Soil organic matter amount determines the behavior of iron and arsenic in paddy soil with microbial fuel cells

Arsenic (As) mobility in paddy soils is mainly controlled by iron (Fe) oxides and iron reducing bacteria (IBR). The Fe reducing bacteria are also considered to be enriched on the anode of soil microbial fuel cells (sMFC). Thus, the sMFC may have an impact on elements’ behavior, especially Fe and As,...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 237; p. 124459
Main Authors Gustave, Williamson, Yuan, Zhao-Feng, Sekar, Raju, Ren, Yu-Xiang, Liu, Jinjing-Yuan, Zhang, Jun, Chen, Zheng
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Arsenic (As) mobility in paddy soils is mainly controlled by iron (Fe) oxides and iron reducing bacteria (IBR). The Fe reducing bacteria are also considered to be enriched on the anode of soil microbial fuel cells (sMFC). Thus, the sMFC may have an impact on elements’ behavior, especially Fe and As, mobilization and immobilization in paddy soils. In this study, we found dissolved organic matter (DOC) abundance was a major determinate for the sMFC impact on Fe and As. In the constructed sMFCs with and without water management, distinctive behaviors of Fe and As in paddy soil were observed, which can be explained by the low or high DOC content under different water management. When the sMFC was deployed without water management, i.e. DOC was abundant, the sMFC promoted Fe and As movement into the soil porewater. The As release into the porewater was associated with the enhanced Fe reduction by the sMFC. This was ascribed to the acidification effect of sMFC anode and the increase of Fe reducing bacteria in the sMFC anode vicinity and associated bulk soil. However, when the sMFC was coupled with alternating dry-wet cycles, i.e. DOC was limited, the Fe and As concentrations in the soil porewater dramatically decreased by up to 2.3 and 1.6 fold, respectively, compared to the controls under the same water management regime. This study implies an environmental risk for the in-situ application of sMFC in organic matter rich wetlands and also points out a new mitigation strategy for As management in paddy soils. [Display omitted] •DOC abundance is a major determinate for the sMFC impact on Fe and As.•sMFC coupled with alternating dry-wet cycles can dramatically decreased the soil porewater Fe and As concentration.•The in-situ application of sMFC in organic matter rich wetlands may pose an environmental risk.•The combination of the sMFC with water management can be used as a new mitigation strategy for As management in paddy soils.
AbstractList Arsenic (As) mobility in paddy soils is mainly controlled by iron (Fe) oxides and iron reducing bacteria (IBR). The Fe reducing bacteria are also considered to be enriched on the anode of soil microbial fuel cells (sMFC). Thus, the sMFC may have an impact on elements’ behavior, especially Fe and As, mobilization and immobilization in paddy soils. In this study, we found dissolved organic matter (DOC) abundance was a major determinate for the sMFC impact on Fe and As. In the constructed sMFCs with and without water management, distinctive behaviors of Fe and As in paddy soil were observed, which can be explained by the low or high DOC content under different water management. When the sMFC was deployed without water management, i.e. DOC was abundant, the sMFC promoted Fe and As movement into the soil porewater. The As release into the porewater was associated with the enhanced Fe reduction by the sMFC. This was ascribed to the acidification effect of sMFC anode and the increase of Fe reducing bacteria in the sMFC anode vicinity and associated bulk soil. However, when the sMFC was coupled with alternating dry-wet cycles, i.e. DOC was limited, the Fe and As concentrations in the soil porewater dramatically decreased by up to 2.3 and 1.6 fold, respectively, compared to the controls under the same water management regime. This study implies an environmental risk for the in-situ application of sMFC in organic matter rich wetlands and also points out a new mitigation strategy for As management in paddy soils. [Display omitted] •DOC abundance is a major determinate for the sMFC impact on Fe and As.•sMFC coupled with alternating dry-wet cycles can dramatically decreased the soil porewater Fe and As concentration.•The in-situ application of sMFC in organic matter rich wetlands may pose an environmental risk.•The combination of the sMFC with water management can be used as a new mitigation strategy for As management in paddy soils.
Arsenic (As) mobility in paddy soils is mainly controlled by iron (Fe) oxides and iron reducing bacteria (IBR). The Fe reducing bacteria are also considered to be enriched on the anode of soil microbial fuel cells (sMFC). Thus, the sMFC may have an impact on elements' behavior, especially Fe and As, mobilization and immobilization in paddy soils. In this study, we found dissolved organic matter (DOC) abundance was a major determinate for the sMFC impact on Fe and As. In the constructed sMFCs with and without water management, distinctive behaviors of Fe and As in paddy soil were observed, which can be explained by the low or high DOC content under different water management. When the sMFC was deployed without water management, i.e. DOC was abundant, the sMFC promoted Fe and As movement into the soil porewater. The As release into the porewater was associated with the enhanced Fe reduction by the sMFC. This was ascribed to the acidification effect of sMFC anode and the increase of Fe reducing bacteria in the sMFC anode vicinity and associated bulk soil. However, when the sMFC was coupled with alternating dry-wet cycles, i.e. DOC was limited, the Fe and As concentrations in the soil porewater dramatically decreased by up to 2.3 and 1.6 fold, respectively, compared to the controls under the same water management regime. This study implies an environmental risk for the in-situ application of sMFC in organic matter rich wetlands and also points out a new mitigation strategy for As management in paddy soils.
Arsenic (As) mobility in paddy soils is mainly controlled by iron (Fe) oxides and iron reducing bacteria (IBR). The Fe reducing bacteria are also considered to be enriched on the anode of soil microbial fuel cells (sMFC). Thus, the sMFC may have an impact on elements' behavior, especially Fe and As, mobilization and immobilization in paddy soils. In this study, we found dissolved organic matter (DOC) abundance was a major determinate for the sMFC impact on Fe and As. In the constructed sMFCs with and without water management, distinctive behaviors of Fe and As in paddy soil were observed, which can be explained by the low or high DOC content under different water management. When the sMFC was deployed without water management, i.e. DOC was abundant, the sMFC promoted Fe and As movement into the soil porewater. The As release into the porewater was associated with the enhanced Fe reduction by the sMFC. This was ascribed to the acidification effect of sMFC anode and the increase of Fe reducing bacteria in the sMFC anode vicinity and associated bulk soil. However, when the sMFC was coupled with alternating dry-wet cycles, i.e. DOC was limited, the Fe and As concentrations in the soil porewater dramatically decreased by up to 2.3 and 1.6 fold, respectively, compared to the controls under the same water management regime. This study implies an environmental risk for the in-situ application of sMFC in organic matter rich wetlands and also points out a new mitigation strategy for As management in paddy soils.Arsenic (As) mobility in paddy soils is mainly controlled by iron (Fe) oxides and iron reducing bacteria (IBR). The Fe reducing bacteria are also considered to be enriched on the anode of soil microbial fuel cells (sMFC). Thus, the sMFC may have an impact on elements' behavior, especially Fe and As, mobilization and immobilization in paddy soils. In this study, we found dissolved organic matter (DOC) abundance was a major determinate for the sMFC impact on Fe and As. In the constructed sMFCs with and without water management, distinctive behaviors of Fe and As in paddy soil were observed, which can be explained by the low or high DOC content under different water management. When the sMFC was deployed without water management, i.e. DOC was abundant, the sMFC promoted Fe and As movement into the soil porewater. The As release into the porewater was associated with the enhanced Fe reduction by the sMFC. This was ascribed to the acidification effect of sMFC anode and the increase of Fe reducing bacteria in the sMFC anode vicinity and associated bulk soil. However, when the sMFC was coupled with alternating dry-wet cycles, i.e. DOC was limited, the Fe and As concentrations in the soil porewater dramatically decreased by up to 2.3 and 1.6 fold, respectively, compared to the controls under the same water management regime. This study implies an environmental risk for the in-situ application of sMFC in organic matter rich wetlands and also points out a new mitigation strategy for As management in paddy soils.
ArticleNumber 124459
Author Ren, Yu-Xiang
Gustave, Williamson
Sekar, Raju
Chen, Zheng
Yuan, Zhao-Feng
Zhang, Jun
Liu, Jinjing-Yuan
Author_xml – sequence: 1
  givenname: Williamson
  surname: Gustave
  fullname: Gustave, Williamson
  organization: Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
– sequence: 2
  givenname: Zhao-Feng
  surname: Yuan
  fullname: Yuan, Zhao-Feng
  organization: Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
– sequence: 3
  givenname: Raju
  orcidid: 0000-0002-1182-9004
  surname: Sekar
  fullname: Sekar, Raju
  organization: Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
– sequence: 4
  givenname: Yu-Xiang
  surname: Ren
  fullname: Ren, Yu-Xiang
  organization: Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
– sequence: 5
  givenname: Jinjing-Yuan
  surname: Liu
  fullname: Liu, Jinjing-Yuan
  organization: Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
– sequence: 6
  givenname: Jun
  orcidid: 0000-0003-1965-7224
  surname: Zhang
  fullname: Zhang, Jun
  organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
– sequence: 7
  givenname: Zheng
  orcidid: 0000-0002-1184-3682
  surname: Chen
  fullname: Chen, Zheng
  email: ebiogeochem@outlook.com, Zheng.Chen@xjtlu.edu.cn
  organization: Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31377597$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9v1DAQxS1URLeFr4DMjUsWO7ET-4TQin9SJQ7A2XLsCZlVYi-2U9RvT6JtJcRpT9ZIv_fG894NuQoxACFvONtzxtt3x70bYY75NEKCfc243vNaCKmfkR1Xna54rdUV2TEmZNXKRl6Tm5yPjK1iqV-Q64Y3XSd1tyPhe8SJxvTLBnR0tqVAonaOSyjUwzrMGCDTMgLtYbT3GBONA8UUA7XBU5sybEoM9GS9f6B58_uDZaQzuhR7tBMdFpiog2nKL8nzwU4ZXj2-t-Tnp48_Dl-qu2-fvx4-3FVOcFaqljGrWVt7JTrWs5ZL5-2g-7rTtehV1yiwnnMmmqHvNQfFOiEbzoXgvpdSNrfk7dn3lOLvBXIxM-btBzZAXLKpa9Uqrbm6BG2VXMNqmxV9_Ygu_QzenBLONj2YpzhX4P0ZWC_POcFgHBZbMIaSLE6GM7MVaI7mnwLNVqA5F7g66P8cnpZcoj2ctbAme4-QTHYIwYHHBK4YH_ECl7_JjryU
CitedBy_id crossref_primary_10_3390_fermentation10020113
crossref_primary_10_1016_j_jhazmat_2022_129108
crossref_primary_10_1016_j_rser_2025_115495
crossref_primary_10_1016_j_jes_2020_09_017
crossref_primary_10_1007_s11356_020_11317_7
crossref_primary_10_1016_j_ejsobi_2021_103351
crossref_primary_10_1016_j_chemosphere_2020_127276
crossref_primary_10_1016_j_chemosphere_2021_129691
crossref_primary_10_1016_j_scitotenv_2023_166414
crossref_primary_10_1134_S000143382108003X
crossref_primary_10_1016_j_scitotenv_2020_144145
crossref_primary_10_1016_j_jenvman_2024_121066
crossref_primary_10_1080_10643389_2022_2040327
crossref_primary_10_1007_s10653_023_01833_z
crossref_primary_10_3390_en18040970
crossref_primary_10_1016_j_jece_2022_107505
crossref_primary_10_1016_j_scitotenv_2021_145040
crossref_primary_10_1016_j_elecom_2024_107681
crossref_primary_10_1016_j_scitotenv_2024_176106
crossref_primary_10_1016_j_chemosphere_2020_128713
crossref_primary_10_3390_w14192975
crossref_primary_10_1007_s44246_023_00049_1
crossref_primary_10_1016_j_ecoenv_2020_111478
crossref_primary_10_1016_j_envpol_2021_118760
crossref_primary_10_1007_s00128_021_03317_1
crossref_primary_10_1016_j_ceja_2021_100140
crossref_primary_10_1016_j_soisec_2024_100150
crossref_primary_10_1016_j_jhazmat_2021_128123
crossref_primary_10_1016_j_scitotenv_2024_170451
crossref_primary_10_1016_j_scitotenv_2024_171543
crossref_primary_10_3390_pr9040673
crossref_primary_10_4491_KSEE_2022_44_11_468
crossref_primary_10_1016_j_envpol_2020_114305
crossref_primary_10_1016_j_jenvman_2021_113012
crossref_primary_10_1007_s11356_023_28387_y
crossref_primary_10_3390_ijerph16214075
crossref_primary_10_1016_j_envpol_2023_121237
crossref_primary_10_1016_j_envres_2021_111069
crossref_primary_10_1016_j_scitotenv_2020_137633
crossref_primary_10_1016_j_scitotenv_2022_153306
crossref_primary_10_1002_jsfa_11343
crossref_primary_10_1016_j_ese_2023_100276
crossref_primary_10_3389_fmicb_2022_997732
crossref_primary_10_1016_j_envpol_2020_113989
crossref_primary_10_1016_j_eti_2020_100615
crossref_primary_10_1016_j_jhazmat_2024_134232
crossref_primary_10_1016_j_scitotenv_2020_143865
crossref_primary_10_1002_er_7288
crossref_primary_10_1016_j_jhazmat_2020_122818
crossref_primary_10_3390_bios13010145
crossref_primary_10_1007_s11356_022_24356_z
crossref_primary_10_3390_su14042048
crossref_primary_10_1016_j_biortech_2024_131057
crossref_primary_10_1007_s11431_023_2537_y
crossref_primary_10_1016_j_chemosphere_2021_131790
Cites_doi 10.5194/bg-11-5969-2014
10.1016/j.envpol.2018.03.085
10.1016/j.bej.2012.11.016
10.1007/s11104-015-2751-7
10.1007/s00253-008-1410-9
10.1111/j.1462-2920.2005.00873.x
10.1016/j.scitotenv.2015.12.080
10.1007/s00253-015-7073-4
10.1016/j.gca.2017.12.022
10.1039/b823237g
10.1016/j.envpol.2014.02.014
10.1016/j.jhazmat.2017.11.025
10.1371/journal.pone.0077443
10.1016/j.scitotenv.2014.10.011
10.1016/j.resmic.2018.11.002
10.1038/ngeo870
10.1007/s11356-017-9225-9
10.1007/s11368-015-1090-x
10.1016/j.envpol.2018.03.039
10.1021/acs.est.8b05390
10.1016/j.biortech.2016.05.074
10.1016/j.ijhydene.2018.04.082
10.1016/j.geoderma.2006.10.012
10.1016/j.jhazmat.2015.01.036
10.1016/j.gca.2011.03.001
10.1099/ijs.0.63426-0
10.1016/j.envint.2017.12.017
10.1016/S1001-0742(08)62456-0
10.3389/fbioe.2015.00027
10.1016/j.jhazmat.2016.02.069
10.1038/ngeo2589
10.1016/S0048-9697(02)00538-7
10.1016/j.watres.2007.04.012
10.1128/AEM.54.6.1472-1480.1988
10.1038/ismej.2009.100
10.1039/C5RA23167A
10.1007/s00449-008-0258-9
10.1007/s00792-006-0004-7
10.1016/j.cej.2011.06.024
10.1038/nrmicro2113
10.1021/acs.est.7b00689
10.1021/es303503m
10.1007/s11368-017-1769-2
10.1016/j.jhazmat.2017.08.071
10.1007/s11368-016-1369-6
10.1128/AEM.00693-13
10.1016/j.envint.2008.07.020
10.1016/j.envint.2016.09.006
10.1002/jctb.2454
10.1007/s11368-011-0371-2
10.1007/s11368-014-1056-4
10.1016/j.envpol.2018.03.048
10.1016/j.chemosphere.2011.02.044
10.1016/j.chemosphere.2007.04.029
10.1016/j.otohns.2005.09.036
10.1016/j.tplants.2008.12.004
10.1016/j.envpol.2009.07.022
10.1021/ez5002209
10.4319/lo.2010.55.6.2452
10.1016/j.apsoil.2016.01.012
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.chemosphere.2019.124459
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
ExternalDocumentID 31377597
10_1016_j_chemosphere_2019_124459
S0045653519316832
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c410t-600a9062d8470b0615cdaf9b27924b8738ead11043fbb91e80745311441db5553
IEDL.DBID .~1
ISSN 0045-6535
1879-1298
IngestDate Thu Jul 10 19:23:16 EDT 2025
Thu Jul 10 23:40:47 EDT 2025
Thu Apr 03 07:07:14 EDT 2025
Tue Jul 01 02:33:49 EDT 2025
Thu Apr 24 23:11:07 EDT 2025
Fri Feb 23 02:33:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Soil microbial fuel cells
Dissolved organic matter
Water management
Arsenic
Paddy soil
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-600a9062d8470b0615cdaf9b27924b8738ead11043fbb91e80745311441db5553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1965-7224
0000-0002-1182-9004
0000-0002-1184-3682
PMID 31377597
PQID 2268575963
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2286899185
proquest_miscellaneous_2268575963
pubmed_primary_31377597
crossref_citationtrail_10_1016_j_chemosphere_2019_124459
crossref_primary_10_1016_j_chemosphere_2019_124459
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2019_124459
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Roden, Kappler, Bauer, Jiang, Paul, Stoesser, Konishi, Xu (bib41) 2010; 3
Jiang, Hou, Yang, Zhong, Zheng, Yang, Li (bib24) 2014; 188
Stuckey, Schaefer, Kocar, Benner, Fendorf (bib47) 2015; 9
Kaku, Yonezawa, Kodama, Watanabe (bib25) 2008; 79
Chen, Gu, Royer, Burgos (bib4) 2003; 307
Lovley, Phillips (bib36) 1988; 54
Gustave, Yuan, Ren, Sekar, Zhang, Chen (bib15) 2019
Wang, Chen, Liu, Sun, Ding, Zhu (bib54) 2016; 16
Zavarzina, Sokolova, Tourova, Chernyh, Kostrikina, Bonchosmolovskaya (bib63) 2007; 11
Derrien, Yun, Park, Li, Chen, Sang, Lee, Lee, Jin (bib6) 2017; 24
Marshall, May (bib37) 2009; 2
Gustave, Yuan, Sekar, Ren, Chang, Liu, Chen (bib13) 2018
Khalid, Shahid, Niazi, Murtaza, Bibi, Dumat (bib27) 2016; 182
Zhou, Jiang, Cai (bib64) 2015; 287
Gorny, Billon, Lesven, Dumoulin, Madé, Noiriel (bib9) 2015; 505
Kouzuma, Kasai, Nakagawa, Yamamuro, Abe, Watanabe (bib28) 2013; 8
Minatel, Sage, Anderson, Hubaux, Marshall, Lam, Martinez (bib38) 2018; 112
Krespi, Shrime, Kacker (bib29) 2006; 135
Spencer, Bolton, Baker (bib46) 2007; 41
Yang, Zhao, Zhao, Ni, Gu (bib59) 2016; 216
Yuan, Gustave, Bridge, Liang, Sekar, Boyle, Jin, Pu, Ren, Chen (bib62) 2019; 53
He, Xiao, Li, Cai, Yuan, Yan, He, Sheng, Tong, Yu (bib17) 2013; 71
Islam, Rahman, Islam, Naidu (bib23) 2016; 96
You, Wu, Ren, Chang, Yu, Xue, Mu (bib60) 2016; 100
Yamamura, Sudo, Watanabe, Tsuboi, Soda, Ike, Amachi (bib58) 2018; 342
Gustave, Yuan, Sekar, Chang, Zhang, Wells, Ren, Chen (bib12) 2018; 238
Chen, Wang, Xia, Jiang, Fu, Shen, Wang, Li (bib5) 2016; 311
Song, Yan, Zhao, Jiang (bib45) 2010; 85
Chen, Tang, Wang, Zhao (bib3) 2018; 238
Logan (bib34) 2008
Song, Jiang (bib44) 2018
Grabowski, Tindall, Bardin, Blanchet, Jeanthon (bib10) 2005; 55
Kappler, Wuestner, Ruecker, Harter, Halama, Behrens (bib26) 2016; 1
Wang, Chen, Li, Su, Zhao, Zhu (bib52) 2015; 15
Hutchins, Teasdale, Lee, Simpson (bib22) 2007; 69
Wang, Xueping, Jing, Zhaosu, Guoxin (bib53) 2009; 21
Fitzgerald, Mccouch, Hall (bib8) 2009; 14
Burton, Johnston, Bush (bib2) 2011; 75
Wan, Lei, Chen (bib51) 2016; 563–564
Gustave, Yuan, Sekar, Toppin, Liu, Ren, Zhang, Chen (bib14) 2019; 170
Yamaguchi, Nakamura, Dong, Takahashi, Amachi, Makino (bib57) 2011; 83
Fellman, Hood, Spencer (bib7) 2010; 55
Li, Wu, Zhang, Luo, Christie (bib33) 2015; 15
Logan (bib35) 2009; 7
Weber, Urrutia, Churchill, Kukkadapu, Roden (bib55) 2006; 8
Lapierre, Del Giorgio (bib31) 2014; 11
Qiao, Li, Li (bib40) 2017; 344
Trusiak, Treibergs, Kling, Cory (bib50) 2018; 224
Hashimoto, Kanke (bib16) 2018; 238
Saidpullicino, Miniotti, Sodano, Bertora, Lerda, Chiaradia, Romani, De Maria, Sacco, Celi (bib42) 2016; 401
Xiao, Sun, Shen, Liang, Liang, Wang, Huang (bib56) 2016; 6
Hong, Chang, Choi, Kim, Chung (bib18) 2009; 32
Yuan, Liu, Wang, Li, Zhu, Khan, Alkhedhairy, Sun (bib61) 2018; 18
Hong, Kim, Chung (bib19) 2010; 158
Hori, Muller, Igarashi, Conrad, Friedrich (bib20) 2010; 4
Guo, Ren, Liu, Zhao, Li (bib11) 2013; 47
Peng, Shaaban, Wu, Hu, Wang, Wang (bib39) 2016; 101
Zhu, Xue, Kappler, Rosen, Meharg (bib65) 2017; 51
Li, Peng, Weber, Zhu (bib32) 2011; 11
Huang, Zhou, Chen, Zhao, Yuan, Zhuang (bib21) 2011; 172
Touch, Hibino, Morimoto, Kinjo (bib49) 2017; 1–25
Baldwin, Khoshnoodi, Rezadehbashi, Taupp, Hallam, Mattes, Sanei (bib1) 2015; 3
Signespastor, Burlo, Mitra, Carbonellbarrachina (bib43) 2007; 137
Sun, Williams, Zhu, Deacon, Carey, Raab, Feldmann, Meharg (bib48) 2009; 35
Kudo, Yamaguchi, Makino, Ohtsuka, Kimura, Dong, Amachi (bib30) 2013; 79
Gustave (10.1016/j.chemosphere.2019.124459_bib14) 2019; 170
Islam (10.1016/j.chemosphere.2019.124459_bib23) 2016; 96
Hong (10.1016/j.chemosphere.2019.124459_bib19) 2010; 158
Huang (10.1016/j.chemosphere.2019.124459_bib21) 2011; 172
Fellman (10.1016/j.chemosphere.2019.124459_bib7) 2010; 55
Zhou (10.1016/j.chemosphere.2019.124459_bib64) 2015; 287
Wang (10.1016/j.chemosphere.2019.124459_bib52) 2015; 15
Li (10.1016/j.chemosphere.2019.124459_bib33) 2015; 15
Qiao (10.1016/j.chemosphere.2019.124459_bib40) 2017; 344
Kudo (10.1016/j.chemosphere.2019.124459_bib30) 2013; 79
Baldwin (10.1016/j.chemosphere.2019.124459_bib1) 2015; 3
Trusiak (10.1016/j.chemosphere.2019.124459_bib50) 2018; 224
Zavarzina (10.1016/j.chemosphere.2019.124459_bib63) 2007; 11
Kappler (10.1016/j.chemosphere.2019.124459_bib26) 2016; 1
Hong (10.1016/j.chemosphere.2019.124459_bib18) 2009; 32
Gustave (10.1016/j.chemosphere.2019.124459_bib12) 2018; 238
Wan (10.1016/j.chemosphere.2019.124459_bib51) 2016; 563–564
Hori (10.1016/j.chemosphere.2019.124459_bib20) 2010; 4
Sun (10.1016/j.chemosphere.2019.124459_bib48) 2009; 35
Spencer (10.1016/j.chemosphere.2019.124459_bib46) 2007; 41
Kouzuma (10.1016/j.chemosphere.2019.124459_bib28) 2013; 8
Gorny (10.1016/j.chemosphere.2019.124459_bib9) 2015; 505
Fitzgerald (10.1016/j.chemosphere.2019.124459_bib8) 2009; 14
Yamaguchi (10.1016/j.chemosphere.2019.124459_bib57) 2011; 83
Minatel (10.1016/j.chemosphere.2019.124459_bib38) 2018; 112
Touch (10.1016/j.chemosphere.2019.124459_bib49) 2017; 1–25
Saidpullicino (10.1016/j.chemosphere.2019.124459_bib42) 2016; 401
Song (10.1016/j.chemosphere.2019.124459_bib44) 2018
Khalid (10.1016/j.chemosphere.2019.124459_bib27) 2016; 182
Yuan (10.1016/j.chemosphere.2019.124459_bib61) 2018; 18
Signespastor (10.1016/j.chemosphere.2019.124459_bib43) 2007; 137
Chen (10.1016/j.chemosphere.2019.124459_bib4) 2003; 307
Hutchins (10.1016/j.chemosphere.2019.124459_bib22) 2007; 69
Grabowski (10.1016/j.chemosphere.2019.124459_bib10) 2005; 55
Song (10.1016/j.chemosphere.2019.124459_bib45) 2010; 85
Weber (10.1016/j.chemosphere.2019.124459_bib55) 2006; 8
Yamamura (10.1016/j.chemosphere.2019.124459_bib58) 2018; 342
You (10.1016/j.chemosphere.2019.124459_bib60) 2016; 100
Yuan (10.1016/j.chemosphere.2019.124459_bib62) 2019; 53
Logan (10.1016/j.chemosphere.2019.124459_bib35) 2009; 7
He (10.1016/j.chemosphere.2019.124459_bib17) 2013; 71
Stuckey (10.1016/j.chemosphere.2019.124459_bib47) 2015; 9
Wang (10.1016/j.chemosphere.2019.124459_bib54) 2016; 16
Chen (10.1016/j.chemosphere.2019.124459_bib3) 2018; 238
Kaku (10.1016/j.chemosphere.2019.124459_bib25) 2008; 79
Chen (10.1016/j.chemosphere.2019.124459_bib5) 2016; 311
Lovley (10.1016/j.chemosphere.2019.124459_bib36) 1988; 54
Roden (10.1016/j.chemosphere.2019.124459_bib41) 2010; 3
Li (10.1016/j.chemosphere.2019.124459_bib32) 2011; 11
Zhu (10.1016/j.chemosphere.2019.124459_bib65) 2017; 51
Derrien (10.1016/j.chemosphere.2019.124459_bib6) 2017; 24
Peng (10.1016/j.chemosphere.2019.124459_bib39) 2016; 101
Xiao (10.1016/j.chemosphere.2019.124459_bib56) 2016; 6
Hashimoto (10.1016/j.chemosphere.2019.124459_bib16) 2018; 238
Wang (10.1016/j.chemosphere.2019.124459_bib53) 2009; 21
Krespi (10.1016/j.chemosphere.2019.124459_bib29) 2006; 135
Gustave (10.1016/j.chemosphere.2019.124459_bib15) 2019
Gustave (10.1016/j.chemosphere.2019.124459_bib13) 2018
Logan (10.1016/j.chemosphere.2019.124459_bib34) 2008
Lapierre (10.1016/j.chemosphere.2019.124459_bib31) 2014; 11
Jiang (10.1016/j.chemosphere.2019.124459_bib24) 2014; 188
Marshall (10.1016/j.chemosphere.2019.124459_bib37) 2009; 2
Yang (10.1016/j.chemosphere.2019.124459_bib59) 2016; 216
Guo (10.1016/j.chemosphere.2019.124459_bib11) 2013; 47
Burton (10.1016/j.chemosphere.2019.124459_bib2) 2011; 75
References_xml – volume: 51
  start-page: 7326
  year: 2017
  end-page: 7339
  ident: bib65
  article-title: Linking genes to microbial biogeochemical cycling: lessons from arsenic
  publication-title: Environ. Sci. Technol.
– volume: 71
  start-page: 57
  year: 2013
  end-page: 61
  ident: bib17
  article-title: Electricity generation from dissolved organic matter in polluted lake water using a microbial fuel cell (MFC)
  publication-title: Biochem. Eng. J.
– volume: 182
  year: 2016
  ident: bib27
  article-title: A comparison of technologies for remediation of heavy metal contaminated soils
  publication-title: J. Geochem. Explor.
– volume: 505
  start-page: 423
  year: 2015
  end-page: 434
  ident: bib9
  article-title: Arsenic behavior in river sediments under redox gradient: a review
  publication-title: Sci. Total Environ.
– volume: 54
  start-page: 1472
  year: 1988
  end-page: 1480
  ident: bib36
  article-title: Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese
  publication-title: Appl. Environ. Microbiol.
– volume: 83
  start-page: 925
  year: 2011
  end-page: 932
  ident: bib57
  article-title: Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution
  publication-title: Chemosphere
– volume: 172
  start-page: 647
  year: 2011
  end-page: 653
  ident: bib21
  article-title: Enhanced anaerobic degradation of organic pollutants in a soil microbial fuel cell
  publication-title: Chem. Eng. J.
– volume: 85
  start-page: 1489
  year: 2010
  end-page: 1493
  ident: bib45
  article-title: Removal of organic matter in freshwater sediment by microbial fuel cells at various external resistances
  publication-title: J. Appl. Chem. Biotechnol.
– volume: 135
  start-page: 671
  year: 2006
  end-page: 676
  ident: bib29
  article-title: The relationship between oral malodor and volatile sulfur compound–producing bacteria
  publication-title: Otolaryngology-Head Neck Surg. (Tokyo)
– volume: 15
  start-page: 1510
  year: 2015
  end-page: 1519
  ident: bib33
  article-title: Effects of soil drying and wetting-drying cycles on the availability of heavy metals and their relationship to dissolved organic matter
  publication-title: J. Soils Sediments
– volume: 47
  start-page: 1009
  year: 2013
  end-page: 1016
  ident: bib11
  article-title: Enhancement of arsenic adsorption during mineral transformation from siderite to goethite: mechanism and application
  publication-title: Environ. Sci. Technol.
– volume: 9
  start-page: 70
  year: 2015
  end-page: 76
  ident: bib47
  article-title: Arsenic release metabolically limited to permanently water-saturated soil in Mekong Delta
  publication-title: Nat. Geosci.
– volume: 3
  start-page: 417
  year: 2010
  end-page: 421
  ident: bib41
  article-title: Extracellular electron transfer through microbial reduction of solid-phase humic substances
  publication-title: Nat. Geosci.
– volume: 307
  start-page: 167
  year: 2003
  end-page: 178
  ident: bib4
  article-title: The roles of natural organic matter in chemical and microbial reduction of ferric iron
  publication-title: Sci. Total Environ.
– volume: 15
  start-page: 926
  year: 2015
  end-page: 936
  ident: bib52
  article-title: Bacterial community composition at anodes of microbial fuel cells for paddy soils: the effects of soil properties
  publication-title: J. Soils Sediments
– volume: 8
  start-page: 100
  year: 2006
  end-page: 113
  ident: bib55
  article-title: Anaerobic redox cycling of iron by freshwater sediment microorganisms
  publication-title: Environ. Microbiol.
– volume: 170
  start-page: 97
  year: 2019
  end-page: 104
  ident: bib14
  article-title: Relic DNA does not obscure the microbial community of paddy soil microbial fuel cells
  publication-title: Microbiol. Res.
– volume: 188
  start-page: 159
  year: 2014
  end-page: 165
  ident: bib24
  article-title: Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content
  publication-title: Environ. Pollut.
– volume: 238
  start-page: 647
  year: 2018
  end-page: 655
  ident: bib12
  article-title: Arsenic mitigation in paddy soils by using microbial fuel cells
  publication-title: Environ. Pollut.
– volume: 8
  year: 2013
  ident: bib28
  article-title: Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells
  publication-title: PLoS One
– volume: 79
  start-page: 4635
  year: 2013
  end-page: 4642
  ident: bib30
  article-title: Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. strain PSR-1
  publication-title: Appl. Environ. Microbiol.
– volume: 311
  start-page: 20
  year: 2016
  end-page: 29
  ident: bib5
  article-title: Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition
  publication-title: J. Hazard Mater.
– volume: 11
  start-page: 1
  year: 2007
  end-page: 7
  ident: bib63
  article-title: Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction
  publication-title: Extremophiles
– volume: 101
  start-page: 20
  year: 2016
  end-page: 27
  ident: bib39
  article-title: The diversity of iron reducing bacteria communities in subtropical paddy soils of China
  publication-title: Appl. Soil Ecol.
– volume: 18
  start-page: 517
  year: 2018
  end-page: 525
  ident: bib61
  article-title: The influence of soil properties and geographical distance on the bacterial community compositions of paddy soils enriched on SMFC anodes
  publication-title: J. Soils Sediments
– volume: 32
  start-page: 389
  year: 2009
  end-page: 395
  ident: bib18
  article-title: Responses from freshwater sediment during electricity generation using microbial fuel cells
  publication-title: Bioproc. Biosyst. Eng.
– volume: 238
  start-page: 482
  year: 2018
  end-page: 490
  ident: bib3
  article-title: Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice
  publication-title: Environ. Pollut.
– volume: 3
  start-page: 27
  year: 2015
  ident: bib1
  article-title: The microbial community of a passive biochemical reactor treating arsenic, zinc, and sulfate-rich seepage
  publication-title: Front. Bioeng. Biotechnol.
– volume: 21
  start-page: 1562
  year: 2009
  end-page: 1568
  ident: bib53
  article-title: Effect of microbial mediated iron plaque reduction on arsenic mobility in paddy soil
  publication-title: J. Environ. Sci. (China)
– volume: 158
  start-page: 185
  year: 2010
  end-page: 191
  ident: bib19
  article-title: Alteration of sediment organic matter in sediment microbial fuel cells
  publication-title: Environ. Pollut.
– year: 2008
  ident: bib34
  article-title: Microbial Fuel Cells
– volume: 342
  start-page: 571
  year: 2018
  end-page: 578
  ident: bib58
  article-title: Effect of extracellular electron shuttles on arsenic-mobilizing activities in soil microbial communities
  publication-title: J. Hazard Mater.
– start-page: 1
  year: 2019
  end-page: 7
  ident: bib15
  article-title: Arsenic alleviation in rice by using paddy soil microbial fuel cells
  publication-title: Plant Soil
– volume: 69
  start-page: 1089
  year: 2007
  end-page: 1099
  ident: bib22
  article-title: The effect of manipulating sediment pH on the porewater chemistry of copper- and zinc-spiked sediments
  publication-title: Chemosphere
– volume: 11
  start-page: 5969
  year: 2014
  end-page: 5985
  ident: bib31
  article-title: Partial coupling and differential regulation of biologically and photo-chemically labile dissolved organic carbon across boreal aquatic networks
  publication-title: Biogeosciences
– volume: 16
  start-page: 1745
  year: 2016
  end-page: 1753
  ident: bib54
  article-title: Arsenic modulates the composition of anode-respiring bacterial community during dry-wet cycles in paddy soils
  publication-title: J. Soils Sediments
– volume: 344
  start-page: 958
  year: 2017
  end-page: 967
  ident: bib40
  article-title: Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar
  publication-title: J. Hazard Mater.
– volume: 563–564
  start-page: 796
  year: 2016
  end-page: 802
  ident: bib51
  article-title: Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil
  publication-title: Sci. Total Environ.
– volume: 1
  start-page: 339
  year: 2016
  end-page: 344
  ident: bib26
  article-title: Biochar as an electron shuttle between bacteria and Fe(III) minerals
  publication-title: Environ. Sci. Technol. Lett.
– start-page: 10082
  year: 2018
  end-page: 10093
  ident: bib44
  article-title: Effects of initial sediment properties on start-up times for sediment microbial fuel cells
  publication-title: Int. J. Hydrogen Energy
– volume: 55
  start-page: 2452
  year: 2010
  end-page: 2462
  ident: bib7
  article-title: Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review
  publication-title: Limnol. Oceanogr.
– volume: 137
  start-page: 504
  year: 2007
  end-page: 510
  ident: bib43
  article-title: Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a West Bengal (India) soil
  publication-title: Geoderma
– volume: 24
  start-page: 1
  year: 2017
  end-page: 13
  ident: bib6
  article-title: Spectroscopic and molecular characterization of humic substances (HS) from soils and sediments in a watershed: comparative study of HS chemical fractions and the origins
  publication-title: Environ. Sci. Pollut. Res.
– volume: 35
  start-page: 473
  year: 2009
  end-page: 475
  ident: bib48
  article-title: Survey of arsenic and its speciation in rice products such as breakfast cereals, rice crackers and Japanese rice condiments
  publication-title: Environ. Int.
– volume: 7
  start-page: 375
  year: 2009
  end-page: 381
  ident: bib35
  article-title: Exoelectrogenic bacteria that power microbial fuel cells
  publication-title: Nat. Rev. Microbiol.
– volume: 53
  start-page: 5124
  year: 2019
  end-page: 5132
  ident: bib62
  article-title: Tracing the dynamic changes of element profiles by novel soil porewater samplers with ultralow disturbance to soil-water interface
  publication-title: Environ. Sci. Technol.
– volume: 55
  start-page: 1113
  year: 2005
  end-page: 1121
  ident: bib10
  article-title: Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir
  publication-title: Int. J. Syst. Evol. Microbiol.
– volume: 4
  start-page: 267
  year: 2010
  end-page: 278
  ident: bib20
  article-title: Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing
  publication-title: ISME J.
– volume: 75
  start-page: 3072
  year: 2011
  end-page: 3087
  ident: bib2
  article-title: Microbial sulfidogenesis in ferrihydrite-rich environments: effects on iron mineralogy and arsenic mobility
  publication-title: Geochem. Cosmochim. Acta
– volume: 112
  start-page: 183
  year: 2018
  end-page: 197
  ident: bib38
  article-title: Environmental arsenic exposure: from genetic susceptibility to pathogenesis
  publication-title: Environ. Int.
– volume: 100
  start-page: 1469
  year: 2016
  end-page: 1478
  ident: bib60
  article-title: Microbial community dynamics in Baolige oilfield during MEOR treatment, revealed by Illumina MiSeq sequencing
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 79
  start-page: 43
  year: 2008
  end-page: 49
  ident: bib25
  article-title: Plant/microbe cooperation for electricity generation in a rice paddy field
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 1–25
  year: 2017
  ident: bib49
  article-title: Relaxing the formation of hypoxic bottom water with sediment microbial fuel cells
  publication-title: Environ. Technol.
– volume: 287
  start-page: 7
  year: 2015
  end-page: 15
  ident: bib64
  article-title: To prevent the occurrence of black water agglomerate through delaying decomposition of cyanobacterial bloom biomass by sediment microbial fuel cell
  publication-title: J. Hazard Mater.
– volume: 401
  start-page: 273
  year: 2016
  end-page: 290
  ident: bib42
  article-title: Linking dissolved organic carbon cycling to organic carbon fluxes in rice paddies under different water management practices
  publication-title: Plant Soil
– volume: 2
  start-page: 699
  year: 2009
  end-page: 705
  ident: bib37
  article-title: Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica
  publication-title: Energ. Envin. Sci.
– volume: 41
  start-page: 2941
  year: 2007
  ident: bib46
  article-title: Freeze/thaw and pH effects on freshwater dissolved organic matter fluorescence and absorbance properties from a number of UK locations
  publication-title: Water Res.
– volume: 6
  start-page: 24050
  year: 2016
  end-page: 24059
  ident: bib56
  article-title: Fluorescence properties of dissolved organic matter as a function of hydrophobicity and molecular weight: case studies from two membrane bioreactors and an oxidation ditch
  publication-title: RSC Adv.
– volume: 14
  start-page: 133
  year: 2009
  end-page: 139
  ident: bib8
  article-title: Not just a grain of rice: the quest for quality
  publication-title: Trends Plant Sci.
– start-page: 1
  year: 2018
  end-page: 10
  ident: bib13
  article-title: The change in biotic and abiotic soil components influenced by paddy soil microbial fuel cells loaded with various resistances
  publication-title: J. Soils Sediments
– volume: 238
  start-page: 617
  year: 2018
  end-page: 623
  ident: bib16
  article-title: Redox changes in speciation and solubility of arsenic in paddy soils as affected by sulfur concentrations
  publication-title: Environ. Pollut.
– volume: 96
  start-page: 139
  year: 2016
  end-page: 155
  ident: bib23
  article-title: Arsenic accumulation in rice: consequences of rice genotypes and management practices to reduce human health risk
  publication-title: Environ. Int.
– volume: 216
  start-page: 182
  year: 2016
  ident: bib59
  article-title: Enhanced phosphorus flux from overlying water to sediment in a bioelectrochemical system
  publication-title: Bioresour. Technol.
– volume: 11
  start-page: 1234
  year: 2011
  end-page: 1242
  ident: bib32
  article-title: Phylogenetic diversity of Fe(III)-reducing microorganisms in rice paddy soil: enrichment cultures with different short-chain fatty acids as electron donors
  publication-title: J. Soils Sediments
– volume: 224
  start-page: 80
  year: 2018
  end-page: 95
  ident: bib50
  article-title: The role of iron and reactive oxygen species in the production of CO 2 in arctic soil waters
  publication-title: Geochem. Cosmochim. Acta
– start-page: 1
  year: 2018
  ident: 10.1016/j.chemosphere.2019.124459_bib13
  article-title: The change in biotic and abiotic soil components influenced by paddy soil microbial fuel cells loaded with various resistances
  publication-title: J. Soils Sediments
– volume: 11
  start-page: 5969
  year: 2014
  ident: 10.1016/j.chemosphere.2019.124459_bib31
  article-title: Partial coupling and differential regulation of biologically and photo-chemically labile dissolved organic carbon across boreal aquatic networks
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-5969-2014
– volume: 238
  start-page: 647
  year: 2018
  ident: 10.1016/j.chemosphere.2019.124459_bib12
  article-title: Arsenic mitigation in paddy soils by using microbial fuel cells
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.03.085
– volume: 71
  start-page: 57
  year: 2013
  ident: 10.1016/j.chemosphere.2019.124459_bib17
  article-title: Electricity generation from dissolved organic matter in polluted lake water using a microbial fuel cell (MFC)
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2012.11.016
– volume: 182
  year: 2016
  ident: 10.1016/j.chemosphere.2019.124459_bib27
  article-title: A comparison of technologies for remediation of heavy metal contaminated soils
  publication-title: J. Geochem. Explor.
– volume: 401
  start-page: 273
  year: 2016
  ident: 10.1016/j.chemosphere.2019.124459_bib42
  article-title: Linking dissolved organic carbon cycling to organic carbon fluxes in rice paddies under different water management practices
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2751-7
– volume: 79
  start-page: 43
  year: 2008
  ident: 10.1016/j.chemosphere.2019.124459_bib25
  article-title: Plant/microbe cooperation for electricity generation in a rice paddy field
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-008-1410-9
– volume: 8
  start-page: 100
  year: 2006
  ident: 10.1016/j.chemosphere.2019.124459_bib55
  article-title: Anaerobic redox cycling of iron by freshwater sediment microorganisms
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2005.00873.x
– volume: 563–564
  start-page: 796
  year: 2016
  ident: 10.1016/j.chemosphere.2019.124459_bib51
  article-title: Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.12.080
– volume: 100
  start-page: 1469
  year: 2016
  ident: 10.1016/j.chemosphere.2019.124459_bib60
  article-title: Microbial community dynamics in Baolige oilfield during MEOR treatment, revealed by Illumina MiSeq sequencing
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-015-7073-4
– volume: 224
  start-page: 80
  year: 2018
  ident: 10.1016/j.chemosphere.2019.124459_bib50
  article-title: The role of iron and reactive oxygen species in the production of CO 2 in arctic soil waters
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/j.gca.2017.12.022
– volume: 2
  start-page: 699
  year: 2009
  ident: 10.1016/j.chemosphere.2019.124459_bib37
  article-title: Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica
  publication-title: Energ. Envin. Sci.
  doi: 10.1039/b823237g
– volume: 188
  start-page: 159
  year: 2014
  ident: 10.1016/j.chemosphere.2019.124459_bib24
  article-title: Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2014.02.014
– volume: 344
  start-page: 958
  year: 2017
  ident: 10.1016/j.chemosphere.2019.124459_bib40
  article-title: Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2017.11.025
– volume: 8
  year: 2013
  ident: 10.1016/j.chemosphere.2019.124459_bib28
  article-title: Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0077443
– volume: 505
  start-page: 423
  year: 2015
  ident: 10.1016/j.chemosphere.2019.124459_bib9
  article-title: Arsenic behavior in river sediments under redox gradient: a review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.10.011
– volume: 170
  start-page: 97
  issue: 2
  year: 2019
  ident: 10.1016/j.chemosphere.2019.124459_bib14
  article-title: Relic DNA does not obscure the microbial community of paddy soil microbial fuel cells
  publication-title: Microbiol. Res.
  doi: 10.1016/j.resmic.2018.11.002
– volume: 3
  start-page: 417
  year: 2010
  ident: 10.1016/j.chemosphere.2019.124459_bib41
  article-title: Extracellular electron transfer through microbial reduction of solid-phase humic substances
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo870
– volume: 24
  start-page: 1
  year: 2017
  ident: 10.1016/j.chemosphere.2019.124459_bib6
  article-title: Spectroscopic and molecular characterization of humic substances (HS) from soils and sediments in a watershed: comparative study of HS chemical fractions and the origins
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-9225-9
– volume: 15
  start-page: 1510
  year: 2015
  ident: 10.1016/j.chemosphere.2019.124459_bib33
  article-title: Effects of soil drying and wetting-drying cycles on the availability of heavy metals and their relationship to dissolved organic matter
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-015-1090-x
– volume: 238
  start-page: 617
  year: 2018
  ident: 10.1016/j.chemosphere.2019.124459_bib16
  article-title: Redox changes in speciation and solubility of arsenic in paddy soils as affected by sulfur concentrations
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.03.039
– volume: 53
  start-page: 5124
  issue: 9
  year: 2019
  ident: 10.1016/j.chemosphere.2019.124459_bib62
  article-title: Tracing the dynamic changes of element profiles by novel soil porewater samplers with ultralow disturbance to soil-water interface
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b05390
– volume: 216
  start-page: 182
  year: 2016
  ident: 10.1016/j.chemosphere.2019.124459_bib59
  article-title: Enhanced phosphorus flux from overlying water to sediment in a bioelectrochemical system
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.05.074
– start-page: 10082
  year: 2018
  ident: 10.1016/j.chemosphere.2019.124459_bib44
  article-title: Effects of initial sediment properties on start-up times for sediment microbial fuel cells
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.04.082
– volume: 137
  start-page: 504
  year: 2007
  ident: 10.1016/j.chemosphere.2019.124459_bib43
  article-title: Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a West Bengal (India) soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2006.10.012
– volume: 287
  start-page: 7
  year: 2015
  ident: 10.1016/j.chemosphere.2019.124459_bib64
  article-title: To prevent the occurrence of black water agglomerate through delaying decomposition of cyanobacterial bloom biomass by sediment microbial fuel cell
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2015.01.036
– volume: 75
  start-page: 3072
  year: 2011
  ident: 10.1016/j.chemosphere.2019.124459_bib2
  article-title: Microbial sulfidogenesis in ferrihydrite-rich environments: effects on iron mineralogy and arsenic mobility
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/j.gca.2011.03.001
– volume: 55
  start-page: 1113
  year: 2005
  ident: 10.1016/j.chemosphere.2019.124459_bib10
  article-title: Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijs.0.63426-0
– volume: 112
  start-page: 183
  year: 2018
  ident: 10.1016/j.chemosphere.2019.124459_bib38
  article-title: Environmental arsenic exposure: from genetic susceptibility to pathogenesis
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2017.12.017
– volume: 21
  start-page: 1562
  year: 2009
  ident: 10.1016/j.chemosphere.2019.124459_bib53
  article-title: Effect of microbial mediated iron plaque reduction on arsenic mobility in paddy soil
  publication-title: J. Environ. Sci. (China)
  doi: 10.1016/S1001-0742(08)62456-0
– volume: 1–25
  year: 2017
  ident: 10.1016/j.chemosphere.2019.124459_bib49
  article-title: Relaxing the formation of hypoxic bottom water with sediment microbial fuel cells
  publication-title: Environ. Technol.
– volume: 3
  start-page: 27
  year: 2015
  ident: 10.1016/j.chemosphere.2019.124459_bib1
  article-title: The microbial community of a passive biochemical reactor treating arsenic, zinc, and sulfate-rich seepage
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2015.00027
– volume: 311
  start-page: 20
  year: 2016
  ident: 10.1016/j.chemosphere.2019.124459_bib5
  article-title: Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2016.02.069
– volume: 9
  start-page: 70
  year: 2015
  ident: 10.1016/j.chemosphere.2019.124459_bib47
  article-title: Arsenic release metabolically limited to permanently water-saturated soil in Mekong Delta
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2589
– volume: 307
  start-page: 167
  year: 2003
  ident: 10.1016/j.chemosphere.2019.124459_bib4
  article-title: The roles of natural organic matter in chemical and microbial reduction of ferric iron
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(02)00538-7
– volume: 41
  start-page: 2941
  year: 2007
  ident: 10.1016/j.chemosphere.2019.124459_bib46
  article-title: Freeze/thaw and pH effects on freshwater dissolved organic matter fluorescence and absorbance properties from a number of UK locations
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.04.012
– volume: 54
  start-page: 1472
  year: 1988
  ident: 10.1016/j.chemosphere.2019.124459_bib36
  article-title: Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.54.6.1472-1480.1988
– volume: 4
  start-page: 267
  year: 2010
  ident: 10.1016/j.chemosphere.2019.124459_bib20
  article-title: Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing
  publication-title: ISME J.
  doi: 10.1038/ismej.2009.100
– volume: 6
  start-page: 24050
  year: 2016
  ident: 10.1016/j.chemosphere.2019.124459_bib56
  article-title: Fluorescence properties of dissolved organic matter as a function of hydrophobicity and molecular weight: case studies from two membrane bioreactors and an oxidation ditch
  publication-title: RSC Adv.
  doi: 10.1039/C5RA23167A
– volume: 32
  start-page: 389
  year: 2009
  ident: 10.1016/j.chemosphere.2019.124459_bib18
  article-title: Responses from freshwater sediment during electricity generation using microbial fuel cells
  publication-title: Bioproc. Biosyst. Eng.
  doi: 10.1007/s00449-008-0258-9
– volume: 11
  start-page: 1
  year: 2007
  ident: 10.1016/j.chemosphere.2019.124459_bib63
  article-title: Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction
  publication-title: Extremophiles
  doi: 10.1007/s00792-006-0004-7
– volume: 172
  start-page: 647
  year: 2011
  ident: 10.1016/j.chemosphere.2019.124459_bib21
  article-title: Enhanced anaerobic degradation of organic pollutants in a soil microbial fuel cell
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.06.024
– volume: 7
  start-page: 375
  year: 2009
  ident: 10.1016/j.chemosphere.2019.124459_bib35
  article-title: Exoelectrogenic bacteria that power microbial fuel cells
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2113
– year: 2008
  ident: 10.1016/j.chemosphere.2019.124459_bib34
– volume: 51
  start-page: 7326
  year: 2017
  ident: 10.1016/j.chemosphere.2019.124459_bib65
  article-title: Linking genes to microbial biogeochemical cycling: lessons from arsenic
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b00689
– start-page: 1
  year: 2019
  ident: 10.1016/j.chemosphere.2019.124459_bib15
  article-title: Arsenic alleviation in rice by using paddy soil microbial fuel cells
  publication-title: Plant Soil
– volume: 47
  start-page: 1009
  year: 2013
  ident: 10.1016/j.chemosphere.2019.124459_bib11
  article-title: Enhancement of arsenic adsorption during mineral transformation from siderite to goethite: mechanism and application
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es303503m
– volume: 18
  start-page: 517
  year: 2018
  ident: 10.1016/j.chemosphere.2019.124459_bib61
  article-title: The influence of soil properties and geographical distance on the bacterial community compositions of paddy soils enriched on SMFC anodes
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-017-1769-2
– volume: 342
  start-page: 571
  year: 2018
  ident: 10.1016/j.chemosphere.2019.124459_bib58
  article-title: Effect of extracellular electron shuttles on arsenic-mobilizing activities in soil microbial communities
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2017.08.071
– volume: 16
  start-page: 1745
  year: 2016
  ident: 10.1016/j.chemosphere.2019.124459_bib54
  article-title: Arsenic modulates the composition of anode-respiring bacterial community during dry-wet cycles in paddy soils
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-016-1369-6
– volume: 79
  start-page: 4635
  year: 2013
  ident: 10.1016/j.chemosphere.2019.124459_bib30
  article-title: Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. strain PSR-1
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00693-13
– volume: 35
  start-page: 473
  year: 2009
  ident: 10.1016/j.chemosphere.2019.124459_bib48
  article-title: Survey of arsenic and its speciation in rice products such as breakfast cereals, rice crackers and Japanese rice condiments
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2008.07.020
– volume: 96
  start-page: 139
  year: 2016
  ident: 10.1016/j.chemosphere.2019.124459_bib23
  article-title: Arsenic accumulation in rice: consequences of rice genotypes and management practices to reduce human health risk
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2016.09.006
– volume: 85
  start-page: 1489
  year: 2010
  ident: 10.1016/j.chemosphere.2019.124459_bib45
  article-title: Removal of organic matter in freshwater sediment by microbial fuel cells at various external resistances
  publication-title: J. Appl. Chem. Biotechnol.
  doi: 10.1002/jctb.2454
– volume: 11
  start-page: 1234
  year: 2011
  ident: 10.1016/j.chemosphere.2019.124459_bib32
  article-title: Phylogenetic diversity of Fe(III)-reducing microorganisms in rice paddy soil: enrichment cultures with different short-chain fatty acids as electron donors
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-011-0371-2
– volume: 15
  start-page: 926
  year: 2015
  ident: 10.1016/j.chemosphere.2019.124459_bib52
  article-title: Bacterial community composition at anodes of microbial fuel cells for paddy soils: the effects of soil properties
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-014-1056-4
– volume: 238
  start-page: 482
  year: 2018
  ident: 10.1016/j.chemosphere.2019.124459_bib3
  article-title: Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.03.048
– volume: 83
  start-page: 925
  year: 2011
  ident: 10.1016/j.chemosphere.2019.124459_bib57
  article-title: Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.02.044
– volume: 69
  start-page: 1089
  year: 2007
  ident: 10.1016/j.chemosphere.2019.124459_bib22
  article-title: The effect of manipulating sediment pH on the porewater chemistry of copper- and zinc-spiked sediments
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.04.029
– volume: 135
  start-page: 671
  year: 2006
  ident: 10.1016/j.chemosphere.2019.124459_bib29
  article-title: The relationship between oral malodor and volatile sulfur compound–producing bacteria
  publication-title: Otolaryngology-Head Neck Surg. (Tokyo)
  doi: 10.1016/j.otohns.2005.09.036
– volume: 14
  start-page: 133
  year: 2009
  ident: 10.1016/j.chemosphere.2019.124459_bib8
  article-title: Not just a grain of rice: the quest for quality
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2008.12.004
– volume: 158
  start-page: 185
  year: 2010
  ident: 10.1016/j.chemosphere.2019.124459_bib19
  article-title: Alteration of sediment organic matter in sediment microbial fuel cells
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2009.07.022
– volume: 1
  start-page: 339
  year: 2016
  ident: 10.1016/j.chemosphere.2019.124459_bib26
  article-title: Biochar as an electron shuttle between bacteria and Fe(III) minerals
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/ez5002209
– volume: 55
  start-page: 2452
  year: 2010
  ident: 10.1016/j.chemosphere.2019.124459_bib7
  article-title: Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2010.55.6.2452
– volume: 101
  start-page: 20
  year: 2016
  ident: 10.1016/j.chemosphere.2019.124459_bib39
  article-title: The diversity of iron reducing bacteria communities in subtropical paddy soils of China
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2016.01.012
SSID ssj0001659
Score 2.5261133
Snippet Arsenic (As) mobility in paddy soils is mainly controlled by iron (Fe) oxides and iron reducing bacteria (IBR). The Fe reducing bacteria are also considered to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 124459
SubjectTerms acidification
anodes
Arsenic
Arsenic - metabolism
bacteria
Bacteria - metabolism
Bioelectric Energy Sources
Dissolved organic matter
Electrodes
iron
Iron - metabolism
microbial fuel cells
Oxidation-Reduction
oxides
Paddy soil
paddy soils
risk
Soil - chemistry
Soil microbial fuel cells
Soil Microbiology
soil organic matter
Soil Pollutants - metabolism
Water
Water management
Wetlands
Title Soil organic matter amount determines the behavior of iron and arsenic in paddy soil with microbial fuel cells
URI https://dx.doi.org/10.1016/j.chemosphere.2019.124459
https://www.ncbi.nlm.nih.gov/pubmed/31377597
https://www.proquest.com/docview/2268575963
https://www.proquest.com/docview/2286899185
Volume 237
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5E8XER364vInitbk3STcGLLMqq6EUFb6F5FCq77WJ3D1787c704QMUBI8tnZJmkplv0plvAI4M-gRlpQgstxigpNwFsTIiMDIJY5NGUc_ROeTtXTR4FNdP8mkG-m0tDKVVNra_tumVtW7unDSzeTLOMqrxJTRCDeao-RInOyxEj1b58dtnmkcYyRoCCxnQ0wtw-JnjhfMyKkqq3yfGzDA-Jm9HtKU_-6jfMGjliy5XYLkBkey8HucqzPh8DRb7be-2NZi_qMioX9chvy-yIat7N1k2qtg0WTKiDhHMNakwvmQIA1lbsc-KlFHxG0tyxzDu9SSZ5WyMRuqVlfQ-Or1lo6wiccKBpFM_ZPQLoNyAx8uLh_4gaHosBFaE3UmAeCchqmKHXqprCN9Yl6SxIV5BYVSPK1xqCBEET42JQ0_cObhtKQxzRkrJN2E2L3K_DcyJJLVKKHdqjfBSGeuirvWxQ1DAk4h3QLWzqm1DQE59MIa6zTR71l8UokkhulZIB04_RMc1C8dfhM5a1elvS0qjt_iL-GGrbo3ao0lMcl9MS42IteprSp_0-zMqwlAW0VAHtuq18jFyTiyPGMjt_G-Au7BEV3VuzR7MTl6mfh8R0sQcVFvgAObOr24Gd-_CaRGQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5FVIVeKgiPpoV2kbgaYnbXWUu9VBEobYELIHFbeR-WjBI7wskhF347M34kIIGExDX2Wpud3Zlv7JnvAzgyGBOUlSKw3GKCknIXxMqIwMgkjE0aRQNH7yEvr6LRrfh3J-86MGx7YaissvH9tU-vvHXzy0mzmifTLKMeX0IjJDBH4ksc_fAngceXZAyOH1d1HmEkawwsZEC3r8PhqsgLF2ZSlNTAT5SZYXxM4Y54S18PUm-B0CoYnW_C1wZFsj_1RLeg4_MubAxb8bYufD6r2KgX25BfF9mY1eJNlk0qOk2WTEgigrmmFsaXDHEga1v2WZEy6n5jSe4YJr6eRmY5m6KXWrCSnkevb9kkq1iccCLp3I8ZfQMod-D2_OxmOAoakYXAirA_CxDwJMRV7DBM9Q0BHOuSNDZELCiMGnCFew0xguCpMXHoiTwHzy3lYc5IKfkurOVF7r8BcyJJrRLKnVojvFTGuqhvfewQFfAk4j1Q7apq2zCQkxDGWLelZvf6mUE0GUTXBunB6XLotKbheM-g363p9Is9pTFcvGf4YWtujdajRUxyX8xLjZC1Ejalv_T2PSrCXBbhUA_26r2ynDknmkfM5L5_bIK_YGN0c3mhL_5e_f8BX-hKXWizD2uzh7k_QLg0Mz-r4_AE3GUTHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+organic+matter+amount+determines+the+behavior+of+iron+and+arsenic+in+paddy+soil+with+microbial+fuel+cells&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Gustave%2C+Williamson&rft.au=Yuan%2C+Zhao-Feng&rft.au=Sekar%2C+Raju&rft.au=Ren%2C+Yu-Xiang&rft.date=2019-12-01&rft.issn=1879-1298&rft.eissn=1879-1298&rft.volume=237&rft.spage=124459&rft_id=info:doi/10.1016%2Fj.chemosphere.2019.124459&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon