Soil organic matter amount determines the behavior of iron and arsenic in paddy soil with microbial fuel cells
Arsenic (As) mobility in paddy soils is mainly controlled by iron (Fe) oxides and iron reducing bacteria (IBR). The Fe reducing bacteria are also considered to be enriched on the anode of soil microbial fuel cells (sMFC). Thus, the sMFC may have an impact on elements’ behavior, especially Fe and As,...
Saved in:
Published in | Chemosphere (Oxford) Vol. 237; p. 124459 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Arsenic (As) mobility in paddy soils is mainly controlled by iron (Fe) oxides and iron reducing bacteria (IBR). The Fe reducing bacteria are also considered to be enriched on the anode of soil microbial fuel cells (sMFC). Thus, the sMFC may have an impact on elements’ behavior, especially Fe and As, mobilization and immobilization in paddy soils. In this study, we found dissolved organic matter (DOC) abundance was a major determinate for the sMFC impact on Fe and As. In the constructed sMFCs with and without water management, distinctive behaviors of Fe and As in paddy soil were observed, which can be explained by the low or high DOC content under different water management. When the sMFC was deployed without water management, i.e. DOC was abundant, the sMFC promoted Fe and As movement into the soil porewater. The As release into the porewater was associated with the enhanced Fe reduction by the sMFC. This was ascribed to the acidification effect of sMFC anode and the increase of Fe reducing bacteria in the sMFC anode vicinity and associated bulk soil. However, when the sMFC was coupled with alternating dry-wet cycles, i.e. DOC was limited, the Fe and As concentrations in the soil porewater dramatically decreased by up to 2.3 and 1.6 fold, respectively, compared to the controls under the same water management regime. This study implies an environmental risk for the in-situ application of sMFC in organic matter rich wetlands and also points out a new mitigation strategy for As management in paddy soils.
[Display omitted]
•DOC abundance is a major determinate for the sMFC impact on Fe and As.•sMFC coupled with alternating dry-wet cycles can dramatically decreased the soil porewater Fe and As concentration.•The in-situ application of sMFC in organic matter rich wetlands may pose an environmental risk.•The combination of the sMFC with water management can be used as a new mitigation strategy for As management in paddy soils. |
---|---|
AbstractList | Arsenic (As) mobility in paddy soils is mainly controlled by iron (Fe) oxides and iron reducing bacteria (IBR). The Fe reducing bacteria are also considered to be enriched on the anode of soil microbial fuel cells (sMFC). Thus, the sMFC may have an impact on elements’ behavior, especially Fe and As, mobilization and immobilization in paddy soils. In this study, we found dissolved organic matter (DOC) abundance was a major determinate for the sMFC impact on Fe and As. In the constructed sMFCs with and without water management, distinctive behaviors of Fe and As in paddy soil were observed, which can be explained by the low or high DOC content under different water management. When the sMFC was deployed without water management, i.e. DOC was abundant, the sMFC promoted Fe and As movement into the soil porewater. The As release into the porewater was associated with the enhanced Fe reduction by the sMFC. This was ascribed to the acidification effect of sMFC anode and the increase of Fe reducing bacteria in the sMFC anode vicinity and associated bulk soil. However, when the sMFC was coupled with alternating dry-wet cycles, i.e. DOC was limited, the Fe and As concentrations in the soil porewater dramatically decreased by up to 2.3 and 1.6 fold, respectively, compared to the controls under the same water management regime. This study implies an environmental risk for the in-situ application of sMFC in organic matter rich wetlands and also points out a new mitigation strategy for As management in paddy soils.
[Display omitted]
•DOC abundance is a major determinate for the sMFC impact on Fe and As.•sMFC coupled with alternating dry-wet cycles can dramatically decreased the soil porewater Fe and As concentration.•The in-situ application of sMFC in organic matter rich wetlands may pose an environmental risk.•The combination of the sMFC with water management can be used as a new mitigation strategy for As management in paddy soils. Arsenic (As) mobility in paddy soils is mainly controlled by iron (Fe) oxides and iron reducing bacteria (IBR). The Fe reducing bacteria are also considered to be enriched on the anode of soil microbial fuel cells (sMFC). Thus, the sMFC may have an impact on elements' behavior, especially Fe and As, mobilization and immobilization in paddy soils. In this study, we found dissolved organic matter (DOC) abundance was a major determinate for the sMFC impact on Fe and As. In the constructed sMFCs with and without water management, distinctive behaviors of Fe and As in paddy soil were observed, which can be explained by the low or high DOC content under different water management. When the sMFC was deployed without water management, i.e. DOC was abundant, the sMFC promoted Fe and As movement into the soil porewater. The As release into the porewater was associated with the enhanced Fe reduction by the sMFC. This was ascribed to the acidification effect of sMFC anode and the increase of Fe reducing bacteria in the sMFC anode vicinity and associated bulk soil. However, when the sMFC was coupled with alternating dry-wet cycles, i.e. DOC was limited, the Fe and As concentrations in the soil porewater dramatically decreased by up to 2.3 and 1.6 fold, respectively, compared to the controls under the same water management regime. This study implies an environmental risk for the in-situ application of sMFC in organic matter rich wetlands and also points out a new mitigation strategy for As management in paddy soils. Arsenic (As) mobility in paddy soils is mainly controlled by iron (Fe) oxides and iron reducing bacteria (IBR). The Fe reducing bacteria are also considered to be enriched on the anode of soil microbial fuel cells (sMFC). Thus, the sMFC may have an impact on elements' behavior, especially Fe and As, mobilization and immobilization in paddy soils. In this study, we found dissolved organic matter (DOC) abundance was a major determinate for the sMFC impact on Fe and As. In the constructed sMFCs with and without water management, distinctive behaviors of Fe and As in paddy soil were observed, which can be explained by the low or high DOC content under different water management. When the sMFC was deployed without water management, i.e. DOC was abundant, the sMFC promoted Fe and As movement into the soil porewater. The As release into the porewater was associated with the enhanced Fe reduction by the sMFC. This was ascribed to the acidification effect of sMFC anode and the increase of Fe reducing bacteria in the sMFC anode vicinity and associated bulk soil. However, when the sMFC was coupled with alternating dry-wet cycles, i.e. DOC was limited, the Fe and As concentrations in the soil porewater dramatically decreased by up to 2.3 and 1.6 fold, respectively, compared to the controls under the same water management regime. This study implies an environmental risk for the in-situ application of sMFC in organic matter rich wetlands and also points out a new mitigation strategy for As management in paddy soils.Arsenic (As) mobility in paddy soils is mainly controlled by iron (Fe) oxides and iron reducing bacteria (IBR). The Fe reducing bacteria are also considered to be enriched on the anode of soil microbial fuel cells (sMFC). Thus, the sMFC may have an impact on elements' behavior, especially Fe and As, mobilization and immobilization in paddy soils. In this study, we found dissolved organic matter (DOC) abundance was a major determinate for the sMFC impact on Fe and As. In the constructed sMFCs with and without water management, distinctive behaviors of Fe and As in paddy soil were observed, which can be explained by the low or high DOC content under different water management. When the sMFC was deployed without water management, i.e. DOC was abundant, the sMFC promoted Fe and As movement into the soil porewater. The As release into the porewater was associated with the enhanced Fe reduction by the sMFC. This was ascribed to the acidification effect of sMFC anode and the increase of Fe reducing bacteria in the sMFC anode vicinity and associated bulk soil. However, when the sMFC was coupled with alternating dry-wet cycles, i.e. DOC was limited, the Fe and As concentrations in the soil porewater dramatically decreased by up to 2.3 and 1.6 fold, respectively, compared to the controls under the same water management regime. This study implies an environmental risk for the in-situ application of sMFC in organic matter rich wetlands and also points out a new mitigation strategy for As management in paddy soils. |
ArticleNumber | 124459 |
Author | Ren, Yu-Xiang Gustave, Williamson Sekar, Raju Chen, Zheng Yuan, Zhao-Feng Zhang, Jun Liu, Jinjing-Yuan |
Author_xml | – sequence: 1 givenname: Williamson surname: Gustave fullname: Gustave, Williamson organization: Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China – sequence: 2 givenname: Zhao-Feng surname: Yuan fullname: Yuan, Zhao-Feng organization: Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China – sequence: 3 givenname: Raju orcidid: 0000-0002-1182-9004 surname: Sekar fullname: Sekar, Raju organization: Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China – sequence: 4 givenname: Yu-Xiang surname: Ren fullname: Ren, Yu-Xiang organization: Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China – sequence: 5 givenname: Jinjing-Yuan surname: Liu fullname: Liu, Jinjing-Yuan organization: Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China – sequence: 6 givenname: Jun orcidid: 0000-0003-1965-7224 surname: Zhang fullname: Zhang, Jun organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China – sequence: 7 givenname: Zheng orcidid: 0000-0002-1184-3682 surname: Chen fullname: Chen, Zheng email: ebiogeochem@outlook.com, Zheng.Chen@xjtlu.edu.cn organization: Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31377597$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9v1DAQxS1URLeFr4DMjUsWO7ET-4TQin9SJQ7A2XLsCZlVYi-2U9RvT6JtJcRpT9ZIv_fG894NuQoxACFvONtzxtt3x70bYY75NEKCfc243vNaCKmfkR1Xna54rdUV2TEmZNXKRl6Tm5yPjK1iqV-Q64Y3XSd1tyPhe8SJxvTLBnR0tqVAonaOSyjUwzrMGCDTMgLtYbT3GBONA8UUA7XBU5sybEoM9GS9f6B58_uDZaQzuhR7tBMdFpiog2nKL8nzwU4ZXj2-t-Tnp48_Dl-qu2-fvx4-3FVOcFaqljGrWVt7JTrWs5ZL5-2g-7rTtehV1yiwnnMmmqHvNQfFOiEbzoXgvpdSNrfk7dn3lOLvBXIxM-btBzZAXLKpa9Uqrbm6BG2VXMNqmxV9_Ygu_QzenBLONj2YpzhX4P0ZWC_POcFgHBZbMIaSLE6GM7MVaI7mnwLNVqA5F7g66P8cnpZcoj2ctbAme4-QTHYIwYHHBK4YH_ECl7_JjryU |
CitedBy_id | crossref_primary_10_3390_fermentation10020113 crossref_primary_10_1016_j_jhazmat_2022_129108 crossref_primary_10_1016_j_rser_2025_115495 crossref_primary_10_1016_j_jes_2020_09_017 crossref_primary_10_1007_s11356_020_11317_7 crossref_primary_10_1016_j_ejsobi_2021_103351 crossref_primary_10_1016_j_chemosphere_2020_127276 crossref_primary_10_1016_j_chemosphere_2021_129691 crossref_primary_10_1016_j_scitotenv_2023_166414 crossref_primary_10_1134_S000143382108003X crossref_primary_10_1016_j_scitotenv_2020_144145 crossref_primary_10_1016_j_jenvman_2024_121066 crossref_primary_10_1080_10643389_2022_2040327 crossref_primary_10_1007_s10653_023_01833_z crossref_primary_10_3390_en18040970 crossref_primary_10_1016_j_jece_2022_107505 crossref_primary_10_1016_j_scitotenv_2021_145040 crossref_primary_10_1016_j_elecom_2024_107681 crossref_primary_10_1016_j_scitotenv_2024_176106 crossref_primary_10_1016_j_chemosphere_2020_128713 crossref_primary_10_3390_w14192975 crossref_primary_10_1007_s44246_023_00049_1 crossref_primary_10_1016_j_ecoenv_2020_111478 crossref_primary_10_1016_j_envpol_2021_118760 crossref_primary_10_1007_s00128_021_03317_1 crossref_primary_10_1016_j_ceja_2021_100140 crossref_primary_10_1016_j_soisec_2024_100150 crossref_primary_10_1016_j_jhazmat_2021_128123 crossref_primary_10_1016_j_scitotenv_2024_170451 crossref_primary_10_1016_j_scitotenv_2024_171543 crossref_primary_10_3390_pr9040673 crossref_primary_10_4491_KSEE_2022_44_11_468 crossref_primary_10_1016_j_envpol_2020_114305 crossref_primary_10_1016_j_jenvman_2021_113012 crossref_primary_10_1007_s11356_023_28387_y crossref_primary_10_3390_ijerph16214075 crossref_primary_10_1016_j_envpol_2023_121237 crossref_primary_10_1016_j_envres_2021_111069 crossref_primary_10_1016_j_scitotenv_2020_137633 crossref_primary_10_1016_j_scitotenv_2022_153306 crossref_primary_10_1002_jsfa_11343 crossref_primary_10_1016_j_ese_2023_100276 crossref_primary_10_3389_fmicb_2022_997732 crossref_primary_10_1016_j_envpol_2020_113989 crossref_primary_10_1016_j_eti_2020_100615 crossref_primary_10_1016_j_jhazmat_2024_134232 crossref_primary_10_1016_j_scitotenv_2020_143865 crossref_primary_10_1002_er_7288 crossref_primary_10_1016_j_jhazmat_2020_122818 crossref_primary_10_3390_bios13010145 crossref_primary_10_1007_s11356_022_24356_z crossref_primary_10_3390_su14042048 crossref_primary_10_1016_j_biortech_2024_131057 crossref_primary_10_1007_s11431_023_2537_y crossref_primary_10_1016_j_chemosphere_2021_131790 |
Cites_doi | 10.5194/bg-11-5969-2014 10.1016/j.envpol.2018.03.085 10.1016/j.bej.2012.11.016 10.1007/s11104-015-2751-7 10.1007/s00253-008-1410-9 10.1111/j.1462-2920.2005.00873.x 10.1016/j.scitotenv.2015.12.080 10.1007/s00253-015-7073-4 10.1016/j.gca.2017.12.022 10.1039/b823237g 10.1016/j.envpol.2014.02.014 10.1016/j.jhazmat.2017.11.025 10.1371/journal.pone.0077443 10.1016/j.scitotenv.2014.10.011 10.1016/j.resmic.2018.11.002 10.1038/ngeo870 10.1007/s11356-017-9225-9 10.1007/s11368-015-1090-x 10.1016/j.envpol.2018.03.039 10.1021/acs.est.8b05390 10.1016/j.biortech.2016.05.074 10.1016/j.ijhydene.2018.04.082 10.1016/j.geoderma.2006.10.012 10.1016/j.jhazmat.2015.01.036 10.1016/j.gca.2011.03.001 10.1099/ijs.0.63426-0 10.1016/j.envint.2017.12.017 10.1016/S1001-0742(08)62456-0 10.3389/fbioe.2015.00027 10.1016/j.jhazmat.2016.02.069 10.1038/ngeo2589 10.1016/S0048-9697(02)00538-7 10.1016/j.watres.2007.04.012 10.1128/AEM.54.6.1472-1480.1988 10.1038/ismej.2009.100 10.1039/C5RA23167A 10.1007/s00449-008-0258-9 10.1007/s00792-006-0004-7 10.1016/j.cej.2011.06.024 10.1038/nrmicro2113 10.1021/acs.est.7b00689 10.1021/es303503m 10.1007/s11368-017-1769-2 10.1016/j.jhazmat.2017.08.071 10.1007/s11368-016-1369-6 10.1128/AEM.00693-13 10.1016/j.envint.2008.07.020 10.1016/j.envint.2016.09.006 10.1002/jctb.2454 10.1007/s11368-011-0371-2 10.1007/s11368-014-1056-4 10.1016/j.envpol.2018.03.048 10.1016/j.chemosphere.2011.02.044 10.1016/j.chemosphere.2007.04.029 10.1016/j.otohns.2005.09.036 10.1016/j.tplants.2008.12.004 10.1016/j.envpol.2009.07.022 10.1021/ez5002209 10.4319/lo.2010.55.6.2452 10.1016/j.apsoil.2016.01.012 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.chemosphere.2019.124459 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
ExternalDocumentID | 31377597 10_1016_j_chemosphere_2019_124459 S0045653519316832 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c410t-600a9062d8470b0615cdaf9b27924b8738ead11043fbb91e80745311441db5553 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 1879-1298 |
IngestDate | Thu Jul 10 19:23:16 EDT 2025 Thu Jul 10 23:40:47 EDT 2025 Thu Apr 03 07:07:14 EDT 2025 Tue Jul 01 02:33:49 EDT 2025 Thu Apr 24 23:11:07 EDT 2025 Fri Feb 23 02:33:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soil microbial fuel cells Dissolved organic matter Water management Arsenic Paddy soil |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-600a9062d8470b0615cdaf9b27924b8738ead11043fbb91e80745311441db5553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1965-7224 0000-0002-1182-9004 0000-0002-1184-3682 |
PMID | 31377597 |
PQID | 2268575963 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2286899185 proquest_miscellaneous_2268575963 pubmed_primary_31377597 crossref_citationtrail_10_1016_j_chemosphere_2019_124459 crossref_primary_10_1016_j_chemosphere_2019_124459 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2019_124459 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Roden, Kappler, Bauer, Jiang, Paul, Stoesser, Konishi, Xu (bib41) 2010; 3 Jiang, Hou, Yang, Zhong, Zheng, Yang, Li (bib24) 2014; 188 Stuckey, Schaefer, Kocar, Benner, Fendorf (bib47) 2015; 9 Kaku, Yonezawa, Kodama, Watanabe (bib25) 2008; 79 Chen, Gu, Royer, Burgos (bib4) 2003; 307 Lovley, Phillips (bib36) 1988; 54 Gustave, Yuan, Ren, Sekar, Zhang, Chen (bib15) 2019 Wang, Chen, Liu, Sun, Ding, Zhu (bib54) 2016; 16 Zavarzina, Sokolova, Tourova, Chernyh, Kostrikina, Bonchosmolovskaya (bib63) 2007; 11 Derrien, Yun, Park, Li, Chen, Sang, Lee, Lee, Jin (bib6) 2017; 24 Marshall, May (bib37) 2009; 2 Gustave, Yuan, Sekar, Ren, Chang, Liu, Chen (bib13) 2018 Khalid, Shahid, Niazi, Murtaza, Bibi, Dumat (bib27) 2016; 182 Zhou, Jiang, Cai (bib64) 2015; 287 Gorny, Billon, Lesven, Dumoulin, Madé, Noiriel (bib9) 2015; 505 Kouzuma, Kasai, Nakagawa, Yamamuro, Abe, Watanabe (bib28) 2013; 8 Minatel, Sage, Anderson, Hubaux, Marshall, Lam, Martinez (bib38) 2018; 112 Krespi, Shrime, Kacker (bib29) 2006; 135 Spencer, Bolton, Baker (bib46) 2007; 41 Yang, Zhao, Zhao, Ni, Gu (bib59) 2016; 216 Yuan, Gustave, Bridge, Liang, Sekar, Boyle, Jin, Pu, Ren, Chen (bib62) 2019; 53 He, Xiao, Li, Cai, Yuan, Yan, He, Sheng, Tong, Yu (bib17) 2013; 71 Islam, Rahman, Islam, Naidu (bib23) 2016; 96 You, Wu, Ren, Chang, Yu, Xue, Mu (bib60) 2016; 100 Yamamura, Sudo, Watanabe, Tsuboi, Soda, Ike, Amachi (bib58) 2018; 342 Gustave, Yuan, Sekar, Chang, Zhang, Wells, Ren, Chen (bib12) 2018; 238 Chen, Wang, Xia, Jiang, Fu, Shen, Wang, Li (bib5) 2016; 311 Song, Yan, Zhao, Jiang (bib45) 2010; 85 Chen, Tang, Wang, Zhao (bib3) 2018; 238 Logan (bib34) 2008 Song, Jiang (bib44) 2018 Grabowski, Tindall, Bardin, Blanchet, Jeanthon (bib10) 2005; 55 Kappler, Wuestner, Ruecker, Harter, Halama, Behrens (bib26) 2016; 1 Wang, Chen, Li, Su, Zhao, Zhu (bib52) 2015; 15 Hutchins, Teasdale, Lee, Simpson (bib22) 2007; 69 Wang, Xueping, Jing, Zhaosu, Guoxin (bib53) 2009; 21 Fitzgerald, Mccouch, Hall (bib8) 2009; 14 Burton, Johnston, Bush (bib2) 2011; 75 Wan, Lei, Chen (bib51) 2016; 563–564 Gustave, Yuan, Sekar, Toppin, Liu, Ren, Zhang, Chen (bib14) 2019; 170 Yamaguchi, Nakamura, Dong, Takahashi, Amachi, Makino (bib57) 2011; 83 Fellman, Hood, Spencer (bib7) 2010; 55 Li, Wu, Zhang, Luo, Christie (bib33) 2015; 15 Logan (bib35) 2009; 7 Weber, Urrutia, Churchill, Kukkadapu, Roden (bib55) 2006; 8 Lapierre, Del Giorgio (bib31) 2014; 11 Qiao, Li, Li (bib40) 2017; 344 Trusiak, Treibergs, Kling, Cory (bib50) 2018; 224 Hashimoto, Kanke (bib16) 2018; 238 Saidpullicino, Miniotti, Sodano, Bertora, Lerda, Chiaradia, Romani, De Maria, Sacco, Celi (bib42) 2016; 401 Xiao, Sun, Shen, Liang, Liang, Wang, Huang (bib56) 2016; 6 Hong, Chang, Choi, Kim, Chung (bib18) 2009; 32 Yuan, Liu, Wang, Li, Zhu, Khan, Alkhedhairy, Sun (bib61) 2018; 18 Hong, Kim, Chung (bib19) 2010; 158 Hori, Muller, Igarashi, Conrad, Friedrich (bib20) 2010; 4 Guo, Ren, Liu, Zhao, Li (bib11) 2013; 47 Peng, Shaaban, Wu, Hu, Wang, Wang (bib39) 2016; 101 Zhu, Xue, Kappler, Rosen, Meharg (bib65) 2017; 51 Li, Peng, Weber, Zhu (bib32) 2011; 11 Huang, Zhou, Chen, Zhao, Yuan, Zhuang (bib21) 2011; 172 Touch, Hibino, Morimoto, Kinjo (bib49) 2017; 1–25 Baldwin, Khoshnoodi, Rezadehbashi, Taupp, Hallam, Mattes, Sanei (bib1) 2015; 3 Signespastor, Burlo, Mitra, Carbonellbarrachina (bib43) 2007; 137 Sun, Williams, Zhu, Deacon, Carey, Raab, Feldmann, Meharg (bib48) 2009; 35 Kudo, Yamaguchi, Makino, Ohtsuka, Kimura, Dong, Amachi (bib30) 2013; 79 Gustave (10.1016/j.chemosphere.2019.124459_bib14) 2019; 170 Islam (10.1016/j.chemosphere.2019.124459_bib23) 2016; 96 Hong (10.1016/j.chemosphere.2019.124459_bib19) 2010; 158 Huang (10.1016/j.chemosphere.2019.124459_bib21) 2011; 172 Fellman (10.1016/j.chemosphere.2019.124459_bib7) 2010; 55 Zhou (10.1016/j.chemosphere.2019.124459_bib64) 2015; 287 Wang (10.1016/j.chemosphere.2019.124459_bib52) 2015; 15 Li (10.1016/j.chemosphere.2019.124459_bib33) 2015; 15 Qiao (10.1016/j.chemosphere.2019.124459_bib40) 2017; 344 Kudo (10.1016/j.chemosphere.2019.124459_bib30) 2013; 79 Baldwin (10.1016/j.chemosphere.2019.124459_bib1) 2015; 3 Trusiak (10.1016/j.chemosphere.2019.124459_bib50) 2018; 224 Zavarzina (10.1016/j.chemosphere.2019.124459_bib63) 2007; 11 Kappler (10.1016/j.chemosphere.2019.124459_bib26) 2016; 1 Hong (10.1016/j.chemosphere.2019.124459_bib18) 2009; 32 Gustave (10.1016/j.chemosphere.2019.124459_bib12) 2018; 238 Wan (10.1016/j.chemosphere.2019.124459_bib51) 2016; 563–564 Hori (10.1016/j.chemosphere.2019.124459_bib20) 2010; 4 Sun (10.1016/j.chemosphere.2019.124459_bib48) 2009; 35 Spencer (10.1016/j.chemosphere.2019.124459_bib46) 2007; 41 Kouzuma (10.1016/j.chemosphere.2019.124459_bib28) 2013; 8 Gorny (10.1016/j.chemosphere.2019.124459_bib9) 2015; 505 Fitzgerald (10.1016/j.chemosphere.2019.124459_bib8) 2009; 14 Yamaguchi (10.1016/j.chemosphere.2019.124459_bib57) 2011; 83 Minatel (10.1016/j.chemosphere.2019.124459_bib38) 2018; 112 Touch (10.1016/j.chemosphere.2019.124459_bib49) 2017; 1–25 Saidpullicino (10.1016/j.chemosphere.2019.124459_bib42) 2016; 401 Song (10.1016/j.chemosphere.2019.124459_bib44) 2018 Khalid (10.1016/j.chemosphere.2019.124459_bib27) 2016; 182 Yuan (10.1016/j.chemosphere.2019.124459_bib61) 2018; 18 Signespastor (10.1016/j.chemosphere.2019.124459_bib43) 2007; 137 Chen (10.1016/j.chemosphere.2019.124459_bib4) 2003; 307 Hutchins (10.1016/j.chemosphere.2019.124459_bib22) 2007; 69 Grabowski (10.1016/j.chemosphere.2019.124459_bib10) 2005; 55 Song (10.1016/j.chemosphere.2019.124459_bib45) 2010; 85 Weber (10.1016/j.chemosphere.2019.124459_bib55) 2006; 8 Yamamura (10.1016/j.chemosphere.2019.124459_bib58) 2018; 342 You (10.1016/j.chemosphere.2019.124459_bib60) 2016; 100 Yuan (10.1016/j.chemosphere.2019.124459_bib62) 2019; 53 Logan (10.1016/j.chemosphere.2019.124459_bib35) 2009; 7 He (10.1016/j.chemosphere.2019.124459_bib17) 2013; 71 Stuckey (10.1016/j.chemosphere.2019.124459_bib47) 2015; 9 Wang (10.1016/j.chemosphere.2019.124459_bib54) 2016; 16 Chen (10.1016/j.chemosphere.2019.124459_bib3) 2018; 238 Kaku (10.1016/j.chemosphere.2019.124459_bib25) 2008; 79 Chen (10.1016/j.chemosphere.2019.124459_bib5) 2016; 311 Lovley (10.1016/j.chemosphere.2019.124459_bib36) 1988; 54 Roden (10.1016/j.chemosphere.2019.124459_bib41) 2010; 3 Li (10.1016/j.chemosphere.2019.124459_bib32) 2011; 11 Zhu (10.1016/j.chemosphere.2019.124459_bib65) 2017; 51 Derrien (10.1016/j.chemosphere.2019.124459_bib6) 2017; 24 Peng (10.1016/j.chemosphere.2019.124459_bib39) 2016; 101 Xiao (10.1016/j.chemosphere.2019.124459_bib56) 2016; 6 Hashimoto (10.1016/j.chemosphere.2019.124459_bib16) 2018; 238 Wang (10.1016/j.chemosphere.2019.124459_bib53) 2009; 21 Krespi (10.1016/j.chemosphere.2019.124459_bib29) 2006; 135 Gustave (10.1016/j.chemosphere.2019.124459_bib15) 2019 Gustave (10.1016/j.chemosphere.2019.124459_bib13) 2018 Logan (10.1016/j.chemosphere.2019.124459_bib34) 2008 Lapierre (10.1016/j.chemosphere.2019.124459_bib31) 2014; 11 Jiang (10.1016/j.chemosphere.2019.124459_bib24) 2014; 188 Marshall (10.1016/j.chemosphere.2019.124459_bib37) 2009; 2 Yang (10.1016/j.chemosphere.2019.124459_bib59) 2016; 216 Guo (10.1016/j.chemosphere.2019.124459_bib11) 2013; 47 Burton (10.1016/j.chemosphere.2019.124459_bib2) 2011; 75 |
References_xml | – volume: 51 start-page: 7326 year: 2017 end-page: 7339 ident: bib65 article-title: Linking genes to microbial biogeochemical cycling: lessons from arsenic publication-title: Environ. Sci. Technol. – volume: 71 start-page: 57 year: 2013 end-page: 61 ident: bib17 article-title: Electricity generation from dissolved organic matter in polluted lake water using a microbial fuel cell (MFC) publication-title: Biochem. Eng. J. – volume: 182 year: 2016 ident: bib27 article-title: A comparison of technologies for remediation of heavy metal contaminated soils publication-title: J. Geochem. Explor. – volume: 505 start-page: 423 year: 2015 end-page: 434 ident: bib9 article-title: Arsenic behavior in river sediments under redox gradient: a review publication-title: Sci. Total Environ. – volume: 54 start-page: 1472 year: 1988 end-page: 1480 ident: bib36 article-title: Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese publication-title: Appl. Environ. Microbiol. – volume: 83 start-page: 925 year: 2011 end-page: 932 ident: bib57 article-title: Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution publication-title: Chemosphere – volume: 172 start-page: 647 year: 2011 end-page: 653 ident: bib21 article-title: Enhanced anaerobic degradation of organic pollutants in a soil microbial fuel cell publication-title: Chem. Eng. J. – volume: 85 start-page: 1489 year: 2010 end-page: 1493 ident: bib45 article-title: Removal of organic matter in freshwater sediment by microbial fuel cells at various external resistances publication-title: J. Appl. Chem. Biotechnol. – volume: 135 start-page: 671 year: 2006 end-page: 676 ident: bib29 article-title: The relationship between oral malodor and volatile sulfur compound–producing bacteria publication-title: Otolaryngology-Head Neck Surg. (Tokyo) – volume: 15 start-page: 1510 year: 2015 end-page: 1519 ident: bib33 article-title: Effects of soil drying and wetting-drying cycles on the availability of heavy metals and their relationship to dissolved organic matter publication-title: J. Soils Sediments – volume: 47 start-page: 1009 year: 2013 end-page: 1016 ident: bib11 article-title: Enhancement of arsenic adsorption during mineral transformation from siderite to goethite: mechanism and application publication-title: Environ. Sci. Technol. – volume: 9 start-page: 70 year: 2015 end-page: 76 ident: bib47 article-title: Arsenic release metabolically limited to permanently water-saturated soil in Mekong Delta publication-title: Nat. Geosci. – volume: 3 start-page: 417 year: 2010 end-page: 421 ident: bib41 article-title: Extracellular electron transfer through microbial reduction of solid-phase humic substances publication-title: Nat. Geosci. – volume: 307 start-page: 167 year: 2003 end-page: 178 ident: bib4 article-title: The roles of natural organic matter in chemical and microbial reduction of ferric iron publication-title: Sci. Total Environ. – volume: 15 start-page: 926 year: 2015 end-page: 936 ident: bib52 article-title: Bacterial community composition at anodes of microbial fuel cells for paddy soils: the effects of soil properties publication-title: J. Soils Sediments – volume: 8 start-page: 100 year: 2006 end-page: 113 ident: bib55 article-title: Anaerobic redox cycling of iron by freshwater sediment microorganisms publication-title: Environ. Microbiol. – volume: 170 start-page: 97 year: 2019 end-page: 104 ident: bib14 article-title: Relic DNA does not obscure the microbial community of paddy soil microbial fuel cells publication-title: Microbiol. Res. – volume: 188 start-page: 159 year: 2014 end-page: 165 ident: bib24 article-title: Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content publication-title: Environ. Pollut. – volume: 238 start-page: 647 year: 2018 end-page: 655 ident: bib12 article-title: Arsenic mitigation in paddy soils by using microbial fuel cells publication-title: Environ. Pollut. – volume: 8 year: 2013 ident: bib28 article-title: Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells publication-title: PLoS One – volume: 79 start-page: 4635 year: 2013 end-page: 4642 ident: bib30 article-title: Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. strain PSR-1 publication-title: Appl. Environ. Microbiol. – volume: 311 start-page: 20 year: 2016 end-page: 29 ident: bib5 article-title: Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition publication-title: J. Hazard Mater. – volume: 11 start-page: 1 year: 2007 end-page: 7 ident: bib63 article-title: Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction publication-title: Extremophiles – volume: 101 start-page: 20 year: 2016 end-page: 27 ident: bib39 article-title: The diversity of iron reducing bacteria communities in subtropical paddy soils of China publication-title: Appl. Soil Ecol. – volume: 18 start-page: 517 year: 2018 end-page: 525 ident: bib61 article-title: The influence of soil properties and geographical distance on the bacterial community compositions of paddy soils enriched on SMFC anodes publication-title: J. Soils Sediments – volume: 32 start-page: 389 year: 2009 end-page: 395 ident: bib18 article-title: Responses from freshwater sediment during electricity generation using microbial fuel cells publication-title: Bioproc. Biosyst. Eng. – volume: 238 start-page: 482 year: 2018 end-page: 490 ident: bib3 article-title: Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice publication-title: Environ. Pollut. – volume: 3 start-page: 27 year: 2015 ident: bib1 article-title: The microbial community of a passive biochemical reactor treating arsenic, zinc, and sulfate-rich seepage publication-title: Front. Bioeng. Biotechnol. – volume: 21 start-page: 1562 year: 2009 end-page: 1568 ident: bib53 article-title: Effect of microbial mediated iron plaque reduction on arsenic mobility in paddy soil publication-title: J. Environ. Sci. (China) – volume: 158 start-page: 185 year: 2010 end-page: 191 ident: bib19 article-title: Alteration of sediment organic matter in sediment microbial fuel cells publication-title: Environ. Pollut. – year: 2008 ident: bib34 article-title: Microbial Fuel Cells – volume: 342 start-page: 571 year: 2018 end-page: 578 ident: bib58 article-title: Effect of extracellular electron shuttles on arsenic-mobilizing activities in soil microbial communities publication-title: J. Hazard Mater. – start-page: 1 year: 2019 end-page: 7 ident: bib15 article-title: Arsenic alleviation in rice by using paddy soil microbial fuel cells publication-title: Plant Soil – volume: 69 start-page: 1089 year: 2007 end-page: 1099 ident: bib22 article-title: The effect of manipulating sediment pH on the porewater chemistry of copper- and zinc-spiked sediments publication-title: Chemosphere – volume: 11 start-page: 5969 year: 2014 end-page: 5985 ident: bib31 article-title: Partial coupling and differential regulation of biologically and photo-chemically labile dissolved organic carbon across boreal aquatic networks publication-title: Biogeosciences – volume: 16 start-page: 1745 year: 2016 end-page: 1753 ident: bib54 article-title: Arsenic modulates the composition of anode-respiring bacterial community during dry-wet cycles in paddy soils publication-title: J. Soils Sediments – volume: 344 start-page: 958 year: 2017 end-page: 967 ident: bib40 article-title: Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar publication-title: J. Hazard Mater. – volume: 563–564 start-page: 796 year: 2016 end-page: 802 ident: bib51 article-title: Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil publication-title: Sci. Total Environ. – volume: 1 start-page: 339 year: 2016 end-page: 344 ident: bib26 article-title: Biochar as an electron shuttle between bacteria and Fe(III) minerals publication-title: Environ. Sci. Technol. Lett. – start-page: 10082 year: 2018 end-page: 10093 ident: bib44 article-title: Effects of initial sediment properties on start-up times for sediment microbial fuel cells publication-title: Int. J. Hydrogen Energy – volume: 55 start-page: 2452 year: 2010 end-page: 2462 ident: bib7 article-title: Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review publication-title: Limnol. Oceanogr. – volume: 137 start-page: 504 year: 2007 end-page: 510 ident: bib43 article-title: Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a West Bengal (India) soil publication-title: Geoderma – volume: 24 start-page: 1 year: 2017 end-page: 13 ident: bib6 article-title: Spectroscopic and molecular characterization of humic substances (HS) from soils and sediments in a watershed: comparative study of HS chemical fractions and the origins publication-title: Environ. Sci. Pollut. Res. – volume: 35 start-page: 473 year: 2009 end-page: 475 ident: bib48 article-title: Survey of arsenic and its speciation in rice products such as breakfast cereals, rice crackers and Japanese rice condiments publication-title: Environ. Int. – volume: 7 start-page: 375 year: 2009 end-page: 381 ident: bib35 article-title: Exoelectrogenic bacteria that power microbial fuel cells publication-title: Nat. Rev. Microbiol. – volume: 53 start-page: 5124 year: 2019 end-page: 5132 ident: bib62 article-title: Tracing the dynamic changes of element profiles by novel soil porewater samplers with ultralow disturbance to soil-water interface publication-title: Environ. Sci. Technol. – volume: 55 start-page: 1113 year: 2005 end-page: 1121 ident: bib10 article-title: Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir publication-title: Int. J. Syst. Evol. Microbiol. – volume: 4 start-page: 267 year: 2010 end-page: 278 ident: bib20 article-title: Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing publication-title: ISME J. – volume: 75 start-page: 3072 year: 2011 end-page: 3087 ident: bib2 article-title: Microbial sulfidogenesis in ferrihydrite-rich environments: effects on iron mineralogy and arsenic mobility publication-title: Geochem. Cosmochim. Acta – volume: 112 start-page: 183 year: 2018 end-page: 197 ident: bib38 article-title: Environmental arsenic exposure: from genetic susceptibility to pathogenesis publication-title: Environ. Int. – volume: 100 start-page: 1469 year: 2016 end-page: 1478 ident: bib60 article-title: Microbial community dynamics in Baolige oilfield during MEOR treatment, revealed by Illumina MiSeq sequencing publication-title: Appl. Microbiol. Biotechnol. – volume: 79 start-page: 43 year: 2008 end-page: 49 ident: bib25 article-title: Plant/microbe cooperation for electricity generation in a rice paddy field publication-title: Appl. Microbiol. Biotechnol. – volume: 1–25 year: 2017 ident: bib49 article-title: Relaxing the formation of hypoxic bottom water with sediment microbial fuel cells publication-title: Environ. Technol. – volume: 287 start-page: 7 year: 2015 end-page: 15 ident: bib64 article-title: To prevent the occurrence of black water agglomerate through delaying decomposition of cyanobacterial bloom biomass by sediment microbial fuel cell publication-title: J. Hazard Mater. – volume: 401 start-page: 273 year: 2016 end-page: 290 ident: bib42 article-title: Linking dissolved organic carbon cycling to organic carbon fluxes in rice paddies under different water management practices publication-title: Plant Soil – volume: 2 start-page: 699 year: 2009 end-page: 705 ident: bib37 article-title: Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica publication-title: Energ. Envin. Sci. – volume: 41 start-page: 2941 year: 2007 ident: bib46 article-title: Freeze/thaw and pH effects on freshwater dissolved organic matter fluorescence and absorbance properties from a number of UK locations publication-title: Water Res. – volume: 6 start-page: 24050 year: 2016 end-page: 24059 ident: bib56 article-title: Fluorescence properties of dissolved organic matter as a function of hydrophobicity and molecular weight: case studies from two membrane bioreactors and an oxidation ditch publication-title: RSC Adv. – volume: 14 start-page: 133 year: 2009 end-page: 139 ident: bib8 article-title: Not just a grain of rice: the quest for quality publication-title: Trends Plant Sci. – start-page: 1 year: 2018 end-page: 10 ident: bib13 article-title: The change in biotic and abiotic soil components influenced by paddy soil microbial fuel cells loaded with various resistances publication-title: J. Soils Sediments – volume: 238 start-page: 617 year: 2018 end-page: 623 ident: bib16 article-title: Redox changes in speciation and solubility of arsenic in paddy soils as affected by sulfur concentrations publication-title: Environ. Pollut. – volume: 96 start-page: 139 year: 2016 end-page: 155 ident: bib23 article-title: Arsenic accumulation in rice: consequences of rice genotypes and management practices to reduce human health risk publication-title: Environ. Int. – volume: 216 start-page: 182 year: 2016 ident: bib59 article-title: Enhanced phosphorus flux from overlying water to sediment in a bioelectrochemical system publication-title: Bioresour. Technol. – volume: 11 start-page: 1234 year: 2011 end-page: 1242 ident: bib32 article-title: Phylogenetic diversity of Fe(III)-reducing microorganisms in rice paddy soil: enrichment cultures with different short-chain fatty acids as electron donors publication-title: J. Soils Sediments – volume: 224 start-page: 80 year: 2018 end-page: 95 ident: bib50 article-title: The role of iron and reactive oxygen species in the production of CO 2 in arctic soil waters publication-title: Geochem. Cosmochim. Acta – start-page: 1 year: 2018 ident: 10.1016/j.chemosphere.2019.124459_bib13 article-title: The change in biotic and abiotic soil components influenced by paddy soil microbial fuel cells loaded with various resistances publication-title: J. Soils Sediments – volume: 11 start-page: 5969 year: 2014 ident: 10.1016/j.chemosphere.2019.124459_bib31 article-title: Partial coupling and differential regulation of biologically and photo-chemically labile dissolved organic carbon across boreal aquatic networks publication-title: Biogeosciences doi: 10.5194/bg-11-5969-2014 – volume: 238 start-page: 647 year: 2018 ident: 10.1016/j.chemosphere.2019.124459_bib12 article-title: Arsenic mitigation in paddy soils by using microbial fuel cells publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.03.085 – volume: 71 start-page: 57 year: 2013 ident: 10.1016/j.chemosphere.2019.124459_bib17 article-title: Electricity generation from dissolved organic matter in polluted lake water using a microbial fuel cell (MFC) publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2012.11.016 – volume: 182 year: 2016 ident: 10.1016/j.chemosphere.2019.124459_bib27 article-title: A comparison of technologies for remediation of heavy metal contaminated soils publication-title: J. Geochem. Explor. – volume: 401 start-page: 273 year: 2016 ident: 10.1016/j.chemosphere.2019.124459_bib42 article-title: Linking dissolved organic carbon cycling to organic carbon fluxes in rice paddies under different water management practices publication-title: Plant Soil doi: 10.1007/s11104-015-2751-7 – volume: 79 start-page: 43 year: 2008 ident: 10.1016/j.chemosphere.2019.124459_bib25 article-title: Plant/microbe cooperation for electricity generation in a rice paddy field publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-008-1410-9 – volume: 8 start-page: 100 year: 2006 ident: 10.1016/j.chemosphere.2019.124459_bib55 article-title: Anaerobic redox cycling of iron by freshwater sediment microorganisms publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2005.00873.x – volume: 563–564 start-page: 796 year: 2016 ident: 10.1016/j.chemosphere.2019.124459_bib51 article-title: Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.12.080 – volume: 100 start-page: 1469 year: 2016 ident: 10.1016/j.chemosphere.2019.124459_bib60 article-title: Microbial community dynamics in Baolige oilfield during MEOR treatment, revealed by Illumina MiSeq sequencing publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-015-7073-4 – volume: 224 start-page: 80 year: 2018 ident: 10.1016/j.chemosphere.2019.124459_bib50 article-title: The role of iron and reactive oxygen species in the production of CO 2 in arctic soil waters publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2017.12.022 – volume: 2 start-page: 699 year: 2009 ident: 10.1016/j.chemosphere.2019.124459_bib37 article-title: Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica publication-title: Energ. Envin. Sci. doi: 10.1039/b823237g – volume: 188 start-page: 159 year: 2014 ident: 10.1016/j.chemosphere.2019.124459_bib24 article-title: Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2014.02.014 – volume: 344 start-page: 958 year: 2017 ident: 10.1016/j.chemosphere.2019.124459_bib40 article-title: Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2017.11.025 – volume: 8 year: 2013 ident: 10.1016/j.chemosphere.2019.124459_bib28 article-title: Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells publication-title: PLoS One doi: 10.1371/journal.pone.0077443 – volume: 505 start-page: 423 year: 2015 ident: 10.1016/j.chemosphere.2019.124459_bib9 article-title: Arsenic behavior in river sediments under redox gradient: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.10.011 – volume: 170 start-page: 97 issue: 2 year: 2019 ident: 10.1016/j.chemosphere.2019.124459_bib14 article-title: Relic DNA does not obscure the microbial community of paddy soil microbial fuel cells publication-title: Microbiol. Res. doi: 10.1016/j.resmic.2018.11.002 – volume: 3 start-page: 417 year: 2010 ident: 10.1016/j.chemosphere.2019.124459_bib41 article-title: Extracellular electron transfer through microbial reduction of solid-phase humic substances publication-title: Nat. Geosci. doi: 10.1038/ngeo870 – volume: 24 start-page: 1 year: 2017 ident: 10.1016/j.chemosphere.2019.124459_bib6 article-title: Spectroscopic and molecular characterization of humic substances (HS) from soils and sediments in a watershed: comparative study of HS chemical fractions and the origins publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-9225-9 – volume: 15 start-page: 1510 year: 2015 ident: 10.1016/j.chemosphere.2019.124459_bib33 article-title: Effects of soil drying and wetting-drying cycles on the availability of heavy metals and their relationship to dissolved organic matter publication-title: J. Soils Sediments doi: 10.1007/s11368-015-1090-x – volume: 238 start-page: 617 year: 2018 ident: 10.1016/j.chemosphere.2019.124459_bib16 article-title: Redox changes in speciation and solubility of arsenic in paddy soils as affected by sulfur concentrations publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.03.039 – volume: 53 start-page: 5124 issue: 9 year: 2019 ident: 10.1016/j.chemosphere.2019.124459_bib62 article-title: Tracing the dynamic changes of element profiles by novel soil porewater samplers with ultralow disturbance to soil-water interface publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b05390 – volume: 216 start-page: 182 year: 2016 ident: 10.1016/j.chemosphere.2019.124459_bib59 article-title: Enhanced phosphorus flux from overlying water to sediment in a bioelectrochemical system publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.05.074 – start-page: 10082 year: 2018 ident: 10.1016/j.chemosphere.2019.124459_bib44 article-title: Effects of initial sediment properties on start-up times for sediment microbial fuel cells publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.04.082 – volume: 137 start-page: 504 year: 2007 ident: 10.1016/j.chemosphere.2019.124459_bib43 article-title: Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a West Bengal (India) soil publication-title: Geoderma doi: 10.1016/j.geoderma.2006.10.012 – volume: 287 start-page: 7 year: 2015 ident: 10.1016/j.chemosphere.2019.124459_bib64 article-title: To prevent the occurrence of black water agglomerate through delaying decomposition of cyanobacterial bloom biomass by sediment microbial fuel cell publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2015.01.036 – volume: 75 start-page: 3072 year: 2011 ident: 10.1016/j.chemosphere.2019.124459_bib2 article-title: Microbial sulfidogenesis in ferrihydrite-rich environments: effects on iron mineralogy and arsenic mobility publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2011.03.001 – volume: 55 start-page: 1113 year: 2005 ident: 10.1016/j.chemosphere.2019.124459_bib10 article-title: Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.63426-0 – volume: 112 start-page: 183 year: 2018 ident: 10.1016/j.chemosphere.2019.124459_bib38 article-title: Environmental arsenic exposure: from genetic susceptibility to pathogenesis publication-title: Environ. Int. doi: 10.1016/j.envint.2017.12.017 – volume: 21 start-page: 1562 year: 2009 ident: 10.1016/j.chemosphere.2019.124459_bib53 article-title: Effect of microbial mediated iron plaque reduction on arsenic mobility in paddy soil publication-title: J. Environ. Sci. (China) doi: 10.1016/S1001-0742(08)62456-0 – volume: 1–25 year: 2017 ident: 10.1016/j.chemosphere.2019.124459_bib49 article-title: Relaxing the formation of hypoxic bottom water with sediment microbial fuel cells publication-title: Environ. Technol. – volume: 3 start-page: 27 year: 2015 ident: 10.1016/j.chemosphere.2019.124459_bib1 article-title: The microbial community of a passive biochemical reactor treating arsenic, zinc, and sulfate-rich seepage publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2015.00027 – volume: 311 start-page: 20 year: 2016 ident: 10.1016/j.chemosphere.2019.124459_bib5 article-title: Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2016.02.069 – volume: 9 start-page: 70 year: 2015 ident: 10.1016/j.chemosphere.2019.124459_bib47 article-title: Arsenic release metabolically limited to permanently water-saturated soil in Mekong Delta publication-title: Nat. Geosci. doi: 10.1038/ngeo2589 – volume: 307 start-page: 167 year: 2003 ident: 10.1016/j.chemosphere.2019.124459_bib4 article-title: The roles of natural organic matter in chemical and microbial reduction of ferric iron publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(02)00538-7 – volume: 41 start-page: 2941 year: 2007 ident: 10.1016/j.chemosphere.2019.124459_bib46 article-title: Freeze/thaw and pH effects on freshwater dissolved organic matter fluorescence and absorbance properties from a number of UK locations publication-title: Water Res. doi: 10.1016/j.watres.2007.04.012 – volume: 54 start-page: 1472 year: 1988 ident: 10.1016/j.chemosphere.2019.124459_bib36 article-title: Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.54.6.1472-1480.1988 – volume: 4 start-page: 267 year: 2010 ident: 10.1016/j.chemosphere.2019.124459_bib20 article-title: Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing publication-title: ISME J. doi: 10.1038/ismej.2009.100 – volume: 6 start-page: 24050 year: 2016 ident: 10.1016/j.chemosphere.2019.124459_bib56 article-title: Fluorescence properties of dissolved organic matter as a function of hydrophobicity and molecular weight: case studies from two membrane bioreactors and an oxidation ditch publication-title: RSC Adv. doi: 10.1039/C5RA23167A – volume: 32 start-page: 389 year: 2009 ident: 10.1016/j.chemosphere.2019.124459_bib18 article-title: Responses from freshwater sediment during electricity generation using microbial fuel cells publication-title: Bioproc. Biosyst. Eng. doi: 10.1007/s00449-008-0258-9 – volume: 11 start-page: 1 year: 2007 ident: 10.1016/j.chemosphere.2019.124459_bib63 article-title: Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction publication-title: Extremophiles doi: 10.1007/s00792-006-0004-7 – volume: 172 start-page: 647 year: 2011 ident: 10.1016/j.chemosphere.2019.124459_bib21 article-title: Enhanced anaerobic degradation of organic pollutants in a soil microbial fuel cell publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.06.024 – volume: 7 start-page: 375 year: 2009 ident: 10.1016/j.chemosphere.2019.124459_bib35 article-title: Exoelectrogenic bacteria that power microbial fuel cells publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2113 – year: 2008 ident: 10.1016/j.chemosphere.2019.124459_bib34 – volume: 51 start-page: 7326 year: 2017 ident: 10.1016/j.chemosphere.2019.124459_bib65 article-title: Linking genes to microbial biogeochemical cycling: lessons from arsenic publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00689 – start-page: 1 year: 2019 ident: 10.1016/j.chemosphere.2019.124459_bib15 article-title: Arsenic alleviation in rice by using paddy soil microbial fuel cells publication-title: Plant Soil – volume: 47 start-page: 1009 year: 2013 ident: 10.1016/j.chemosphere.2019.124459_bib11 article-title: Enhancement of arsenic adsorption during mineral transformation from siderite to goethite: mechanism and application publication-title: Environ. Sci. Technol. doi: 10.1021/es303503m – volume: 18 start-page: 517 year: 2018 ident: 10.1016/j.chemosphere.2019.124459_bib61 article-title: The influence of soil properties and geographical distance on the bacterial community compositions of paddy soils enriched on SMFC anodes publication-title: J. Soils Sediments doi: 10.1007/s11368-017-1769-2 – volume: 342 start-page: 571 year: 2018 ident: 10.1016/j.chemosphere.2019.124459_bib58 article-title: Effect of extracellular electron shuttles on arsenic-mobilizing activities in soil microbial communities publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2017.08.071 – volume: 16 start-page: 1745 year: 2016 ident: 10.1016/j.chemosphere.2019.124459_bib54 article-title: Arsenic modulates the composition of anode-respiring bacterial community during dry-wet cycles in paddy soils publication-title: J. Soils Sediments doi: 10.1007/s11368-016-1369-6 – volume: 79 start-page: 4635 year: 2013 ident: 10.1016/j.chemosphere.2019.124459_bib30 article-title: Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. strain PSR-1 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00693-13 – volume: 35 start-page: 473 year: 2009 ident: 10.1016/j.chemosphere.2019.124459_bib48 article-title: Survey of arsenic and its speciation in rice products such as breakfast cereals, rice crackers and Japanese rice condiments publication-title: Environ. Int. doi: 10.1016/j.envint.2008.07.020 – volume: 96 start-page: 139 year: 2016 ident: 10.1016/j.chemosphere.2019.124459_bib23 article-title: Arsenic accumulation in rice: consequences of rice genotypes and management practices to reduce human health risk publication-title: Environ. Int. doi: 10.1016/j.envint.2016.09.006 – volume: 85 start-page: 1489 year: 2010 ident: 10.1016/j.chemosphere.2019.124459_bib45 article-title: Removal of organic matter in freshwater sediment by microbial fuel cells at various external resistances publication-title: J. Appl. Chem. Biotechnol. doi: 10.1002/jctb.2454 – volume: 11 start-page: 1234 year: 2011 ident: 10.1016/j.chemosphere.2019.124459_bib32 article-title: Phylogenetic diversity of Fe(III)-reducing microorganisms in rice paddy soil: enrichment cultures with different short-chain fatty acids as electron donors publication-title: J. Soils Sediments doi: 10.1007/s11368-011-0371-2 – volume: 15 start-page: 926 year: 2015 ident: 10.1016/j.chemosphere.2019.124459_bib52 article-title: Bacterial community composition at anodes of microbial fuel cells for paddy soils: the effects of soil properties publication-title: J. Soils Sediments doi: 10.1007/s11368-014-1056-4 – volume: 238 start-page: 482 year: 2018 ident: 10.1016/j.chemosphere.2019.124459_bib3 article-title: Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.03.048 – volume: 83 start-page: 925 year: 2011 ident: 10.1016/j.chemosphere.2019.124459_bib57 article-title: Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.02.044 – volume: 69 start-page: 1089 year: 2007 ident: 10.1016/j.chemosphere.2019.124459_bib22 article-title: The effect of manipulating sediment pH on the porewater chemistry of copper- and zinc-spiked sediments publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.04.029 – volume: 135 start-page: 671 year: 2006 ident: 10.1016/j.chemosphere.2019.124459_bib29 article-title: The relationship between oral malodor and volatile sulfur compound–producing bacteria publication-title: Otolaryngology-Head Neck Surg. (Tokyo) doi: 10.1016/j.otohns.2005.09.036 – volume: 14 start-page: 133 year: 2009 ident: 10.1016/j.chemosphere.2019.124459_bib8 article-title: Not just a grain of rice: the quest for quality publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2008.12.004 – volume: 158 start-page: 185 year: 2010 ident: 10.1016/j.chemosphere.2019.124459_bib19 article-title: Alteration of sediment organic matter in sediment microbial fuel cells publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2009.07.022 – volume: 1 start-page: 339 year: 2016 ident: 10.1016/j.chemosphere.2019.124459_bib26 article-title: Biochar as an electron shuttle between bacteria and Fe(III) minerals publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/ez5002209 – volume: 55 start-page: 2452 year: 2010 ident: 10.1016/j.chemosphere.2019.124459_bib7 article-title: Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2010.55.6.2452 – volume: 101 start-page: 20 year: 2016 ident: 10.1016/j.chemosphere.2019.124459_bib39 article-title: The diversity of iron reducing bacteria communities in subtropical paddy soils of China publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2016.01.012 |
SSID | ssj0001659 |
Score | 2.5261133 |
Snippet | Arsenic (As) mobility in paddy soils is mainly controlled by iron (Fe) oxides and iron reducing bacteria (IBR). The Fe reducing bacteria are also considered to... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 124459 |
SubjectTerms | acidification anodes Arsenic Arsenic - metabolism bacteria Bacteria - metabolism Bioelectric Energy Sources Dissolved organic matter Electrodes iron Iron - metabolism microbial fuel cells Oxidation-Reduction oxides Paddy soil paddy soils risk Soil - chemistry Soil microbial fuel cells Soil Microbiology soil organic matter Soil Pollutants - metabolism Water Water management Wetlands |
Title | Soil organic matter amount determines the behavior of iron and arsenic in paddy soil with microbial fuel cells |
URI | https://dx.doi.org/10.1016/j.chemosphere.2019.124459 https://www.ncbi.nlm.nih.gov/pubmed/31377597 https://www.proquest.com/docview/2268575963 https://www.proquest.com/docview/2286899185 |
Volume | 237 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5E8XER364vInitbk3STcGLLMqq6EUFb6F5FCq77WJ3D1787c704QMUBI8tnZJmkplv0plvAI4M-gRlpQgstxigpNwFsTIiMDIJY5NGUc_ROeTtXTR4FNdP8mkG-m0tDKVVNra_tumVtW7unDSzeTLOMqrxJTRCDeao-RInOyxEj1b58dtnmkcYyRoCCxnQ0wtw-JnjhfMyKkqq3yfGzDA-Jm9HtKU_-6jfMGjliy5XYLkBkey8HucqzPh8DRb7be-2NZi_qMioX9chvy-yIat7N1k2qtg0WTKiDhHMNakwvmQIA1lbsc-KlFHxG0tyxzDu9SSZ5WyMRuqVlfQ-Or1lo6wiccKBpFM_ZPQLoNyAx8uLh_4gaHosBFaE3UmAeCchqmKHXqprCN9Yl6SxIV5BYVSPK1xqCBEET42JQ0_cObhtKQxzRkrJN2E2L3K_DcyJJLVKKHdqjfBSGeuirvWxQ1DAk4h3QLWzqm1DQE59MIa6zTR71l8UokkhulZIB04_RMc1C8dfhM5a1elvS0qjt_iL-GGrbo3ao0lMcl9MS42IteprSp_0-zMqwlAW0VAHtuq18jFyTiyPGMjt_G-Au7BEV3VuzR7MTl6mfh8R0sQcVFvgAObOr24Gd-_CaRGQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5FVIVeKgiPpoV2kbgaYnbXWUu9VBEobYELIHFbeR-WjBI7wskhF347M34kIIGExDX2Wpud3Zlv7JnvAzgyGBOUlSKw3GKCknIXxMqIwMgkjE0aRQNH7yEvr6LRrfh3J-86MGx7YaissvH9tU-vvHXzy0mzmifTLKMeX0IjJDBH4ksc_fAngceXZAyOH1d1HmEkawwsZEC3r8PhqsgLF2ZSlNTAT5SZYXxM4Y54S18PUm-B0CoYnW_C1wZFsj_1RLeg4_MubAxb8bYufD6r2KgX25BfF9mY1eJNlk0qOk2WTEgigrmmFsaXDHEga1v2WZEy6n5jSe4YJr6eRmY5m6KXWrCSnkevb9kkq1iccCLp3I8ZfQMod-D2_OxmOAoakYXAirA_CxDwJMRV7DBM9Q0BHOuSNDZELCiMGnCFew0xguCpMXHoiTwHzy3lYc5IKfkurOVF7r8BcyJJrRLKnVojvFTGuqhvfewQFfAk4j1Q7apq2zCQkxDGWLelZvf6mUE0GUTXBunB6XLotKbheM-g363p9Is9pTFcvGf4YWtujdajRUxyX8xLjZC1Ejalv_T2PSrCXBbhUA_26r2ynDknmkfM5L5_bIK_YGN0c3mhL_5e_f8BX-hKXWizD2uzh7k_QLg0Mz-r4_AE3GUTHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+organic+matter+amount+determines+the+behavior+of+iron+and+arsenic+in+paddy+soil+with+microbial+fuel+cells&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Gustave%2C+Williamson&rft.au=Yuan%2C+Zhao-Feng&rft.au=Sekar%2C+Raju&rft.au=Ren%2C+Yu-Xiang&rft.date=2019-12-01&rft.issn=1879-1298&rft.eissn=1879-1298&rft.volume=237&rft.spage=124459&rft_id=info:doi/10.1016%2Fj.chemosphere.2019.124459&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |