A tunable terahertz metamaterial absorber composed of elliptical ring graphene arrays with refractive index sensing application
•Altering Fermi level from 0.2 eV to 0.8 eV, the maximum absorption increases from 10.7% to 49.2%, improved by nearly 5 times, and experiences blueshifts. The maximum absorption is a remarkable high result compared to previous studies.•The variation of incident angle is sensitive to maximum absorpti...
Saved in:
Published in | Results in physics Vol. 16; p. 103012 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Altering Fermi level from 0.2 eV to 0.8 eV, the maximum absorption increases from 10.7% to 49.2%, improved by nearly 5 times, and experiences blueshifts. The maximum absorption is a remarkable high result compared to previous studies.•The variation of incident angle is sensitive to maximum absorption, but insensitive to the resonant wavelength.•For the bilayer graphene structure, the maximum absorption even higher, which has achieved 49.6%, and has a tunable dual-band selective absorption.•This paper also changes the surrounding refractive index to better evaluate the sensing performance of the monolayer structure, producing a structure with the sensitivity up to 14110 nm/RIU.
In this paper, we demonstrate a tunable absorber composed of periodically patterned elliptical ring graphene metamaterial arrays. An absorption peak at 53.6μm with the maximum absorption of 49.2% of pure graphene layer has been realized. The effects of different parameters are studied by the Finite Difference Time Domain (FDTD) method. Besides, we simulate the spectra as the surrounding refractive index changes to better evaluate the sensing performance of the structure, producing a structure with the sensitivity up to 14110 nm/RIU. Finally, this paper also analyzes the absorption characteristics of bilayer graphene structure, and has a tunable dual-band selective absorption effect with a maximum absorption of 49.6%. Based on the research, it is more convenient to design the graphene-based optoelectronic devices, biosensor and environmental monitor. |
---|---|
AbstractList | •Altering Fermi level from 0.2 eV to 0.8 eV, the maximum absorption increases from 10.7% to 49.2%, improved by nearly 5 times, and experiences blueshifts. The maximum absorption is a remarkable high result compared to previous studies.•The variation of incident angle is sensitive to maximum absorption, but insensitive to the resonant wavelength.•For the bilayer graphene structure, the maximum absorption even higher, which has achieved 49.6%, and has a tunable dual-band selective absorption.•This paper also changes the surrounding refractive index to better evaluate the sensing performance of the monolayer structure, producing a structure with the sensitivity up to 14110 nm/RIU.
In this paper, we demonstrate a tunable absorber composed of periodically patterned elliptical ring graphene metamaterial arrays. An absorption peak at 53.6μm with the maximum absorption of 49.2% of pure graphene layer has been realized. The effects of different parameters are studied by the Finite Difference Time Domain (FDTD) method. Besides, we simulate the spectra as the surrounding refractive index changes to better evaluate the sensing performance of the structure, producing a structure with the sensitivity up to 14110 nm/RIU. Finally, this paper also analyzes the absorption characteristics of bilayer graphene structure, and has a tunable dual-band selective absorption effect with a maximum absorption of 49.6%. Based on the research, it is more convenient to design the graphene-based optoelectronic devices, biosensor and environmental monitor. In this paper, we demonstrate a tunable absorber composed of periodically patterned elliptical ring graphene metamaterial arrays. An absorption peak at 53.6μm with the maximum absorption of 49.2% of pure graphene layer has been realized. The effects of different parameters are studied by the Finite Difference Time Domain (FDTD) method. Besides, we simulate the spectra as the surrounding refractive index changes to better evaluate the sensing performance of the structure, producing a structure with the sensitivity up to 14110 nm/RIU. Finally, this paper also analyzes the absorption characteristics of bilayer graphene structure, and has a tunable dual-band selective absorption effect with a maximum absorption of 49.6%. Based on the research, it is more convenient to design the graphene-based optoelectronic devices, biosensor and environmental monitor. |
ArticleNumber | 103012 |
Author | Qi, Yunping Zhang, Ting Zhang, Baohe Wang, Xiangxian Zhang, Yu Wang, Liyuan Liu, Chuqin Deng, Xiangyu Bai, Yulong |
Author_xml | – sequence: 1 givenname: Yunping surname: Qi fullname: Qi, Yunping email: qiyunping@nwnu.edu.cn organization: College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China – sequence: 2 givenname: Yu surname: Zhang fullname: Zhang, Yu email: yuzhang8002@163.com organization: College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China – sequence: 3 givenname: Chuqin surname: Liu fullname: Liu, Chuqin organization: College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China – sequence: 4 givenname: Ting surname: Zhang fullname: Zhang, Ting organization: College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China – sequence: 5 givenname: Baohe surname: Zhang fullname: Zhang, Baohe organization: College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China – sequence: 6 givenname: Liyuan surname: Wang fullname: Wang, Liyuan organization: College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China – sequence: 7 givenname: Xiangyu surname: Deng fullname: Deng, Xiangyu organization: College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China – sequence: 8 givenname: Yulong surname: Bai fullname: Bai, Yulong organization: College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China – sequence: 9 givenname: Xiangxian surname: Wang fullname: Wang, Xiangxian organization: School of Science, Lanzhou University of Technology, Lanzhou 730050, China |
BookMark | eNp9kc9u1DAQxiNUJErpC3DyC-zicdw4kbhUFX8qVeICZ2vsTHa9ytrR2BTKhVev0wUJcehp7LF_3_jz97o5iylS07wFuQUJ3bvDlkNctkqqtdFKUC-ac6UANq0ZzNk_61fNZc4HKSulr64Azpvf16J8j-hmEoUY98TllzhSwSPWfcBZoMuJHbHw6bikTKNIk6B5DksJvp7X2TuxY1z2FEkgMz5k8SOUvWCaGH0J9yRCHOmnyBTzehuXZa5sCSm-aV5OOGe6_FMvmm8fP3y9-by5-_Lp9ub6buM1yLLpVKt9P5Ah7HogNcLgBuhGI13b-dE5R0Z6wA4GPblJ1-Kpx46MM0YhtBfN7Ul3THiwC4cj8oNNGOxTI_HOIldDM1kgrJDTY-uM1qpHIk1tq8F4P_S9r1r9Sctzyrm6tD6UJzeFMcwWpF1zsQe75mLXXOwpl4qq_9C_T3kWen-CqH7QfSC22QeKnsbA5Et1EJ7DHwFrQaxP |
CitedBy_id | crossref_primary_10_1007_s42114_023_00679_4 crossref_primary_10_3390_photonics10030295 crossref_primary_10_1016_j_aej_2022_07_051 crossref_primary_10_3390_photonics8050164 crossref_primary_10_1016_j_matdes_2022_110920 crossref_primary_10_1016_j_matpr_2023_05_636 crossref_primary_10_3390_nano11092172 crossref_primary_10_1364_OPTCON_454402 crossref_primary_10_1109_JSEN_2022_3190414 crossref_primary_10_1364_AO_475861 crossref_primary_10_1209_0295_5075_135_27001 crossref_primary_10_3389_fphy_2022_990126 crossref_primary_10_1088_1402_4896_aca5c3 crossref_primary_10_1109_ACCESS_2020_3004127 crossref_primary_10_3788_CJL220767 crossref_primary_10_1007_s11468_025_02791_1 crossref_primary_10_1016_j_rinp_2023_106518 crossref_primary_10_1063_5_0089686 crossref_primary_10_7498_aps_72_20230989 crossref_primary_10_1016_j_rinp_2023_106599 crossref_primary_10_1016_j_optmat_2021_111958 crossref_primary_10_1016_j_rinp_2020_103567 crossref_primary_10_1007_s11468_021_01557_9 crossref_primary_10_1088_1674_1056_abd690 crossref_primary_10_1002_adma_202202509 crossref_primary_10_3390_mi11030309 crossref_primary_10_1007_s10762_024_01020_w crossref_primary_10_1016_j_physleta_2020_126544 crossref_primary_10_1016_j_renene_2020_05_142 crossref_primary_10_1088_2053_1591_ad7922 crossref_primary_10_1016_j_optcom_2024_130455 crossref_primary_10_1016_j_physe_2020_114526 crossref_primary_10_3390_nano14040378 crossref_primary_10_3390_photonics9100770 crossref_primary_10_1364_AO_508021 crossref_primary_10_1016_j_physe_2021_114750 crossref_primary_10_1016_j_rinp_2021_104404 crossref_primary_10_1007_s10853_022_08040_8 crossref_primary_10_1109_TIM_2023_3318676 crossref_primary_10_1016_j_rinp_2020_103134 crossref_primary_10_1364_OE_469962 crossref_primary_10_1007_s11468_023_02152_w crossref_primary_10_1016_j_rinp_2021_104001 crossref_primary_10_1016_j_physe_2022_115142 crossref_primary_10_1016_j_optmat_2021_111906 crossref_primary_10_1016_j_rinp_2020_103415 crossref_primary_10_3390_nano11010063 crossref_primary_10_1016_j_diamond_2021_108393 crossref_primary_10_1016_j_optcom_2023_129732 crossref_primary_10_1016_j_rinp_2021_104447 crossref_primary_10_1080_09205071_2021_1958382 crossref_primary_10_1088_1361_6463_ad3bbf crossref_primary_10_1002_adom_202101008 crossref_primary_10_1109_JLT_2024_3373450 crossref_primary_10_1364_AO_509461 crossref_primary_10_1109_JPHOT_2024_3392641 crossref_primary_10_1007_s11082_020_02360_2 crossref_primary_10_1016_j_optcom_2022_128993 crossref_primary_10_7498_aps_70_20211752 crossref_primary_10_1016_j_spmi_2020_106786 crossref_primary_10_7498_aps_69_20200405 crossref_primary_10_1016_j_optcom_2023_129320 crossref_primary_10_1007_s12633_023_02321_w crossref_primary_10_1016_j_optmat_2021_111536 crossref_primary_10_1016_j_optcom_2022_128559 crossref_primary_10_1016_j_rinp_2020_103306 crossref_primary_10_1016_j_rinp_2021_104994 crossref_primary_10_1142_S0217984921504595 crossref_primary_10_3390_nano10030533 crossref_primary_10_1364_JOSAB_396266 crossref_primary_10_3389_fphy_2022_893791 crossref_primary_10_1063_5_0208762 crossref_primary_10_1016_j_rinp_2020_103795 crossref_primary_10_1016_j_solener_2020_05_030 crossref_primary_10_3390_photonics11050469 crossref_primary_10_1016_j_fmre_2024_11_008 crossref_primary_10_1039_D2CP04976G crossref_primary_10_1088_1674_1056_ab888c crossref_primary_10_3390_nano11040865 crossref_primary_10_1016_j_diamond_2021_108374 crossref_primary_10_1016_j_nanoen_2021_106089 crossref_primary_10_1016_j_optcom_2023_129278 crossref_primary_10_1364_JOSAB_435929 |
Cites_doi | 10.1126/science.1102896 10.1103/PhysRevB.76.153410 10.1016/j.ijleo.2019.163173 10.1039/C6CP03731C 10.1016/j.rinp.2019.102777 10.1364/OE.21.009144 10.1016/j.rinp.2019.102463 10.1103/PhysRevLett.101.196405 10.1021/ja809418t 10.1016/j.physleta.2019.06.028 10.1007/BF03215423 10.1016/j.rinp.2019.102867 10.1016/j.optmat.2016.01.053 10.1088/0022-3727/47/40/405101 10.3390/nano10020207 10.1038/nnano.2014.215 10.1103/PhysRevLett.98.166802 10.1038/nmat3433 10.1021/nl404042h 10.1016/j.rinp.2019.102495 10.1109/JSTQE.2016.2615944 10.1103/PhysRevLett.78.1667 10.1364/OE.23.008888 10.1016/j.rinp.2019.102506 10.1016/j.rinp.2019.102711 10.3390/mi10070443 10.1063/1.4867028 10.1021/nl050127s 10.1209/0295-5075/104/37001 10.1103/PhysRevLett.108.047401 10.1364/OE.22.022743 10.1021/nl1033304 10.3390/nano10020257 10.1088/1402-4896/ab185f 10.1063/1.4707382 10.3390/nano10010095 10.1364/OME.9.003079 10.1186/s11671-016-1773-2 |
ContentType | Journal Article |
Copyright | 2020 The Authors |
Copyright_xml | – notice: 2020 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rinp.2020.103012 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2211-3797 |
ExternalDocumentID | oai_doaj_org_article_1eab77b4d3b74428aee4e33417cc988c 10_1016_j_rinp_2020_103012 S2211379720301881 |
GroupedDBID | --K 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M48 M~E NCXOZ O-L O9- OK1 RIG ROL SES SSZ XH2 AAFWJ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPKN AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c410t-6234c89e7ea681e2d19b916d70b36cdbbbe70c1a6194fbf4194ce8a6e7b772a13 |
IEDL.DBID | M48 |
ISSN | 2211-3797 |
IngestDate | Wed Aug 27 01:05:53 EDT 2025 Tue Jul 01 02:27:34 EDT 2025 Thu Apr 24 23:01:16 EDT 2025 Tue Jul 25 21:03:17 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Metamaterial absorber Surface plasmon resonance Graphene Finite difference time domain |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-6234c89e7ea681e2d19b916d70b36cdbbbe70c1a6194fbf4194ce8a6e7b772a13 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211379720301881 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1eab77b4d3b74428aee4e33417cc988c crossref_citationtrail_10_1016_j_rinp_2020_103012 crossref_primary_10_1016_j_rinp_2020_103012 elsevier_sciencedirect_doi_10_1016_j_rinp_2020_103012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2020 2020-03-00 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationTitle | Results in physics |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Qi, Wang, Zhang, Liu, Hu, Bai (b0065) 2019; 15 Qi, Liu, Hu, Deng, Wang (b0140) 2019; 15 Wang, Zhu, Wen, Wu, Wu, Su (b0035) 2019; 9 Cen, Zhang, Chen, Yang, Yi, Yao (b0015) 2010; 117 Mak, Sfeir, Wu, Lui, Misewich, Heinz (b0100) 2008; 101 Yan, Zhang, Kim, Pinczuk (b0130) 2007; 98 Lee, Choi, Kim, Lee, Liu, Yin (b0165) 2012; 11 Li, Wu, Liu, Yu, Yu, Ye (b0205) 2017; 12 Chen, Wang, Tang, Ye, Yang, Zhang (b0080) 2020; 16 Thongrattanasiri, Koppens, De Abajo (b0120) 2012; 108 Cen, Chen, Xu, Jiang, Chen, Yi (b0160) 2020; 10 Li, Ma, Zhang, Song, Xu, Song (b0180) 2014; 47 Zhang, Feng, Zhu, Zhao, Jiang (b0135) 2014; 22 Andryieuski, Lavrinenko (b0170) 2013; 21 Xiao, Wang, Liu, Xu, Han, Yan (b0110) 2016; 18 Koppens, Mueller, Avouris, Ferrari, Vitiello, Polini (b0085) 2014; 9 Harutyunyan, Palomba, Renger, Quidant, Novotny (b0060) 2010; 10 Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos (b0005) 2004; 306 Rodríguez-Lorenzo, Alvarez-Puebla, Pastoriza-Santos, Mazzucco, Stéphan, Kociak (b0025) 2009; 131 Zhang, Cen, Liang, Yi, Chen, Li (b0155) 2019; 102422 Cheng, Mao, Wu, Wu, Gong (b0200) 2016; 53 Hunt (b0010) 1976; 9 Falkovsky, Pershoguba (b0125) 2007; 76 Huang, Niu, Yi, Chen, Zhou, Ye (b0210) 2019; 94 Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. In Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (2011); pp. 1-11. Huang, Ye, Wang, Stakenborg, Lagae (b0195) 2012; 100 Li, Chen, Yang, Yi, Chen, Yao (b0050) 2020; 10 Kneipp, Wang, Kneipp, Perelman, Itzkan, Dasari (b0030) 1997; 78 Qin, Chen, Chen, Yi, Yao, Duan (b0020) 2020; 10 Wang, Qin, Yi, Chen, Zhou, Yang (b0040) 2019; 15 Li, Wang, Huang, Sun, Zhai, Li (b0150) 2013; 104 Yi, Liang, Chen, Zhou, Tang, Ye (b0175) 2019; 10 Cen, Yi, Zhang, Zhang, Liang, Chen (b0090) 2019; 14 Loo, Lowery, Halas, West, Drezek (b0045) 2005; 5 Liu, Fu, Wang, Yi, Xu, Yang (b0070) 2019; 196 Wang, Chen, Xu, Yi, Chen, Chen (b0095) 2020; 102951 Le, Ngo, Nguyen (b0185) 2016; 23 Ke, Wang, Huang, Long, Wang, Lu (b0105) 2015; 23 Cen, Zhang, Liang, Chen, Yi, Duan (b0145) 2019 Qi, Zhou, Zhang, Zhang, Wang, Liu (b0075) 2019; 14 Liu, Shao, Liu, Liu, Zhou, Hu (b0190) 2014; 104 Fang, Wang, Schlather, Liu, Ajayan, García de Abajo, Halas (b0115) 2013; 14 Liu (10.1016/j.rinp.2020.103012_b0070) 2019; 196 Novoselov (10.1016/j.rinp.2020.103012_b0005) 2004; 306 Fang (10.1016/j.rinp.2020.103012_b0115) 2013; 14 Chen (10.1016/j.rinp.2020.103012_b0080) 2020; 16 Qi (10.1016/j.rinp.2020.103012_b0065) 2019; 15 Koppens (10.1016/j.rinp.2020.103012_b0085) 2014; 9 Yan (10.1016/j.rinp.2020.103012_b0130) 2007; 98 Wang (10.1016/j.rinp.2020.103012_b0035) 2019; 9 Li (10.1016/j.rinp.2020.103012_b0150) 2013; 104 Qin (10.1016/j.rinp.2020.103012_b0020) 2020; 10 Kneipp (10.1016/j.rinp.2020.103012_b0030) 1997; 78 Le (10.1016/j.rinp.2020.103012_b0185) 2016; 23 Li (10.1016/j.rinp.2020.103012_b0050) 2020; 10 Cen (10.1016/j.rinp.2020.103012_b0090) 2019; 14 Xiao (10.1016/j.rinp.2020.103012_b0110) 2016; 18 Hunt (10.1016/j.rinp.2020.103012_b0010) 1976; 9 Qi (10.1016/j.rinp.2020.103012_b0075) 2019; 14 Mak (10.1016/j.rinp.2020.103012_b0100) 2008; 101 Andryieuski (10.1016/j.rinp.2020.103012_b0170) 2013; 21 Li (10.1016/j.rinp.2020.103012_b0205) 2017; 12 Thongrattanasiri (10.1016/j.rinp.2020.103012_b0120) 2012; 108 Cen (10.1016/j.rinp.2020.103012_b0145) 2019 Li (10.1016/j.rinp.2020.103012_b0180) 2014; 47 Falkovsky (10.1016/j.rinp.2020.103012_b0125) 2007; 76 Zhang (10.1016/j.rinp.2020.103012_b0135) 2014; 22 Huang (10.1016/j.rinp.2020.103012_b0195) 2012; 100 Yi (10.1016/j.rinp.2020.103012_b0175) 2019; 10 Cheng (10.1016/j.rinp.2020.103012_b0200) 2016; 53 Liu (10.1016/j.rinp.2020.103012_b0190) 2014; 104 Loo (10.1016/j.rinp.2020.103012_b0045) 2005; 5 Lee (10.1016/j.rinp.2020.103012_b0165) 2012; 11 Huang (10.1016/j.rinp.2020.103012_b0210) 2019; 94 Qi (10.1016/j.rinp.2020.103012_b0140) 2019; 15 Wang (10.1016/j.rinp.2020.103012_b0040) 2019; 15 Rodríguez-Lorenzo (10.1016/j.rinp.2020.103012_b0025) 2009; 131 Wang (10.1016/j.rinp.2020.103012_b0095) 2020; 102951 Cen (10.1016/j.rinp.2020.103012_b0015) 2010; 117 Zhang (10.1016/j.rinp.2020.103012_b0155) 2019; 102422 10.1016/j.rinp.2020.103012_b0055 Harutyunyan (10.1016/j.rinp.2020.103012_b0060) 2010; 10 Cen (10.1016/j.rinp.2020.103012_b0160) 2020; 10 Ke (10.1016/j.rinp.2020.103012_b0105) 2015; 23 |
References_xml | – volume: 23 start-page: 388 year: 2016 end-page: 393 ident: b0185 article-title: Nanostructured metal–insulator–metal metamaterials for refractive index biosensing applications: design, fabrication, and characterization publication-title: IEEE J Sel Top Quant Electron – volume: 9 start-page: 134 year: 1976 end-page: 139 ident: b0010 article-title: The true story of Purple of Cassius publication-title: Gold Bull – volume: 23 start-page: 8888 year: 2015 end-page: 8900 ident: b0105 article-title: Plasmonic absorption enhancement in periodic cross-shaped graphene arrays publication-title: Opt Express – volume: 102422 year: 2019 ident: b0155 article-title: Dual-band switchable terahertz metarmaterial absorber based on metal nanostructure publication-title: Results Phys – volume: 16 year: 2020 ident: b0080 article-title: Substrates for surface-enhanced Raman spectroscopy based on TiN plasmonic antennas and waveguide platforms publication-title: Results Phys – volume: 131 start-page: 4616 year: 2009 end-page: 4618 ident: b0025 article-title: García de Abajo FJ. Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering publication-title: J Am Chem Soc – volume: 102951 year: 2020 ident: b0095 article-title: Triple-band perfect metamaterial absorber with good operating angle polarization tolerance based on split ring arrays publication-title: Results Phys – volume: 101 year: 2008 ident: b0100 article-title: Measurement of the optical conductivity of graphene publication-title: Phys Rev Lett – reference: Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. In Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (2011); pp. 1-11. – volume: 15 year: 2019 ident: b0040 article-title: Effect of slit width on surface plasmon resonance publication-title: Results Phys – volume: 104 start-page: 37001 year: 2013 ident: b0150 article-title: Mid-infrared, plasmonic switches and directional couplers induced by graphene sheets coupling system publication-title: EPL (Europhysics Letters) – volume: 11 start-page: 936 year: 2012 ident: b0165 article-title: Switching terahertz waves with gate-controlled active graphene metamaterials publication-title: Nat Mater – volume: 10 start-page: 5076 year: 2010 end-page: 5079 ident: b0060 article-title: Nonlinear dark-field microscopy publication-title: Nano Lett – volume: 53 start-page: 195 year: 2016 end-page: 200 ident: b0200 article-title: Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing publication-title: Opt Mater – volume: 100 year: 2012 ident: b0195 article-title: Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection publication-title: Appl Phys Lett – volume: 15 year: 2019 ident: b0065 article-title: A theoretical study of optically enhanced transmission characteristics of subwavelength metal Y-shaped arrays and its application on refractive index sensor publication-title: Results Phys – volume: 15 year: 2019 ident: b0140 article-title: Tunable plasmonic absorber in THz-band range based on graphene “arrow” shaped metamaterial publication-title: Results Phys – volume: 76 year: 2007 ident: b0125 article-title: Optical far-infrared properties of a graphene monolayer and multilayer publication-title: Phys Rev B – volume: 10 start-page: 443 year: 2019 ident: b0175 article-title: Dual-band plasmonic perfect absorber based on graphene metamaterials for refractive index sensing application publication-title: Micromachines – volume: 94 year: 2019 ident: b0210 article-title: High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials publication-title: Phys Scr – volume: 9 start-page: 780 year: 2014 ident: b0085 article-title: Photodetectors based on graphene, other two-dimensional materials and hybrid systems publication-title: Nat Nanotechnol – year: 2019 ident: b0145 article-title: Numerical investigation of a tunable metamaterial perfect absorber consisting of two-intersecting graphene nanoring arrays publication-title: Phys Lett A – volume: 22 start-page: 22743 year: 2014 end-page: 22752 ident: b0135 article-title: Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency publication-title: Opt Express – volume: 108 year: 2012 ident: b0120 article-title: Complete optical absorption in periodically patterned graphene publication-title: Phys Rev Lett – volume: 98 year: 2007 ident: b0130 article-title: Electric field effect tuning of electron-phonon coupling in graphene publication-title: Phys Rev Lett – volume: 10 start-page: 207 year: 2020 ident: b0020 article-title: A tunable triple-band near-infrared metamaterial absorber based on au nano-cuboids array publication-title: Nanomaterials – volume: 78 start-page: 1667 year: 1997 ident: b0030 article-title: Single molecule detection using surface-enhanced Raman scattering (SERS) publication-title: Phys Rev Lett – volume: 14 year: 2019 ident: b0090 article-title: Theoretical design of a triple-band perfect metamaterial absorber in the THz frequency range publication-title: Results Phys – volume: 21 start-page: 9144 year: 2013 end-page: 9155 ident: b0170 article-title: Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach publication-title: Opt Express – volume: 10 start-page: 95 year: 2020 ident: b0160 article-title: High quality factor, high sensitivity metamaterial graphene—perfect absorber based on critical coupling theory and impedance matching publication-title: Nanomaterials – volume: 47 year: 2014 ident: b0180 article-title: Sensitive refractive index sensing with tunable sensing range and good operation angle-polarization-tolerance using graphene concentric ring arrays publication-title: J Phys D Appl Phys – volume: 104 year: 2014 ident: b0190 article-title: λ 3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing publication-title: Appl Phys Lett – volume: 117 year: 2010 ident: b0015 article-title: A dual-band metamaterial absorber for graphene surface plasmon resonance at terahertz frequency publication-title: Phys E – volume: 10 start-page: 257 year: 2020 ident: b0050 article-title: Tunable broadband solar energy absorber based on monolayer transition metal dichalcogenides materials using au nanocubes publication-title: Nanomaterials – volume: 196 year: 2019 ident: b0070 article-title: Ex-centric core photonic crystal fiber sensor with gold nanowires based on surface plasmon resonance publication-title: Optik – volume: 306 start-page: 666 year: 2004 end-page: 669 ident: b0005 article-title: Electric field effect in atomically thin carbon films publication-title: Science – volume: 5 start-page: 709 year: 2005 end-page: 711 ident: b0045 article-title: Immunotargeted nanoshells for integrated cancer imaging and therapy publication-title: Nano Lett – volume: 14 start-page: 299 year: 2013 end-page: 304 ident: b0115 article-title: Active tunable absorption enhancement with graphene nanodisk arrays publication-title: Nano Lett – volume: 14 year: 2019 ident: b0075 article-title: Theoretical study of a multichannel plasmonic waveguide notch filter with double-sided nanodisk and two slot cavities publication-title: Results Phys – volume: 18 start-page: 26661 year: 2016 end-page: 26669 ident: b0110 article-title: Tunable light trapping and absorption enhancement with graphene ring arrays publication-title: PCCP – volume: 9 start-page: 3079 year: 2019 end-page: 3088 ident: b0035 article-title: Wide range refractive index sensor based on a coupled structure of Au nanocubes and Au film publication-title: Opt. Mater. Express – volume: 12 start-page: 1 year: 2017 ident: b0205 article-title: Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating publication-title: Nanoscale Res Lett – volume: 102951 year: 2020 ident: 10.1016/j.rinp.2020.103012_b0095 article-title: Triple-band perfect metamaterial absorber with good operating angle polarization tolerance based on split ring arrays publication-title: Results Phys – volume: 306 start-page: 666 issue: 5696 year: 2004 ident: 10.1016/j.rinp.2020.103012_b0005 article-title: Electric field effect in atomically thin carbon films publication-title: Science doi: 10.1126/science.1102896 – volume: 76 issue: 15 year: 2007 ident: 10.1016/j.rinp.2020.103012_b0125 article-title: Optical far-infrared properties of a graphene monolayer and multilayer publication-title: Phys Rev B doi: 10.1103/PhysRevB.76.153410 – volume: 196 year: 2019 ident: 10.1016/j.rinp.2020.103012_b0070 article-title: Ex-centric core photonic crystal fiber sensor with gold nanowires based on surface plasmon resonance publication-title: Optik doi: 10.1016/j.ijleo.2019.163173 – volume: 18 start-page: 26661 issue: 38 year: 2016 ident: 10.1016/j.rinp.2020.103012_b0110 article-title: Tunable light trapping and absorption enhancement with graphene ring arrays publication-title: PCCP doi: 10.1039/C6CP03731C – volume: 15 year: 2019 ident: 10.1016/j.rinp.2020.103012_b0140 article-title: Tunable plasmonic absorber in THz-band range based on graphene “arrow” shaped metamaterial publication-title: Results Phys doi: 10.1016/j.rinp.2019.102777 – ident: 10.1016/j.rinp.2020.103012_b0055 – volume: 21 start-page: 9144 issue: 7 year: 2013 ident: 10.1016/j.rinp.2020.103012_b0170 article-title: Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach publication-title: Opt Express doi: 10.1364/OE.21.009144 – volume: 14 year: 2019 ident: 10.1016/j.rinp.2020.103012_b0090 article-title: Theoretical design of a triple-band perfect metamaterial absorber in the THz frequency range publication-title: Results Phys doi: 10.1016/j.rinp.2019.102463 – volume: 101 issue: 19 year: 2008 ident: 10.1016/j.rinp.2020.103012_b0100 article-title: Measurement of the optical conductivity of graphene publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.101.196405 – volume: 131 start-page: 4616 issue: 13 year: 2009 ident: 10.1016/j.rinp.2020.103012_b0025 article-title: García de Abajo FJ. Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering publication-title: J Am Chem Soc doi: 10.1021/ja809418t – year: 2019 ident: 10.1016/j.rinp.2020.103012_b0145 article-title: Numerical investigation of a tunable metamaterial perfect absorber consisting of two-intersecting graphene nanoring arrays publication-title: Phys Lett A doi: 10.1016/j.physleta.2019.06.028 – volume: 9 start-page: 134 issue: 4 year: 1976 ident: 10.1016/j.rinp.2020.103012_b0010 article-title: The true story of Purple of Cassius publication-title: Gold Bull doi: 10.1007/BF03215423 – volume: 16 year: 2020 ident: 10.1016/j.rinp.2020.103012_b0080 article-title: Substrates for surface-enhanced Raman spectroscopy based on TiN plasmonic antennas and waveguide platforms publication-title: Results Phys doi: 10.1016/j.rinp.2019.102867 – volume: 53 start-page: 195 year: 2016 ident: 10.1016/j.rinp.2020.103012_b0200 article-title: Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing publication-title: Opt Mater doi: 10.1016/j.optmat.2016.01.053 – volume: 47 issue: 40 year: 2014 ident: 10.1016/j.rinp.2020.103012_b0180 article-title: Sensitive refractive index sensing with tunable sensing range and good operation angle-polarization-tolerance using graphene concentric ring arrays publication-title: J Phys D Appl Phys doi: 10.1088/0022-3727/47/40/405101 – volume: 117 year: 2010 ident: 10.1016/j.rinp.2020.103012_b0015 article-title: A dual-band metamaterial absorber for graphene surface plasmon resonance at terahertz frequency publication-title: Phys E – volume: 10 start-page: 207 issue: 2 year: 2020 ident: 10.1016/j.rinp.2020.103012_b0020 article-title: A tunable triple-band near-infrared metamaterial absorber based on au nano-cuboids array publication-title: Nanomaterials doi: 10.3390/nano10020207 – volume: 9 start-page: 780 issue: 10 year: 2014 ident: 10.1016/j.rinp.2020.103012_b0085 article-title: Photodetectors based on graphene, other two-dimensional materials and hybrid systems publication-title: Nat Nanotechnol doi: 10.1038/nnano.2014.215 – volume: 98 issue: 16 year: 2007 ident: 10.1016/j.rinp.2020.103012_b0130 article-title: Electric field effect tuning of electron-phonon coupling in graphene publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.98.166802 – volume: 11 start-page: 936 issue: 11 year: 2012 ident: 10.1016/j.rinp.2020.103012_b0165 article-title: Switching terahertz waves with gate-controlled active graphene metamaterials publication-title: Nat Mater doi: 10.1038/nmat3433 – volume: 14 start-page: 299 issue: 1 year: 2013 ident: 10.1016/j.rinp.2020.103012_b0115 article-title: Active tunable absorption enhancement with graphene nanodisk arrays publication-title: Nano Lett doi: 10.1021/nl404042h – volume: 15 year: 2019 ident: 10.1016/j.rinp.2020.103012_b0065 article-title: A theoretical study of optically enhanced transmission characteristics of subwavelength metal Y-shaped arrays and its application on refractive index sensor publication-title: Results Phys doi: 10.1016/j.rinp.2019.102495 – volume: 23 start-page: 388 issue: 2 year: 2016 ident: 10.1016/j.rinp.2020.103012_b0185 article-title: Nanostructured metal–insulator–metal metamaterials for refractive index biosensing applications: design, fabrication, and characterization publication-title: IEEE J Sel Top Quant Electron doi: 10.1109/JSTQE.2016.2615944 – volume: 78 start-page: 1667 issue: 9 year: 1997 ident: 10.1016/j.rinp.2020.103012_b0030 article-title: Single molecule detection using surface-enhanced Raman scattering (SERS) publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.78.1667 – volume: 23 start-page: 8888 issue: 7 year: 2015 ident: 10.1016/j.rinp.2020.103012_b0105 article-title: Plasmonic absorption enhancement in periodic cross-shaped graphene arrays publication-title: Opt Express doi: 10.1364/OE.23.008888 – volume: 14 year: 2019 ident: 10.1016/j.rinp.2020.103012_b0075 article-title: Theoretical study of a multichannel plasmonic waveguide notch filter with double-sided nanodisk and two slot cavities publication-title: Results Phys doi: 10.1016/j.rinp.2019.102506 – volume: 15 year: 2019 ident: 10.1016/j.rinp.2020.103012_b0040 article-title: Effect of slit width on surface plasmon resonance publication-title: Results Phys doi: 10.1016/j.rinp.2019.102711 – volume: 10 start-page: 443 issue: 7 year: 2019 ident: 10.1016/j.rinp.2020.103012_b0175 article-title: Dual-band plasmonic perfect absorber based on graphene metamaterials for refractive index sensing application publication-title: Micromachines doi: 10.3390/mi10070443 – volume: 104 issue: 8 year: 2014 ident: 10.1016/j.rinp.2020.103012_b0190 article-title: λ 3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing publication-title: Appl Phys Lett doi: 10.1063/1.4867028 – volume: 5 start-page: 709 issue: 4 year: 2005 ident: 10.1016/j.rinp.2020.103012_b0045 article-title: Immunotargeted nanoshells for integrated cancer imaging and therapy publication-title: Nano Lett doi: 10.1021/nl050127s – volume: 104 start-page: 37001 issue: 3 year: 2013 ident: 10.1016/j.rinp.2020.103012_b0150 article-title: Mid-infrared, plasmonic switches and directional couplers induced by graphene sheets coupling system publication-title: EPL (Europhysics Letters) doi: 10.1209/0295-5075/104/37001 – volume: 108 issue: 4 year: 2012 ident: 10.1016/j.rinp.2020.103012_b0120 article-title: Complete optical absorption in periodically patterned graphene publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.108.047401 – volume: 22 start-page: 22743 issue: 19 year: 2014 ident: 10.1016/j.rinp.2020.103012_b0135 article-title: Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency publication-title: Opt Express doi: 10.1364/OE.22.022743 – volume: 10 start-page: 5076 issue: 12 year: 2010 ident: 10.1016/j.rinp.2020.103012_b0060 article-title: Nonlinear dark-field microscopy publication-title: Nano Lett doi: 10.1021/nl1033304 – volume: 10 start-page: 257 issue: 2 year: 2020 ident: 10.1016/j.rinp.2020.103012_b0050 article-title: Tunable broadband solar energy absorber based on monolayer transition metal dichalcogenides materials using au nanocubes publication-title: Nanomaterials doi: 10.3390/nano10020257 – volume: 102422 year: 2019 ident: 10.1016/j.rinp.2020.103012_b0155 article-title: Dual-band switchable terahertz metarmaterial absorber based on metal nanostructure publication-title: Results Phys – volume: 94 issue: 8 year: 2019 ident: 10.1016/j.rinp.2020.103012_b0210 article-title: High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials publication-title: Phys Scr doi: 10.1088/1402-4896/ab185f – volume: 100 issue: 17 year: 2012 ident: 10.1016/j.rinp.2020.103012_b0195 article-title: Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection publication-title: Appl Phys Lett doi: 10.1063/1.4707382 – volume: 10 start-page: 95 issue: 1 year: 2020 ident: 10.1016/j.rinp.2020.103012_b0160 article-title: High quality factor, high sensitivity metamaterial graphene—perfect absorber based on critical coupling theory and impedance matching publication-title: Nanomaterials doi: 10.3390/nano10010095 – volume: 9 start-page: 3079 issue: 7 year: 2019 ident: 10.1016/j.rinp.2020.103012_b0035 article-title: Wide range refractive index sensor based on a coupled structure of Au nanocubes and Au film publication-title: Opt. Mater. Express doi: 10.1364/OME.9.003079 – volume: 12 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.rinp.2020.103012_b0205 article-title: Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating publication-title: Nanoscale Res Lett doi: 10.1186/s11671-016-1773-2 |
SSID | ssj0001645511 |
Score | 2.45041 |
Snippet | •Altering Fermi level from 0.2 eV to 0.8 eV, the maximum absorption increases from 10.7% to 49.2%, improved by nearly 5 times, and experiences blueshifts. The... In this paper, we demonstrate a tunable absorber composed of periodically patterned elliptical ring graphene metamaterial arrays. An absorption peak at 53.6μm... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 103012 |
SubjectTerms | Finite difference time domain Graphene Metamaterial absorber Surface plasmon resonance |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8UwDC8iCF7ET3x-0YM3Ga5dt3ZHFUUEPSl4G_3IQNH3ZJuCXvzXTbo9mRe9eBqMri1JaH7Jkl8ZOzRa-sKmGJZkMksUAuTEiNokpnaqdGkthKVG4eub4vJOXd3n96OrvqgmrKcH7gV3LMA6rZ0KmdMKsbIFUJDh2au9L43xdPqizxsFUzG7UiiEAhRtSUk8fbrUQ8dMX9zVPEyJrFLGpvNUyB9eKZL3j5zTyOFcrLKVASnyk36Ha2wBputsKVZs-naDfZ7w7jU2PnFqIkbRdx_8GTqLEDRaFbeunTUOGk5l47MWAp_VnPg3X2L-mlNGj0fCajzvuG0a-95yysty3F9snnoDHtkUeUtl7jh69Lt7k91dnN-eXSbDbQqJVyLtEsQ5ypsSNNjCCJBBlA6xYdCpywofnHOgUy8spTVqVyt8eDC2AI3yl1ZkW2xxOpvCNuOoxSxPncsNRiOhCFaHgCqReQ25DSAnTMylWfmBapxuvHiq5jVljxVpoCINVL0GJuzo-5uXnmjj19GnpKTvkUSSHV-g6VSD6VR_mc6E5XMVVwPe6HEETvXwy-I7_7H4LlumKftytj222DWvsI_4pnMH0ZS_AFPn-Rk priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier Free Content dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-UwEA8iCF5kdVd86wc57G0pr2nSJj2qKLKgFxXereRjKk92Xx9tFXYv_uvOpH36vHjYU2mYtENmmMxM5jdh7IfRmS9simGJzGSi0EFOjKhNYmqnSpfWQlgCCl_fFFf36tcsn22w8xUWhsoqR9s_2PRorceR6bia0-V8Pr3NMHaRuqRzxFSYCL-WykQQ3-zsPc9SKHQKKO4i-oQmjNiZocyrnS-obWUW4eepyD7sT7GN_9o2tbb1XH5hO6PPyE8HtnbZBiz22Fas3fTdV_ZyyvunCIHiBCdGIfT_-B_oLTqjUb-4dV3TOmg5FZA3HQTe1Jw6cS5jJptTbo_H1tVo-bhtW_u345Sh5chfhFE9A499FXlHBe9IvXbw_Y3dX17cnV8l470KiVci7RP0eJQ3JWiwhRGQBVE69BKDTp0sfHDOgU69sJTgqF2t8OHB2AK0Q1_cCrnPNhfNAg4YR3nKPHUuNxiXhCJYHYKUaAdqyG2AbMLEajUrPzYdp7svfler6rLHiiRQkQSqQQIT9vNtznJoufEp9RkJ6Y2S2mXHgaZ9qEZ9qQRYZN2pIJ1WGHBZAAXIp9Del8b4CctXIq4-aB9-av7Jz7__57xDtk1vQy3bEdvs2yc4RuemdydRe18BUm_40Q priority: 102 providerName: Elsevier |
Title | A tunable terahertz metamaterial absorber composed of elliptical ring graphene arrays with refractive index sensing application |
URI | https://dx.doi.org/10.1016/j.rinp.2020.103012 https://doaj.org/article/1eab77b4d3b74428aee4e33417cc988c |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS91AEF9EEbwUrYqvrY899CaRbLLJbg5FfKLYgj354N3CfkxE0RebxKK9-K93ZpOnryBCLwkJm2TY2Y_fTGZ-w9hXrRKXmxjNkjRJI4kAOdKi0pGurCxsXAlhKFH44md-PpU_ZtlshS3KHQ0d2L5p2lE9qWlze_j46-kIJ_y311it5npO3JNJyCGPqejwGu5MiibqxQD3g88llwgQyAZLEmLvU4Ua8mjefs0_e1Wg9F_aspa2obNN9mHAj_y4V_gWW4H5R7Ye4jhdu82ej3n3ENKhOKUWo0K6P_wOOoPANIw1bmxbNxYaTsHkdQue1xUnVs774NXm5OfjgcYaV0FumsY8tZy8tRzlCylVv4EHjkXeUvA7tl76Cb7Dpmenlyfn0VBjIXJSxF2E6Ec6XYACk2sBiReFRcToVWzT3HlrLajYCUPOjspWEk8OtMlBWcTlRqS7bHVez2GPcdRtmsXWZhptFJ97o7xPU1wTKsiMh2TExKI3SzcQkFMdjNtyEWl2U5IGStJA2WtgxA5enrnv6TfebT0hJb20JOrscKNursphJpYCDIpupU-tkmh8GQAJKKdQzhVauxHLFiouBxTSowt81fU7H__0X6J-Zht01UezfWGrXfMA-whvOjsObgE8fp9NxmH8_gWUjPqU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQXxFMsTx-4oWjj2ImdY1tRbaHthVbam-XHBC0qm1WSIsGFv86Mky3bSw-cIjmeZOQZjb8Zz4wZ-2B0ESqXo1siC5kpBMiZEY3JTONV7fNGCEeFwmfn1eJSfV6Wyz12tK2FobTKyfaPNj1Z62lkPq3mfLNazb8W6LtIXdM5Yi4MlV_fQzSg6f6Gk-Xhv0BLpRAVkONFBBlRTMUzY55Xt1pT38oi1Z_nori1QaU-_jv71M7ec_yYPZpAIz8Y-XrC9mD9lN1PyZuhf8b-HPDhOtVAcaonRikMv_kPGByi0aRg3Pm-7Tx0nDLI2x4ibxtOrTg3KZTNKbjHU-9qNH3cdZ371XMK0XLkL9VR_QSeGivynjLecfbOyfdzdnn86eJokU0XK2RBiXzIEPKoYGrQ4CojoIii9ggTo869rEL03oPOg3AU4Wh8o_ARwLgKtEcw7oR8wfbX7RpeMo4ClWXufWnQMYlVdDpGKdEQNFC6CMWMie1q2jB1HafLL67sNr3suyUJWJKAHSUwYx9vaDZjz407Zx-SkG5mUr_sNNB23-ykMFaAQ9a9itJrhR6XA1CAfAodQm1MmLFyK2J7S_3wU6s7fv7qP-nesweLi7NTe3py_uU1e0hvxsS2N2x_6K7hLSKdwb9LmvwX1or78A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+tunable+terahertz+metamaterial+absorber+composed+of+elliptical+ring+graphene+arrays+with+refractive+index+sensing+application&rft.jtitle=Results+in+physics&rft.au=Qi%2C+Yunping&rft.au=Zhang%2C+Yu&rft.au=Liu%2C+Chuqin&rft.au=Zhang%2C+Ting&rft.date=2020-03-01&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=16&rft.spage=103012&rft_id=info:doi/10.1016%2Fj.rinp.2020.103012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rinp_2020_103012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon |