Silver-Free Catalysis with Gold(I) Chloride Complexes

Gold(I) chloride complexes are stable, widespread precatalysts that generally require activation by halide abstraction to display useful catalytic activity. Chloride scavenging is typically performed in situ by using silver salts. This procedure, apart from mandating the use of an additional metal,...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the Chemical Society of Japan Vol. 94; no. 3; pp. 1099 - 1117
Main Authors Franchino, Allegra, Montesinos-Magraner, Marc, Echavarren, Antonio M
Format Journal Article
LanguageEnglish
Published Tokyo The Chemical Society of Japan 15.03.2021
Chemical Society of Japan
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gold(I) chloride complexes are stable, widespread precatalysts that generally require activation by halide abstraction to display useful catalytic activity. Chloride scavenging is typically performed in situ by using silver salts. This procedure, apart from mandating the use of an additional metal, often negatively impacts the reaction outcome, because Ag additives are not catalytically innocent (silver effect). Therefore, both the development of alternative chloride scavengers and the design of self-activating gold(I) chloride complexes endowed with special ligands have lately been the subject of intense research efforts. This review describes recent advances in the field of silver-free Au(I) catalysis employing gold(I) chloride complexes, with an emphasis on approaches emerged in the last decade.
AbstractList Gold(I) chloride complexes are stable, widespread precatalysts that generally require activation by halide abstraction to display useful catalytic activity. Chloride scavenging is typically performed in situ by using silver salts. This procedure, apart from mandating the use of an additional metal, often negatively impacts the reaction outcome, because Ag additives are not catalytically innocent (silver effect). Therefore, both the development of alternative chloride scavengers and the design of self-activating gold(I) chloride complexes endowed with special ligands have lately been the subject of intense research efforts. This review describes recent advances in the field of silver-free Au(I) catalysis employing gold(I) chloride complexes, with an emphasis on approaches emerged in the last decade.
Gold(I) chloride complexes are stable, widespread precatalysts that generally require activation by halide abstraction to display useful catalytic activity. Chloride scavenging is typically performed in situ by using silver salts. This procedure, apart from mandating the use of an additional metal, often negatively impacts the reaction outcome, because Ag additives are not catalytically innocent (silver effect). Therefore, both the development of alternative chloride scavengers and the design of self-activating gold(I) chloride complexes endowed with special ligands have lately been the subject of intense research efforts. This review describes recent advances in the field of silver-free Au(I) catalysis employing gold(I) chloride complexes, with an emphasis on approaches emerged in the last decade. This review describes recent advances in the field of silver-free Au(I) catalysis employing gold(I) chloride complexes, with an emphasis on approaches emerged in the last decade. Both the development of alternative chloride scavengers and the design of self-activating gold(I) chloride complexes endowed with special ligands are discussed in detail.
Author Echavarren, Antonio M
Franchino, Allegra
Montesinos-Magraner, Marc
Author_xml – sequence: 1
  givenname: Allegra
  surname: Franchino
  fullname: Franchino, Allegra
– sequence: 2
  givenname: Marc
  surname: Montesinos-Magraner
  fullname: Montesinos-Magraner, Marc
– sequence: 3
  givenname: Antonio M
  surname: Echavarren
  fullname: Echavarren, Antonio M
BookMark eNp1kM1Lw0AQxRepYFs9eg940UPqfia73iTYWih4UM9huzuhG9Js3U3V_vemtCKInobH_N7M443QoPUtIHRJ8IRQnt0uTawnFFOMmZAnaEgYlynOGB-gIcZYpTTL2RkaxVj3Ugquhkg8u-YdQjoNAEmhO93soovJh-tWycw39np-kxSrxgdn-71fbxr4hHiOTivdRLg4zjF6nT68FI_p4mk2L-4XqeEEd2nGFLZGW7a0mPAcVJVnPLNgpKK5EXaphAImtABLrK6kBFMpUnHCck1kH3aMrg53N8G_bSF2Ze23oe1fllRQLAjFSvYUO1Am-BgDVKVxne6cb7ugXVMSXO77Kff9lN_99K70l2sT3FqH3b_83ZFfwdqZPoM3DrpdrTe6_cn1t_kLVPh8PQ
CitedBy_id crossref_primary_10_1021_acs_inorgchem_3c00751
crossref_primary_10_1021_acs_organomet_3c00395
crossref_primary_10_1002_chem_202303241
crossref_primary_10_3390_bios13020286
crossref_primary_10_1021_acsorginorgau_3c00021
crossref_primary_10_1021_acscatal_2c01864
crossref_primary_10_1021_jacs_1c11978
crossref_primary_10_1021_jacs_4c12063
crossref_primary_10_1002_ejoc_202200518
crossref_primary_10_1039_D2CC03056J
crossref_primary_10_1002_ejic_202101067
crossref_primary_10_1039_D3DT00158J
crossref_primary_10_3390_inorganics10110203
crossref_primary_10_3390_catal12111392
crossref_primary_10_1021_acs_joc_2c02932
crossref_primary_10_1002_chem_202401825
crossref_primary_10_1039_D2GC01828D
crossref_primary_10_1002_ejic_202100905
crossref_primary_10_1021_acscatal_3c01660
crossref_primary_10_1021_acs_orglett_2c01974
crossref_primary_10_1021_acssuschemeng_2c01213
crossref_primary_10_1039_D4CC05193A
crossref_primary_10_1021_acs_orglett_4c02091
crossref_primary_10_1039_D3QO00415E
crossref_primary_10_1039_D3NJ00451A
crossref_primary_10_1021_acscatal_1c05823
crossref_primary_10_1021_acscatal_2c00120
crossref_primary_10_1002_adsc_202400593
crossref_primary_10_1002_cplu_202300231
crossref_primary_10_1021_acs_orglett_4c02003
crossref_primary_10_1039_D1DT02929K
crossref_primary_10_1002_cplu_202300196
crossref_primary_10_1039_D3CC01726E
crossref_primary_10_1002_chem_202101751
crossref_primary_10_1002_adsc_202400193
crossref_primary_10_1021_jacs_3c06331
crossref_primary_10_1021_acs_organomet_1c00057
Cites_doi 10.1002/ajoc.202000020
10.1002/chem.200902321
10.1002/chem.200401069
10.1002/chem.201001281
10.1002/(SICI)1521-3773(19980605)37:10%3C1415::AID-ANIE1415%3E3.0.CO%3B2-N
10.1021/ja061344d
10.1021/acscatal.5b01493
10.1039/b711132k
10.1002/anie.200903134
10.1002/asia.200600155
10.1021/jo501254x
10.1002/anie.200905391
10.1021/ja005570d
10.1002/anie.201902526
10.1002/anie.200604335
10.1002/chem.201201215
10.1080/00945717908069748
10.1002/anie.201210351
10.1039/c0cc02357d
10.1002/anie.200501056
10.1002/chem.201605303
10.1021/ja303862z
10.1016/0022-328X(95)00508-N
10.1073/pnas.1817194116
10.1021/acs.orglett.5b02224
10.1021/acs.organomet.7b00270
10.1039/C5OB00736D
10.1002/adsc.200606012
10.1021/ja044602k
10.1002/adsc.201300704
10.1073/pnas.0705809104
10.1038/nature05592
10.1021/om500568q
10.1039/c4qo00112e
10.1016/j.tet.2008.10.114
10.1021/jacs.8b05520
10.1039/C9CC00283A
10.1016/j.tetlet.2019.151231
10.1021/ol902116b
10.1002/chem.201604521
10.1021/cs4009144
10.1039/C6DT02181F
10.1021/jacs.7b03287
10.1021/ol0515917
10.1002/ejoc.201403153
10.1021/acs.organomet.9b00616
10.1039/b411180j
10.1021/acs.organomet.6b00675
10.1002/anie.201911662
10.1016/j.tet.2018.04.013
10.1002/ejic.200200705
10.1039/C5CC01578B
10.1002/anie.201805372
10.1021/ja406999p
10.1021/jacs.7b07651
10.1021/acs.inorgchem.8b01111
10.1002/adsc.201500729
10.1021/ja00280a056
10.1055/s-0034-1380712
10.1021/ol0480067
10.1021/ic00062a012
10.1021/jacs.9b11154
10.1021/ja00483a041
10.1021/acs.chemrev.0c00788
10.1002/anie.201903964
10.1002/asia.201501326
10.1039/C5GC00656B
10.1002/anie.202005214
10.1021/acscatal.9b00249
10.1002/adsc.201800233
10.1002/asia.201100310
10.1021/ja809403e
10.1021/ja8070072
10.1021/cs501902v
10.1002/chem.201002607
10.1002/chem.202004281
10.1002/chem.201304831
10.1021/cr500691k
10.1002/chem.201604615
10.1002/asia.201800483
10.1002/1521-3773(20021202)41:23%3C4563::AID-ANIE4563%3E3.0.CO%3B2-U
10.1002/chem.201001688
10.1021/acscatal.6b01674
10.1002/zaac.201700030
10.1021/ol060645p
10.1021/om400663a
10.1002/chem.201900938
10.1021/jacs.0c07951
10.1021/ja307948m
10.1021/cr0684319
10.1002/anie.196608463
10.1002/chem.201405889
10.1002/cber.19971300119
10.1021/ja3011397
10.1021/ol900730w
10.1002/anie.200701521
10.1002/chem.202001990
10.1016/j.trechm.2019.03.011
10.1021/acs.chemrev.0c00245
10.1038/s41467-018-04314-5
10.1002/chem.201603478
10.1039/B601547F
10.1039/C5OB01286D
10.1021/ol400803f
10.1021/ol501443m
10.1039/d0dt02743j
10.1246/bcsj.57.2600
10.1515/znb-2011-0401
10.1021/jacs.5b07998
10.1021/om1001292
10.1021/om7006002
10.1002/chem.201404487
10.1021/acs.organomet.7b00654
10.1021/jo201631x
10.15227/orgsyn.092.00117
10.1021/ja904055z
10.1021/acs.joc.5b00164
10.1039/C0CC04109B
10.1002/anie.200900737
10.1039/D0CC05999D
10.1021/acs.chemrev.8b00148
10.1002/adsc.200690009
10.1039/C4CC05904B
10.1002/anie.200353207
10.1021/acs.accounts.8b00544
10.1021/jo8014769
10.1021/ol901418c
10.1021/ja902051m
10.1039/C7DT04494A
10.1002/anie.201100740
10.1021/ol0353159
10.1039/c2gc35293a
10.1002/chem.201705051
10.1021/acs.chemrev.0c00552
10.1039/c3cs60441a
10.1002/ejic.201500892
10.1021/acscatal.8b01374
10.1039/D0DT02435J
10.1021/ol501663f
10.1039/C6DT03766F
10.1039/c0cc00018c
10.1246/cl.180810
10.1039/C6CS00023A
10.1039/C7CC06065C
10.1021/acs.accounts.5b00543
10.1039/C5CS00697J
10.1002/chem.201701301
10.1021/om301249r
10.1002/chem.201302152
10.3762/bjoc.9.294
10.1002/ejic.201101158
10.1038/nchem.331
10.1002/ejic.201200327
10.1002/anie.200701959
10.1021/acs.accounts.6b00262
10.1016/j.jorganchem.2009.09.040
10.1002/ejoc.201701259
10.1039/D0SC03604H
10.1002/cctc.201402158
10.1002/anie.200701449
10.1021/ol402825v
10.1039/C8SC05281F
10.1021/ja0637494
10.1016/j.ccr.2019.06.007
10.1002/anie.201408037
10.1002/anie.200703518
10.1016/S0022-328X(00)92589-0
10.1002/anie.201300600
ContentType Journal Article
Copyright The Chemical Society of Japan
Copyright Chemical Society of Japan 2021
Copyright_xml – notice: The Chemical Society of Japan
– notice: Copyright Chemical Society of Japan 2021
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1246/bcsj.20200358
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Silver-Free Catalysis with Gold(I) Chloride Complexes
EISSN 1348-0634
EndPage 1117
ExternalDocumentID 10_1246_bcsj_20200358
FullText_t_NoSnippeting true
GroupedDBID 02
23N
5GY
ABEFU
ABFLS
ABZEH
ACCUC
ACIWK
ACNCT
AENEX
AFFNX
AIDUJ
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
F5P
GX1
JSI
JSP
P0W
P2P
RAD
RJT
RZJ
SC5
TN5
TWZ
UPT
WH7
X
XPZ
-~X
0R~
6J9
AAUAY
AAYXX
ABDFA
ABEJV
ABGNP
ABJNI
ABVGC
ABXVV
ACGFO
ADIPN
ADNBA
ADVOB
AGMDO
AGORE
AJNCP
BCRHZ
CITATION
KOP
NU-
OJZSN
OWPYF
ROX
~02
7SR
8BQ
8FD
H13
JG9
ID FETCH-LOGICAL-c410t-6390dcad3bd0147e9f7646dec8927c5db959e35a5ed1daf88ecf91f4137a18673
ISSN 0009-2673
IngestDate Wed Aug 13 11:18:46 EDT 2025
Tue Jul 01 00:34:46 EDT 2025
Thu Apr 24 22:51:40 EDT 2025
Sat Apr 03 13:46:46 EDT 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Gold catalysis
Au(I) chloride complexes
Chloride scavenging
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c410t-6390dcad3bd0147e9f7646dec8927c5db959e35a5ed1daf88ecf91f4137a18673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://dx.doi.org/10.1246/bcsj.20200358
PQID 2520512098
PQPubID 1996365
PageCount 19
ParticipantIDs proquest_journals_2520512098
crossref_citationtrail_10_1246_bcsj_20200358
crossref_primary_10_1246_bcsj_20200358
chemicalsocietyjapan_journals_10_1246_bcsj_20200358
ProviderPackageCode RAD
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-15
PublicationDateYYYYMMDD 2021-03-15
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-15
  day: 15
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Bulletin of the Chemical Society of Japan
PublicationYear 2021
Publisher The Chemical Society of Japan
Chemical Society of Japan
Publisher_xml – name: The Chemical Society of Japan
– name: Chemical Society of Japan
References 112T. Agou, N. Wada, K. Fujisawa, T. Hosoya, Y. Mizuhata, N. Tokitoh, H. Fukumoto, T. Kubota, Inorg. Chem. 2018, 57, 9105. 10.1021/acs.inorgchem.8b0111129984577
16M. Albayer, R. Corbo, A. F. Hill, J. L. Dutton, Dalton Trans. 2018, 47, 1321. 10.1039/C7DT04494A29302667
53F. Schröder, C. Tugny, E. Salanouve, H. Clavier, L. Giordano, D. Moraleda, Y. Gimbert, V. Mouriès-Mansuy, J.-P. Goddard, L. Fensterbank, Organometallics 2014, 33, 4051. 10.1021/om500568q
150T. Scherpf, C. Schwarz, L. T. Sharf, J.-A. Zur, A. Helbig, V. H. Gessner, Angew. Chem., Int. Ed. 2018, 57, 12859. 10.1002/anie.201805372
49R. Usón, A. Laguna, M. V. Castrillo, Synth. React. Inorg. Met.-Org. Chem. 1979, 9, 317. 10.1080/00945717908069748
51A. S. K. Hashmi, M. C. Blanco, E. Kurpejović, W. Frey, J. W. Bats, Adv. Synth. Catal. 2006, 348, 709; 10.1002/adsc.200606012 Correction: A. S. K. Hashmi, M. C. Blanco, E. Kurpejović, W. Frey, J. W. Bats, Adv. Synth. Catal. 2006, 348, 792a. 10.1002/adsc.200690009
140J. S. Jones, F. P. Gabbaï, Acc. Chem. Res. 2016, 49, 857. 10.1021/acs.accounts.5b0054327092722
58C. Nevado, A. M. Echavarren, Chem.—Eur. J. 2005, 11, 3155. 10.1002/chem.20040106915779093
23E. Mizushima, T. Hayashi, M. Tanaka, Org. Lett. 2003, 5, 3349. 10.1021/ol035315912943424
6D. J. Gorin, F. D. Toste, Nature 2007, 446, 395. 10.1038/nature0559217377576
113M. Rigo, L. Hettmanczyk, F. J. L. Heutz, S. Hohloch, M. Lutz, B. Sarkar, C. Müller, Dalton Trans. 2017, 46, 86. 10.1039/C6DT03766F27897296
117M. Rigo, E. R. M. Habraken, K. Bhattacharyya, M. Weber, A. W. Ehlers, N. Mézailles, J. C. Slootweg, C. Müller, Chem.—Eur. J. 2019, 25, 8769.30994944
90C. García-Morales, B. Ranieri, I. Escofet, L. López-Suarez, C. Obradors, A. I. Konovalov, A. M. Echavarren, J. Am. Chem. Soc. 2017, 139, 13628. 10.1021/jacs.7b0765128922911
93M. Wegener, F. Huber, C. Bolli, C. Jenne, S. F. Kirsch, Chem.—Eur. J. 2015, 21, 1328. 10.1002/chem.20140448725394284
141H. Yang, F. P. Gabbaï, J. Am. Chem. Soc. 2015, 137, 13425. 10.1021/jacs.5b0799826458048
84A. Kamimura, Y. Yamane, R. Yo, T. Tanaka, H. Uno, J. Org. Chem. 2014, 79, 7696. 10.1021/jo501254x25054771
105M. Freytag, S. Ito, M. Yoshifuji, Chem.—Asian J. 2006, 1, 693. 10.1002/asia.20060015517441110
82a) A. Guérinot, W. Fang, M. Sircoglou, C. Bour, S. Bezzenine-Lafollée, V. Gandon, Angew. Chem., Int. Ed. 2013, 52, 5848. 10.1002/anie.201300600 b) W. Fang, F. Weizhen, M. Presset, A. Guérinot, C. Bour, S. Bezzenine-Lafollée, V. Gandon, Org. Synth. 2015, 92, 117. 10.15227/orgsyn.092.00117 c) C. Bour, V. Gandon, Synlett 2015, 26, 1427. 10.1055/s-0034-1380712
132S. Bontemps, G. Bouhadir, K. Miqueu, D. Bourissou, J. Am. Chem. Soc. 2006, 128, 12056. 10.1021/ja063749416967941
20G. Li, L. Zhang, Angew. Chem., Int. Ed. 2007, 46, 5156. 10.1002/anie.200701449
33B. D. Sherry, F. D. Toste, J. Am. Chem. Soc. 2004, 126, 15978. 10.1021/ja044602k15584728
148M. Alcarazo, Acc. Chem. Res. 2016, 49, 1797. 10.1021/acs.accounts.6b0026227529703
69K. Belger, N. Krause, Org. Biomol. Chem. 2015, 13, 8556. 10.1039/C5OB01286D26175224
72X. Yao, C.-J. Li, Org. Lett. 2006, 8, 1953. 10.1021/ol060645p16623593
8C. H. M. Amijs, V. López-Carrillo, M. Raducan, P. Pérez-Galán, C. Ferrer, A. M. Echavarren, J. Org. Chem. 2008, 73, 7721. 10.1021/jo801476918759485
14Z. Lu, G. B. Hammond, B. Xu, Acc. Chem. Res. 2019, 52, 1275.31002231
149L. D. M. Nicholls, M. Alcarazo, Chem. Lett. 2019, 48, 1. 10.1246/cl.180810
47D. Canseco-Gonzalez, A. Petronilho, H. Mueller-Bunz, K. Ohmatsu, T. Ooi, M. Albrecht, J. Am. Chem. Soc. 2013, 135, 13193. 10.1021/ja406999p23902160
103Multiple Bonds and Low Coordination in Phosphorus Chemistry, (Eds.: M. Regitz, O. J. Scherer), Thieme, Stuttgart, 1990.
1A. Fürstner, P. W. Davies, Angew. Chem., Int. Ed. 2007, 46, 3410. 10.1002/anie.200604335
15D. Wang, R. Cai, S. Sharma, J. Jirak, S. K. Thummanapelli, N. G. Akhmedov, H. Zhang, X. Liu, J. L. Petersen, X. Shi, J. Am. Chem. Soc. 2012, 134, 9012. 10.1021/ja303862z22563621
76M. J. Rodríguez-Álvarez, C. Vidal, J. Díez, J. García-Álvarez, Chem. Commun. 2014, 50, 12927. 10.1039/C4CC05904B
42M. Bardajía, A. Laguna, Eur. J. Inorg. Chem. 2003, 3069. 10.1002/ejic.200200705
108M. Kato, Y. Ueta, S. Ito, Chem.—Eur. J. 2021, 27, 2469. 10.1002/chem.202004281
41C. Silvestru, Gold–Heterometal Interactions and Bonds, in Modern Supramolecular Gold Chemistry: Gold-Metal Interactions and Applications (Ed.: A. Laguna), Wiley-VCH, Weinheim, 2008, pp. 181–294.
39M. Kumar, G. B. Hammond, B. Xu, Org. Lett. 2014, 16, 3452. 10.1021/ol501663f24937566
143Y.-H. Lo, F. P. Gabbaï, Angew. Chem., Int. Ed. 2019, 58, 10194. 10.1002/anie.201903964
95Y. Ito, M. Sawamura, T. Hayashi, J. Am. Chem. Soc. 1986, 108, 6405. 10.1021/ja00280a056
119D. Schweinfurth, L. Hettmanczyk, L. Suntrup, B. Sarkar, Z. Anorg. Allg. Chem. 2017, 643, 554. 10.1002/zaac.201700030
109S. Ito, M. Nanko, K. Mikami, ChemCatChem 2014, 6, 2292. 10.1002/cctc.201402158
154M. Rigoulet, S. Massou, E. D. Sosa Carrizo, S. Mallet-Ladeira, A. Amgoune, K. Miqueu, D. Bourissou, Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 46. 10.1073/pnas.181719411630567973
45S. G. Weber, F. Rominger, B. F. Straub, Eur. J. Inorg. Chem. 2012, 2863. 10.1002/ejic.201200327
80A. S. Demir, M. Emrullahoğlu, K. Buran, Chem. Commun. 2010, 46, 8032. 10.1039/c0cc02357d
81X. Wang, Z. Yao, S. Dong, F. Wei, H. Wang, Z. Xu, Org. Lett. 2013, 15, 2234. 10.1021/ol400803f23600662
13D. Zuccaccia, A. Del Zotto, W. Baratta, Coord. Chem. Rev. 2019, 396, 103. 10.1016/j.ccr.2019.06.007
66E. Tomás-Mendivil, P. Y. Toullec, J. Borge, S. Conejero, V. Michelet, V. Cadierno, ACS Catal. 2013, 3, 3086. 10.1021/cs4009144
124S. Vanicek, M. Podewitz, J. Stubbe, D. Schulze, H. Kopacka, K. Wurst, T. Müller, P. Lippmann, S. Haslinger, H. Schottenberger, K. R. Liedl, I. Ott, B. Sarkar, B. Bildstein, Chem.—Eur. J. 2018, 24, 3742. 10.1002/chem.20170505129214677
146J. S. Jones, F. P. Gabbaï, Chem.—Eur. J. 2017, 23, 1136. 10.1002/chem.20160452127813226
147L. C. Wilkins, Y. Kim, E. D. Litle, F. P. Gabbaï, Angew. Chem., Int. Ed. 2019, 58, 18266. 10.1002/anie.201911662
94a) X. Zeng, G. D. Frey, R. Kinjo, B. Donnadieu, G. Bertrand, J. Am. Chem. Soc. 2009, 131, 8690. 10.1021/ja902051m19456108 b) X. Zeng, M. Soleilhavoup, G. Bertrand, Org. Lett. 2009, 11, 3166. 10.1021/ol901418c19719176 c) R. Kinjo, B. Donnadieu, G. Bertrand, Angew. Chem., Int. Ed. 2011, 50, 5560. 10.1002/anie.201100740 d) V. Lavallo, G. D. Frey, S. Kousar, B. Donnadieu, G. Bertrand, Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 13569. 10.1073/pnas.070580910417698808
26S. Gaillard, A. M. Z. Slawin, S. P. Nolan, Chem. Commun. 2010, 46, 2742. 10.1039/c0cc00018c
48J.-E. Siewert, A. Schumann, M. Fischer, C. Schmidt, T. Taufer, C. Hering-Junghans, Dalton Trans. 2020, 49, 12354. 10.1039/D0DT02435J32845265
56M. Veguillas, G. M. Rosair, M. W. P. Bebbington, A.-L. Lee, ACS Catal. 2019, 9, 2552. 10.1021/acscatal.9b00249
85L. Hettmanczyk, D. Schulze, L. Suntrup, B. Sarkar, Organometallics 2016, 35, 3828. 10.1021/acs.organomet.6b00675
142S. Sen, I.-S. Ke, F. P. Gabbaï, Organometallics 2017, 36, 4224. 10.1021/acs.organomet.7b00654
151L. D. M. Nicholls, M. Marx, T. Hartung, E. González-Fernández, C. Golz, M. Alcarazo, ACS Catal. 2018, 8, 6079. 10.1021/acscatal.8b01374
152Y. Canac, Chem.—Asian J. 2018, 13, 1872. 10.1002/asia.201800483
36A. Gómez-Suárez, Y. Oonishi, S. Meiries, S. P. Nolan, Organometallics 2013, 32, 1106. 10.1021/om301249r
40A. Homs, I. Escofet, A. M. Echavarren, Org. Lett. 2013, 15, 5782. 10.1021/ol402825v24195441
79L.-Z. Dai, M. Shi, Chem.—Eur. J. 2010, 16, 2496. 10.1002/chem.20090232120077534
10a) M. Jia, M. Bandini, ACS Catal. 2015, 5, 1638. 10.1021/cs501902v b) J. Schießl, J. Schulmeister, A. Doppiu, E. Wörner, M. Rudolph, R. Karch, A. S. K. Hashmi, Adv. Synth. Catal. 2018, 360, 2493. 10.1002/adsc.201800233
133M. Sircoglou, S. Bontemps, M. Mercy, N. Saffon, M. Takahashi, G. Bouhadir, L. Maron, D. Bourissou, Angew. Chem., Int. Ed. 2007, 46, 8583. 10.1002/anie.200703518
63L. Rocchigiani, M. Bochmann, Chem. Rev. 2020, doi:10.1021/acs.chemrev.0c00552. 10.1021/acs.chemrev.0c00552
99A. S. K. Hashmi, J. P. Weyrauch, W. Frey, J. W. Bats, Org. Lett. 2004, 6, 4391. 10.1021/ol048006715524491
131D. You, F. P. Gabbaï, Trends Chem. 2019, 1, 485. 10.1016/j.trechm.2019.03.011
54H. Li, R. A. Widenhoefer, Org. Lett. 2009, 11, 2671. 10.1021/ol900730w19514795
92P. D. García-Fernández, J. Iglesias-Sigüenza, P. S. Rivero-Jerez, E. Díez, E. Gómez-Bengoa, R. Fernández, J. M. Lassaletta, J. Am. Chem. Soc. 2020, 142, 16082. 10.1021/jacs.0c0795132813511
120S. Klenk, S. Rupf, L. Suntrup, M. van der Meer, B. Sarkar, Organometallics 2017, 36, 2026. 10.1021/acs.organomet.7b00270
7a) D. Benitez, N. D. Shapiro, E. Tkatchouk, Y. Wang, W. A. Goddard, III, F. D. Toste, Nat. Chem. 2009, 1, 482. 10.1038/nchem.33120161015 b) M. C. Blanco Jaimes, C. R. N. Böhling, J. M. Serrano-Becerra, A. S. K. Hashmi, Angew. Chem., Int. Ed. 2013, 52, 7963. 10.1002/anie.201210351
17N. Mézailles, L. Ricard, F. Gagosz, Org. Lett. 2005, 7, 4133. 10.1021/ol051591716146370
88F. Kleinbeck, F. D. Toste, J. Am. Chem. Soc. 2009, 131, 9178. 10.1021/ja904055z19530649
115Á. Vivancos, C. Segarra, M. Albrecht, Chem. Rev. 2018, 118, 9493. 10.1021/acs.chemrev.8b0014830014699
128M. L. H. Green, J. Organomet. Chem. 1995, 500, 127. 10.1016/0022-328X(95)00508-N
74C. Vidal, M. Tomás-Gamasa, P. Destito, F. López, J. L. Mascareñas, Nat. Commun. 2018, 9, 1913. 10.1038/s41467-018-04314-529765051
134M. Sircoglou, S. Bontemps, G. Bouhadir, N. Saffon, K. Miqueu, W. Gu, M. Mercy, C.-H. Chen, B. M. Foxman, L. Maron, O. V. Ozerov, D. Bourissou, J. Am. Chem. Soc. 2008, 130, 16729. 10.1021/ja807007219554696
35R. S. Ramón, S. Gaillard, A. Poater, L. Cavallo, A. M. Z. Slawin, S. P. Nolan, Chem.—Eur. J. 2011, 17, 1238. 10.1002/chem.20100260721243690
78C. Vidal, L. Merz, J. García-Álvarez, Green Chem. 2015, 17, 3870. 10.1039/C5GC00656B
145D. You, H. Yang, S. Sen, F. P. Gabbaï, J. Am. Chem. Soc. 2018, 140, 9644. 10.1021/jacs.8b0552029979870
27S. Gaillard, J. Bosson, R. S. Ramón, P. Nun, A. M. Z. Slawin, S. P. Nolan, Chem.—Eur. J. 2010, 16, 13729. 1
You (2024012104372168100_r145) 2018; 140
Abadie (2024012104372168100_r57) 2017; 23
Straube (2024012104372168100_r127) 2020; 11
Zhu (2024012104372168100_r38) 2013; 19
Bayler (2024012104372168100_r50) 1997; 130
Almássy (2024012104372168100_r65) 2010; 29
Gaillard (2024012104372168100_r26) 2010; 46
Bontemps (2024012104372168100_r132) 2006; 128
Usón (2024012104372168100_r49) 1979; 9
Yao (2024012104372168100_r72) 2006; 8
Hettmanczyk (2024012104372168100_r85) 2016; 35
Vanicek (2024012104372168100_r124) 2018; 24
Sota (2024012104372168100_r44) 2015; 21
Green (2024012104372168100_r128) 1995; 500
Fang (2024012104372168100_r82) 2015; 92
Wegener (2024012104372168100_r93) 2015; 21
Rodríguez-Álvarez (2024012104372168100_r77) 2017; 23
Gorin (2024012104372168100_r6) 2007; 446
Rocchigiani (2024012104372168100_r63) 2020
Asiri (2024012104372168100_r2) 2016; 45
Bouhadir (2024012104372168100_r130) 2016; 45
Nesmeyanov (2024012104372168100_r31) 1980; 201
Murakami (2024012104372168100_r139) 2019; 60
Schmidbaur (2024012104372168100_r155) 2019; 58
Schröder (2024012104372168100_r53) 2014; 33
Tarselli (2024012104372168100_r59) 2007; 46
Homs (2024012104372168100_r91) 2014; 356
Mézailles (2024012104372168100_r17) 2005; 7
Feng (2024012104372168100_r73) 2012; 14
Schweinfurth (2024012104372168100_r119) 2017; 643
Belger (2024012104372168100_r69) 2015; 13
Blanco Jaimes (2024012104372168100_r7) 2013; 52
Seppänen (2024012104372168100_r153) 2020; 56
Albayer (2024012104372168100_r16) 2018; 47
Luo (2024012104372168100_r89) 2012; 134
Ricard (2024012104372168100_r19) 2007; 26
Ito (2024012104372168100_r106) 2010; 695
Wang (2024012104372168100_r9) 2012; 134
Sherry (2024012104372168100_r33) 2004; 126
Gualco (2024012104372168100_r136) 2009; 48
Hou (2024012104372168100_r102) 2019; 10
Han (2024012104372168100_r25) 2014; 16
Ito (2024012104372168100_r95) 1986; 108
Nieto-Oberhuber (2024012104372168100_r24) 2004; 43
Weber (2024012104372168100_r60) 2009; 11
Jia (2024012104372168100_r10) 2015; 5
Sen (2024012104372168100_r142) 2017; 36
Fructos (2024012104372168100_r87) 2005; 44
Milton (2024012104372168100_r98) 2004
Vivancos (2024012104372168100_r115) 2018; 118
Meera (2024012104372168100_r62) 2020; 9
Marion (2024012104372168100_r64) 2009; 131
Demir (2024012104372168100_r80) 2010; 46
Yang (2024012104372168100_r32) 1993; 32
García-Álvarez (2024012104372168100_r75) 2015
Amijs (2024012104372168100_r8) 2008; 73
Belger (2024012104372168100_r68) 2015
Ibrahim (2024012104372168100_r70) 2015; 357
Tomás-Mendivil (2024012104372168100_r66) 2013; 3
Kim (2024012104372168100_r61) 2020; 120
Nicholls (2024012104372168100_r151) 2018; 8
Klenk (2024012104372168100_r120) 2017; 36
Wolf (2024012104372168100_r97) 2020; 59
Sircoglou (2024012104372168100_r134) 2008; 130
You (2024012104372168100_r144) 2017; 139
Veit (2024012104372168100_r126) 2019; 55
You (2024012104372168100_r131) 2019; 1
Zhu (2024012104372168100_r67) 2020; 26
Klebach (2024012104372168100_r104) 1978; 100
Sircoglou (2024012104372168100_r133) 2007; 46
Kleinbeck (2024012104372168100_r88) 2009; 131
Praveen (2024012104372168100_r122) 2009
2024012104372168100_r41
Hashmi (2024012104372168100_r51) 2006; 348
Alcarazo (2024012104372168100_r148) 2016; 49
Campeau (2024012104372168100_r3) 2020
Teles (2024012104372168100_r21) 1998; 37
Benitez (2024012104372168100_r7) 2009; 1
Hashmi (2024012104372168100_r100) 2009; 48
Rigo (2024012104372168100_r113) 2017; 46
Zeng (2024012104372168100_r94) 2009; 11
Nicholls (2024012104372168100_r149) 2019; 48
Mizushima (2024012104372168100_r23) 2003; 5
Hashmi (2024012104372168100_r52) 2007; 46
Kumar (2024012104372168100_r39) 2014; 16
Gualco (2024012104372168100_r137) 2010; 16
Fang (2024012104372168100_r83) 2014; 20
Li (2024012104372168100_r20) 2007; 46
Sen (2024012104372168100_r153) 2017; 53
Hettmanczyk (2024012104372168100_r118) 2015; 51
Gaillard (2024012104372168100_r27) 2010; 16
Nevado (2024012104372168100_r58) 2005; 11
Dang (2024012104372168100_r28) 2011; 76
Li (2024012104372168100_r54) 2009; 11
Zuccaccia (2024012104372168100_r13) 2019; 396
Barrio (2024012104372168100_r29) 2016; 22
Amgoune (2024012104372168100_r129) 2011; 47
Scherpf (2024012104372168100_r150) 2018; 57
Marion (2024012104372168100_r5) 2008; 37
Jiménez-Núñez (2024012104372168100_r11) 2008; 108
Kamimura (2024012104372168100_r84) 2014; 79
Lo (2024012104372168100_r143) 2019; 58
Canac (2024012104372168100_r152) 2018; 13
Fang (2024012104372168100_r83) 2014; 1
Zhang (2024012104372168100_r43) 2020; 142
Hettmanczyk (2024012104372168100_r121) 2017; 23
Hashmi (2024012104372168100_r99) 2004; 6
Vidal (2024012104372168100_r78) 2015; 17
Wang (2024012104372168100_r81) 2013; 15
de Frémont (2024012104372168100_r18) 2006
Ito (2024012104372168100_r111) 2017
Delgado-Rebollo (2024012104372168100_r87) 2012
Rigo (2024012104372168100_r117) 2019; 25
Yang (2024012104372168100_r141) 2015; 137
Vidal (2024012104372168100_r74) 2018; 9
García-Morales (2024012104372168100_r90) 2017; 139
Jones (2024012104372168100_r140) 2016; 49
Schießl (2024012104372168100_r10) 2018; 360
Lu (2024012104372168100_r14) 2019; 52
Hashmi (2024012104372168100_r123) 2000; 122
Wilkins (2024012104372168100_r147) 2019; 58
Wang (2024012104372168100_r15) 2012; 134
Lavallo (2024012104372168100_r94) 2007; 104
Veguillas (2024012104372168100_r56) 2019; 9
Inagaki (2024012104372168100_r138) 2015; 54
Zhdanko (2024012104372168100_r46) 2015; 5
Dai (2024012104372168100_r79) 2010; 16
Märkl (2024012104372168100_r114) 1966; 5
Jones (2024012104372168100_r146) 2017; 23
Zhdanko (2024012104372168100_r30) 2012; 18
Chiarucci (2024012104372168100_r3) 2013; 9
Dorel (2024012104372168100_r2) 2015; 115
Pretorius (2024012104372168100_r96) 2016; 45
Fürstner (2024012104372168100_r1) 2007; 46
Bardajía (2024012104372168100_r42) 2003
Bour (2024012104372168100_r82) 2015; 26
Ranieri (2024012104372168100_r5) 2015; 13
Ramón (2024012104372168100_r35) 2011; 17
Canseco-Gonzalez (2024012104372168100_r47) 2013; 135
Rodríguez-Álvarez (2024012104372168100_r76) 2014; 50
Freytag (2024012104372168100_r105) 2006; 1
Ito (2024012104372168100_r110) 2016; 11
Nishida (2024012104372168100_r86) 1984; 57
Guérinot (2024012104372168100_r82) 2013; 52
Prieto (2024012104372168100_r87) 2009; 65
Straube (2024012104372168100_r127) 2020; 49
Vanicek (2024012104372168100_r125) 2019; 38
Yang (2024012104372168100_r4) 2014; 43
Kinjo (2024012104372168100_r94) 2011; 50
Ito (2024012104372168100_r107) 2011; 6
Homs (2024012104372168100_r40) 2013; 15
Li (2024012104372168100_r71) 2015; 80
Lu (2024012104372168100_r55) 2015; 17
García-Fernández (2024012104372168100_r92) 2020; 142
2024012104372168100_r103
Sherry (2024012104372168100_r34) 2006; 128
Kato (2024012104372168100_r108) 2021; 27
Fernández (2024012104372168100_r65) 2013; 32
Marichev (2024012104372168100_r116) 2018; 74
Schmidbaur (2024012104372168100_r12) 2011; 66
Zeng (2024012104372168100_r94) 2009; 131
Zhu (2024012104372168100_r37) 2016; 6
Weber (2024012104372168100_r45) 2012
2024012104372168100_r101
Siewert (2024012104372168100_r48) 2020; 49
Sircoglou (2024012104372168100_r135) 2009; 48
Mizushima (2024012104372168100_r22) 2002; 41
Gómez-Suárez (2024012104372168100_r36) 2013; 32
Rigoulet (2024012104372168100_r154) 2019; 116
Agou (2024012104372168100_r112) 2018; 57
Ito (2024012104372168100_r109) 2014; 6
References_xml – reference: 111S. Ito, T. Shinozaki, K. Mikami, Eur. J. Org. Chem. 2017, 6889. 10.1002/ejoc.201701259
– reference: 18P. de Frémont, E. D. Stevens, M. R. Fructos, M. M. Díaz-Requejo, P. J. Pérez, S. P. Nolan, Chem. Commun. 2006, 2045. 10.1039/B601547F
– reference: 19L. Ricard, F. Gagosz, Organometallics 2007, 26, 4704. 10.1021/om7006002
– reference: 130G. Bouhadir, D. Bourissou, Chem. Soc. Rev. 2016, 45, 1065. 10.1039/C5CS00697J26567634
– reference: 137P. Gualco, M. Mercy, S. Ladeira, Y. Coppel, L. Maron, A. Amgoune, D. Bourissou, Chem.—Eur. J. 2010, 16, 10808. 10.1002/chem.20100128120677199
– reference: 55Z. Lu, J. Han, G. B. Hammond, B. Xu, Org. Lett. 2015, 17, 4534. 10.1021/acs.orglett.5b0222426335841
– reference: 5a) B. Ranieri, I. Escofet, A. M. Echavarren, Org. Biomol. Chem. 2015, 13, 7103. 10.1039/C5OB00736D26055272 b) N. Marion, S. P. Nolan, Chem. Soc. Rev. 2008, 37, 1776. 10.1039/b711132k18762827
– reference: 34B. D. Sherry, L. Maus, B. N. Laforteza, F. D. Toste, J. Am. Chem. Soc. 2006, 128, 8132. 10.1021/ja061344d16787066
– reference: 103Multiple Bonds and Low Coordination in Phosphorus Chemistry, (Eds.: M. Regitz, O. J. Scherer), Thieme, Stuttgart, 1990.
– reference: 66E. Tomás-Mendivil, P. Y. Toullec, J. Borge, S. Conejero, V. Michelet, V. Cadierno, ACS Catal. 2013, 3, 3086. 10.1021/cs4009144
– reference: 114G. Märkl, Angew. Chem., Int. Ed. Engl. 1966, 5, 846. 10.1002/anie.196608463
– reference: 135M. Sircoglou, M. Mercy, N. Saffon, Y. Coppel, G. Bouhadir, L. Maron, D. Bourissou, Angew. Chem., Int. Ed. 2009, 48, 3454. 10.1002/anie.200900737
– reference: 147L. C. Wilkins, Y. Kim, E. D. Litle, F. P. Gabbaï, Angew. Chem., Int. Ed. 2019, 58, 18266. 10.1002/anie.201911662
– reference: 22E. Mizushima, K. Sato, T. Hayashi, M. Tanaka, Angew. Chem., Int. Ed. 2002, 41, 4563. 10.1002/1521-3773(20021202)41:23%3C4563::AID-ANIE4563%3E3.0.CO%3B2-U
– reference: 10a) M. Jia, M. Bandini, ACS Catal. 2015, 5, 1638. 10.1021/cs501902v b) J. Schießl, J. Schulmeister, A. Doppiu, E. Wörner, M. Rudolph, R. Karch, A. S. K. Hashmi, Adv. Synth. Catal. 2018, 360, 2493. 10.1002/adsc.201800233
– reference: 89Y. Luo, K. Ji, Y. Li, L. Zhang, J. Am. Chem. Soc. 2012, 134, 17412. 10.1021/ja307948m23039251
– reference: 84A. Kamimura, Y. Yamane, R. Yo, T. Tanaka, H. Uno, J. Org. Chem. 2014, 79, 7696. 10.1021/jo501254x25054771
– reference: 50A. Bayler, A. Bauer, H. Schmidbaur, Chem. Ber. 1997, 130, 115. 10.1002/cber.19971300119
– reference: 73E. Feng, Y. Zhou, F. Zhao, X. Chen, L. Zhang, H. Jiang, H. Liu, Green Chem. 2012, 14, 1888. 10.1039/c2gc35293a
– reference: 31A. N. Nesmeyanov, E. G. Perevalova, Y. T. Struchkov, M. Y. Antipin, K. I. Grandberg, V. P. Dyadhenko, J. Organomet. Chem. 1980, 201, 343. 10.1016/S0022-328X(00)92589-0
– reference: 30A. Zhdanko, M. Ströbele, M. E. Maier, Chem.—Eur. J. 2012, 18, 14732. 10.1002/chem.20120121523018523
– reference: 60D. Weber, M. R. Gagné, Org. Lett. 2009, 11, 4962. 10.1021/ol902116b19807117
– reference: 63L. Rocchigiani, M. Bochmann, Chem. Rev. 2020, doi:10.1021/acs.chemrev.0c00552. 10.1021/acs.chemrev.0c00552
– reference: 126P. Veit, C. Volkert, C. Förster, V. Ksenofontov, S. Schlicher, M. Bauer, K. Heinze, Chem. Commun. 2019, 55, 4615. 10.1039/C9CC00283A
– reference: 8C. H. M. Amijs, V. López-Carrillo, M. Raducan, P. Pérez-Galán, C. Ferrer, A. M. Echavarren, J. Org. Chem. 2008, 73, 7721. 10.1021/jo801476918759485
– reference: 91A. Homs, C. Obradors, D. Lebœuf, A. M. Echavarren, Adv. Synth. Catal. 2014, 356, 221. 10.1002/adsc.20130070426190958
– reference: 26S. Gaillard, A. M. Z. Slawin, S. P. Nolan, Chem. Commun. 2010, 46, 2742. 10.1039/c0cc00018c
– reference: 105M. Freytag, S. Ito, M. Yoshifuji, Chem.—Asian J. 2006, 1, 693. 10.1002/asia.20060015517441110
– reference: 121L. Hettmanczyk, L. Suntrup, S. Klenk, C. Hoyer, B. Sarkar, Chem.—Eur. J. 2017, 23, 576. 10.1002/chem.20160461527813173
– reference: 32Y. Yang, V. Ramamoorthy, P. R. Sharp, Inorg. Chem. 1993, 32, 1946. 10.1021/ic00062a012
– reference: 24C. Nieto-Oberhuber, M. P. Muñoz, E. Buñuel, C. Nevado, D. J. Cárdenas, A. M. Echavarren, Angew. Chem., Int. Ed. 2004, 43, 2402. 10.1002/anie.200353207
– reference: 76M. J. Rodríguez-Álvarez, C. Vidal, J. Díez, J. García-Álvarez, Chem. Commun. 2014, 50, 12927. 10.1039/C4CC05904B
– reference: 67X. Zhu, G. Xu, L.-M. Chamoreau, Y. Zhang, V. Mouriès-Mansuy, L. Fensterbank, O. Bistri-Aslanoff, S. Roland, M. Sollogoub, Chem.—Eur. J. 2020, 26, 15901. 10.1002/chem.20200199032491219
– reference: 83a) W. Fang, M. Presset, A. Guérinot, C. Bour, S. Bezzenine-Lafollée, V. Gandon, Chem.—Eur. J. 2014, 20, 5439. 10.1002/chem.20130483124644066 b) W. Fang, M. Presset, A. Guérinot, C. Bour, S. Bezzenine-Lafollée, V. Gandon, Org. Chem. Front. 2014, 1, 608. 10.1039/c4qo00112e
– reference: 74C. Vidal, M. Tomás-Gamasa, P. Destito, F. López, J. L. Mascareñas, Nat. Commun. 2018, 9, 1913. 10.1038/s41467-018-04314-529765051
– reference: 58C. Nevado, A. M. Echavarren, Chem.—Eur. J. 2005, 11, 3155. 10.1002/chem.20040106915779093
– reference: 128M. L. H. Green, J. Organomet. Chem. 1995, 500, 127. 10.1016/0022-328X(95)00508-N
– reference: 43Z. Zhang, V. Smal, P. Retailleau, A. Voituriez, G. Frison, A. Marinetti, X. Guinchard, J. Am. Chem. Soc. 2020, 142, 3797. 10.1021/jacs.9b1115432011877
– reference: 16M. Albayer, R. Corbo, A. F. Hill, J. L. Dutton, Dalton Trans. 2018, 47, 1321. 10.1039/C7DT04494A29302667
– reference: 136P. Gualco, T.-P. Lin, M. Sircoglou, M. Mercy, S. Ladeira, G. Bouhadir, L. M. Pérez, A. Amgoune, L. Maron, F. P. Gabbaï, D. Bourissou, Angew. Chem., Int. Ed. 2009, 48, 9892. 10.1002/anie.200905391
– reference: 6D. J. Gorin, F. D. Toste, Nature 2007, 446, 395. 10.1038/nature0559217377576
– reference: 145D. You, H. Yang, S. Sen, F. P. Gabbaï, J. Am. Chem. Soc. 2018, 140, 9644. 10.1021/jacs.8b0552029979870
– reference: 17N. Mézailles, L. Ricard, F. Gagosz, Org. Lett. 2005, 7, 4133. 10.1021/ol051591716146370
– reference: 20G. Li, L. Zhang, Angew. Chem., Int. Ed. 2007, 46, 5156. 10.1002/anie.200701449
– reference: 112T. Agou, N. Wada, K. Fujisawa, T. Hosoya, Y. Mizuhata, N. Tokitoh, H. Fukumoto, T. Kubota, Inorg. Chem. 2018, 57, 9105. 10.1021/acs.inorgchem.8b0111129984577
– reference: 39M. Kumar, G. B. Hammond, B. Xu, Org. Lett. 2014, 16, 3452. 10.1021/ol501663f24937566
– reference: 77M. J. Rodríguez-Álvarez, C. Vidal, S. Schumacher, J. Borge, J. García-Álvarez, Chem.—Eur. J. 2017, 23, 3425. 10.1002/chem.20160530328052449
– reference: 81X. Wang, Z. Yao, S. Dong, F. Wei, H. Wang, Z. Xu, Org. Lett. 2013, 15, 2234. 10.1021/ol400803f23600662
– reference: 97J. Wolf, F. Huber, N. Erochok, F. Heinen, V. Guérin, C. Y. Legault, S. F. Kirsch, S. M. Huber, Angew. Chem., Int. Ed. 2020, 59, 16496. 10.1002/anie.202005214
– reference: 101J. Dugal-Tessier, E. D. Conrad, G. R. Dake, D. P. Gates, “Phosphaalkenes” in Phosphorus(III) Ligands in Homogeneous Catalysis (Eds.: P. C. J. Kamer, P. W. N. M. van Leeuwen), Wiley, Chichester, 2012, pp. 321–341.
– reference: 142S. Sen, I.-S. Ke, F. P. Gabbaï, Organometallics 2017, 36, 4224. 10.1021/acs.organomet.7b00654
– reference: 61U B. Kim, D. J. Jung, H. J. Jeon, K. Rathwell, S. Lee, Chem. Rev. 2020, 120, 13382. 10.1021/acs.chemrev.0c00245
– reference: 95Y. Ito, M. Sawamura, T. Hayashi, J. Am. Chem. Soc. 1986, 108, 6405. 10.1021/ja00280a056
– reference: 144D. You, F. P. Gabbaï, J. Am. Chem. Soc. 2017, 139, 6843. 10.1021/jacs.7b0328728485973
– reference: 28T. T. Dang, F. Boeck, L. Hintermann, J. Org. Chem. 2011, 76, 9353. 10.1021/jo201631x22010906
– reference: 64N. Marion, R. S. Ramón, S. P. Nolan, J. Am. Chem. Soc. 2009, 131, 448. 10.1021/ja809403e19140786
– reference: 41C. Silvestru, Gold–Heterometal Interactions and Bonds, in Modern Supramolecular Gold Chemistry: Gold-Metal Interactions and Applications (Ed.: A. Laguna), Wiley-VCH, Weinheim, 2008, pp. 181–294.
– reference: 59M. A. Tarselli, A. R. Chianese, S. J. Lee, M. R. Gagné, Angew. Chem., Int. Ed. 2007, 46, 6670. 10.1002/anie.200701959
– reference: 129A. Amgoune, D. Bourissou, Chem. Commun. 2011, 47, 859. 10.1039/C0CC04109B
– reference: 11E. Jiménez-Núñez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326. 10.1021/cr068431918636778
– reference: 29P. Barrio, M. Kumar, Z. Lu, J. Han, B. Xu, G. B. Hammond, Chem.—Eur. J. 2016, 22, 16410. 10.1002/chem.20160347827643616
– reference: 71F. Li, N. Wang, L. Lu, G. Zhu, J. Org. Chem. 2015, 80, 3538. 10.1021/acs.joc.5b0016425757153
– reference: 40A. Homs, I. Escofet, A. M. Echavarren, Org. Lett. 2013, 15, 5782. 10.1021/ol402825v24195441
– reference: 116K. O. Marichev, S. A. Patil, A. Bugarin, Tetrahedron 2018, 74, 2523. 10.1016/j.tet.2018.04.013
– reference: 79L.-Z. Dai, M. Shi, Chem.—Eur. J. 2010, 16, 2496. 10.1002/chem.20090232120077534
– reference: 87a) M. R. Fructos, T. R. Belderrain, P. de Frémont, N. M. Scott, S. P. Nolan, M. M. Díaz-Requejo, P. J. Pérez, Angew. Chem., Int. Ed. 2005, 44, 5284. 10.1002/anie.200501056 b) A. Prieto, M. R. Fructos, M. M. Díaz-Requejo, P. J. Pérez, P. Pérez-Galán, N. Delpont, A. M. Echavarren, Tetrahedron 2009, 65, 1790. 10.1016/j.tet.2008.10.114 c) M. Delgado-Rebollo, Á. Beltrán, A. Prieto, M. M. Díaz-Requejo, A. M. Echavarren, P. J. Pérez, Eur. J. Inorg. Chem. 2012, 1380. 10.1002/ejic.201101158
– reference: 75J. García-Álvarez, Eur. J. Inorg. Chem. 2015, 5147. 10.1002/ejic.201500892
– reference: 113M. Rigo, L. Hettmanczyk, F. J. L. Heutz, S. Hohloch, M. Lutz, B. Sarkar, C. Müller, Dalton Trans. 2017, 46, 86. 10.1039/C6DT03766F27897296
– reference: 94a) X. Zeng, G. D. Frey, R. Kinjo, B. Donnadieu, G. Bertrand, J. Am. Chem. Soc. 2009, 131, 8690. 10.1021/ja902051m19456108 b) X. Zeng, M. Soleilhavoup, G. Bertrand, Org. Lett. 2009, 11, 3166. 10.1021/ol901418c19719176 c) R. Kinjo, B. Donnadieu, G. Bertrand, Angew. Chem., Int. Ed. 2011, 50, 5560. 10.1002/anie.201100740 d) V. Lavallo, G. D. Frey, S. Kousar, B. Donnadieu, G. Bertrand, Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 13569. 10.1073/pnas.070580910417698808
– reference: 7a) D. Benitez, N. D. Shapiro, E. Tkatchouk, Y. Wang, W. A. Goddard, III, F. D. Toste, Nat. Chem. 2009, 1, 482. 10.1038/nchem.33120161015 b) M. C. Blanco Jaimes, C. R. N. Böhling, J. M. Serrano-Becerra, A. S. K. Hashmi, Angew. Chem., Int. Ed. 2013, 52, 7963. 10.1002/anie.201210351
– reference: 72X. Yao, C.-J. Li, Org. Lett. 2006, 8, 1953. 10.1021/ol060645p16623593
– reference: 80A. S. Demir, M. Emrullahoğlu, K. Buran, Chem. Commun. 2010, 46, 8032. 10.1039/c0cc02357d
– reference: 153a) S. Sen, F. P. Gabbaï, Chem. Commun. 2017, 53, 13356. 10.1039/C7CC06065C b) During the preparation of the present manuscript, an experimental and computational study on the activation of [(NHC)AuCl] complexes with a pendant amide group, assisted by H-bond donor substrates or acid additives, was published: O. Seppänen, S. Aikonen, M. Muuronen, C. Alamillo-Ferrer, J. Burés, J. Helaja, Chem. Commun. 2020, 56, 14697. 10.1039/D0CC05999D
– reference: 48J.-E. Siewert, A. Schumann, M. Fischer, C. Schmidt, T. Taufer, C. Hering-Junghans, Dalton Trans. 2020, 49, 12354. 10.1039/D0DT02435J32845265
– reference: 143Y.-H. Lo, F. P. Gabbaï, Angew. Chem., Int. Ed. 2019, 58, 10194. 10.1002/anie.201903964
– reference: 108M. Kato, Y. Ueta, S. Ito, Chem.—Eur. J. 2021, 27, 2469. 10.1002/chem.202004281
– reference: 47D. Canseco-Gonzalez, A. Petronilho, H. Mueller-Bunz, K. Ohmatsu, T. Ooi, M. Albrecht, J. Am. Chem. Soc. 2013, 135, 13193. 10.1021/ja406999p23902160
– reference: 139R. Murakami, F. Inagaki, Tetrahedron Lett. 2019, 60, 151231. 10.1016/j.tetlet.2019.151231
– reference: 38Y. Zhu, C. S. Day, L. Zhang, K. J. Hauser, A. C. Jones, Chem.—Eur. J. 2013, 19, 12264. 10.1002/chem.20130215223934993
– reference: 90C. García-Morales, B. Ranieri, I. Escofet, L. López-Suarez, C. Obradors, A. I. Konovalov, A. M. Echavarren, J. Am. Chem. Soc. 2017, 139, 13628. 10.1021/jacs.7b0765128922911
– reference: 15D. Wang, R. Cai, S. Sharma, J. Jirak, S. K. Thummanapelli, N. G. Akhmedov, H. Zhang, X. Liu, J. L. Petersen, X. Shi, J. Am. Chem. Soc. 2012, 134, 9012. 10.1021/ja303862z22563621
– reference: 23E. Mizushima, T. Hayashi, M. Tanaka, Org. Lett. 2003, 5, 3349. 10.1021/ol035315912943424
– reference: 120S. Klenk, S. Rupf, L. Suntrup, M. van der Meer, B. Sarkar, Organometallics 2017, 36, 2026. 10.1021/acs.organomet.7b00270
– reference: 92P. D. García-Fernández, J. Iglesias-Sigüenza, P. S. Rivero-Jerez, E. Díez, E. Gómez-Bengoa, R. Fernández, J. M. Lassaletta, J. Am. Chem. Soc. 2020, 142, 16082. 10.1021/jacs.0c0795132813511
– reference: 9W. Wang, G. B. Hammond, B. Xu, J. Am. Chem. Soc. 2012, 134, 5697. 10.1021/ja301139722376128
– reference: 78C. Vidal, L. Merz, J. García-Álvarez, Green Chem. 2015, 17, 3870. 10.1039/C5GC00656B
– reference: 96R. Pretorius, M. R. Fructos, H. Müller-Bunz, R. A. Gossage, P. J. Pérez, M. Albrecht, Dalton Trans. 2016, 45, 14591. 10.1039/C6DT02181F27363515
– reference: 52A. S. K. Hashmi, S. Schäfer, M. Wölfe, C. Diez Gil, P. Fischer, A. Laguna, M. C. Blanco, M. C. Gimeno, Angew. Chem., Int. Ed. 2007, 46, 6184. 10.1002/anie.200701521
– reference: 134M. Sircoglou, S. Bontemps, G. Bouhadir, N. Saffon, K. Miqueu, W. Gu, M. Mercy, C.-H. Chen, B. M. Foxman, L. Maron, O. V. Ozerov, D. Bourissou, J. Am. Chem. Soc. 2008, 130, 16729. 10.1021/ja807007219554696
– reference: 149L. D. M. Nicholls, M. Alcarazo, Chem. Lett. 2019, 48, 1. 10.1246/cl.180810
– reference: 49R. Usón, A. Laguna, M. V. Castrillo, Synth. React. Inorg. Met.-Org. Chem. 1979, 9, 317. 10.1080/00945717908069748
– reference: 138F. Inagaki, C. Matsumoto, Y. Okada, N. Maruyama, C. Mukai, Angew. Chem., Int. Ed. 2015, 54, 818. 10.1002/anie.201408037
– reference: 57M.-A. Abadie, X. Trivelli, F. Medina, N. Duhal, M. Kouach, B. Linden, E. Génin, M. Vandewalle, F. Capet, P. Roussel, I. Del Rosal, L. Maron, F. Agbossou-Niedercorn, C. Michon, Chem.—Eur. J. 2017, 23, 10777. 10.1002/chem.20170130128488394
– reference: 118L. Hettmanczyk, S. Manck, C. Hoyer, S. Hohloch, B. Sarkar, Chem. Commun. 2015, 51, 10949. 10.1039/C5CC01578B
– reference: 12H. Schmidbaur, A. Schier, Z. Naturforsch., B: J. Chem. Sci. 2011, 66, 329. 10.1515/znb-2011-0401
– reference: 122C. Praveen, P. Kiruthiga, P. T. Perumal, Synlett 2009, 1990.
– reference: 2a) R. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028. 10.1021/cr500691k25844920 b) A. M. Asiri, A. S. K. Hashmi, Chem. Soc. Rev. 2016, 45, 4471. 10.1039/C6CS00023A27385433
– reference: 115Á. Vivancos, C. Segarra, M. Albrecht, Chem. Rev. 2018, 118, 9493. 10.1021/acs.chemrev.8b0014830014699
– reference: 36A. Gómez-Suárez, Y. Oonishi, S. Meiries, S. P. Nolan, Organometallics 2013, 32, 1106. 10.1021/om301249r
– reference: 102Y. Hou, Z. Li, Y. Li, P. Liu, C.-Y. Su, F. Puschmann, H. Grützmacher, Chem. Sci. 2019, 10, 3168. 10.1039/C8SC05281F30996898
– reference: 14Z. Lu, G. B. Hammond, B. Xu, Acc. Chem. Res. 2019, 52, 1275.31002231
– reference: 3a) M. Chiarucci, M. Bandini, Beilstein J. Org. Chem. 2013, 9, 2586. 10.3762/bjoc.9.29424367423 b) D. Campeau, D. F. León Rayo, A. Mansour, K. Muratov, F. Gagosz, Chem. Rev. 2020, doi:10.1021/acs.chemrev.0c00788. 10.1021/acs.chemrev.0c00788
– reference: 151L. D. M. Nicholls, M. Marx, T. Hartung, E. González-Fernández, C. Golz, M. Alcarazo, ACS Catal. 2018, 8, 6079. 10.1021/acscatal.8b01374
– reference: 56M. Veguillas, G. M. Rosair, M. W. P. Bebbington, A.-L. Lee, ACS Catal. 2019, 9, 2552. 10.1021/acscatal.9b00249
– reference: 99A. S. K. Hashmi, J. P. Weyrauch, W. Frey, J. W. Bats, Org. Lett. 2004, 6, 4391. 10.1021/ol048006715524491
– reference: 44Y. Sota, M. Yamamoto, M. Murai, J. Uenishi, M. Uemura, Chem.—Eur. J. 2015, 21, 4398. 10.1002/chem.20140588925643908
– reference: 141H. Yang, F. P. Gabbaï, J. Am. Chem. Soc. 2015, 137, 13425. 10.1021/jacs.5b0799826458048
– reference: 37Y. Zhu, W. Zhou, E. M. Petryna, B. R. Rogers, C. S. Day, A. C. Jones, ACS Catal. 2016, 6, 7357. 10.1021/acscatal.6b01674
– reference: 98M. D. Milton, Y. Inada, Y. Nishibayashi, S. Uemura, Chem. Commun. 2004, 2712. 10.1039/b411180j
– reference: 110S. Ito, M. Nanko, T. Shinozaki, M. Kojima, K. Aikawa, K. Mikami, Chem.—Asian J. 2016, 11, 823. 10.1002/asia.20150132626811979
– reference: 109S. Ito, M. Nanko, K. Mikami, ChemCatChem 2014, 6, 2292. 10.1002/cctc.201402158
– reference: 150T. Scherpf, C. Schwarz, L. T. Sharf, J.-A. Zur, A. Helbig, V. H. Gessner, Angew. Chem., Int. Ed. 2018, 57, 12859. 10.1002/anie.201805372
– reference: 107S. Ito, L. Zhai, K. Mikami, Chem.—Asian J. 2011, 6, 3077. 10.1002/asia.20110031021834098
– reference: 146J. S. Jones, F. P. Gabbaï, Chem.—Eur. J. 2017, 23, 1136. 10.1002/chem.20160452127813226
– reference: 132S. Bontemps, G. Bouhadir, K. Miqueu, D. Bourissou, J. Am. Chem. Soc. 2006, 128, 12056. 10.1021/ja063749416967941
– reference: 51A. S. K. Hashmi, M. C. Blanco, E. Kurpejović, W. Frey, J. W. Bats, Adv. Synth. Catal. 2006, 348, 709; 10.1002/adsc.200606012 Correction: A. S. K. Hashmi, M. C. Blanco, E. Kurpejović, W. Frey, J. W. Bats, Adv. Synth. Catal. 2006, 348, 792a. 10.1002/adsc.200690009
– reference: 85L. Hettmanczyk, D. Schulze, L. Suntrup, B. Sarkar, Organometallics 2016, 35, 3828. 10.1021/acs.organomet.6b00675
– reference: 35R. S. Ramón, S. Gaillard, A. Poater, L. Cavallo, A. M. Z. Slawin, S. P. Nolan, Chem.—Eur. J. 2011, 17, 1238. 10.1002/chem.20100260721243690
– reference: 54H. Li, R. A. Widenhoefer, Org. Lett. 2009, 11, 2671. 10.1021/ol900730w19514795
– reference: 127a) A. Straube, P. Coburger, L. Dütsch, E. Hey-Hawkins, Chem. Sci. 2020, 11, 10657. 10.1039/D0SC03604H b) A. Straube, P. Coburger, M. Michak, M. R. Ringenberg, E. Hey-Hawkins, Dalton Trans. 2020, 49, 16667. 10.1039/d0dt02743j
– reference: 117M. Rigo, E. R. M. Habraken, K. Bhattacharyya, M. Weber, A. W. Ehlers, N. Mézailles, J. C. Slootweg, C. Müller, Chem.—Eur. J. 2019, 25, 8769.30994944
– reference: 123A. S. K. Hashmi, T. M. Frost, J. W. Bats, J. Am. Chem. Soc. 2000, 122, 11553. 10.1021/ja005570d
– reference: 45S. G. Weber, F. Rominger, B. F. Straub, Eur. J. Inorg. Chem. 2012, 2863. 10.1002/ejic.201200327
– reference: 4W. Yang, A. S. K. Hashmi, Chem. Soc. Rev. 2014, 43, 2941. 10.1039/c3cs60441a24671183
– reference: 62G. Meera, K. R. Rohit, G. S. Susan Treesa, G. Anilkumar, Asian J. Org. Chem. 2020, 9, 144. 10.1002/ajoc.202000020
– reference: 1A. Fürstner, P. W. Davies, Angew. Chem., Int. Ed. 2007, 46, 3410. 10.1002/anie.200604335
– reference: 33B. D. Sherry, F. D. Toste, J. Am. Chem. Soc. 2004, 126, 15978. 10.1021/ja044602k15584728
– reference: 119D. Schweinfurth, L. Hettmanczyk, L. Suntrup, B. Sarkar, Z. Anorg. Allg. Chem. 2017, 643, 554. 10.1002/zaac.201700030
– reference: 133M. Sircoglou, S. Bontemps, M. Mercy, N. Saffon, M. Takahashi, G. Bouhadir, L. Maron, D. Bourissou, Angew. Chem., Int. Ed. 2007, 46, 8583. 10.1002/anie.200703518
– reference: 148M. Alcarazo, Acc. Chem. Res. 2016, 49, 1797. 10.1021/acs.accounts.6b0026227529703
– reference: 124S. Vanicek, M. Podewitz, J. Stubbe, D. Schulze, H. Kopacka, K. Wurst, T. Müller, P. Lippmann, S. Haslinger, H. Schottenberger, K. R. Liedl, I. Ott, B. Sarkar, B. Bildstein, Chem.—Eur. J. 2018, 24, 3742. 10.1002/chem.20170505129214677
– reference: 140J. S. Jones, F. P. Gabbaï, Acc. Chem. Res. 2016, 49, 857. 10.1021/acs.accounts.5b0054327092722
– reference: 42M. Bardajía, A. Laguna, Eur. J. Inorg. Chem. 2003, 3069. 10.1002/ejic.200200705
– reference: 65a) A. Almássy, C. E. Nagy, A. C. Bényei, F. Joó, Organometallics 2010, 29, 2484. 10.1021/om1001292 b) G. A. Fernández, A. S. Picco, M. R. Ceolıń, A. B. Chopa, G. F. Silbestri, Organometallics 2013, 32, 6315. 10.1021/om400663a
– reference: 154M. Rigoulet, S. Massou, E. D. Sosa Carrizo, S. Mallet-Ladeira, A. Amgoune, K. Miqueu, D. Bourissou, Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 46. 10.1073/pnas.181719411630567973
– reference: 155H. Schmidbaur, Angew. Chem., Int. Ed. 2019, 58, 5806. 10.1002/anie.201902526
– reference: 82a) A. Guérinot, W. Fang, M. Sircoglou, C. Bour, S. Bezzenine-Lafollée, V. Gandon, Angew. Chem., Int. Ed. 2013, 52, 5848. 10.1002/anie.201300600 b) W. Fang, F. Weizhen, M. Presset, A. Guérinot, C. Bour, S. Bezzenine-Lafollée, V. Gandon, Org. Synth. 2015, 92, 117. 10.15227/orgsyn.092.00117 c) C. Bour, V. Gandon, Synlett 2015, 26, 1427. 10.1055/s-0034-1380712
– reference: 100A. S. K. Hashmi, A. M. Schuster, F. Rominger, Angew. Chem., Int. Ed. 2009, 48, 8247. 10.1002/anie.200903134
– reference: 106S. Ito, S. Kusano, N. Morita, K. Mikami, M. Yoshifuji, J. Organomet. Chem. 2010, 695, 291. 10.1016/j.jorganchem.2009.09.040
– reference: 125S. Vanicek, J. Beerhues, T. Bens, V. Levchenko, K. Wurst, B. Bildstein, M. Tilset, B. Sarkar, Organometallics 2019, 38, 4383. 10.1021/acs.organomet.9b0061631844348
– reference: 21J. H. Teles, S. Brode, M. Chabanas, Angew. Chem., Int. Ed. 1998, 37, 1415. 10.1002/(SICI)1521-3773(19980605)37:10%3C1415::AID-ANIE1415%3E3.0.CO%3B2-N
– reference: 46A. Zhdanko, M. E. Maier, ACS Catal. 2015, 5, 5994. 10.1021/acscatal.5b01493
– reference: 152Y. Canac, Chem.—Asian J. 2018, 13, 1872. 10.1002/asia.201800483
– reference: 131D. You, F. P. Gabbaï, Trends Chem. 2019, 1, 485. 10.1016/j.trechm.2019.03.011
– reference: 70H. Ibrahim, P. de Frémont, P. Braunstein, V. Théry, L. Nauton, F. Cisnetti, A. Gautier, Adv. Synth. Catal. 2015, 357, 3893. 10.1002/adsc.201500729
– reference: 68K. Belger, N. Krause, Eur. J. Org. Chem. 2015, 220. 10.1002/ejoc.201403153
– reference: 69K. Belger, N. Krause, Org. Biomol. Chem. 2015, 13, 8556. 10.1039/C5OB01286D26175224
– reference: 27S. Gaillard, J. Bosson, R. S. Ramón, P. Nun, A. M. Z. Slawin, S. P. Nolan, Chem.—Eur. J. 2010, 16, 13729. 10.1002/chem.20100168820945445
– reference: 88F. Kleinbeck, F. D. Toste, J. Am. Chem. Soc. 2009, 131, 9178. 10.1021/ja904055z19530649
– reference: 53F. Schröder, C. Tugny, E. Salanouve, H. Clavier, L. Giordano, D. Moraleda, Y. Gimbert, V. Mouriès-Mansuy, J.-P. Goddard, L. Fensterbank, Organometallics 2014, 33, 4051. 10.1021/om500568q
– reference: 86H. Nishida, N. Takada, M. Yoshimura, T. Sonoda, H. Kobayashi, Bull. Chem. Soc. Jpn. 1984, 57, 2600. 10.1246/bcsj.57.2600
– reference: 13D. Zuccaccia, A. Del Zotto, W. Baratta, Coord. Chem. Rev. 2019, 396, 103. 10.1016/j.ccr.2019.06.007
– reference: 104T. C. Klebach, R. Lourens, F. Bickelhaupt, J. Am. Chem. Soc. 1978, 100, 4886. 10.1021/ja00483a041
– reference: 25J. Han, N. Shimizu, Z. Lu, H. Amii, G. B. Hammond, B. Xu, Org. Lett. 2014, 16, 3500. 10.1021/ol501443m24956218
– reference: 93M. Wegener, F. Huber, C. Bolli, C. Jenne, S. F. Kirsch, Chem.—Eur. J. 2015, 21, 1328. 10.1002/chem.20140448725394284
– volume: 9
  start-page: 144
  year: 2020
  ident: 2024012104372168100_r62
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.202000020
– volume: 16
  start-page: 2496
  year: 2010
  ident: 2024012104372168100_r79
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.200902321
– volume: 11
  start-page: 3155
  year: 2005
  ident: 2024012104372168100_r58
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.200401069
– volume: 16
  start-page: 10808
  year: 2010
  ident: 2024012104372168100_r137
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201001281
– volume: 37
  start-page: 1415
  year: 1998
  ident: 2024012104372168100_r21
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/(SICI)1521-3773(19980605)37:10%3C1415::AID-ANIE1415%3E3.0.CO%3B2-N
– volume: 128
  start-page: 8132
  year: 2006
  ident: 2024012104372168100_r34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja061344d
– volume: 5
  start-page: 5994
  year: 2015
  ident: 2024012104372168100_r46
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01493
– volume: 37
  start-page: 1776
  year: 2008
  ident: 2024012104372168100_r5
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b711132k
– volume: 48
  start-page: 8247
  year: 2009
  ident: 2024012104372168100_r100
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200903134
– volume: 1
  start-page: 693
  year: 2006
  ident: 2024012104372168100_r105
  publication-title: Chem.—Asian J.
  doi: 10.1002/asia.200600155
– volume: 79
  start-page: 7696
  year: 2014
  ident: 2024012104372168100_r84
  publication-title: J. Org. Chem.
  doi: 10.1021/jo501254x
– volume: 48
  start-page: 9892
  year: 2009
  ident: 2024012104372168100_r136
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200905391
– volume: 122
  start-page: 11553
  year: 2000
  ident: 2024012104372168100_r123
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja005570d
– volume: 58
  start-page: 5806
  year: 2019
  ident: 2024012104372168100_r155
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201902526
– volume: 46
  start-page: 3410
  year: 2007
  ident: 2024012104372168100_r1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200604335
– volume: 18
  start-page: 14732
  year: 2012
  ident: 2024012104372168100_r30
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201201215
– volume: 9
  start-page: 317
  year: 1979
  ident: 2024012104372168100_r49
  publication-title: Synth. React. Inorg. Met.-Org. Chem.
  doi: 10.1080/00945717908069748
– ident: 2024012104372168100_r101
– volume: 52
  start-page: 7963
  year: 2013
  ident: 2024012104372168100_r7
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201210351
– volume: 46
  start-page: 8032
  year: 2010
  ident: 2024012104372168100_r80
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc02357d
– volume: 44
  start-page: 5284
  year: 2005
  ident: 2024012104372168100_r87
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200501056
– volume: 23
  start-page: 3425
  year: 2017
  ident: 2024012104372168100_r77
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201605303
– volume: 134
  start-page: 9012
  year: 2012
  ident: 2024012104372168100_r15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja303862z
– volume: 500
  start-page: 127
  year: 1995
  ident: 2024012104372168100_r128
  publication-title: J. Organomet. Chem.
  doi: 10.1016/0022-328X(95)00508-N
– volume: 116
  start-page: 46
  year: 2019
  ident: 2024012104372168100_r154
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1817194116
– volume: 17
  start-page: 4534
  year: 2015
  ident: 2024012104372168100_r55
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.5b02224
– volume: 36
  start-page: 2026
  year: 2017
  ident: 2024012104372168100_r120
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.7b00270
– volume: 13
  start-page: 7103
  year: 2015
  ident: 2024012104372168100_r5
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C5OB00736D
– volume: 348
  start-page: 709
  year: 2006
  ident: 2024012104372168100_r51
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.200606012
– volume: 126
  start-page: 15978
  year: 2004
  ident: 2024012104372168100_r33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja044602k
– volume: 356
  start-page: 221
  year: 2014
  ident: 2024012104372168100_r91
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201300704
– volume: 104
  start-page: 13569
  year: 2007
  ident: 2024012104372168100_r94
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0705809104
– volume: 446
  start-page: 395
  year: 2007
  ident: 2024012104372168100_r6
  publication-title: Nature
  doi: 10.1038/nature05592
– volume: 33
  start-page: 4051
  year: 2014
  ident: 2024012104372168100_r53
  publication-title: Organometallics
  doi: 10.1021/om500568q
– volume: 1
  start-page: 608
  year: 2014
  ident: 2024012104372168100_r83
  publication-title: Org. Chem. Front.
  doi: 10.1039/c4qo00112e
– volume: 65
  start-page: 1790
  year: 2009
  ident: 2024012104372168100_r87
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2008.10.114
– volume: 140
  start-page: 9644
  year: 2018
  ident: 2024012104372168100_r145
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05520
– volume: 55
  start-page: 4615
  year: 2019
  ident: 2024012104372168100_r126
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00283A
– volume: 60
  start-page: 151231
  year: 2019
  ident: 2024012104372168100_r139
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2019.151231
– volume: 11
  start-page: 4962
  year: 2009
  ident: 2024012104372168100_r60
  publication-title: Org. Lett.
  doi: 10.1021/ol902116b
– volume: 23
  start-page: 1136
  year: 2017
  ident: 2024012104372168100_r146
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201604521
– volume: 3
  start-page: 3086
  year: 2013
  ident: 2024012104372168100_r66
  publication-title: ACS Catal.
  doi: 10.1021/cs4009144
– volume: 45
  start-page: 14591
  year: 2016
  ident: 2024012104372168100_r96
  publication-title: Dalton Trans.
  doi: 10.1039/C6DT02181F
– volume: 139
  start-page: 6843
  year: 2017
  ident: 2024012104372168100_r144
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03287
– volume: 7
  start-page: 4133
  year: 2005
  ident: 2024012104372168100_r17
  publication-title: Org. Lett.
  doi: 10.1021/ol0515917
– start-page: 220
  year: 2015
  ident: 2024012104372168100_r68
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201403153
– volume: 38
  start-page: 4383
  year: 2019
  ident: 2024012104372168100_r125
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.9b00616
– start-page: 2712
  year: 2004
  ident: 2024012104372168100_r98
  publication-title: Chem. Commun.
  doi: 10.1039/b411180j
– volume: 35
  start-page: 3828
  year: 2016
  ident: 2024012104372168100_r85
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.6b00675
– volume: 58
  start-page: 18266
  year: 2019
  ident: 2024012104372168100_r147
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201911662
– volume: 74
  start-page: 2523
  year: 2018
  ident: 2024012104372168100_r116
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2018.04.013
– start-page: 3069
  year: 2003
  ident: 2024012104372168100_r42
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.200200705
– volume: 51
  start-page: 10949
  year: 2015
  ident: 2024012104372168100_r118
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC01578B
– volume: 57
  start-page: 12859
  year: 2018
  ident: 2024012104372168100_r150
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201805372
– volume: 135
  start-page: 13193
  year: 2013
  ident: 2024012104372168100_r47
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja406999p
– volume: 139
  start-page: 13628
  year: 2017
  ident: 2024012104372168100_r90
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07651
– volume: 57
  start-page: 9105
  year: 2018
  ident: 2024012104372168100_r112
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b01111
– volume: 357
  start-page: 3893
  year: 2015
  ident: 2024012104372168100_r70
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201500729
– volume: 108
  start-page: 6405
  year: 1986
  ident: 2024012104372168100_r95
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00280a056
– volume: 26
  start-page: 1427
  year: 2015
  ident: 2024012104372168100_r82
  publication-title: Synlett
  doi: 10.1055/s-0034-1380712
– volume: 6
  start-page: 4391
  year: 2004
  ident: 2024012104372168100_r99
  publication-title: Org. Lett.
  doi: 10.1021/ol0480067
– volume: 32
  start-page: 1946
  year: 1993
  ident: 2024012104372168100_r32
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00062a012
– volume: 142
  start-page: 3797
  year: 2020
  ident: 2024012104372168100_r43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11154
– volume: 100
  start-page: 4886
  year: 1978
  ident: 2024012104372168100_r104
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00483a041
– year: 2020
  ident: 2024012104372168100_r3
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00788
– volume: 58
  start-page: 10194
  year: 2019
  ident: 2024012104372168100_r143
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201903964
– ident: 2024012104372168100_r103
– volume: 11
  start-page: 823
  year: 2016
  ident: 2024012104372168100_r110
  publication-title: Chem.—Asian J.
  doi: 10.1002/asia.201501326
– volume: 17
  start-page: 3870
  year: 2015
  ident: 2024012104372168100_r78
  publication-title: Green Chem.
  doi: 10.1039/C5GC00656B
– volume: 59
  start-page: 16496
  year: 2020
  ident: 2024012104372168100_r97
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202005214
– volume: 9
  start-page: 2552
  year: 2019
  ident: 2024012104372168100_r56
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00249
– volume: 360
  start-page: 2493
  year: 2018
  ident: 2024012104372168100_r10
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201800233
– volume: 6
  start-page: 3077
  year: 2011
  ident: 2024012104372168100_r107
  publication-title: Chem.—Asian J.
  doi: 10.1002/asia.201100310
– volume: 131
  start-page: 448
  year: 2009
  ident: 2024012104372168100_r64
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809403e
– volume: 130
  start-page: 16729
  year: 2008
  ident: 2024012104372168100_r134
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8070072
– volume: 5
  start-page: 1638
  year: 2015
  ident: 2024012104372168100_r10
  publication-title: ACS Catal.
  doi: 10.1021/cs501902v
– volume: 17
  start-page: 1238
  year: 2011
  ident: 2024012104372168100_r35
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201002607
– volume: 27
  start-page: 2469
  year: 2021
  ident: 2024012104372168100_r108
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.202004281
– volume: 20
  start-page: 5439
  year: 2014
  ident: 2024012104372168100_r83
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201304831
– volume: 115
  start-page: 9028
  year: 2015
  ident: 2024012104372168100_r2
  publication-title: Chem. Rev.
  doi: 10.1021/cr500691k
– volume: 23
  start-page: 576
  year: 2017
  ident: 2024012104372168100_r121
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201604615
– volume: 13
  start-page: 1872
  year: 2018
  ident: 2024012104372168100_r152
  publication-title: Chem.—Asian J.
  doi: 10.1002/asia.201800483
– volume: 41
  start-page: 4563
  year: 2002
  ident: 2024012104372168100_r22
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20021202)41:23%3C4563::AID-ANIE4563%3E3.0.CO%3B2-U
– volume: 16
  start-page: 13729
  year: 2010
  ident: 2024012104372168100_r27
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201001688
– volume: 6
  start-page: 7357
  year: 2016
  ident: 2024012104372168100_r37
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01674
– start-page: 1990
  year: 2009
  ident: 2024012104372168100_r122
  publication-title: Synlett
– volume: 643
  start-page: 554
  year: 2017
  ident: 2024012104372168100_r119
  publication-title: Z. Anorg. Allg. Chem.
  doi: 10.1002/zaac.201700030
– volume: 8
  start-page: 1953
  year: 2006
  ident: 2024012104372168100_r72
  publication-title: Org. Lett.
  doi: 10.1021/ol060645p
– volume: 32
  start-page: 6315
  year: 2013
  ident: 2024012104372168100_r65
  publication-title: Organometallics
  doi: 10.1021/om400663a
– volume: 25
  start-page: 8769
  year: 2019
  ident: 2024012104372168100_r117
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201900938
– volume: 142
  start-page: 16082
  year: 2020
  ident: 2024012104372168100_r92
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c07951
– volume: 134
  start-page: 17412
  year: 2012
  ident: 2024012104372168100_r89
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja307948m
– volume: 108
  start-page: 3326
  year: 2008
  ident: 2024012104372168100_r11
  publication-title: Chem. Rev.
  doi: 10.1021/cr0684319
– volume: 5
  start-page: 846
  year: 1966
  ident: 2024012104372168100_r114
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.196608463
– volume: 21
  start-page: 4398
  year: 2015
  ident: 2024012104372168100_r44
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201405889
– volume: 130
  start-page: 115
  year: 1997
  ident: 2024012104372168100_r50
  publication-title: Chem. Ber.
  doi: 10.1002/cber.19971300119
– volume: 134
  start-page: 5697
  year: 2012
  ident: 2024012104372168100_r9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3011397
– volume: 11
  start-page: 2671
  year: 2009
  ident: 2024012104372168100_r54
  publication-title: Org. Lett.
  doi: 10.1021/ol900730w
– volume: 46
  start-page: 6184
  year: 2007
  ident: 2024012104372168100_r52
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200701521
– volume: 26
  start-page: 15901
  year: 2020
  ident: 2024012104372168100_r67
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.202001990
– volume: 1
  start-page: 485
  year: 2019
  ident: 2024012104372168100_r131
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2019.03.011
– volume: 120
  start-page: 13382
  year: 2020
  ident: 2024012104372168100_r61
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00245
– volume: 9
  start-page: 1913
  year: 2018
  ident: 2024012104372168100_r74
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04314-5
– volume: 22
  start-page: 16410
  year: 2016
  ident: 2024012104372168100_r29
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201603478
– start-page: 2045
  year: 2006
  ident: 2024012104372168100_r18
  publication-title: Chem. Commun.
  doi: 10.1039/B601547F
– volume: 13
  start-page: 8556
  year: 2015
  ident: 2024012104372168100_r69
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C5OB01286D
– volume: 15
  start-page: 2234
  year: 2013
  ident: 2024012104372168100_r81
  publication-title: Org. Lett.
  doi: 10.1021/ol400803f
– volume: 16
  start-page: 3500
  year: 2014
  ident: 2024012104372168100_r25
  publication-title: Org. Lett.
  doi: 10.1021/ol501443m
– volume: 49
  start-page: 16667
  year: 2020
  ident: 2024012104372168100_r127
  publication-title: Dalton Trans.
  doi: 10.1039/d0dt02743j
– volume: 57
  start-page: 2600
  year: 1984
  ident: 2024012104372168100_r86
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.57.2600
– volume: 66
  start-page: 329
  year: 2011
  ident: 2024012104372168100_r12
  publication-title: Z. Naturforsch., B: J. Chem. Sci.
  doi: 10.1515/znb-2011-0401
– volume: 137
  start-page: 13425
  year: 2015
  ident: 2024012104372168100_r141
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b07998
– volume: 29
  start-page: 2484
  year: 2010
  ident: 2024012104372168100_r65
  publication-title: Organometallics
  doi: 10.1021/om1001292
– volume: 26
  start-page: 4704
  year: 2007
  ident: 2024012104372168100_r19
  publication-title: Organometallics
  doi: 10.1021/om7006002
– volume: 21
  start-page: 1328
  year: 2015
  ident: 2024012104372168100_r93
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201404487
– volume: 36
  start-page: 4224
  year: 2017
  ident: 2024012104372168100_r142
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.7b00654
– volume: 76
  start-page: 9353
  year: 2011
  ident: 2024012104372168100_r28
  publication-title: J. Org. Chem.
  doi: 10.1021/jo201631x
– volume: 92
  start-page: 117
  year: 2015
  ident: 2024012104372168100_r82
  publication-title: Org. Synth.
  doi: 10.15227/orgsyn.092.00117
– volume: 131
  start-page: 9178
  year: 2009
  ident: 2024012104372168100_r88
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja904055z
– volume: 80
  start-page: 3538
  year: 2015
  ident: 2024012104372168100_r71
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.5b00164
– volume: 47
  start-page: 859
  year: 2011
  ident: 2024012104372168100_r129
  publication-title: Chem. Commun.
  doi: 10.1039/C0CC04109B
– volume: 48
  start-page: 3454
  year: 2009
  ident: 2024012104372168100_r135
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200900737
– volume: 56
  start-page: 14697
  year: 2020
  ident: 2024012104372168100_r153
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC05999D
– volume: 118
  start-page: 9493
  year: 2018
  ident: 2024012104372168100_r115
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00148
– volume: 348
  start-page: 792a
  year: 2006
  ident: 2024012104372168100_r51
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.200690009
– volume: 50
  start-page: 12927
  year: 2014
  ident: 2024012104372168100_r76
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC05904B
– volume: 43
  start-page: 2402
  year: 2004
  ident: 2024012104372168100_r24
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200353207
– volume: 52
  start-page: 1275
  year: 2019
  ident: 2024012104372168100_r14
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00544
– volume: 73
  start-page: 7721
  year: 2008
  ident: 2024012104372168100_r8
  publication-title: J. Org. Chem.
  doi: 10.1021/jo8014769
– volume: 11
  start-page: 3166
  year: 2009
  ident: 2024012104372168100_r94
  publication-title: Org. Lett.
  doi: 10.1021/ol901418c
– volume: 131
  start-page: 8690
  year: 2009
  ident: 2024012104372168100_r94
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja902051m
– volume: 47
  start-page: 1321
  year: 2018
  ident: 2024012104372168100_r16
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT04494A
– volume: 50
  start-page: 5560
  year: 2011
  ident: 2024012104372168100_r94
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201100740
– volume: 5
  start-page: 3349
  year: 2003
  ident: 2024012104372168100_r23
  publication-title: Org. Lett.
  doi: 10.1021/ol0353159
– volume: 14
  start-page: 1888
  year: 2012
  ident: 2024012104372168100_r73
  publication-title: Green Chem.
  doi: 10.1039/c2gc35293a
– volume: 24
  start-page: 3742
  year: 2018
  ident: 2024012104372168100_r124
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201705051
– year: 2020
  ident: 2024012104372168100_r63
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00552
– volume: 43
  start-page: 2941
  year: 2014
  ident: 2024012104372168100_r4
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60441a
– start-page: 5147
  year: 2015
  ident: 2024012104372168100_r75
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201500892
– volume: 8
  start-page: 6079
  year: 2018
  ident: 2024012104372168100_r151
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01374
– volume: 49
  start-page: 12354
  year: 2020
  ident: 2024012104372168100_r48
  publication-title: Dalton Trans.
  doi: 10.1039/D0DT02435J
– volume: 16
  start-page: 3452
  year: 2014
  ident: 2024012104372168100_r39
  publication-title: Org. Lett.
  doi: 10.1021/ol501663f
– volume: 46
  start-page: 86
  year: 2017
  ident: 2024012104372168100_r113
  publication-title: Dalton Trans.
  doi: 10.1039/C6DT03766F
– volume: 46
  start-page: 2742
  year: 2010
  ident: 2024012104372168100_r26
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc00018c
– volume: 48
  start-page: 1
  year: 2019
  ident: 2024012104372168100_r149
  publication-title: Chem. Lett.
  doi: 10.1246/cl.180810
– volume: 45
  start-page: 4471
  year: 2016
  ident: 2024012104372168100_r2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00023A
– volume: 53
  start-page: 13356
  year: 2017
  ident: 2024012104372168100_r153
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC06065C
– volume: 49
  start-page: 857
  year: 2016
  ident: 2024012104372168100_r140
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00543
– volume: 45
  start-page: 1065
  year: 2016
  ident: 2024012104372168100_r130
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00697J
– volume: 23
  start-page: 10777
  year: 2017
  ident: 2024012104372168100_r57
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201701301
– volume: 32
  start-page: 1106
  year: 2013
  ident: 2024012104372168100_r36
  publication-title: Organometallics
  doi: 10.1021/om301249r
– volume: 19
  start-page: 12264
  year: 2013
  ident: 2024012104372168100_r38
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201302152
– ident: 2024012104372168100_r41
– volume: 9
  start-page: 2586
  year: 2013
  ident: 2024012104372168100_r3
  publication-title: Beilstein J. Org. Chem.
  doi: 10.3762/bjoc.9.294
– start-page: 1380
  year: 2012
  ident: 2024012104372168100_r87
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201101158
– volume: 1
  start-page: 482
  year: 2009
  ident: 2024012104372168100_r7
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.331
– start-page: 2863
  year: 2012
  ident: 2024012104372168100_r45
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201200327
– volume: 46
  start-page: 6670
  year: 2007
  ident: 2024012104372168100_r59
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200701959
– volume: 49
  start-page: 1797
  year: 2016
  ident: 2024012104372168100_r148
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00262
– volume: 695
  start-page: 291
  year: 2010
  ident: 2024012104372168100_r106
  publication-title: J. Organomet. Chem.
  doi: 10.1016/j.jorganchem.2009.09.040
– start-page: 6889
  year: 2017
  ident: 2024012104372168100_r111
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201701259
– volume: 11
  start-page: 10657
  year: 2020
  ident: 2024012104372168100_r127
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC03604H
– volume: 6
  start-page: 2292
  year: 2014
  ident: 2024012104372168100_r109
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201402158
– volume: 46
  start-page: 5156
  year: 2007
  ident: 2024012104372168100_r20
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200701449
– volume: 15
  start-page: 5782
  year: 2013
  ident: 2024012104372168100_r40
  publication-title: Org. Lett.
  doi: 10.1021/ol402825v
– volume: 10
  start-page: 3168
  year: 2019
  ident: 2024012104372168100_r102
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC05281F
– volume: 128
  start-page: 12056
  year: 2006
  ident: 2024012104372168100_r132
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0637494
– volume: 396
  start-page: 103
  year: 2019
  ident: 2024012104372168100_r13
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.06.007
– volume: 54
  start-page: 818
  year: 2015
  ident: 2024012104372168100_r138
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201408037
– volume: 46
  start-page: 8583
  year: 2007
  ident: 2024012104372168100_r133
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200703518
– volume: 201
  start-page: 343
  year: 1980
  ident: 2024012104372168100_r31
  publication-title: J. Organomet. Chem.
  doi: 10.1016/S0022-328X(00)92589-0
– volume: 52
  start-page: 5848
  year: 2013
  ident: 2024012104372168100_r82
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201300600
SSID ssj0008549
Score 2.4682148
SecondaryResourceType review_article
Snippet Gold(I) chloride complexes are stable, widespread precatalysts that generally require activation by halide abstraction to display useful catalytic activity....
SourceID proquest
crossref
chemicalsocietyjapan
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1099
SubjectTerms Additives
Catalysis
Catalytic activity
Chloride
Coordination compounds
Frontiers of Molecular Science
Gold
Gold chloride
Ligands
Scavengers
Scavenging
Silver
Title Silver-Free Catalysis with Gold(I) Chloride Complexes
URI http://dx.doi.org/10.1246/bcsj.20200358
https://www.proquest.com/docview/2520512098
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYoHFoOqECr0lK0h6qiUp0m9nptH1FUXodeClJuKz9m1SKUIhIkxK9n7LU3GylULZdVZM0-4s-ex-7MN4R8QqtquQRJrTGMlpVoqG2Uo9YLMIbrRrvI9vmjOr0szydiknuVp-qSuR24h5V1Jc9BFccQ11Al-x_IdhfFAfyN-OIREcbjP2H883fIa6bHtwChlC_Ri8RXqyexG7Q6C1H_-FdIs_MQN_813Ke0wfwpNxFw52yBjkIgJ3Ti-Dma1Gn_BQGLGVJtieQgl5j9_cysGjVlVdtXZACtNuSloujDlH112fYkTsuC93Rf-MbWs6OoROVKHc0iObF1sysMzyMhq1oYoy5FMAQnKFkHuTrLvSAbDMOB0KniZLJI5VEihzntX0hcqnj6t6XbbJJdl2Zi1k7EVZiEZZdk2SJHN-PiNdlK8UFx1IK9TdZgukNejnNbvl0ieqAXHehFAL0IoB-efSky4EUH-Btyefz9YnxKU-8L6srRcE7RcRx6Zzy3HoNYCbqRVVl5cEoz6YS3WmjgwgjwI28apcA1etSgSyJN4Cjkb8n69M8U3pECdGWrhjOUgdJKZobCVhLCvmTMg9gjfNWs1Gmhz-qVUOyRr3nSapfo5ENXk-unxD934jctj8pTgvsZgcUTMMHQeLChVu-f9bAfyKvFztgn6_PbO_iIzuTcHsSV9Ai513Pa
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silver-Free+Catalysis+with+Gold%28I%29+Chloride+Complexes&rft.jtitle=Bulletin+of+the+Chemical+Society+of+Japan&rft.date=2021-03-15&rft.pub=The+Chemical+Society+of+Japan&rft.issn=0009-2673&rft.eissn=1348-0634&rft.volume=94&rft.issue=3&rft.spage=1099&rft.epage=1117&rft_id=info:doi/10.1246%2Fbcsj.20200358&rft.externalDocID=10_1246_bcsj_20200358
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2673&client=summon