A tunable terahertz metamaterial absorber composed of elliptical ring graphene arrays with refractive index sensing application

•Altering Fermi level from 0.2 eV to 0.8 eV, the maximum absorption increases from 10.7% to 49.2%, improved by nearly 5 times, and experiences blueshifts. The maximum absorption is a remarkable high result compared to previous studies.•The variation of incident angle is sensitive to maximum absorpti...

Full description

Saved in:
Bibliographic Details
Published inResults in physics Vol. 16; p. 103012
Main Authors Qi, Yunping, Zhang, Yu, Liu, Chuqin, Zhang, Ting, Zhang, Baohe, Wang, Liyuan, Deng, Xiangyu, Bai, Yulong, Wang, Xiangxian
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Altering Fermi level from 0.2 eV to 0.8 eV, the maximum absorption increases from 10.7% to 49.2%, improved by nearly 5 times, and experiences blueshifts. The maximum absorption is a remarkable high result compared to previous studies.•The variation of incident angle is sensitive to maximum absorption, but insensitive to the resonant wavelength.•For the bilayer graphene structure, the maximum absorption even higher, which has achieved 49.6%, and has a tunable dual-band selective absorption.•This paper also changes the surrounding refractive index to better evaluate the sensing performance of the monolayer structure, producing a structure with the sensitivity up to 14110 nm/RIU. In this paper, we demonstrate a tunable absorber composed of periodically patterned elliptical ring graphene metamaterial arrays. An absorption peak at 53.6μm with the maximum absorption of 49.2% of pure graphene layer has been realized. The effects of different parameters are studied by the Finite Difference Time Domain (FDTD) method. Besides, we simulate the spectra as the surrounding refractive index changes to better evaluate the sensing performance of the structure, producing a structure with the sensitivity up to 14110 nm/RIU. Finally, this paper also analyzes the absorption characteristics of bilayer graphene structure, and has a tunable dual-band selective absorption effect with a maximum absorption of 49.6%. Based on the research, it is more convenient to design the graphene-based optoelectronic devices, biosensor and environmental monitor.
AbstractList •Altering Fermi level from 0.2 eV to 0.8 eV, the maximum absorption increases from 10.7% to 49.2%, improved by nearly 5 times, and experiences blueshifts. The maximum absorption is a remarkable high result compared to previous studies.•The variation of incident angle is sensitive to maximum absorption, but insensitive to the resonant wavelength.•For the bilayer graphene structure, the maximum absorption even higher, which has achieved 49.6%, and has a tunable dual-band selective absorption.•This paper also changes the surrounding refractive index to better evaluate the sensing performance of the monolayer structure, producing a structure with the sensitivity up to 14110 nm/RIU. In this paper, we demonstrate a tunable absorber composed of periodically patterned elliptical ring graphene metamaterial arrays. An absorption peak at 53.6μm with the maximum absorption of 49.2% of pure graphene layer has been realized. The effects of different parameters are studied by the Finite Difference Time Domain (FDTD) method. Besides, we simulate the spectra as the surrounding refractive index changes to better evaluate the sensing performance of the structure, producing a structure with the sensitivity up to 14110 nm/RIU. Finally, this paper also analyzes the absorption characteristics of bilayer graphene structure, and has a tunable dual-band selective absorption effect with a maximum absorption of 49.6%. Based on the research, it is more convenient to design the graphene-based optoelectronic devices, biosensor and environmental monitor.
In this paper, we demonstrate a tunable absorber composed of periodically patterned elliptical ring graphene metamaterial arrays. An absorption peak at 53.6μm with the maximum absorption of 49.2% of pure graphene layer has been realized. The effects of different parameters are studied by the Finite Difference Time Domain (FDTD) method. Besides, we simulate the spectra as the surrounding refractive index changes to better evaluate the sensing performance of the structure, producing a structure with the sensitivity up to 14110 nm/RIU. Finally, this paper also analyzes the absorption characteristics of bilayer graphene structure, and has a tunable dual-band selective absorption effect with a maximum absorption of 49.6%. Based on the research, it is more convenient to design the graphene-based optoelectronic devices, biosensor and environmental monitor.
ArticleNumber 103012
Author Qi, Yunping
Zhang, Ting
Zhang, Baohe
Wang, Xiangxian
Zhang, Yu
Wang, Liyuan
Liu, Chuqin
Deng, Xiangyu
Bai, Yulong
Author_xml – sequence: 1
  givenname: Yunping
  surname: Qi
  fullname: Qi, Yunping
  email: qiyunping@nwnu.edu.cn
  organization: College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
– sequence: 2
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  email: yuzhang8002@163.com
  organization: College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
– sequence: 3
  givenname: Chuqin
  surname: Liu
  fullname: Liu, Chuqin
  organization: College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
– sequence: 4
  givenname: Ting
  surname: Zhang
  fullname: Zhang, Ting
  organization: College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
– sequence: 5
  givenname: Baohe
  surname: Zhang
  fullname: Zhang, Baohe
  organization: College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
– sequence: 6
  givenname: Liyuan
  surname: Wang
  fullname: Wang, Liyuan
  organization: College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
– sequence: 7
  givenname: Xiangyu
  surname: Deng
  fullname: Deng, Xiangyu
  organization: College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
– sequence: 8
  givenname: Yulong
  surname: Bai
  fullname: Bai, Yulong
  organization: College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
– sequence: 9
  givenname: Xiangxian
  surname: Wang
  fullname: Wang, Xiangxian
  organization: School of Science, Lanzhou University of Technology, Lanzhou 730050, China
BookMark eNp9kc9u1DAQxiNUJErpC3DyC-zicdw4kbhUFX8qVeICZ2vsTHa9ytrR2BTKhVev0wUJcehp7LF_3_jz97o5iylS07wFuQUJ3bvDlkNctkqqtdFKUC-ac6UANq0ZzNk_61fNZc4HKSulr64Azpvf16J8j-hmEoUY98TllzhSwSPWfcBZoMuJHbHw6bikTKNIk6B5DksJvp7X2TuxY1z2FEkgMz5k8SOUvWCaGH0J9yRCHOmnyBTzehuXZa5sCSm-aV5OOGe6_FMvmm8fP3y9-by5-_Lp9ub6buM1yLLpVKt9P5Ah7HogNcLgBuhGI13b-dE5R0Z6wA4GPblJ1-Kpx46MM0YhtBfN7Ul3THiwC4cj8oNNGOxTI_HOIldDM1kgrJDTY-uM1qpHIk1tq8F4P_S9r1r9Sctzyrm6tD6UJzeFMcwWpF1zsQe75mLXXOwpl4qq_9C_T3kWen-CqH7QfSC22QeKnsbA5Et1EJ7DHwFrQaxP
CitedBy_id crossref_primary_10_1007_s42114_023_00679_4
crossref_primary_10_3390_photonics10030295
crossref_primary_10_1016_j_aej_2022_07_051
crossref_primary_10_3390_photonics8050164
crossref_primary_10_1016_j_matdes_2022_110920
crossref_primary_10_1016_j_matpr_2023_05_636
crossref_primary_10_3390_nano11092172
crossref_primary_10_1364_OPTCON_454402
crossref_primary_10_1109_JSEN_2022_3190414
crossref_primary_10_1364_AO_475861
crossref_primary_10_1209_0295_5075_135_27001
crossref_primary_10_3389_fphy_2022_990126
crossref_primary_10_1088_1402_4896_aca5c3
crossref_primary_10_1109_ACCESS_2020_3004127
crossref_primary_10_3788_CJL220767
crossref_primary_10_1007_s11468_025_02791_1
crossref_primary_10_1016_j_rinp_2023_106518
crossref_primary_10_1063_5_0089686
crossref_primary_10_7498_aps_72_20230989
crossref_primary_10_1016_j_rinp_2023_106599
crossref_primary_10_1016_j_optmat_2021_111958
crossref_primary_10_1016_j_rinp_2020_103567
crossref_primary_10_1007_s11468_021_01557_9
crossref_primary_10_1088_1674_1056_abd690
crossref_primary_10_1002_adma_202202509
crossref_primary_10_3390_mi11030309
crossref_primary_10_1007_s10762_024_01020_w
crossref_primary_10_1016_j_physleta_2020_126544
crossref_primary_10_1016_j_renene_2020_05_142
crossref_primary_10_1088_2053_1591_ad7922
crossref_primary_10_1016_j_optcom_2024_130455
crossref_primary_10_1016_j_physe_2020_114526
crossref_primary_10_3390_nano14040378
crossref_primary_10_3390_photonics9100770
crossref_primary_10_1364_AO_508021
crossref_primary_10_1016_j_physe_2021_114750
crossref_primary_10_1016_j_rinp_2021_104404
crossref_primary_10_1007_s10853_022_08040_8
crossref_primary_10_1109_TIM_2023_3318676
crossref_primary_10_1016_j_rinp_2020_103134
crossref_primary_10_1364_OE_469962
crossref_primary_10_1007_s11468_023_02152_w
crossref_primary_10_1016_j_rinp_2021_104001
crossref_primary_10_1016_j_physe_2022_115142
crossref_primary_10_1016_j_optmat_2021_111906
crossref_primary_10_1016_j_rinp_2020_103415
crossref_primary_10_3390_nano11010063
crossref_primary_10_1016_j_diamond_2021_108393
crossref_primary_10_1016_j_optcom_2023_129732
crossref_primary_10_1016_j_rinp_2021_104447
crossref_primary_10_1080_09205071_2021_1958382
crossref_primary_10_1088_1361_6463_ad3bbf
crossref_primary_10_1002_adom_202101008
crossref_primary_10_1109_JLT_2024_3373450
crossref_primary_10_1364_AO_509461
crossref_primary_10_1109_JPHOT_2024_3392641
crossref_primary_10_1007_s11082_020_02360_2
crossref_primary_10_1016_j_optcom_2022_128993
crossref_primary_10_7498_aps_70_20211752
crossref_primary_10_1016_j_spmi_2020_106786
crossref_primary_10_7498_aps_69_20200405
crossref_primary_10_1016_j_optcom_2023_129320
crossref_primary_10_1007_s12633_023_02321_w
crossref_primary_10_1016_j_optmat_2021_111536
crossref_primary_10_1016_j_optcom_2022_128559
crossref_primary_10_1016_j_rinp_2020_103306
crossref_primary_10_1016_j_rinp_2021_104994
crossref_primary_10_1142_S0217984921504595
crossref_primary_10_3390_nano10030533
crossref_primary_10_1364_JOSAB_396266
crossref_primary_10_3389_fphy_2022_893791
crossref_primary_10_1063_5_0208762
crossref_primary_10_1016_j_rinp_2020_103795
crossref_primary_10_1016_j_solener_2020_05_030
crossref_primary_10_3390_photonics11050469
crossref_primary_10_1016_j_fmre_2024_11_008
crossref_primary_10_1039_D2CP04976G
crossref_primary_10_1088_1674_1056_ab888c
crossref_primary_10_3390_nano11040865
crossref_primary_10_1016_j_diamond_2021_108374
crossref_primary_10_1016_j_nanoen_2021_106089
crossref_primary_10_1016_j_optcom_2023_129278
crossref_primary_10_1364_JOSAB_435929
Cites_doi 10.1126/science.1102896
10.1103/PhysRevB.76.153410
10.1016/j.ijleo.2019.163173
10.1039/C6CP03731C
10.1016/j.rinp.2019.102777
10.1364/OE.21.009144
10.1016/j.rinp.2019.102463
10.1103/PhysRevLett.101.196405
10.1021/ja809418t
10.1016/j.physleta.2019.06.028
10.1007/BF03215423
10.1016/j.rinp.2019.102867
10.1016/j.optmat.2016.01.053
10.1088/0022-3727/47/40/405101
10.3390/nano10020207
10.1038/nnano.2014.215
10.1103/PhysRevLett.98.166802
10.1038/nmat3433
10.1021/nl404042h
10.1016/j.rinp.2019.102495
10.1109/JSTQE.2016.2615944
10.1103/PhysRevLett.78.1667
10.1364/OE.23.008888
10.1016/j.rinp.2019.102506
10.1016/j.rinp.2019.102711
10.3390/mi10070443
10.1063/1.4867028
10.1021/nl050127s
10.1209/0295-5075/104/37001
10.1103/PhysRevLett.108.047401
10.1364/OE.22.022743
10.1021/nl1033304
10.3390/nano10020257
10.1088/1402-4896/ab185f
10.1063/1.4707382
10.3390/nano10010095
10.1364/OME.9.003079
10.1186/s11671-016-1773-2
ContentType Journal Article
Copyright 2020 The Authors
Copyright_xml – notice: 2020 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rinp.2020.103012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2211-3797
ExternalDocumentID oai_doaj_org_article_1eab77b4d3b74428aee4e33417cc988c
10_1016_j_rinp_2020_103012
S2211379720301881
GroupedDBID --K
0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
SES
SSZ
XH2
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c410t-6234c89e7ea681e2d19b916d70b36cdbbbe70c1a6194fbf4194ce8a6e7b772a13
IEDL.DBID M48
ISSN 2211-3797
IngestDate Wed Aug 27 01:05:53 EDT 2025
Tue Jul 01 02:27:34 EDT 2025
Thu Apr 24 23:01:16 EDT 2025
Tue Jul 25 21:03:17 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Metamaterial absorber
Surface plasmon resonance
Graphene
Finite difference time domain
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-6234c89e7ea681e2d19b916d70b36cdbbbe70c1a6194fbf4194ce8a6e7b772a13
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211379720301881
ParticipantIDs doaj_primary_oai_doaj_org_article_1eab77b4d3b74428aee4e33417cc988c
crossref_citationtrail_10_1016_j_rinp_2020_103012
crossref_primary_10_1016_j_rinp_2020_103012
elsevier_sciencedirect_doi_10_1016_j_rinp_2020_103012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationTitle Results in physics
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Qi, Wang, Zhang, Liu, Hu, Bai (b0065) 2019; 15
Qi, Liu, Hu, Deng, Wang (b0140) 2019; 15
Wang, Zhu, Wen, Wu, Wu, Su (b0035) 2019; 9
Cen, Zhang, Chen, Yang, Yi, Yao (b0015) 2010; 117
Mak, Sfeir, Wu, Lui, Misewich, Heinz (b0100) 2008; 101
Yan, Zhang, Kim, Pinczuk (b0130) 2007; 98
Lee, Choi, Kim, Lee, Liu, Yin (b0165) 2012; 11
Li, Wu, Liu, Yu, Yu, Ye (b0205) 2017; 12
Chen, Wang, Tang, Ye, Yang, Zhang (b0080) 2020; 16
Thongrattanasiri, Koppens, De Abajo (b0120) 2012; 108
Cen, Chen, Xu, Jiang, Chen, Yi (b0160) 2020; 10
Li, Ma, Zhang, Song, Xu, Song (b0180) 2014; 47
Zhang, Feng, Zhu, Zhao, Jiang (b0135) 2014; 22
Andryieuski, Lavrinenko (b0170) 2013; 21
Xiao, Wang, Liu, Xu, Han, Yan (b0110) 2016; 18
Koppens, Mueller, Avouris, Ferrari, Vitiello, Polini (b0085) 2014; 9
Harutyunyan, Palomba, Renger, Quidant, Novotny (b0060) 2010; 10
Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos (b0005) 2004; 306
Rodríguez-Lorenzo, Alvarez-Puebla, Pastoriza-Santos, Mazzucco, Stéphan, Kociak (b0025) 2009; 131
Zhang, Cen, Liang, Yi, Chen, Li (b0155) 2019; 102422
Cheng, Mao, Wu, Wu, Gong (b0200) 2016; 53
Hunt (b0010) 1976; 9
Falkovsky, Pershoguba (b0125) 2007; 76
Huang, Niu, Yi, Chen, Zhou, Ye (b0210) 2019; 94
Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. In Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (2011); pp. 1-11.
Huang, Ye, Wang, Stakenborg, Lagae (b0195) 2012; 100
Li, Chen, Yang, Yi, Chen, Yao (b0050) 2020; 10
Kneipp, Wang, Kneipp, Perelman, Itzkan, Dasari (b0030) 1997; 78
Qin, Chen, Chen, Yi, Yao, Duan (b0020) 2020; 10
Wang, Qin, Yi, Chen, Zhou, Yang (b0040) 2019; 15
Li, Wang, Huang, Sun, Zhai, Li (b0150) 2013; 104
Yi, Liang, Chen, Zhou, Tang, Ye (b0175) 2019; 10
Cen, Yi, Zhang, Zhang, Liang, Chen (b0090) 2019; 14
Loo, Lowery, Halas, West, Drezek (b0045) 2005; 5
Liu, Fu, Wang, Yi, Xu, Yang (b0070) 2019; 196
Wang, Chen, Xu, Yi, Chen, Chen (b0095) 2020; 102951
Le, Ngo, Nguyen (b0185) 2016; 23
Ke, Wang, Huang, Long, Wang, Lu (b0105) 2015; 23
Cen, Zhang, Liang, Chen, Yi, Duan (b0145) 2019
Qi, Zhou, Zhang, Zhang, Wang, Liu (b0075) 2019; 14
Liu, Shao, Liu, Liu, Zhou, Hu (b0190) 2014; 104
Fang, Wang, Schlather, Liu, Ajayan, García de Abajo, Halas (b0115) 2013; 14
Liu (10.1016/j.rinp.2020.103012_b0070) 2019; 196
Novoselov (10.1016/j.rinp.2020.103012_b0005) 2004; 306
Fang (10.1016/j.rinp.2020.103012_b0115) 2013; 14
Chen (10.1016/j.rinp.2020.103012_b0080) 2020; 16
Qi (10.1016/j.rinp.2020.103012_b0065) 2019; 15
Koppens (10.1016/j.rinp.2020.103012_b0085) 2014; 9
Yan (10.1016/j.rinp.2020.103012_b0130) 2007; 98
Wang (10.1016/j.rinp.2020.103012_b0035) 2019; 9
Li (10.1016/j.rinp.2020.103012_b0150) 2013; 104
Qin (10.1016/j.rinp.2020.103012_b0020) 2020; 10
Kneipp (10.1016/j.rinp.2020.103012_b0030) 1997; 78
Le (10.1016/j.rinp.2020.103012_b0185) 2016; 23
Li (10.1016/j.rinp.2020.103012_b0050) 2020; 10
Cen (10.1016/j.rinp.2020.103012_b0090) 2019; 14
Xiao (10.1016/j.rinp.2020.103012_b0110) 2016; 18
Hunt (10.1016/j.rinp.2020.103012_b0010) 1976; 9
Qi (10.1016/j.rinp.2020.103012_b0075) 2019; 14
Mak (10.1016/j.rinp.2020.103012_b0100) 2008; 101
Andryieuski (10.1016/j.rinp.2020.103012_b0170) 2013; 21
Li (10.1016/j.rinp.2020.103012_b0205) 2017; 12
Thongrattanasiri (10.1016/j.rinp.2020.103012_b0120) 2012; 108
Cen (10.1016/j.rinp.2020.103012_b0145) 2019
Li (10.1016/j.rinp.2020.103012_b0180) 2014; 47
Falkovsky (10.1016/j.rinp.2020.103012_b0125) 2007; 76
Zhang (10.1016/j.rinp.2020.103012_b0135) 2014; 22
Huang (10.1016/j.rinp.2020.103012_b0195) 2012; 100
Yi (10.1016/j.rinp.2020.103012_b0175) 2019; 10
Cheng (10.1016/j.rinp.2020.103012_b0200) 2016; 53
Liu (10.1016/j.rinp.2020.103012_b0190) 2014; 104
Loo (10.1016/j.rinp.2020.103012_b0045) 2005; 5
Lee (10.1016/j.rinp.2020.103012_b0165) 2012; 11
Huang (10.1016/j.rinp.2020.103012_b0210) 2019; 94
Qi (10.1016/j.rinp.2020.103012_b0140) 2019; 15
Wang (10.1016/j.rinp.2020.103012_b0040) 2019; 15
Rodríguez-Lorenzo (10.1016/j.rinp.2020.103012_b0025) 2009; 131
Wang (10.1016/j.rinp.2020.103012_b0095) 2020; 102951
Cen (10.1016/j.rinp.2020.103012_b0015) 2010; 117
Zhang (10.1016/j.rinp.2020.103012_b0155) 2019; 102422
10.1016/j.rinp.2020.103012_b0055
Harutyunyan (10.1016/j.rinp.2020.103012_b0060) 2010; 10
Cen (10.1016/j.rinp.2020.103012_b0160) 2020; 10
Ke (10.1016/j.rinp.2020.103012_b0105) 2015; 23
References_xml – volume: 23
  start-page: 388
  year: 2016
  end-page: 393
  ident: b0185
  article-title: Nanostructured metal–insulator–metal metamaterials for refractive index biosensing applications: design, fabrication, and characterization
  publication-title: IEEE J Sel Top Quant Electron
– volume: 9
  start-page: 134
  year: 1976
  end-page: 139
  ident: b0010
  article-title: The true story of Purple of Cassius
  publication-title: Gold Bull
– volume: 23
  start-page: 8888
  year: 2015
  end-page: 8900
  ident: b0105
  article-title: Plasmonic absorption enhancement in periodic cross-shaped graphene arrays
  publication-title: Opt Express
– volume: 102422
  year: 2019
  ident: b0155
  article-title: Dual-band switchable terahertz metarmaterial absorber based on metal nanostructure
  publication-title: Results Phys
– volume: 16
  year: 2020
  ident: b0080
  article-title: Substrates for surface-enhanced Raman spectroscopy based on TiN plasmonic antennas and waveguide platforms
  publication-title: Results Phys
– volume: 131
  start-page: 4616
  year: 2009
  end-page: 4618
  ident: b0025
  article-title: García de Abajo FJ. Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering
  publication-title: J Am Chem Soc
– volume: 102951
  year: 2020
  ident: b0095
  article-title: Triple-band perfect metamaterial absorber with good operating angle polarization tolerance based on split ring arrays
  publication-title: Results Phys
– volume: 101
  year: 2008
  ident: b0100
  article-title: Measurement of the optical conductivity of graphene
  publication-title: Phys Rev Lett
– reference: Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. In Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (2011); pp. 1-11.
– volume: 15
  year: 2019
  ident: b0040
  article-title: Effect of slit width on surface plasmon resonance
  publication-title: Results Phys
– volume: 104
  start-page: 37001
  year: 2013
  ident: b0150
  article-title: Mid-infrared, plasmonic switches and directional couplers induced by graphene sheets coupling system
  publication-title: EPL (Europhysics Letters)
– volume: 11
  start-page: 936
  year: 2012
  ident: b0165
  article-title: Switching terahertz waves with gate-controlled active graphene metamaterials
  publication-title: Nat Mater
– volume: 10
  start-page: 5076
  year: 2010
  end-page: 5079
  ident: b0060
  article-title: Nonlinear dark-field microscopy
  publication-title: Nano Lett
– volume: 53
  start-page: 195
  year: 2016
  end-page: 200
  ident: b0200
  article-title: Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing
  publication-title: Opt Mater
– volume: 100
  year: 2012
  ident: b0195
  article-title: Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection
  publication-title: Appl Phys Lett
– volume: 15
  year: 2019
  ident: b0065
  article-title: A theoretical study of optically enhanced transmission characteristics of subwavelength metal Y-shaped arrays and its application on refractive index sensor
  publication-title: Results Phys
– volume: 15
  year: 2019
  ident: b0140
  article-title: Tunable plasmonic absorber in THz-band range based on graphene “arrow” shaped metamaterial
  publication-title: Results Phys
– volume: 76
  year: 2007
  ident: b0125
  article-title: Optical far-infrared properties of a graphene monolayer and multilayer
  publication-title: Phys Rev B
– volume: 10
  start-page: 443
  year: 2019
  ident: b0175
  article-title: Dual-band plasmonic perfect absorber based on graphene metamaterials for refractive index sensing application
  publication-title: Micromachines
– volume: 94
  year: 2019
  ident: b0210
  article-title: High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials
  publication-title: Phys Scr
– volume: 9
  start-page: 780
  year: 2014
  ident: b0085
  article-title: Photodetectors based on graphene, other two-dimensional materials and hybrid systems
  publication-title: Nat Nanotechnol
– year: 2019
  ident: b0145
  article-title: Numerical investigation of a tunable metamaterial perfect absorber consisting of two-intersecting graphene nanoring arrays
  publication-title: Phys Lett A
– volume: 22
  start-page: 22743
  year: 2014
  end-page: 22752
  ident: b0135
  article-title: Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency
  publication-title: Opt Express
– volume: 108
  year: 2012
  ident: b0120
  article-title: Complete optical absorption in periodically patterned graphene
  publication-title: Phys Rev Lett
– volume: 98
  year: 2007
  ident: b0130
  article-title: Electric field effect tuning of electron-phonon coupling in graphene
  publication-title: Phys Rev Lett
– volume: 10
  start-page: 207
  year: 2020
  ident: b0020
  article-title: A tunable triple-band near-infrared metamaterial absorber based on au nano-cuboids array
  publication-title: Nanomaterials
– volume: 78
  start-page: 1667
  year: 1997
  ident: b0030
  article-title: Single molecule detection using surface-enhanced Raman scattering (SERS)
  publication-title: Phys Rev Lett
– volume: 14
  year: 2019
  ident: b0090
  article-title: Theoretical design of a triple-band perfect metamaterial absorber in the THz frequency range
  publication-title: Results Phys
– volume: 21
  start-page: 9144
  year: 2013
  end-page: 9155
  ident: b0170
  article-title: Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach
  publication-title: Opt Express
– volume: 10
  start-page: 95
  year: 2020
  ident: b0160
  article-title: High quality factor, high sensitivity metamaterial graphene—perfect absorber based on critical coupling theory and impedance matching
  publication-title: Nanomaterials
– volume: 47
  year: 2014
  ident: b0180
  article-title: Sensitive refractive index sensing with tunable sensing range and good operation angle-polarization-tolerance using graphene concentric ring arrays
  publication-title: J Phys D Appl Phys
– volume: 104
  year: 2014
  ident: b0190
  article-title: λ 3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing
  publication-title: Appl Phys Lett
– volume: 117
  year: 2010
  ident: b0015
  article-title: A dual-band metamaterial absorber for graphene surface plasmon resonance at terahertz frequency
  publication-title: Phys E
– volume: 10
  start-page: 257
  year: 2020
  ident: b0050
  article-title: Tunable broadband solar energy absorber based on monolayer transition metal dichalcogenides materials using au nanocubes
  publication-title: Nanomaterials
– volume: 196
  year: 2019
  ident: b0070
  article-title: Ex-centric core photonic crystal fiber sensor with gold nanowires based on surface plasmon resonance
  publication-title: Optik
– volume: 306
  start-page: 666
  year: 2004
  end-page: 669
  ident: b0005
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
– volume: 5
  start-page: 709
  year: 2005
  end-page: 711
  ident: b0045
  article-title: Immunotargeted nanoshells for integrated cancer imaging and therapy
  publication-title: Nano Lett
– volume: 14
  start-page: 299
  year: 2013
  end-page: 304
  ident: b0115
  article-title: Active tunable absorption enhancement with graphene nanodisk arrays
  publication-title: Nano Lett
– volume: 14
  year: 2019
  ident: b0075
  article-title: Theoretical study of a multichannel plasmonic waveguide notch filter with double-sided nanodisk and two slot cavities
  publication-title: Results Phys
– volume: 18
  start-page: 26661
  year: 2016
  end-page: 26669
  ident: b0110
  article-title: Tunable light trapping and absorption enhancement with graphene ring arrays
  publication-title: PCCP
– volume: 9
  start-page: 3079
  year: 2019
  end-page: 3088
  ident: b0035
  article-title: Wide range refractive index sensor based on a coupled structure of Au nanocubes and Au film
  publication-title: Opt. Mater. Express
– volume: 12
  start-page: 1
  year: 2017
  ident: b0205
  article-title: Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating
  publication-title: Nanoscale Res Lett
– volume: 102951
  year: 2020
  ident: 10.1016/j.rinp.2020.103012_b0095
  article-title: Triple-band perfect metamaterial absorber with good operating angle polarization tolerance based on split ring arrays
  publication-title: Results Phys
– volume: 306
  start-page: 666
  issue: 5696
  year: 2004
  ident: 10.1016/j.rinp.2020.103012_b0005
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 76
  issue: 15
  year: 2007
  ident: 10.1016/j.rinp.2020.103012_b0125
  article-title: Optical far-infrared properties of a graphene monolayer and multilayer
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.76.153410
– volume: 196
  year: 2019
  ident: 10.1016/j.rinp.2020.103012_b0070
  article-title: Ex-centric core photonic crystal fiber sensor with gold nanowires based on surface plasmon resonance
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.163173
– volume: 18
  start-page: 26661
  issue: 38
  year: 2016
  ident: 10.1016/j.rinp.2020.103012_b0110
  article-title: Tunable light trapping and absorption enhancement with graphene ring arrays
  publication-title: PCCP
  doi: 10.1039/C6CP03731C
– volume: 15
  year: 2019
  ident: 10.1016/j.rinp.2020.103012_b0140
  article-title: Tunable plasmonic absorber in THz-band range based on graphene “arrow” shaped metamaterial
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2019.102777
– ident: 10.1016/j.rinp.2020.103012_b0055
– volume: 21
  start-page: 9144
  issue: 7
  year: 2013
  ident: 10.1016/j.rinp.2020.103012_b0170
  article-title: Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach
  publication-title: Opt Express
  doi: 10.1364/OE.21.009144
– volume: 14
  year: 2019
  ident: 10.1016/j.rinp.2020.103012_b0090
  article-title: Theoretical design of a triple-band perfect metamaterial absorber in the THz frequency range
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2019.102463
– volume: 101
  issue: 19
  year: 2008
  ident: 10.1016/j.rinp.2020.103012_b0100
  article-title: Measurement of the optical conductivity of graphene
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.101.196405
– volume: 131
  start-page: 4616
  issue: 13
  year: 2009
  ident: 10.1016/j.rinp.2020.103012_b0025
  article-title: García de Abajo FJ. Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering
  publication-title: J Am Chem Soc
  doi: 10.1021/ja809418t
– year: 2019
  ident: 10.1016/j.rinp.2020.103012_b0145
  article-title: Numerical investigation of a tunable metamaterial perfect absorber consisting of two-intersecting graphene nanoring arrays
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2019.06.028
– volume: 9
  start-page: 134
  issue: 4
  year: 1976
  ident: 10.1016/j.rinp.2020.103012_b0010
  article-title: The true story of Purple of Cassius
  publication-title: Gold Bull
  doi: 10.1007/BF03215423
– volume: 16
  year: 2020
  ident: 10.1016/j.rinp.2020.103012_b0080
  article-title: Substrates for surface-enhanced Raman spectroscopy based on TiN plasmonic antennas and waveguide platforms
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2019.102867
– volume: 53
  start-page: 195
  year: 2016
  ident: 10.1016/j.rinp.2020.103012_b0200
  article-title: Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing
  publication-title: Opt Mater
  doi: 10.1016/j.optmat.2016.01.053
– volume: 47
  issue: 40
  year: 2014
  ident: 10.1016/j.rinp.2020.103012_b0180
  article-title: Sensitive refractive index sensing with tunable sensing range and good operation angle-polarization-tolerance using graphene concentric ring arrays
  publication-title: J Phys D Appl Phys
  doi: 10.1088/0022-3727/47/40/405101
– volume: 117
  year: 2010
  ident: 10.1016/j.rinp.2020.103012_b0015
  article-title: A dual-band metamaterial absorber for graphene surface plasmon resonance at terahertz frequency
  publication-title: Phys E
– volume: 10
  start-page: 207
  issue: 2
  year: 2020
  ident: 10.1016/j.rinp.2020.103012_b0020
  article-title: A tunable triple-band near-infrared metamaterial absorber based on au nano-cuboids array
  publication-title: Nanomaterials
  doi: 10.3390/nano10020207
– volume: 9
  start-page: 780
  issue: 10
  year: 2014
  ident: 10.1016/j.rinp.2020.103012_b0085
  article-title: Photodetectors based on graphene, other two-dimensional materials and hybrid systems
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2014.215
– volume: 98
  issue: 16
  year: 2007
  ident: 10.1016/j.rinp.2020.103012_b0130
  article-title: Electric field effect tuning of electron-phonon coupling in graphene
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.98.166802
– volume: 11
  start-page: 936
  issue: 11
  year: 2012
  ident: 10.1016/j.rinp.2020.103012_b0165
  article-title: Switching terahertz waves with gate-controlled active graphene metamaterials
  publication-title: Nat Mater
  doi: 10.1038/nmat3433
– volume: 14
  start-page: 299
  issue: 1
  year: 2013
  ident: 10.1016/j.rinp.2020.103012_b0115
  article-title: Active tunable absorption enhancement with graphene nanodisk arrays
  publication-title: Nano Lett
  doi: 10.1021/nl404042h
– volume: 15
  year: 2019
  ident: 10.1016/j.rinp.2020.103012_b0065
  article-title: A theoretical study of optically enhanced transmission characteristics of subwavelength metal Y-shaped arrays and its application on refractive index sensor
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2019.102495
– volume: 23
  start-page: 388
  issue: 2
  year: 2016
  ident: 10.1016/j.rinp.2020.103012_b0185
  article-title: Nanostructured metal–insulator–metal metamaterials for refractive index biosensing applications: design, fabrication, and characterization
  publication-title: IEEE J Sel Top Quant Electron
  doi: 10.1109/JSTQE.2016.2615944
– volume: 78
  start-page: 1667
  issue: 9
  year: 1997
  ident: 10.1016/j.rinp.2020.103012_b0030
  article-title: Single molecule detection using surface-enhanced Raman scattering (SERS)
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.78.1667
– volume: 23
  start-page: 8888
  issue: 7
  year: 2015
  ident: 10.1016/j.rinp.2020.103012_b0105
  article-title: Plasmonic absorption enhancement in periodic cross-shaped graphene arrays
  publication-title: Opt Express
  doi: 10.1364/OE.23.008888
– volume: 14
  year: 2019
  ident: 10.1016/j.rinp.2020.103012_b0075
  article-title: Theoretical study of a multichannel plasmonic waveguide notch filter with double-sided nanodisk and two slot cavities
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2019.102506
– volume: 15
  year: 2019
  ident: 10.1016/j.rinp.2020.103012_b0040
  article-title: Effect of slit width on surface plasmon resonance
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2019.102711
– volume: 10
  start-page: 443
  issue: 7
  year: 2019
  ident: 10.1016/j.rinp.2020.103012_b0175
  article-title: Dual-band plasmonic perfect absorber based on graphene metamaterials for refractive index sensing application
  publication-title: Micromachines
  doi: 10.3390/mi10070443
– volume: 104
  issue: 8
  year: 2014
  ident: 10.1016/j.rinp.2020.103012_b0190
  article-title: λ 3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4867028
– volume: 5
  start-page: 709
  issue: 4
  year: 2005
  ident: 10.1016/j.rinp.2020.103012_b0045
  article-title: Immunotargeted nanoshells for integrated cancer imaging and therapy
  publication-title: Nano Lett
  doi: 10.1021/nl050127s
– volume: 104
  start-page: 37001
  issue: 3
  year: 2013
  ident: 10.1016/j.rinp.2020.103012_b0150
  article-title: Mid-infrared, plasmonic switches and directional couplers induced by graphene sheets coupling system
  publication-title: EPL (Europhysics Letters)
  doi: 10.1209/0295-5075/104/37001
– volume: 108
  issue: 4
  year: 2012
  ident: 10.1016/j.rinp.2020.103012_b0120
  article-title: Complete optical absorption in periodically patterned graphene
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.108.047401
– volume: 22
  start-page: 22743
  issue: 19
  year: 2014
  ident: 10.1016/j.rinp.2020.103012_b0135
  article-title: Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency
  publication-title: Opt Express
  doi: 10.1364/OE.22.022743
– volume: 10
  start-page: 5076
  issue: 12
  year: 2010
  ident: 10.1016/j.rinp.2020.103012_b0060
  article-title: Nonlinear dark-field microscopy
  publication-title: Nano Lett
  doi: 10.1021/nl1033304
– volume: 10
  start-page: 257
  issue: 2
  year: 2020
  ident: 10.1016/j.rinp.2020.103012_b0050
  article-title: Tunable broadband solar energy absorber based on monolayer transition metal dichalcogenides materials using au nanocubes
  publication-title: Nanomaterials
  doi: 10.3390/nano10020257
– volume: 102422
  year: 2019
  ident: 10.1016/j.rinp.2020.103012_b0155
  article-title: Dual-band switchable terahertz metarmaterial absorber based on metal nanostructure
  publication-title: Results Phys
– volume: 94
  issue: 8
  year: 2019
  ident: 10.1016/j.rinp.2020.103012_b0210
  article-title: High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials
  publication-title: Phys Scr
  doi: 10.1088/1402-4896/ab185f
– volume: 100
  issue: 17
  year: 2012
  ident: 10.1016/j.rinp.2020.103012_b0195
  article-title: Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4707382
– volume: 10
  start-page: 95
  issue: 1
  year: 2020
  ident: 10.1016/j.rinp.2020.103012_b0160
  article-title: High quality factor, high sensitivity metamaterial graphene—perfect absorber based on critical coupling theory and impedance matching
  publication-title: Nanomaterials
  doi: 10.3390/nano10010095
– volume: 9
  start-page: 3079
  issue: 7
  year: 2019
  ident: 10.1016/j.rinp.2020.103012_b0035
  article-title: Wide range refractive index sensor based on a coupled structure of Au nanocubes and Au film
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.9.003079
– volume: 12
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.rinp.2020.103012_b0205
  article-title: Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating
  publication-title: Nanoscale Res Lett
  doi: 10.1186/s11671-016-1773-2
SSID ssj0001645511
Score 2.45041
Snippet •Altering Fermi level from 0.2 eV to 0.8 eV, the maximum absorption increases from 10.7% to 49.2%, improved by nearly 5 times, and experiences blueshifts. The...
In this paper, we demonstrate a tunable absorber composed of periodically patterned elliptical ring graphene metamaterial arrays. An absorption peak at 53.6μm...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 103012
SubjectTerms Finite difference time domain
Graphene
Metamaterial absorber
Surface plasmon resonance
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8UwDC8iCF7ET3x-0YM3Ga5dt3ZHFUUEPSl4G_3IQNH3ZJuCXvzXTbo9mRe9eBqMri1JaH7Jkl8ZOzRa-sKmGJZkMksUAuTEiNokpnaqdGkthKVG4eub4vJOXd3n96OrvqgmrKcH7gV3LMA6rZ0KmdMKsbIFUJDh2au9L43xdPqizxsFUzG7UiiEAhRtSUk8fbrUQ8dMX9zVPEyJrFLGpvNUyB9eKZL3j5zTyOFcrLKVASnyk36Ha2wBputsKVZs-naDfZ7w7jU2PnFqIkbRdx_8GTqLEDRaFbeunTUOGk5l47MWAp_VnPg3X2L-mlNGj0fCajzvuG0a-95yysty3F9snnoDHtkUeUtl7jh69Lt7k91dnN-eXSbDbQqJVyLtEsQ5ypsSNNjCCJBBlA6xYdCpywofnHOgUy8spTVqVyt8eDC2AI3yl1ZkW2xxOpvCNuOoxSxPncsNRiOhCFaHgCqReQ25DSAnTMylWfmBapxuvHiq5jVljxVpoCINVL0GJuzo-5uXnmjj19GnpKTvkUSSHV-g6VSD6VR_mc6E5XMVVwPe6HEETvXwy-I7_7H4LlumKftytj222DWvsI_4pnMH0ZS_AFPn-Rk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier Free Content
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-UwEA8iCF5kdVd86wc57G0pr2nSJj2qKLKgFxXereRjKk92Xx9tFXYv_uvOpH36vHjYU2mYtENmmMxM5jdh7IfRmS9simGJzGSi0EFOjKhNYmqnSpfWQlgCCl_fFFf36tcsn22w8xUWhsoqR9s_2PRorceR6bia0-V8Pr3NMHaRuqRzxFSYCL-WykQQ3-zsPc9SKHQKKO4i-oQmjNiZocyrnS-obWUW4eepyD7sT7GN_9o2tbb1XH5hO6PPyE8HtnbZBiz22Fas3fTdV_ZyyvunCIHiBCdGIfT_-B_oLTqjUb-4dV3TOmg5FZA3HQTe1Jw6cS5jJptTbo_H1tVo-bhtW_u345Sh5chfhFE9A499FXlHBe9IvXbw_Y3dX17cnV8l470KiVci7RP0eJQ3JWiwhRGQBVE69BKDTp0sfHDOgU69sJTgqF2t8OHB2AK0Q1_cCrnPNhfNAg4YR3nKPHUuNxiXhCJYHYKUaAdqyG2AbMLEajUrPzYdp7svfler6rLHiiRQkQSqQQIT9vNtznJoufEp9RkJ6Y2S2mXHgaZ9qEZ9qQRYZN2pIJ1WGHBZAAXIp9Del8b4CctXIq4-aB9-av7Jz7__57xDtk1vQy3bEdvs2yc4RuemdydRe18BUm_40Q
  priority: 102
  providerName: Elsevier
Title A tunable terahertz metamaterial absorber composed of elliptical ring graphene arrays with refractive index sensing application
URI https://dx.doi.org/10.1016/j.rinp.2020.103012
https://doaj.org/article/1eab77b4d3b74428aee4e33417cc988c
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS91AEF9EEbwUrYqvrY899CaRbLLJbg5FfKLYgj354N3CfkxE0RebxKK9-K93ZpOnryBCLwkJm2TY2Y_fTGZ-w9hXrRKXmxjNkjRJI4kAOdKi0pGurCxsXAlhKFH44md-PpU_ZtlshS3KHQ0d2L5p2lE9qWlze_j46-kIJ_y311it5npO3JNJyCGPqejwGu5MiibqxQD3g88llwgQyAZLEmLvU4Ua8mjefs0_e1Wg9F_aspa2obNN9mHAj_y4V_gWW4H5R7Ye4jhdu82ej3n3ENKhOKUWo0K6P_wOOoPANIw1bmxbNxYaTsHkdQue1xUnVs774NXm5OfjgcYaV0FumsY8tZy8tRzlCylVv4EHjkXeUvA7tl76Cb7Dpmenlyfn0VBjIXJSxF2E6Ec6XYACk2sBiReFRcToVWzT3HlrLajYCUPOjspWEk8OtMlBWcTlRqS7bHVez2GPcdRtmsXWZhptFJ97o7xPU1wTKsiMh2TExKI3SzcQkFMdjNtyEWl2U5IGStJA2WtgxA5enrnv6TfebT0hJb20JOrscKNursphJpYCDIpupU-tkmh8GQAJKKdQzhVauxHLFiouBxTSowt81fU7H__0X6J-Zht01UezfWGrXfMA-whvOjsObgE8fp9NxmH8_gWUjPqU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQXxFMsTx-4oWjj2ImdY1tRbaHthVbam-XHBC0qm1WSIsGFv86Mky3bSw-cIjmeZOQZjb8Zz4wZ-2B0ESqXo1siC5kpBMiZEY3JTONV7fNGCEeFwmfn1eJSfV6Wyz12tK2FobTKyfaPNj1Z62lkPq3mfLNazb8W6LtIXdM5Yi4MlV_fQzSg6f6Gk-Xhv0BLpRAVkONFBBlRTMUzY55Xt1pT38oi1Z_nori1QaU-_jv71M7ec_yYPZpAIz8Y-XrC9mD9lN1PyZuhf8b-HPDhOtVAcaonRikMv_kPGByi0aRg3Pm-7Tx0nDLI2x4ibxtOrTg3KZTNKbjHU-9qNH3cdZ371XMK0XLkL9VR_QSeGivynjLecfbOyfdzdnn86eJokU0XK2RBiXzIEPKoYGrQ4CojoIii9ggTo869rEL03oPOg3AU4Wh8o_ARwLgKtEcw7oR8wfbX7RpeMo4ClWXufWnQMYlVdDpGKdEQNFC6CMWMie1q2jB1HafLL67sNr3suyUJWJKAHSUwYx9vaDZjz407Zx-SkG5mUr_sNNB23-ykMFaAQ9a9itJrhR6XA1CAfAodQm1MmLFyK2J7S_3wU6s7fv7qP-nesweLi7NTe3py_uU1e0hvxsS2N2x_6K7hLSKdwb9LmvwX1or78A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+tunable+terahertz+metamaterial+absorber+composed+of+elliptical+ring+graphene+arrays+with+refractive+index+sensing+application&rft.jtitle=Results+in+physics&rft.au=Qi%2C+Yunping&rft.au=Zhang%2C+Yu&rft.au=Liu%2C+Chuqin&rft.au=Zhang%2C+Ting&rft.date=2020-03-01&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=16&rft.spage=103012&rft_id=info:doi/10.1016%2Fj.rinp.2020.103012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rinp_2020_103012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon