2019, 55, 4615. 10.1039/C9CC00283A – reference: 8C. H. M. Amijs, V. López-Carrillo, M. Raducan, P. Pérez-Galán, C. Ferrer, A. M. Echavarren, J. Org. Chem. 2008, 73, 7721. 10.1021/jo801476918759485 – reference: 91A. Homs, C. Obradors, D. Lebœuf, A. M. Echavarren, Adv. Synth. Catal. 2014, 356, 221. 10.1002/adsc.20130070426190958 – reference: 26S. Gaillard, A. M. Z. Slawin, S. P. Nolan, Chem. Commun. 2010, 46, 2742. 10.1039/c0cc00018c – reference: 105M. Freytag, S. Ito, M. Yoshifuji, Chem.—Asian J. 2006, 1, 693. 10.1002/asia.20060015517441110 – reference: 121L. Hettmanczyk, L. Suntrup, S. Klenk, C. Hoyer, B. Sarkar, Chem.—Eur. J. 2017, 23, 576. 10.1002/chem.20160461527813173 – reference: 32Y. Yang, V. Ramamoorthy, P. R. Sharp, Inorg. Chem. 1993, 32, 1946. 10.1021/ic00062a012 – reference: 24C. Nieto-Oberhuber, M. P. Muñoz, E. Buñuel, C. Nevado, D. J. Cárdenas, A. M. Echavarren, Angew. Chem., Int. Ed. 2004, 43, 2402. 10.1002/anie.200353207 – reference: 76M. J. Rodríguez-Álvarez, C. Vidal, J. Díez, J. García-Álvarez, Chem. Commun. 2014, 50, 12927. 10.1039/C4CC05904B – reference: 67X. Zhu, G. Xu, L.-M. Chamoreau, Y. Zhang, V. Mouriès-Mansuy, L. Fensterbank, O. Bistri-Aslanoff, S. Roland, M. Sollogoub, Chem.—Eur. J. 2020, 26, 15901. 10.1002/chem.20200199032491219 – reference: 83a) W. Fang, M. Presset, A. Guérinot, C. Bour, S. Bezzenine-Lafollée, V. Gandon, Chem.—Eur. J. 2014, 20, 5439. 10.1002/chem.20130483124644066 b) W. Fang, M. Presset, A. Guérinot, C. Bour, S. Bezzenine-Lafollée, V. Gandon, Org. Chem. Front. 2014, 1, 608. 10.1039/c4qo00112e – reference: 74C. Vidal, M. Tomás-Gamasa, P. Destito, F. López, J. L. Mascareñas, Nat. Commun. 2018, 9, 1913. 10.1038/s41467-018-04314-529765051 – reference: 58C. Nevado, A. M. Echavarren, Chem.—Eur. J. 2005, 11, 3155. 10.1002/chem.20040106915779093 – reference: 128M. L. H. Green, J. Organomet. Chem. 1995, 500, 127. 10.1016/0022-328X(95)00508-N – reference: 43Z. Zhang, V. Smal, P. Retailleau, A. Voituriez, G. Frison, A. Marinetti, X. Guinchard, J. Am. Chem. Soc. 2020, 142, 3797. 10.1021/jacs.9b1115432011877 – reference: 16M. Albayer, R. Corbo, A. F. Hill, J. L. Dutton, Dalton Trans. 2018, 47, 1321. 10.1039/C7DT04494A29302667 – reference: 136P. Gualco, T.-P. Lin, M. Sircoglou, M. Mercy, S. Ladeira, G. Bouhadir, L. M. Pérez, A. Amgoune, L. Maron, F. P. Gabbaï, D. Bourissou, Angew. Chem., Int. Ed. 2009, 48, 9892. 10.1002/anie.200905391 – reference: 6D. J. Gorin, F. D. Toste, Nature 2007, 446, 395. 10.1038/nature0559217377576 – reference: 145D. You, H. Yang, S. Sen, F. P. Gabbaï, J. Am. Chem. Soc. 2018, 140, 9644. 10.1021/jacs.8b0552029979870 – reference: 17N. Mézailles, L. Ricard, F. Gagosz, Org. Lett. 2005, 7, 4133. 10.1021/ol051591716146370 – reference: 20G. Li, L. Zhang, Angew. Chem., Int. Ed. 2007, 46, 5156. 10.1002/anie.200701449 – reference: 112T. Agou, N. Wada, K. Fujisawa, T. Hosoya, Y. Mizuhata, N. Tokitoh, H. Fukumoto, T. Kubota, Inorg. Chem. 2018, 57, 9105. 10.1021/acs.inorgchem.8b0111129984577 – reference: 39M. Kumar, G. B. Hammond, B. Xu, Org. Lett. 2014, 16, 3452. 10.1021/ol501663f24937566 – reference: 77M. J. Rodríguez-Álvarez, C. Vidal, S. Schumacher, J. Borge, J. García-Álvarez, Chem.—Eur. J. 2017, 23, 3425. 10.1002/chem.20160530328052449 – reference: 81X. Wang, Z. Yao, S. Dong, F. Wei, H. Wang, Z. Xu, Org. Lett. 2013, 15, 2234. 10.1021/ol400803f23600662 – reference: 97J. Wolf, F. Huber, N. Erochok, F. Heinen, V. Guérin, C. Y. Legault, S. F. Kirsch, S. M. Huber, Angew. Chem., Int. Ed. 2020, 59, 16496. 10.1002/anie.202005214 – reference: 101J. Dugal-Tessier, E. D. Conrad, G. R. Dake, D. P. Gates, “Phosphaalkenes” in Phosphorus(III) Ligands in Homogeneous Catalysis (Eds.: P. C. J. Kamer, P. W. N. M. van Leeuwen), Wiley, Chichester, 2012, pp. 321–341. – reference: 142S. Sen, I.-S. Ke, F. P. Gabbaï, Organometallics 2017, 36, 4224. 10.1021/acs.organomet.7b00654 – reference: 61U B. Kim, D. J. Jung, H. J. Jeon, K. Rathwell, S. Lee, Chem. Rev. 2020, 120, 13382. 10.1021/acs.chemrev.0c00245 – reference: 95Y. Ito, M. Sawamura, T. Hayashi, J. Am. Chem. Soc. 1986, 108, 6405. 10.1021/ja00280a056 – reference: 144D. You, F. P. Gabbaï, J. Am. Chem. Soc. 2017, 139, 6843. 10.1021/jacs.7b0328728485973 – reference: 28T. T. Dang, F. Boeck, L. Hintermann, J. Org. Chem. 2011, 76, 9353. 10.1021/jo201631x22010906 – reference: 64N. Marion, R. S. Ramón, S. P. Nolan, J. Am. Chem. Soc. 2009, 131, 448. 10.1021/ja809403e19140786 – reference: 41C. Silvestru, Gold–Heterometal Interactions and Bonds, in Modern Supramolecular Gold Chemistry: Gold-Metal Interactions and Applications (Ed.: A. Laguna), Wiley-VCH, Weinheim, 2008, pp. 181–294. – reference: 59M. A. Tarselli, A. R. Chianese, S. J. Lee, M. R. Gagné, Angew. Chem., Int. Ed. 2007, 46, 6670. 10.1002/anie.200701959 – reference: 129A. Amgoune, D. Bourissou, Chem. Commun. 2011, 47, 859. 10.1039/C0CC04109B – reference: 11E. Jiménez-Núñez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326. 10.1021/cr068431918636778 – reference: 29P. Barrio, M. Kumar, Z. Lu, J. Han, B. Xu, G. B. Hammond, Chem.—Eur. J. 2016, 22, 16410. 10.1002/chem.20160347827643616 – reference: 71F. Li, N. Wang, L. Lu, G. Zhu, J. Org. Chem. 2015, 80, 3538. 10.1021/acs.joc.5b0016425757153 – reference: 40A. Homs, I. Escofet, A. M. Echavarren, Org. Lett. 2013, 15, 5782. 10.1021/ol402825v24195441 – reference: 116K. O. Marichev, S. A. Patil, A. Bugarin, Tetrahedron 2018, 74, 2523. 10.1016/j.tet.2018.04.013 – reference: 79L.-Z. Dai, M. Shi, Chem.—Eur. J. 2010, 16, 2496. 10.1002/chem.20090232120077534 – reference: 87a) M. R. Fructos, T. R. Belderrain, P. de Frémont, N. M. Scott, S. P. Nolan, M. M. Díaz-Requejo, P. J. Pérez, Angew. Chem., Int. Ed. 2005, 44, 5284. 10.1002/anie.200501056 b) A. Prieto, M. R. Fructos, M. M. Díaz-Requejo, P. J. Pérez, P. Pérez-Galán, N. Delpont, A. M. Echavarren, Tetrahedron 2009, 65, 1790. 10.1016/j.tet.2008.10.114 c) M. Delgado-Rebollo, Á. Beltrán, A. Prieto, M. M. Díaz-Requejo, A. M. Echavarren, P. J. Pérez, Eur. J. Inorg. Chem. 2012, 1380. 10.1002/ejic.201101158 – reference: 75J. García-Álvarez, Eur. J. Inorg. Chem. 2015, 5147. 10.1002/ejic.201500892 – reference: 113M. Rigo, L. Hettmanczyk, F. J. L. Heutz, S. Hohloch, M. Lutz, B. Sarkar, C. Müller, Dalton Trans. 2017, 46, 86. 10.1039/C6DT03766F27897296 – reference: 94a) X. Zeng, G. D. Frey, R. Kinjo, B. Donnadieu, G. Bertrand, J. Am. Chem. Soc. 2009, 131, 8690. 10.1021/ja902051m19456108 b) X. Zeng, M. Soleilhavoup, G. Bertrand, Org. Lett. 2009, 11, 3166. 10.1021/ol901418c19719176 c) R. Kinjo, B. Donnadieu, G. Bertrand, Angew. Chem., Int. Ed. 2011, 50, 5560. 10.1002/anie.201100740 d) V. Lavallo, G. D. Frey, S. Kousar, B. Donnadieu, G. Bertrand, Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 13569. 10.1073/pnas.070580910417698808 – reference: 7a) D. Benitez, N. D. Shapiro, E. Tkatchouk, Y. Wang, W. A. Goddard, III, F. D. Toste, Nat. Chem. 2009, 1, 482. 10.1038/nchem.33120161015 b) M. C. Blanco Jaimes, C. R. N. Böhling, J. M. Serrano-Becerra, A. S. K. Hashmi, Angew. Chem., Int. Ed. 2013, 52, 7963. 10.1002/anie.201210351 – reference: 72X. Yao, C.-J. Li, Org. Lett. 2006, 8, 1953. 10.1021/ol060645p16623593 – reference: 80A. S. Demir, M. Emrullahoğlu, K. Buran, Chem. Commun. 2010, 46, 8032. 10.1039/c0cc02357d – reference: 153a) S. Sen, F. P. Gabbaï, Chem. Commun. 2017, 53, 13356. 10.1039/C7CC06065C b) During the preparation of the present manuscript, an experimental and computational study on the activation of [(NHC)AuCl] complexes with a pendant amide group, assisted by H-bond donor substrates or acid additives, was published: O. Seppänen, S. Aikonen, M. Muuronen, C. Alamillo-Ferrer, J. Burés, J. Helaja, Chem. Commun. 2020, 56, 14697. 10.1039/D0CC05999D – reference: 48J.-E. Siewert, A. Schumann, M. Fischer, C. Schmidt, T. Taufer, C. Hering-Junghans, Dalton Trans. 2020, 49, 12354. 10.1039/D0DT02435J32845265 – reference: 143Y.-H. Lo, F. P. Gabbaï, Angew. Chem., Int. Ed. 2019, 58, 10194. 10.1002/anie.201903964 – reference: 108M. Kato, Y. Ueta, S. Ito, Chem.—Eur. J. 2021, 27, 2469. 10.1002/chem.202004281 – reference: 47D. Canseco-Gonzalez, A. Petronilho, H. Mueller-Bunz, K. Ohmatsu, T. Ooi, M. Albrecht, J. Am. Chem. Soc. 2013, 135, 13193. 10.1021/ja406999p23902160 – reference: 139R. Murakami, F. Inagaki, Tetrahedron Lett. 2019, 60, 151231. 10.1016/j.tetlet.2019.151231 – reference: 38Y. Zhu, C. S. Day, L. Zhang, K. J. Hauser, A. C. Jones, Chem.—Eur. J. 2013, 19, 12264. 10.1002/chem.20130215223934993 – reference: 90C. García-Morales, B. Ranieri, I. Escofet, L. López-Suarez, C. Obradors, A. I. Konovalov, A. M. Echavarren, J. Am. Chem. Soc. 2017, 139, 13628. 10.1021/jacs.7b0765128922911 – reference: 15D. Wang, R. Cai, S. Sharma, J. Jirak, S. K. Thummanapelli, N. G. Akhmedov, H. Zhang, X. Liu, J. L. Petersen, X. Shi, J. Am. Chem. Soc. 2012, 134, 9012. 10.1021/ja303862z22563621 – reference: 23E. Mizushima, T. Hayashi, M. Tanaka, Org. Lett. 2003, 5, 3349. 10.1021/ol035315912943424 – reference: 120S. Klenk, S. Rupf, L. Suntrup, M. van der Meer, B. Sarkar, Organometallics 2017, 36, 2026. 10.1021/acs.organomet.7b00270 – reference: 92P. D. García-Fernández, J. Iglesias-Sigüenza, P. S. Rivero-Jerez, E. Díez, E. Gómez-Bengoa, R. Fernández, J. M. Lassaletta, J. Am. Chem. Soc. 2020, 142, 16082. 10.1021/jacs.0c0795132813511 – reference: 9W. Wang, G. B. Hammond, B. Xu, J. Am. Chem. Soc. 2012, 134, 5697. 10.1021/ja301139722376128 – reference: 78C. Vidal, L. Merz, J. García-Álvarez, Green Chem. 2015, 17, 3870. 10.1039/C5GC00656B – reference: 96R. Pretorius, M. R. Fructos, H. Müller-Bunz, R. A. Gossage, P. J. Pérez, M. Albrecht, Dalton Trans. 2016, 45, 14591. 10.1039/C6DT02181F27363515 – reference: 52A. S. K. Hashmi, S. Schäfer, M. Wölfe, C. Diez Gil, P. Fischer, A. Laguna, M. C. Blanco, M. C. Gimeno, Angew. Chem., Int. Ed. 2007, 46, 6184. 10.1002/anie.200701521 – reference: 134M. Sircoglou, S. Bontemps, G. Bouhadir, N. Saffon, K. Miqueu, W. Gu, M. Mercy, C.-H. Chen, B. M. Foxman, L. Maron, O. V. Ozerov, D. Bourissou, J. Am. Chem. Soc. 2008, 130, 16729. 10.1021/ja807007219554696 – reference: 149L. D. M. Nicholls, M. Alcarazo, Chem. Lett. 2019, 48, 1. 10.1246/cl.180810 – reference: 49R. Usón, A. Laguna, M. V. Castrillo, Synth. React. Inorg. Met.-Org. Chem. 1979, 9, 317. 10.1080/00945717908069748 – reference: 138F. Inagaki, C. Matsumoto, Y. Okada, N. Maruyama, C. Mukai, Angew. Chem., Int. Ed. 2015, 54, 818. 10.1002/anie.201408037 – reference: 57M.-A. Abadie, X. Trivelli, F. Medina, N. Duhal, M. Kouach, B. Linden, E. Génin, M. Vandewalle, F. Capet, P. Roussel, I. Del Rosal, L. Maron, F. Agbossou-Niedercorn, C. Michon, Chem.—Eur. J. 2017, 23, 10777. 10.1002/chem.20170130128488394 – reference: 118L. Hettmanczyk, S. Manck, C. Hoyer, S. Hohloch, B. Sarkar, Chem. Commun. 2015, 51, 10949. 10.1039/C5CC01578B – reference: 12H. Schmidbaur, A. Schier, Z. Naturforsch., B: J. Chem. Sci. 2011, 66, 329. 10.1515/znb-2011-0401 – reference: 122C. Praveen, P. Kiruthiga, P. T. Perumal, Synlett 2009, 1990. – reference: 2a) R. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028. 10.1021/cr500691k25844920 b) A. M. Asiri, A. S. K. Hashmi, Chem. Soc. Rev. 2016, 45, 4471. 10.1039/C6CS00023A27385433 – reference: 115Á. Vivancos, C. Segarra, M. Albrecht, Chem. Rev. 2018, 118, 9493. 10.1021/acs.chemrev.8b0014830014699 – reference: 36A. Gómez-Suárez, Y. Oonishi, S. Meiries, S. P. Nolan, Organometallics 2013, 32, 1106. 10.1021/om301249r – reference: 102Y. Hou, Z. Li, Y. Li, P. Liu, C.-Y. Su, F. Puschmann, H. Grützmacher, Chem. Sci. 2019, 10, 3168. 10.1039/C8SC05281F30996898 – reference: 14Z. Lu, G. B. Hammond, B. Xu, Acc. Chem. Res. 2019, 52, 1275.31002231 – reference: 3a) M. Chiarucci, M. Bandini, Beilstein J. Org. Chem. 2013, 9, 2586. 10.3762/bjoc.9.29424367423 b) D. Campeau, D. F. León Rayo, A. Mansour, K. Muratov, F. Gagosz, Chem. Rev. 2020, doi:10.1021/acs.chemrev.0c00788. 10.1021/acs.chemrev.0c00788 – reference: 151L. D. M. Nicholls, M. Marx, T. Hartung, E. González-Fernández, C. Golz, M. Alcarazo, ACS Catal. 2018, 8, 6079. 10.1021/acscatal.8b01374 – reference: 56M. Veguillas, G. M. Rosair, M. W. P. Bebbington, A.-L. Lee, ACS Catal. 2019, 9, 2552. 10.1021/acscatal.9b00249 – reference: 99A. S. K. Hashmi, J. P. Weyrauch, W. Frey, J. W. Bats, Org. Lett. 2004, 6, 4391. 10.1021/ol048006715524491 – reference: 44Y. Sota, M. Yamamoto, M. Murai, J. Uenishi, M. Uemura, Chem.—Eur. J. 2015, 21, 4398. 10.1002/chem.20140588925643908 – reference: 141H. Yang, F. P. Gabbaï, J. Am. Chem. Soc. 2015, 137, 13425. 10.1021/jacs.5b0799826458048 – reference: 37Y. Zhu, W. Zhou, E. M. Petryna, B. R. Rogers, C. S. Day, A. C. Jones, ACS Catal. 2016, 6, 7357. 10.1021/acscatal.6b01674 – reference: 98M. D. Milton, Y. Inada, Y. Nishibayashi, S. Uemura, Chem. Commun. 2004, 2712. 10.1039/b411180j – reference: 110S. Ito, M. Nanko, T. Shinozaki, M. Kojima, K. Aikawa, K. Mikami, Chem.—Asian J. 2016, 11, 823. 10.1002/asia.20150132626811979 – reference: 109S. Ito, M. Nanko, K. Mikami, ChemCatChem 2014, 6, 2292. 10.1002/cctc.201402158 – reference: 150T. Scherpf, C. Schwarz, L. T. Sharf, J.-A. Zur, A. Helbig, V. H. Gessner, Angew. Chem., Int. Ed. 2018, 57, 12859. 10.1002/anie.201805372 – reference: 107S. Ito, L. Zhai, K. Mikami, Chem.—Asian J. 2011, 6, 3077. 10.1002/asia.20110031021834098 – reference: 146J. S. Jones, F. P. Gabbaï, Chem.—Eur. J. 2017, 23, 1136. 10.1002/chem.20160452127813226 – reference: 132S. Bontemps, G. Bouhadir, K. Miqueu, D. Bourissou, J. Am. Chem. Soc. 2006, 128, 12056. 10.1021/ja063749416967941 – reference: 51A. S. K. Hashmi, M. C. Blanco, E. Kurpejović, W. Frey, J. W. Bats, Adv. Synth. Catal. 2006, 348, 709; 10.1002/adsc.200606012 Correction: A. S. K. Hashmi, M. C. Blanco, E. Kurpejović, W. Frey, J. W. Bats, Adv. Synth. Catal. 2006, 348, 792a. 10.1002/adsc.200690009 – reference: 85L. Hettmanczyk, D. Schulze, L. Suntrup, B. Sarkar, Organometallics 2016, 35, 3828. 10.1021/acs.organomet.6b00675 – reference: 35R. S. Ramón, S. Gaillard, A. Poater, L. Cavallo, A. M. Z. Slawin, S. P. Nolan, Chem.—Eur. J. 2011, 17, 1238. 10.1002/chem.20100260721243690 – reference: 54H. Li, R. A. Widenhoefer, Org. Lett. 2009, 11, 2671. 10.1021/ol900730w19514795 – reference: 127a) A. Straube, P. Coburger, L. Dütsch, E. Hey-Hawkins, Chem. Sci. 2020, 11, 10657. 10.1039/D0SC03604H b) A. Straube, P. Coburger, M. Michak, M. R. Ringenberg, E. Hey-Hawkins, Dalton Trans. 2020, 49, 16667. 10.1039/d0dt02743j – reference: 117M. Rigo, E. R. M. Habraken, K. Bhattacharyya, M. Weber, A. W. Ehlers, N. Mézailles, J. C. Slootweg, C. Müller, Chem.—Eur. J. 2019, 25, 8769.30994944 – reference: 123A. S. K. Hashmi, T. M. Frost, J. W. Bats, J. Am. Chem. Soc. 2000, 122, 11553. 10.1021/ja005570d – reference: 45S. G. Weber, F. Rominger, B. F. Straub, Eur. J. Inorg. Chem. 2012, 2863. 10.1002/ejic.201200327 – reference: 4W. Yang, A. S. K. Hashmi, Chem. Soc. Rev. 2014, 43, 2941. 10.1039/c3cs60441a24671183 – reference: 62G. Meera, K. R. Rohit, G. S. Susan Treesa, G. Anilkumar, Asian J. Org. Chem. 2020, 9, 144. 10.1002/ajoc.202000020 – reference: 1A. Fürstner, P. W. Davies, Angew. Chem., Int. Ed. 2007, 46, 3410. 10.1002/anie.200604335 – reference: 33B. D. Sherry, F. D. Toste, J. Am. Chem. Soc. 2004, 126, 15978. 10.1021/ja044602k15584728 – reference: 119D. Schweinfurth, L. Hettmanczyk, L. Suntrup, B. Sarkar, Z. Anorg. Allg. Chem. 2017, 643, 554. 10.1002/zaac.201700030 – reference: 133M. Sircoglou, S. Bontemps, M. Mercy, N. Saffon, M. Takahashi, G. Bouhadir, L. Maron, D. Bourissou, Angew. Chem., Int. Ed. 2007, 46, 8583. 10.1002/anie.200703518 – reference: 148M. Alcarazo, Acc. Chem. Res. 2016, 49, 1797. 10.1021/acs.accounts.6b0026227529703 – reference: 124S. Vanicek, M. Podewitz, J. Stubbe, D. Schulze, H. Kopacka, K. Wurst, T. Müller, P. Lippmann, S. Haslinger, H. Schottenberger, K. R. Liedl, I. Ott, B. Sarkar, B. Bildstein, Chem.—Eur. J. 2018, 24, 3742. 10.1002/chem.20170505129214677 – reference: 140J. S. Jones, F. P. Gabbaï, Acc. Chem. Res. 2016, 49, 857. 10.1021/acs.accounts.5b0054327092722 – reference: 42M. Bardajía, A. Laguna, Eur. J. Inorg. Chem. 2003, 3069. 10.1002/ejic.200200705 – reference: 65a) A. Almássy, C. E. Nagy, A. C. Bényei, F. Joó, Organometallics 2010, 29, 2484. 10.1021/om1001292 b) G. A. Fernández, A. S. Picco, M. R. Ceolıń, A. B. Chopa, G. F. Silbestri, Organometallics 2013, 32, 6315. 10.1021/om400663a – reference: 154M. Rigoulet, S. Massou, E. D. Sosa Carrizo, S. Mallet-Ladeira, A. Amgoune, K. Miqueu, D. Bourissou, Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 46. 10.1073/pnas.181719411630567973 – reference: 155H. Schmidbaur, Angew. Chem., Int. Ed. 2019, 58, 5806. 10.1002/anie.201902526 – reference: 82a) A. Guérinot, W. Fang, M. Sircoglou, C. Bour, S. Bezzenine-Lafollée, V. Gandon, Angew. Chem., Int. Ed. 2013, 52, 5848. 10.1002/anie.201300600 b) W. Fang, F. Weizhen, M. Presset, A. Guérinot, C. Bour, S. Bezzenine-Lafollée, V. Gandon, Org. Synth. 2015, 92, 117. 10.15227/orgsyn.092.00117 c) C. Bour, V. Gandon, Synlett 2015, 26, 1427. 10.1055/s-0034-1380712 – reference: 100A. S. K. Hashmi, A. M. Schuster, F. Rominger, Angew. Chem., Int. Ed. 2009, 48, 8247. 10.1002/anie.200903134 – reference: 106S. Ito, S. Kusano, N. Morita, K. Mikami, M. Yoshifuji, J. Organomet. Chem. 2010, 695, 291. 10.1016/j.jorganchem.2009.09.040 – reference: 125S. Vanicek, J. Beerhues, T. Bens, V. Levchenko, K. Wurst, B. Bildstein, M. Tilset, B. Sarkar, Organometallics 2019, 38, 4383. 10.1021/acs.organomet.9b0061631844348 – reference: 21J. H. Teles, S. Brode, M. Chabanas, Angew. Chem., Int. Ed. 1998, 37, 1415. 10.1002/(SICI)1521-3773(19980605)37:10%3C1415::AID-ANIE1415%3E3.0.CO%3B2-N – reference: 46A. Zhdanko, M. E. Maier, ACS Catal. 2015, 5, 5994. 10.1021/acscatal.5b01493 – reference: 152Y. Canac, Chem.—Asian J. 2018, 13, 1872. 10.1002/asia.201800483 – reference: 131D. You, F. P. Gabbaï, Trends Chem. 2019, 1, 485. 10.1016/j.trechm.2019.03.011 – reference: 70H. Ibrahim, P. de Frémont, P. Braunstein, V. Théry, L. Nauton, F. Cisnetti, A. Gautier, Adv. Synth. Catal. 2015, 357, 3893. 10.1002/adsc.201500729 – reference: 68K. Belger, N. Krause, Eur. J. Org. Chem. 2015, 220. 10.1002/ejoc.201403153 – reference: 69K. Belger, N. Krause, Org. Biomol. Chem. 2015, 13, 8556. 10.1039/C5OB01286D26175224 – reference: 27S. Gaillard, J. Bosson, R. S. Ramón, P. Nun, A. M. Z. Slawin, S. P. Nolan, Chem.—Eur. J. 2010, 16, 13729. 10.1002/chem.20100168820945445 – reference: 88F. Kleinbeck, F. D. Toste, J. Am. Chem. Soc. 2009, 131, 9178. 10.1021/ja904055z19530649 – reference: 53F. Schröder, C. Tugny, E. Salanouve, H. Clavier, L. Giordano, D. Moraleda, Y. Gimbert, V. Mouriès-Mansuy, J.-P. Goddard, L. Fensterbank, Organometallics 2014, 33, 4051. 10.1021/om500568q – reference: 86H. Nishida, N. Takada, M. Yoshimura, T. Sonoda, H. Kobayashi, Bull. Chem. Soc. Jpn. 1984, 57, 2600. 10.1246/bcsj.57.2600 – reference: 13D. Zuccaccia, A. Del Zotto, W. Baratta, Coord. Chem. Rev. 2019, 396, 103. 10.1016/j.ccr.2019.06.007 – reference: 104T. C. Klebach, R. Lourens, F. Bickelhaupt, J. Am. Chem. Soc. 1978, 100, 4886. 10.1021/ja00483a041 – reference: 25J. Han, N. Shimizu, Z. Lu, H. Amii, G. B. Hammond, B. Xu, Org. Lett. 2014, 16, 3500. 10.1021/ol501443m24956218 – reference: 93M. Wegener, F. Huber, C. Bolli, C. Jenne, S. F. Kirsch, Chem.—Eur. J. 2015, 21, 1328. 10.1002/chem.20140448725394284 – volume: 9 start-page: 144 year: 2020 ident: 2024012104372168100_r62 publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.202000020 – volume: 16 start-page: 2496 year: 2010 ident: 2024012104372168100_r79 publication-title: Chem.—Eur. J. doi: 10.1002/chem.200902321 – volume: 11 start-page: 3155 year: 2005 ident: 2024012104372168100_r58 publication-title: Chem.—Eur. J. doi: 10.1002/chem.200401069 – volume: 16 start-page: 10808 year: 2010 ident: 2024012104372168100_r137 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201001281 – volume: 37 start-page: 1415 year: 1998 ident: 2024012104372168100_r21 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/(SICI)1521-3773(19980605)37:10%3C1415::AID-ANIE1415%3E3.0.CO%3B2-N – volume: 128 start-page: 8132 year: 2006 ident: 2024012104372168100_r34 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja061344d – volume: 5 start-page: 5994 year: 2015 ident: 2024012104372168100_r46 publication-title: ACS Catal. doi: 10.1021/acscatal.5b01493 – volume: 37 start-page: 1776 year: 2008 ident: 2024012104372168100_r5 publication-title: Chem. Soc. Rev. doi: 10.1039/b711132k – volume: 48 start-page: 8247 year: 2009 ident: 2024012104372168100_r100 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200903134 – volume: 1 start-page: 693 year: 2006 ident: 2024012104372168100_r105 publication-title: Chem.—Asian J. doi: 10.1002/asia.200600155 – volume: 79 start-page: 7696 year: 2014 ident: 2024012104372168100_r84 publication-title: J. Org. Chem. doi: 10.1021/jo501254x – volume: 48 start-page: 9892 year: 2009 ident: 2024012104372168100_r136 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200905391 – volume: 122 start-page: 11553 year: 2000 ident: 2024012104372168100_r123 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja005570d – volume: 58 start-page: 5806 year: 2019 ident: 2024012104372168100_r155 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201902526 – volume: 46 start-page: 3410 year: 2007 ident: 2024012104372168100_r1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200604335 – volume: 18 start-page: 14732 year: 2012 ident: 2024012104372168100_r30 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201201215 – volume: 9 start-page: 317 year: 1979 ident: 2024012104372168100_r49 publication-title: Synth. React. Inorg. Met.-Org. Chem. doi: 10.1080/00945717908069748 – ident: 2024012104372168100_r101 – volume: 52 start-page: 7963 year: 2013 ident: 2024012104372168100_r7 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201210351 – volume: 46 start-page: 8032 year: 2010 ident: 2024012104372168100_r80 publication-title: Chem. Commun. doi: 10.1039/c0cc02357d – volume: 44 start-page: 5284 year: 2005 ident: 2024012104372168100_r87 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200501056 – volume: 23 start-page: 3425 year: 2017 ident: 2024012104372168100_r77 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201605303 – volume: 134 start-page: 9012 year: 2012 ident: 2024012104372168100_r15 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja303862z – volume: 500 start-page: 127 year: 1995 ident: 2024012104372168100_r128 publication-title: J. Organomet. Chem. doi: 10.1016/0022-328X(95)00508-N – volume: 116 start-page: 46 year: 2019 ident: 2024012104372168100_r154 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1817194116 – volume: 17 start-page: 4534 year: 2015 ident: 2024012104372168100_r55 publication-title: Org. Lett. doi: 10.1021/acs.orglett.5b02224 – volume: 36 start-page: 2026 year: 2017 ident: 2024012104372168100_r120 publication-title: Organometallics doi: 10.1021/acs.organomet.7b00270 – volume: 13 start-page: 7103 year: 2015 ident: 2024012104372168100_r5 publication-title: Org. Biomol. Chem. doi: 10.1039/C5OB00736D – volume: 348 start-page: 709 year: 2006 ident: 2024012104372168100_r51 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.200606012 – volume: 126 start-page: 15978 year: 2004 ident: 2024012104372168100_r33 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja044602k – volume: 356 start-page: 221 year: 2014 ident: 2024012104372168100_r91 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201300704 – volume: 104 start-page: 13569 year: 2007 ident: 2024012104372168100_r94 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0705809104 – volume: 446 start-page: 395 year: 2007 ident: 2024012104372168100_r6 publication-title: Nature doi: 10.1038/nature05592 – volume: 33 start-page: 4051 year: 2014 ident: 2024012104372168100_r53 publication-title: Organometallics doi: 10.1021/om500568q – volume: 1 start-page: 608 year: 2014 ident: 2024012104372168100_r83 publication-title: Org. Chem. Front. doi: 10.1039/c4qo00112e – volume: 65 start-page: 1790 year: 2009 ident: 2024012104372168100_r87 publication-title: Tetrahedron doi: 10.1016/j.tet.2008.10.114 – volume: 140 start-page: 9644 year: 2018 ident: 2024012104372168100_r145 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05520 – volume: 55 start-page: 4615 year: 2019 ident: 2024012104372168100_r126 publication-title: Chem. Commun. doi: 10.1039/C9CC00283A – volume: 60 start-page: 151231 year: 2019 ident: 2024012104372168100_r139 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2019.151231 – volume: 11 start-page: 4962 year: 2009 ident: 2024012104372168100_r60 publication-title: Org. Lett. doi: 10.1021/ol902116b – volume: 23 start-page: 1136 year: 2017 ident: 2024012104372168100_r146 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201604521 – volume: 3 start-page: 3086 year: 2013 ident: 2024012104372168100_r66 publication-title: ACS Catal. doi: 10.1021/cs4009144 – volume: 45 start-page: 14591 year: 2016 ident: 2024012104372168100_r96 publication-title: Dalton Trans. doi: 10.1039/C6DT02181F – volume: 139 start-page: 6843 year: 2017 ident: 2024012104372168100_r144 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03287 – volume: 7 start-page: 4133 year: 2005 ident: 2024012104372168100_r17 publication-title: Org. Lett. doi: 10.1021/ol0515917 – start-page: 220 year: 2015 ident: 2024012104372168100_r68 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201403153 – volume: 38 start-page: 4383 year: 2019 ident: 2024012104372168100_r125 publication-title: Organometallics doi: 10.1021/acs.organomet.9b00616 – start-page: 2712 year: 2004 ident: 2024012104372168100_r98 publication-title: Chem. Commun. doi: 10.1039/b411180j – volume: 35 start-page: 3828 year: 2016 ident: 2024012104372168100_r85 publication-title: Organometallics doi: 10.1021/acs.organomet.6b00675 – volume: 58 start-page: 18266 year: 2019 ident: 2024012104372168100_r147 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201911662 – volume: 74 start-page: 2523 year: 2018 ident: 2024012104372168100_r116 publication-title: Tetrahedron doi: 10.1016/j.tet.2018.04.013 – start-page: 3069 year: 2003 ident: 2024012104372168100_r42 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.200200705 – volume: 51 start-page: 10949 year: 2015 ident: 2024012104372168100_r118 publication-title: Chem. Commun. doi: 10.1039/C5CC01578B – volume: 57 start-page: 12859 year: 2018 ident: 2024012104372168100_r150 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201805372 – volume: 135 start-page: 13193 year: 2013 ident: 2024012104372168100_r47 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja406999p – volume: 139 start-page: 13628 year: 2017 ident: 2024012104372168100_r90 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07651 – volume: 57 start-page: 9105 year: 2018 ident: 2024012104372168100_r112 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b01111 – volume: 357 start-page: 3893 year: 2015 ident: 2024012104372168100_r70 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201500729 – volume: 108 start-page: 6405 year: 1986 ident: 2024012104372168100_r95 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00280a056 – volume: 26 start-page: 1427 year: 2015 ident: 2024012104372168100_r82 publication-title: Synlett doi: 10.1055/s-0034-1380712 – volume: 6 start-page: 4391 year: 2004 ident: 2024012104372168100_r99 publication-title: Org. Lett. doi: 10.1021/ol0480067 – volume: 32 start-page: 1946 year: 1993 ident: 2024012104372168100_r32 publication-title: Inorg. Chem. doi: 10.1021/ic00062a012 – volume: 142 start-page: 3797 year: 2020 ident: 2024012104372168100_r43 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11154 – volume: 100 start-page: 4886 year: 1978 ident: 2024012104372168100_r104 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00483a041 – year: 2020 ident: 2024012104372168100_r3 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00788 – volume: 58 start-page: 10194 year: 2019 ident: 2024012104372168100_r143 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201903964 – ident: 2024012104372168100_r103 – volume: 11 start-page: 823 year: 2016 ident: 2024012104372168100_r110 publication-title: Chem.—Asian J. doi: 10.1002/asia.201501326 – volume: 17 start-page: 3870 year: 2015 ident: 2024012104372168100_r78 publication-title: Green Chem. doi: 10.1039/C5GC00656B – volume: 59 start-page: 16496 year: 2020 ident: 2024012104372168100_r97 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202005214 – volume: 9 start-page: 2552 year: 2019 ident: 2024012104372168100_r56 publication-title: ACS Catal. doi: 10.1021/acscatal.9b00249 – volume: 360 start-page: 2493 year: 2018 ident: 2024012104372168100_r10 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201800233 – volume: 6 start-page: 3077 year: 2011 ident: 2024012104372168100_r107 publication-title: Chem.—Asian J. doi: 10.1002/asia.201100310 – volume: 131 start-page: 448 year: 2009 ident: 2024012104372168100_r64 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809403e – volume: 130 start-page: 16729 year: 2008 ident: 2024012104372168100_r134 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8070072 – volume: 5 start-page: 1638 year: 2015 ident: 2024012104372168100_r10 publication-title: ACS Catal. doi: 10.1021/cs501902v – volume: 17 start-page: 1238 year: 2011 ident: 2024012104372168100_r35 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201002607 – volume: 27 start-page: 2469 year: 2021 ident: 2024012104372168100_r108 publication-title: Chem.—Eur. J. doi: 10.1002/chem.202004281 – volume: 20 start-page: 5439 year: 2014 ident: 2024012104372168100_r83 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201304831 – volume: 115 start-page: 9028 year: 2015 ident: 2024012104372168100_r2 publication-title: Chem. Rev. doi: 10.1021/cr500691k – volume: 23 start-page: 576 year: 2017 ident: 2024012104372168100_r121 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201604615 – volume: 13 start-page: 1872 year: 2018 ident: 2024012104372168100_r152 publication-title: Chem.—Asian J. doi: 10.1002/asia.201800483 – volume: 41 start-page: 4563 year: 2002 ident: 2024012104372168100_r22 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20021202)41:23%3C4563::AID-ANIE4563%3E3.0.CO%3B2-U – volume: 16 start-page: 13729 year: 2010 ident: 2024012104372168100_r27 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201001688 – volume: 6 start-page: 7357 year: 2016 ident: 2024012104372168100_r37 publication-title: ACS Catal. doi: 10.1021/acscatal.6b01674 – start-page: 1990 year: 2009 ident: 2024012104372168100_r122 publication-title: Synlett – volume: 643 start-page: 554 year: 2017 ident: 2024012104372168100_r119 publication-title: Z. Anorg. Allg. Chem. doi: 10.1002/zaac.201700030 – volume: 8 start-page: 1953 year: 2006 ident: 2024012104372168100_r72 publication-title: Org. Lett. doi: 10.1021/ol060645p – volume: 32 start-page: 6315 year: 2013 ident: 2024012104372168100_r65 publication-title: Organometallics doi: 10.1021/om400663a – volume: 25 start-page: 8769 year: 2019 ident: 2024012104372168100_r117 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201900938 – volume: 142 start-page: 16082 year: 2020 ident: 2024012104372168100_r92 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c07951 – volume: 134 start-page: 17412 year: 2012 ident: 2024012104372168100_r89 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja307948m – volume: 108 start-page: 3326 year: 2008 ident: 2024012104372168100_r11 publication-title: Chem. Rev. doi: 10.1021/cr0684319 – volume: 5 start-page: 846 year: 1966 ident: 2024012104372168100_r114 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.196608463 – volume: 21 start-page: 4398 year: 2015 ident: 2024012104372168100_r44 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201405889 – volume: 130 start-page: 115 year: 1997 ident: 2024012104372168100_r50 publication-title: Chem. Ber. doi: 10.1002/cber.19971300119 – volume: 134 start-page: 5697 year: 2012 ident: 2024012104372168100_r9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3011397 – volume: 11 start-page: 2671 year: 2009 ident: 2024012104372168100_r54 publication-title: Org. Lett. doi: 10.1021/ol900730w – volume: 46 start-page: 6184 year: 2007 ident: 2024012104372168100_r52 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200701521 – volume: 26 start-page: 15901 year: 2020 ident: 2024012104372168100_r67 publication-title: Chem.—Eur. J. doi: 10.1002/chem.202001990 – volume: 1 start-page: 485 year: 2019 ident: 2024012104372168100_r131 publication-title: Trends Chem. doi: 10.1016/j.trechm.2019.03.011 – volume: 120 start-page: 13382 year: 2020 ident: 2024012104372168100_r61 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00245 – volume: 9 start-page: 1913 year: 2018 ident: 2024012104372168100_r74 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04314-5 – volume: 22 start-page: 16410 year: 2016 ident: 2024012104372168100_r29 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201603478 – start-page: 2045 year: 2006 ident: 2024012104372168100_r18 publication-title: Chem. Commun. doi: 10.1039/B601547F – volume: 13 start-page: 8556 year: 2015 ident: 2024012104372168100_r69 publication-title: Org. Biomol. Chem. doi: 10.1039/C5OB01286D – volume: 15 start-page: 2234 year: 2013 ident: 2024012104372168100_r81 publication-title: Org. Lett. doi: 10.1021/ol400803f – volume: 16 start-page: 3500 year: 2014 ident: 2024012104372168100_r25 publication-title: Org. Lett. doi: 10.1021/ol501443m – volume: 49 start-page: 16667 year: 2020 ident: 2024012104372168100_r127 publication-title: Dalton Trans. doi: 10.1039/d0dt02743j – volume: 57 start-page: 2600 year: 1984 ident: 2024012104372168100_r86 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.57.2600 – volume: 66 start-page: 329 year: 2011 ident: 2024012104372168100_r12 publication-title: Z. Naturforsch., B: J. Chem. Sci. doi: 10.1515/znb-2011-0401 – volume: 137 start-page: 13425 year: 2015 ident: 2024012104372168100_r141 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b07998 – volume: 29 start-page: 2484 year: 2010 ident: 2024012104372168100_r65 publication-title: Organometallics doi: 10.1021/om1001292 – volume: 26 start-page: 4704 year: 2007 ident: 2024012104372168100_r19 publication-title: Organometallics doi: 10.1021/om7006002 – volume: 21 start-page: 1328 year: 2015 ident: 2024012104372168100_r93 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201404487 – volume: 36 start-page: 4224 year: 2017 ident: 2024012104372168100_r142 publication-title: Organometallics doi: 10.1021/acs.organomet.7b00654 – volume: 76 start-page: 9353 year: 2011 ident: 2024012104372168100_r28 publication-title: J. Org. Chem. doi: 10.1021/jo201631x – volume: 92 start-page: 117 year: 2015 ident: 2024012104372168100_r82 publication-title: Org. Synth. doi: 10.15227/orgsyn.092.00117 – volume: 131 start-page: 9178 year: 2009 ident: 2024012104372168100_r88 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja904055z – volume: 80 start-page: 3538 year: 2015 ident: 2024012104372168100_r71 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.5b00164 – volume: 47 start-page: 859 year: 2011 ident: 2024012104372168100_r129 publication-title: Chem. Commun. doi: 10.1039/C0CC04109B – volume: 48 start-page: 3454 year: 2009 ident: 2024012104372168100_r135 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200900737 – volume: 56 start-page: 14697 year: 2020 ident: 2024012104372168100_r153 publication-title: Chem. Commun. doi: 10.1039/D0CC05999D – volume: 118 start-page: 9493 year: 2018 ident: 2024012104372168100_r115 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00148 – volume: 348 start-page: 792a year: 2006 ident: 2024012104372168100_r51 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.200690009 – volume: 50 start-page: 12927 year: 2014 ident: 2024012104372168100_r76 publication-title: Chem. Commun. doi: 10.1039/C4CC05904B – volume: 43 start-page: 2402 year: 2004 ident: 2024012104372168100_r24 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200353207 – volume: 52 start-page: 1275 year: 2019 ident: 2024012104372168100_r14 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00544 – volume: 73 start-page: 7721 year: 2008 ident: 2024012104372168100_r8 publication-title: J. Org. Chem. doi: 10.1021/jo8014769 – volume: 11 start-page: 3166 year: 2009 ident: 2024012104372168100_r94 publication-title: Org. Lett. doi: 10.1021/ol901418c – volume: 131 start-page: 8690 year: 2009 ident: 2024012104372168100_r94 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja902051m – volume: 47 start-page: 1321 year: 2018 ident: 2024012104372168100_r16 publication-title: Dalton Trans. doi: 10.1039/C7DT04494A – volume: 50 start-page: 5560 year: 2011 ident: 2024012104372168100_r94 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201100740 – volume: 5 start-page: 3349 year: 2003 ident: 2024012104372168100_r23 publication-title: Org. Lett. doi: 10.1021/ol0353159 – volume: 14 start-page: 1888 year: 2012 ident: 2024012104372168100_r73 publication-title: Green Chem. doi: 10.1039/c2gc35293a – volume: 24 start-page: 3742 year: 2018 ident: 2024012104372168100_r124 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201705051 – year: 2020 ident: 2024012104372168100_r63 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00552 – volume: 43 start-page: 2941 year: 2014 ident: 2024012104372168100_r4 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60441a – start-page: 5147 year: 2015 ident: 2024012104372168100_r75 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201500892 – volume: 8 start-page: 6079 year: 2018 ident: 2024012104372168100_r151 publication-title: ACS Catal. doi: 10.1021/acscatal.8b01374 – volume: 49 start-page: 12354 year: 2020 ident: 2024012104372168100_r48 publication-title: Dalton Trans. doi: 10.1039/D0DT02435J – volume: 16 start-page: 3452 year: 2014 ident: 2024012104372168100_r39 publication-title: Org. Lett. doi: 10.1021/ol501663f – volume: 46 start-page: 86 year: 2017 ident: 2024012104372168100_r113 publication-title: Dalton Trans. doi: 10.1039/C6DT03766F – volume: 46 start-page: 2742 year: 2010 ident: 2024012104372168100_r26 publication-title: Chem. Commun. doi: 10.1039/c0cc00018c – volume: 48 start-page: 1 year: 2019 ident: 2024012104372168100_r149 publication-title: Chem. Lett. doi: 10.1246/cl.180810 – volume: 45 start-page: 4471 year: 2016 ident: 2024012104372168100_r2 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00023A – volume: 53 start-page: 13356 year: 2017 ident: 2024012104372168100_r153 publication-title: Chem. Commun. doi: 10.1039/C7CC06065C – volume: 49 start-page: 857 year: 2016 ident: 2024012104372168100_r140 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00543 – volume: 45 start-page: 1065 year: 2016 ident: 2024012104372168100_r130 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00697J – volume: 23 start-page: 10777 year: 2017 ident: 2024012104372168100_r57 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201701301 – volume: 32 start-page: 1106 year: 2013 ident: 2024012104372168100_r36 publication-title: Organometallics doi: 10.1021/om301249r – volume: 19 start-page: 12264 year: 2013 ident: 2024012104372168100_r38 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201302152 – ident: 2024012104372168100_r41 – volume: 9 start-page: 2586 year: 2013 ident: 2024012104372168100_r3 publication-title: Beilstein J. Org. Chem. doi: 10.3762/bjoc.9.294 – start-page: 1380 year: 2012 ident: 2024012104372168100_r87 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201101158 – volume: 1 start-page: 482 year: 2009 ident: 2024012104372168100_r7 publication-title: Nat. Chem. doi: 10.1038/nchem.331 – start-page: 2863 year: 2012 ident: 2024012104372168100_r45 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201200327 – volume: 46 start-page: 6670 year: 2007 ident: 2024012104372168100_r59 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200701959 – volume: 49 start-page: 1797 year: 2016 ident: 2024012104372168100_r148 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00262 – volume: 695 start-page: 291 year: 2010 ident: 2024012104372168100_r106 publication-title: J. Organomet. Chem. doi: 10.1016/j.jorganchem.2009.09.040 – start-page: 6889 year: 2017 ident: 2024012104372168100_r111 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201701259 – volume: 11 start-page: 10657 year: 2020 ident: 2024012104372168100_r127 publication-title: Chem. Sci. doi: 10.1039/D0SC03604H – volume: 6 start-page: 2292 year: 2014 ident: 2024012104372168100_r109 publication-title: ChemCatChem doi: 10.1002/cctc.201402158 – volume: 46 start-page: 5156 year: 2007 ident: 2024012104372168100_r20 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200701449 – volume: 15 start-page: 5782 year: 2013 ident: 2024012104372168100_r40 publication-title: Org. Lett. doi: 10.1021/ol402825v – volume: 10 start-page: 3168 year: 2019 ident: 2024012104372168100_r102 publication-title: Chem. Sci. doi: 10.1039/C8SC05281F – volume: 128 start-page: 12056 year: 2006 ident: 2024012104372168100_r132 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0637494 – volume: 396 start-page: 103 year: 2019 ident: 2024012104372168100_r13 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.06.007 – volume: 54 start-page: 818 year: 2015 ident: 2024012104372168100_r138 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201408037 – volume: 46 start-page: 8583 year: 2007 ident: 2024012104372168100_r133 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200703518 – volume: 201 start-page: 343 year: 1980 ident: 2024012104372168100_r31 publication-title: J. Organomet. Chem. doi: 10.1016/S0022-328X(00)92589-0 – volume: 52 start-page: 5848 year: 2013 ident: 2024012104372168100_r82 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201300600 |
SSID | ssj0008549 |
Score | 2.4682148 |
SecondaryResourceType | review_article |
Snippet | Gold(I) chloride complexes are stable, widespread precatalysts that generally require activation by halide abstraction to display useful catalytic activity.... |
SourceID | proquest crossref chemicalsocietyjapan |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1099 |
SubjectTerms | Additives Catalysis Catalytic activity Chloride Coordination compounds Frontiers of Molecular Science Gold Gold chloride Ligands Scavengers Scavenging Silver |
Title | Silver-Free Catalysis with Gold(I) Chloride Complexes |
URI | http://dx.doi.org/10.1246/bcsj.20200358 https://www.proquest.com/docview/2520512098 |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYoHFoOqECr0lK0h6qiUp0m9nptH1FUXodeClJuKz9m1SKUIhIkxK9n7LU3GylULZdVZM0-4s-ex-7MN4R8QqtquQRJrTGMlpVoqG2Uo9YLMIbrRrvI9vmjOr0szydiknuVp-qSuR24h5V1Jc9BFccQ11Al-x_IdhfFAfyN-OIREcbjP2H883fIa6bHtwChlC_Ri8RXqyexG7Q6C1H_-FdIs_MQN_813Ke0wfwpNxFw52yBjkIgJ3Ti-Dma1Gn_BQGLGVJtieQgl5j9_cysGjVlVdtXZACtNuSloujDlH112fYkTsuC93Rf-MbWs6OoROVKHc0iObF1sysMzyMhq1oYoy5FMAQnKFkHuTrLvSAbDMOB0KniZLJI5VEihzntX0hcqnj6t6XbbJJdl2Zi1k7EVZiEZZdk2SJHN-PiNdlK8UFx1IK9TdZgukNejnNbvl0ieqAXHehFAL0IoB-efSky4EUH-Btyefz9YnxKU-8L6srRcE7RcRx6Zzy3HoNYCbqRVVl5cEoz6YS3WmjgwgjwI28apcA1etSgSyJN4Cjkb8n69M8U3pECdGWrhjOUgdJKZobCVhLCvmTMg9gjfNWs1Gmhz-qVUOyRr3nSapfo5ENXk-unxD934jctj8pTgvsZgcUTMMHQeLChVu-f9bAfyKvFztgn6_PbO_iIzuTcHsSV9Ai513Pa |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silver-Free+Catalysis+with+Gold%28I%29+Chloride+Complexes&rft.jtitle=Bulletin+of+the+Chemical+Society+of+Japan&rft.date=2021-03-15&rft.pub=The+Chemical+Society+of+Japan&rft.issn=0009-2673&rft.eissn=1348-0634&rft.volume=94&rft.issue=3&rft.spage=1099&rft.epage=1117&rft_id=info:doi/10.1246%2Fbcsj.20200358&rft.externalDocID=10_1246_bcsj_20200358 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2673&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2673&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2673&client=summon |