Synthesis of sulfur doped g-C3N4 with enhanced photocatalytic activity in molten salt
In this paper, sulfur doped g-C3N4 (S-g-C3N4) was successfully prepared at 500 °C for 3 h via a modified molten salt method using dicyandiamide as the main raw material, trithiocyanuric acid as the sulfur source and LiBrKCl as the reaction medium. The as-prepared SCN5.0% sample (the mass ratio of tr...
Saved in:
Published in | Journal of Materiomics Vol. 7; no. 5; pp. 1131 - 1142 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, sulfur doped g-C3N4 (S-g-C3N4) was successfully prepared at 500 °C for 3 h via a modified molten salt method using dicyandiamide as the main raw material, trithiocyanuric acid as the sulfur source and LiBrKCl as the reaction medium. The as-prepared SCN5.0% sample (the mass ratio of trithiocyanuric acid to dicyandiamide was 5.0%) composed of irregular flakes showed a band gap of 1.83 eV, which was narrower than that (2.55 eV) of pristine g-C3N4. The SCN5.0% sample also exhibited an outstanding absorption capacity of visible light. Moreover, the photodegradation rate toward methylene blue and tetracycline were respectively 10 and 20 times as high as that of bulk g-C3N4 prepared by conventional heating methods, confirming its superior photocatalytic performance. These results can be attributed to that the replacement of lattice nitrogen with sulfur atom tuned the electronic structure of g-C3N4, improved the absorption of visible light, optimized the separation of photogenerated electron-hole pairs, and consequently enhanced the photocatalytic activity of g-C3N4. Moreover, the trapping experiments implied that hole (h+) and superoxide radical (·O2−) were the main active species in the process of photodegradation.
[Display omitted]
•Sulfur doped g-C3N4 was successfully prepared via a facile molten salt method.•The S—CN5.0% had a narrower band gap (1.83 eV) compared to pristine g-C3N4 (2.55 eV).•The S—CN5.0% had a higher degradation rate of MB and TC compared to pristine g-C3N4.•The S—CN5.0% exhibited a higher normalized degradation rate than previously reported. |
---|---|
AbstractList | In this paper, sulfur doped g-C3N4 (S-g-C3N4) was successfully prepared at 500 °C for 3 h via a modified molten salt method using dicyandiamide as the main raw material, trithiocyanuric acid as the sulfur source and LiBrKCl as the reaction medium. The as-prepared SCN5.0% sample (the mass ratio of trithiocyanuric acid to dicyandiamide was 5.0%) composed of irregular flakes showed a band gap of 1.83 eV, which was narrower than that (2.55 eV) of pristine g-C3N4. The SCN5.0% sample also exhibited an outstanding absorption capacity of visible light. Moreover, the photodegradation rate toward methylene blue and tetracycline were respectively 10 and 20 times as high as that of bulk g-C3N4 prepared by conventional heating methods, confirming its superior photocatalytic performance. These results can be attributed to that the replacement of lattice nitrogen with sulfur atom tuned the electronic structure of g-C3N4, improved the absorption of visible light, optimized the separation of photogenerated electron-hole pairs, and consequently enhanced the photocatalytic activity of g-C3N4. Moreover, the trapping experiments implied that hole (h+) and superoxide radical (·O2−) were the main active species in the process of photodegradation.
[Display omitted]
•Sulfur doped g-C3N4 was successfully prepared via a facile molten salt method.•The S—CN5.0% had a narrower band gap (1.83 eV) compared to pristine g-C3N4 (2.55 eV).•The S—CN5.0% had a higher degradation rate of MB and TC compared to pristine g-C3N4.•The S—CN5.0% exhibited a higher normalized degradation rate than previously reported. In this paper, sulfur doped g-C3N4 (S-g-C3N4) was successfully prepared at 500 °C for 3 h via a modified molten salt method using dicyandiamide as the main raw material, trithiocyanuric acid as the sulfur source and LiBrKCl as the reaction medium. The as-prepared SCN5.0% sample (the mass ratio of trithiocyanuric acid to dicyandiamide was 5.0%) composed of irregular flakes showed a band gap of 1.83 eV, which was narrower than that (2.55 eV) of pristine g-C3N4. The SCN5.0% sample also exhibited an outstanding absorption capacity of visible light. Moreover, the photodegradation rate toward methylene blue and tetracycline were respectively 10 and 20 times as high as that of bulk g-C3N4 prepared by conventional heating methods, confirming its superior photocatalytic performance. These results can be attributed to that the replacement of lattice nitrogen with sulfur atom tuned the electronic structure of g-C3N4, improved the absorption of visible light, optimized the separation of photogenerated electron-hole pairs, and consequently enhanced the photocatalytic activity of g-C3N4. Moreover, the trapping experiments implied that hole (h+) and superoxide radical (·O2−) were the main active species in the process of photodegradation. |
Author | Li, Junyi Wang, Honghong Guan, Keke Zhang, Haijun Tong, Zhaoming Lei, Wen Zhang, Shaowei Jia, Quanli |
Author_xml | – sequence: 1 givenname: Keke surname: Guan fullname: Guan, Keke organization: The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China – sequence: 2 givenname: Junyi surname: Li fullname: Li, Junyi organization: The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China – sequence: 3 givenname: Wen surname: Lei fullname: Lei, Wen organization: The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China – sequence: 4 givenname: Honghong surname: Wang fullname: Wang, Honghong organization: The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China – sequence: 5 givenname: Zhaoming surname: Tong fullname: Tong, Zhaoming organization: The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China – sequence: 6 givenname: Quanli surname: Jia fullname: Jia, Quanli organization: Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, Zhengzhou, 450052, China – sequence: 7 givenname: Haijun surname: Zhang fullname: Zhang, Haijun email: zhanghaijun@wust.edu.cn organization: The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China – sequence: 8 givenname: Shaowei surname: Zhang fullname: Zhang, Shaowei email: s.zhang@exeter.ac.uk organization: College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, Ex4 4QF, United Kingdom |
BookMark | eNp9kMtKAzEUhrNQsFZfwFVeYGqSyTQZcCPFS6HoQrsOZ3KxKdNJSdJK397UigsXwoEfDnw_53yX6GwIg0XohpIJJXR6u56sN5AnjDA6IWWIPEMjVjesklzIC3Sdku8I54LzVogRWr4dhryyySccHE673u0iNmFrDf6oZvULx58-r7AdVjDostyuQg4aMvSH7DUGnf3e5wP2A96EPtsBJ-jzFTp30Cd7_ZNjtHx8eJ89V4vXp_nsflFpTkmuGisoJYJ1dScoKQHaGGPb1hFomCSagQUhOmhbIqaNcdJoyanmruayJVCP0fzUawKs1Tb6DcSDCuDV9yLEDwWx3NlbVU9h6prGdW0LvBMAYLQF5xrNGAjjShc7dekYUorW_fZRoo5u1Vod3aqjW0XKEFkg-QfSPkP2YcgRfP8_endCbRG09zaqpL09SvbR6lw-8P_hX2ZvmuI |
CitedBy_id | crossref_primary_10_1016_j_est_2023_107208 crossref_primary_10_1039_D4NJ01157K crossref_primary_10_1007_s10971_024_06331_x crossref_primary_10_1016_j_apsusc_2023_158254 crossref_primary_10_1016_j_apsusc_2022_153266 crossref_primary_10_1155_2023_6736182 crossref_primary_10_1557_s43580_024_00888_z crossref_primary_10_1016_j_jmat_2024_100969 crossref_primary_10_1016_j_apsusc_2024_159463 crossref_primary_10_1002_aoc_6745 crossref_primary_10_1016_j_diamond_2021_108738 crossref_primary_10_1021_acs_jpcc_3c02901 crossref_primary_10_1039_D1NJ05877K crossref_primary_10_1016_j_ceramint_2022_05_114 crossref_primary_10_2174_1872210517666230427161120 crossref_primary_10_1016_j_jcis_2022_04_003 crossref_primary_10_1016_j_ceramint_2024_11_328 crossref_primary_10_1016_j_biosx_2022_100167 crossref_primary_10_1016_j_apsusc_2024_159717 crossref_primary_10_1016_j_mset_2023_06_004 crossref_primary_10_1007_s11164_023_05187_0 crossref_primary_10_1016_j_cclet_2022_03_021 crossref_primary_10_1016_j_seppur_2022_122875 crossref_primary_10_1002_slct_202301936 crossref_primary_10_1016_j_ijhydene_2022_02_071 crossref_primary_10_1007_s13399_023_04647_2 crossref_primary_10_1016_j_solidstatesciences_2024_107757 crossref_primary_10_1039_D4RA06055E crossref_primary_10_1016_j_cej_2023_147976 crossref_primary_10_1007_s10854_022_07783_z crossref_primary_10_1016_j_aca_2023_341341 crossref_primary_10_1016_j_rechem_2025_102047 crossref_primary_10_1016_j_gee_2022_10_004 crossref_primary_10_1002_vjch_202100092 crossref_primary_10_1016_j_chemosphere_2023_137813 crossref_primary_10_1016_j_mssp_2024_109074 crossref_primary_10_1016_j_saa_2022_121048 crossref_primary_10_1016_j_mtchem_2022_101028 crossref_primary_10_1039_D2CE00316C crossref_primary_10_1016_j_cej_2024_148762 crossref_primary_10_1016_j_seppur_2023_125302 crossref_primary_10_1016_j_cej_2023_146541 crossref_primary_10_30526_36_3_3103 crossref_primary_10_1007_s41742_023_00563_5 crossref_primary_10_1016_j_poly_2024_117015 crossref_primary_10_1016_j_inoche_2025_113912 crossref_primary_10_1021_acsomega_4c02414 |
Cites_doi | 10.1021/acssuschemeng.7b00559 10.1016/j.carbon.2018.09.061 10.1016/j.jphotochem.2019.04.007 10.1016/j.apcatb.2018.07.023 10.1016/j.apcatb.2015.03.045 10.1002/aenm.201702992 10.1016/j.carbon.2016.02.065 10.1016/j.apsusc.2014.01.022 10.1002/adma.201605148 10.1016/j.ijhydene.2016.08.077 10.1007/s12274-019-2589-z 10.1002/adfm.201200922 10.1039/D0QI00117A 10.1021/acsami.9b19057 10.1016/j.nanoen.2020.104972 10.1039/C5RA03433G 10.1039/C6CE01019A 10.1038/s41427-019-0194-y 10.1002/aenm.201701503 10.1016/j.apcatb.2017.11.082 10.1016/j.jcis.2016.07.012 10.1016/j.apcatb.2017.01.041 10.1016/j.jcis.2014.09.004 10.1039/C9TA01646E 10.1016/j.carbon.2016.05.028 10.1002/cctc.201700492 10.1016/j.apcatb.2017.06.003 10.1016/j.apcatb.2018.07.078 10.1021/ja103798k 10.1016/j.mssp.2014.08.004 10.1016/j.apsusc.2020.145549 10.1111/jace.14414 10.1016/j.apcatb.2018.03.066 10.1016/j.ceramint.2019.12.008 10.1016/j.jcis.2018.10.098 10.1007/s11144-018-1414-0 10.1021/acs.langmuir.8b01041 10.1016/j.apsusc.2016.06.180 10.1007/s12274-018-2003-2 10.1016/j.jcis.2020.02.029 10.1039/c3ta14617k 10.1002/aenm.201601273 10.1039/c2cc35862j 10.1039/C8TA08464E 10.1039/C5EE02650D 10.1039/C9CY00925F 10.1016/j.cej.2020.124010 10.1016/j.apcatb.2016.03.055 10.1016/j.jcis.2019.06.012 10.1039/C9RA02201E 10.1039/C9TA07014A 10.1039/c3ra42269k 10.1039/C7QI00402H |
ContentType | Journal Article |
Copyright | 2021 The Chinese Ceramic Society |
Copyright_xml | – notice: 2021 The Chinese Ceramic Society |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jmat.2021.01.008 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EndPage | 1142 |
ExternalDocumentID | oai_doaj_org_article_36a6f55fb99a4b7aaadceaff5c22a7df 10_1016_j_jmat_2021_01_008 S2352847821000162 |
GroupedDBID | 6I. AAFTH ALMA_UNASSIGNED_HOLDINGS M~E AAYXX CITATION GROUPED_DOAJ |
ID | FETCH-LOGICAL-c410t-5e711072b3b7102b3acddde99f0a5280c2aea77ba990765df8dc841c4f34890a3 |
IEDL.DBID | DOA |
ISSN | 2352-8478 |
IngestDate | Wed Aug 27 01:25:16 EDT 2025 Thu Apr 24 23:11:13 EDT 2025 Tue Jul 01 03:14:48 EDT 2025 Sat Apr 29 22:52:18 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | g-C3N4 Photocatalytic activity Sulfur doped Molten salt Methylene blue Tetracycline |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-5e711072b3b7102b3acddde99f0a5280c2aea77ba990765df8dc841c4f34890a3 |
OpenAccessLink | https://doaj.org/article/36a6f55fb99a4b7aaadceaff5c22a7df |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_36a6f55fb99a4b7aaadceaff5c22a7df crossref_primary_10_1016_j_jmat_2021_01_008 crossref_citationtrail_10_1016_j_jmat_2021_01_008 elsevier_sciencedirect_doi_10_1016_j_jmat_2021_01_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 2021-09-00 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Materiomics |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Niu, Zhang, Liu, Cheng (bib11) 2012; 22 Jiang, Yan, Chen, Sun, Xu, Wang (bib44) 2014; 295 Vadivel, Maruthamani, Yangjeh, Paul, Dhar, Selvam (bib40) 2016; 480 Paul, Sharma, Nehra, Sharma (bib7) 2019; 9 Lv, Huang, Koodali, Liu, Zeng, Meng, Yuan (bib15) 2020; 12 Wei, Wang, Sun, Mei, An, Cao (bib26) 2020; 511 Papailias, Todorova, Giannakopoulou, Ioannidis, Boukos, Athanasekou, Dimotikali, Trapalis (bib8) 2018; 239 Li, Sun, Dong, Ho (bib10) 2014; 436 Shi, Zhang, Shen, Duoerkun, Zhu, Zhang, Li, Chen (bib48) 2020; 386 Tian, Li, Liang, Wang, Li, Zhang, Zhang (bib34) 2018; 225 Sagara, Kamimura, Tsubota, Ohno (bib3) 2016; 192 Liu, Niu, Sun, Smith, Chen, Lu, Cheng (bib37) 2010; 132 Luo, Yan, Zheng, Xue, Pang (bib1) 2019; 7 Sun, Yang, Liang, Liu, Qiu, Cui, Tian (bib19) 2020; 567 Lin, Chaturvedi, Di, You, Lai, Duan, Zhou, Xu, Chen, Song, Peng, Ma, Liu, Meng, Yang, Zhang, Liu, Liu (bib51) 2020; 76 Li, Jin, Xing, Li, Song, Liu, Li, Jin (bib17) 2016; 6 Kim, Oh, Woo (bib9) 2016; 42 Wang, Bian, Hu, Dai (bib25) 2018; 238 Fu, Yu, Jiang, Cheng (bib12) 2018; 8 Li, Shen, Hong, Lin, Gao, Chen (bib28) 2012; 8 Zhao, Sun, Dong, Zhang, Zhao (bib29) 2015; 5 Huang, Hong, Yan, Huang, Chen, Chen, Shi, Liu (bib45) 2016; 18 Fu, Han, Liu, Xiao, Wang, Liu, Liu (bib43) 2014; 27 Di, Xia, Yin, Xu, He, Li, Xu, Jiang (bib52) 2013; 3 Zhang, Di, Ding, Zhao, Gu, Chen, Yan, Yin, Xia, Li (bib39) 2019; 553 Liu, Huang, Huo, Li, Zhang, Zhang (bib31) 2016; 99 Zhou, Shi, Shang, Wu, Tung, Zhang (bib16) 2018; 11 Di, Xia, Yin, Xu, Xu, Xu, He, Li (bib50) 2014; 2 Chai, Yan, Wang, Ren, Zhu (bib14) 2017; 391 Li, Wang, Chang, Zhang, Wu, Song, Xing (bib20) 2019; 7 Yang, Liang, Li, Yang, Wang, Xu, Xie (bib36) 2019; 9 Cao, Fan, Wang, Ma, Dong, Zhang (bib24) 2020; 46 Hao, Jia, Wei, Vinu, Wang, Arandiyan, Ni (bib2) 2020; 13 Guo, Shi, Wang, Huang, Liu, Kang (bib46) 2017; 4 Yu, Shi, Zhao, Bian, Zhao, Zhou, Waterhouse, Wu, Tung, Zhang (bib4) 2017; 29 Han, Lu, Tang, Yin, Wei, Lu (bib18) 2018; 8 Jiang, Yuan, Zeng, Chen, Wu, Liang, Zhang, Wang, Wang (bib47) 2017; 5 Di, Xia, Li, Ji, Xu, Chen (bib38) 2016; 107 Wang, Li, Liu, Cheng, Ho, Yu (bib53) 2015; 176–177 Fang, Ma, Liang, Zhao, Jiang, Ling, Zhao, Cheang, Xu (bib23) 2019; 7 Liu, Wu, Zhang, Han, Shi (bib49) 2019; 378 Ran, Ma, Gao, Du, Qiao (bib22) 2015; 8 Huang, Liu, Huang, Tian, Wang, Zhang, Li, Liang, Zhang, Jia, Zhang (bib30) 2020; 12 Li, Tian, Liang, Wang, Han, Zhang, Ge, Dong, Zhang, Zhang (bib33) 2019; 141 Cheng, Hu, Lv, Wu, Li, Li, Li, Sun (bib5) 2018; 232 Tian, Li, Liang, Chang, Zhang, Zhang, Zhang (bib32) 2019; 536 Wang, Li, Ju, Wang, Yao, Zhang, Wang, Li (bib35) 2016; 102 Gao, Wang, Zhou, Lin, Kong (bib41) 2017; 9 Guo, Wang, Sun, Li, Shi (bib13) 2020; 7 Fronczak, Demby, Strachowski, Strawski, Bystrzejewski (bib6) 2018; 34 Jiang, Yuan, Pan, Liang, Zeng, Wu, Wang (bib21) 2017; 217 Wang, Wang, Chen, Cao, Zhao, Meng, Cui (bib27) 2017; 206 Mao, Wu, Li, Dai, Yu, Bai, Chen (bib42) 2018; 125 Li (10.1016/j.jmat.2021.01.008_bib10) 2014; 436 Wang (10.1016/j.jmat.2021.01.008_bib27) 2017; 206 Yang (10.1016/j.jmat.2021.01.008_bib36) 2019; 9 Gao (10.1016/j.jmat.2021.01.008_bib41) 2017; 9 Fronczak (10.1016/j.jmat.2021.01.008_bib6) 2018; 34 Vadivel (10.1016/j.jmat.2021.01.008_bib40) 2016; 480 Lv (10.1016/j.jmat.2021.01.008_bib15) 2020; 12 Papailias (10.1016/j.jmat.2021.01.008_bib8) 2018; 239 Guo (10.1016/j.jmat.2021.01.008_bib13) 2020; 7 Mao (10.1016/j.jmat.2021.01.008_bib42) 2018; 125 Lin (10.1016/j.jmat.2021.01.008_bib51) 2020; 76 Yu (10.1016/j.jmat.2021.01.008_bib4) 2017; 29 Kim (10.1016/j.jmat.2021.01.008_bib9) 2016; 42 Li (10.1016/j.jmat.2021.01.008_bib17) 2016; 6 Wang (10.1016/j.jmat.2021.01.008_bib25) 2018; 238 Wang (10.1016/j.jmat.2021.01.008_bib35) 2016; 102 Wei (10.1016/j.jmat.2021.01.008_bib26) 2020; 511 Huang (10.1016/j.jmat.2021.01.008_bib30) 2020; 12 Li (10.1016/j.jmat.2021.01.008_bib33) 2019; 141 Fu (10.1016/j.jmat.2021.01.008_bib43) 2014; 27 Niu (10.1016/j.jmat.2021.01.008_bib11) 2012; 22 Cao (10.1016/j.jmat.2021.01.008_bib24) 2020; 46 Di (10.1016/j.jmat.2021.01.008_bib50) 2014; 2 Sagara (10.1016/j.jmat.2021.01.008_bib3) 2016; 192 Di (10.1016/j.jmat.2021.01.008_bib38) 2016; 107 Cheng (10.1016/j.jmat.2021.01.008_bib5) 2018; 232 Paul (10.1016/j.jmat.2021.01.008_bib7) 2019; 9 Huang (10.1016/j.jmat.2021.01.008_bib45) 2016; 18 Li (10.1016/j.jmat.2021.01.008_bib20) 2019; 7 Fu (10.1016/j.jmat.2021.01.008_bib12) 2018; 8 Wang (10.1016/j.jmat.2021.01.008_bib53) 2015; 176–177 Tian (10.1016/j.jmat.2021.01.008_bib34) 2018; 225 Jiang (10.1016/j.jmat.2021.01.008_bib44) 2014; 295 Chai (10.1016/j.jmat.2021.01.008_bib14) 2017; 391 Jiang (10.1016/j.jmat.2021.01.008_bib47) 2017; 5 Tian (10.1016/j.jmat.2021.01.008_bib32) 2019; 536 Liu (10.1016/j.jmat.2021.01.008_bib37) 2010; 132 Liu (10.1016/j.jmat.2021.01.008_bib49) 2019; 378 Di (10.1016/j.jmat.2021.01.008_bib52) 2013; 3 Guo (10.1016/j.jmat.2021.01.008_bib46) 2017; 4 Shi (10.1016/j.jmat.2021.01.008_bib48) 2020; 386 Liu (10.1016/j.jmat.2021.01.008_bib31) 2016; 99 Zhao (10.1016/j.jmat.2021.01.008_bib29) 2015; 5 Li (10.1016/j.jmat.2021.01.008_bib28) 2012; 8 Sun (10.1016/j.jmat.2021.01.008_bib19) 2020; 567 Jiang (10.1016/j.jmat.2021.01.008_bib21) 2017; 217 Ran (10.1016/j.jmat.2021.01.008_bib22) 2015; 8 Han (10.1016/j.jmat.2021.01.008_bib18) 2018; 8 Luo (10.1016/j.jmat.2021.01.008_bib1) 2019; 7 Fang (10.1016/j.jmat.2021.01.008_bib23) 2019; 7 Hao (10.1016/j.jmat.2021.01.008_bib2) 2020; 13 Zhang (10.1016/j.jmat.2021.01.008_bib39) 2019; 553 Zhou (10.1016/j.jmat.2021.01.008_bib16) 2018; 11 |
References_xml | – volume: 217 start-page: 388 year: 2017 end-page: 406 ident: bib21 article-title: Doping of graphitic carbon nitride for photocatalysis: a review publication-title: Appl Catal, B – volume: 34 start-page: 7272 year: 2018 end-page: 7283 ident: bib6 article-title: Graphitic carbon nitride doped with the s-block metals: adsorbent for the removal of methyl blue and copper (II) ions publication-title: Langmuir – volume: 29 start-page: 1605148 year: 2017 ident: bib4 article-title: Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution publication-title: Adv Mater – volume: 391 start-page: 376 year: 2017 end-page: 383 ident: bib14 article-title: Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride publication-title: Appl Surf Sci – volume: 9 start-page: 1708 year: 2017 end-page: 1715 ident: bib41 article-title: A facile one-step synthesis of Fe-doped g-C publication-title: ChemCatChem – volume: 7 start-page: 11506 year: 2019 end-page: 11512 ident: bib23 article-title: The doping of phosphorus atoms into graphitic carbon nitride with highly enhanced photocatalytic hydrogen evolution publication-title: J Mater Chem – volume: 6 start-page: 1601273 year: 2016 ident: bib17 article-title: Macroscopic foam-like holey ultrathin g-C publication-title: Adv Energ Mater – volume: 107 start-page: 1 year: 2016 end-page: 10 ident: bib38 article-title: Constructing confined surface carbon defects in ultrathin graphitic carbon nitride for photocatalytic free radical manipulation publication-title: Carbon – volume: 2 start-page: 5340 year: 2014 end-page: 5351 ident: bib50 article-title: Preparation of sphere-like g-C publication-title: J Mater Chem – volume: 378 start-page: 1 year: 2019 end-page: 8 ident: bib49 article-title: Visible-light-driven g-C publication-title: J Photochem Photobiol, A – volume: 5 start-page: 39549 year: 2015 end-page: 39556 ident: bib29 article-title: Template synthesis of carbon self-doped g-C publication-title: RSC Adv – volume: 536 start-page: 664 year: 2019 end-page: 672 ident: bib32 article-title: Facile molten salt synthesis of atomically thin boron nitride nanosheets and their co-catalytic effect on the performance of carbon nitride photocatalyst publication-title: J Colloid Interface Sci – volume: 12 start-page: 12656 year: 2020 end-page: 12667 ident: bib15 article-title: Synthesis of sulfur doped 2D graphitic carbon nitride nanosheets for efficient photocatalytic degradation of phenol and hydrogen evolution publication-title: ACS Appl Mater Interfaces – volume: 239 start-page: 16 year: 2018 end-page: 26 ident: bib8 article-title: Chemical vs thermal exfoliation of g-C publication-title: Appl Catal, B – volume: 511 start-page: 145549 year: 2020 ident: bib26 article-title: Insight into the effect of boron doping on electronic structure, photocatalytic and adsorption performance of g-C publication-title: Appl Surf Sci – volume: 132 start-page: 11642 year: 2010 end-page: 11648 ident: bib37 article-title: Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C publication-title: J Am Chem Soc – volume: 225 start-page: 307 year: 2018 end-page: 313 ident: bib34 article-title: Molten salt synthesis of tetragonal carbon nitride hollow tubes and their application for removal of pollutants from wastewater publication-title: Appl Catal, B – volume: 12 start-page: 1 year: 2020 end-page: 12 ident: bib30 article-title: One-step synthesis of dandelion-like lanthanum titanate nanostructures for enhanced photocatalytic performance publication-title: NPG Asia Mater – volume: 3 start-page: 19624 year: 2013 end-page: 19631 ident: bib52 article-title: g-C publication-title: RSC Adv – volume: 11 start-page: 3462 year: 2018 end-page: 3468 ident: bib16 article-title: Template-free large-scale synthesis of g-C publication-title: Nano Res – volume: 238 start-page: 592 year: 2018 end-page: 598 ident: bib25 article-title: Highly crystalline sulfur-doped carbon nitride as photocatalyst for efficient visible-light hydrogen generation publication-title: Appl Catal, B – volume: 206 start-page: 417 year: 2017 end-page: 425 ident: bib27 article-title: Facile synthesis of oxygen doped carbon nitride hollow microsphere for photocatalysis publication-title: Appl Catal, B – volume: 295 start-page: 164 year: 2014 end-page: 172 ident: bib44 article-title: A g-C publication-title: Appl Surf Sci – volume: 102 start-page: 477 year: 2016 end-page: 486 ident: bib35 article-title: Molten salt synthesis of water-dispersible polymeric carbon nitride nanoseaweeds and their application as luminescent probes publication-title: Carbon – volume: 22 start-page: 4763 year: 2012 end-page: 4770 ident: bib11 article-title: Graphene-like carbon nitride nanosheets for improved photocatalytic activities publication-title: Adv Funct Mater – volume: 46 start-page: 7888 year: 2020 end-page: 7895 ident: bib24 article-title: Facile synthesis of carbon self-doped g-C publication-title: Ceram Int – volume: 8 start-page: 1702992 year: 2018 ident: bib18 article-title: Metal-Free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne for improving the hole mobility of graphitic carbon nitride publication-title: Adv Energ Mater – volume: 13 start-page: 18 year: 2020 end-page: 37 ident: bib2 article-title: Graphitic carbon nitride with different dimensionalities for energy and environmental applications publication-title: Nano Res – volume: 27 start-page: 966 year: 2014 end-page: 974 ident: bib43 article-title: Visible-light enhancement of methylene blue photodegradation by graphitic carbon nitride-titania composites publication-title: Mater Sci Semicond Process – volume: 480 start-page: 126 year: 2016 end-page: 136 ident: bib40 article-title: Facile synthesis of novel CaFe publication-title: J Colloid Interface Sci – volume: 436 start-page: 29 year: 2014 end-page: 36 ident: bib10 article-title: Enhancing the photocatalytic activity of bulk g-C publication-title: J Colloid Interface Sci – volume: 8 start-page: 1701503 year: 2018 ident: bib12 article-title: g-C publication-title: Adv Energy Mater – volume: 141 start-page: 739 year: 2019 end-page: 747 ident: bib33 article-title: Molten salt synthesis of hierarchical porous N-doped carbon submicrospheres for multifunctional applications: high performance supercapacitor, dye removal and CO publication-title: Carbon – volume: 5 start-page: 5831 year: 2017 end-page: 5841 ident: bib47 article-title: Phosphorous and sulfur codoped g-C publication-title: ACS Sustainable Chem Eng – volume: 176–177 start-page: 44 year: 2015 end-page: 52 ident: bib53 article-title: Sulfur-doped g-C publication-title: Appl Catal, B – volume: 192 start-page: 193 year: 2016 end-page: 198 ident: bib3 article-title: Photoelectrochemical CO publication-title: Appl Catal, B – volume: 4 start-page: 1714 year: 2017 end-page: 1720 ident: bib46 article-title: Fabrication of CuBi publication-title: Inorg Chem Front – volume: 7 start-page: 20640 year: 2019 end-page: 20648 ident: bib20 article-title: Preparation and enhanced photocatalytic performance of sulfur doping terminal-methylated g-C publication-title: J Mater Chem – volume: 386 start-page: 124010 year: 2020 ident: bib48 article-title: Fabrication of g-C publication-title: Chem Eng J – volume: 76 start-page: 104972 year: 2020 ident: bib51 article-title: Ferroelectric-field accelerated charge transfer in 2D CuInP publication-title: Nanomater Energy – volume: 8 start-page: 3708 year: 2015 end-page: 3717 ident: bib22 article-title: Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H publication-title: Energy Environ Sci – volume: 9 start-page: 3342 year: 2019 end-page: 3346 ident: bib36 article-title: Cyano and potassium-rich g-C publication-title: Catal Sci Technol – volume: 8 start-page: 12017 year: 2012 end-page: 12019 ident: bib28 article-title: A facile approach to synthesize novel oxygen-doped g-C publication-title: Chem Commun – volume: 7 start-page: 1770 year: 2020 end-page: 1779 ident: bib13 article-title: High-efficiency photocatalytic water splitting by a N-doped porous g-C publication-title: Inorg Chem Front – volume: 99 start-page: 2895 year: 2016 end-page: 2898 ident: bib31 article-title: Low-temperature rapid synthesis of rod-like ZrB publication-title: J Am Ceram Soc – volume: 7 start-page: 901 year: 2019 end-page: 924 ident: bib1 article-title: Graphitic carbon nitride based materials for electrochemical energy storage publication-title: J Mater Chem – volume: 18 start-page: 6453 year: 2016 end-page: 6463 ident: bib45 article-title: Hydrothermal synthesis of g-C publication-title: CrystEngComm – volume: 9 start-page: 15381 year: 2019 end-page: 15391 ident: bib7 article-title: Effect of calcination temperature, pH and catalyst loading on photodegradation efficiency of urea derived graphitic carbon nitride towards methylene blue dye solution publication-title: RSC Adv – volume: 553 start-page: 530 year: 2019 end-page: 539 ident: bib39 article-title: Ultrathin g-C publication-title: J Colloid Interface Sci – volume: 42 start-page: 5485 year: 2016 end-page: 5495 ident: bib9 article-title: Investigation for the effects of ball milling process on the physical characteristics, the behaviors of carriers and the photocatalytic activity of sulfur doped g-C publication-title: Int J Hydrogen Energy – volume: 232 start-page: 330 year: 2018 end-page: 339 ident: bib5 article-title: Drastic promoting the visible photoreactivity of layered carbon nitride by polymerization of dicyandiamide at high pressure publication-title: Appl Catal, B – volume: 125 start-page: 1179 year: 2018 end-page: 1190 ident: bib42 article-title: Photocatalytic degradation of methylene blue over boron-doped g-C publication-title: React Kinet Mech Catal – volume: 567 start-page: 300 year: 2020 end-page: 307 ident: bib19 article-title: Two-dimensional/one-dimensional molybdenum sulfide (MoS publication-title: J Colloid Interface Sci – volume: 5 start-page: 5831 year: 2017 ident: 10.1016/j.jmat.2021.01.008_bib47 article-title: Phosphorous and sulfur codoped g-C3N4: facile preparation, mechanism insight and application as efficient photocatalyst for tetracycline and methyl orange degradation under visible light irradiation publication-title: ACS Sustainable Chem Eng doi: 10.1021/acssuschemeng.7b00559 – volume: 141 start-page: 739 year: 2019 ident: 10.1016/j.jmat.2021.01.008_bib33 article-title: Molten salt synthesis of hierarchical porous N-doped carbon submicrospheres for multifunctional applications: high performance supercapacitor, dye removal and CO2 capture publication-title: Carbon doi: 10.1016/j.carbon.2018.09.061 – volume: 378 start-page: 1 year: 2019 ident: 10.1016/j.jmat.2021.01.008_bib49 article-title: Visible-light-driven g-C3N4/Cu2O heterostructures with efficient photocatalytic activities for tetracycline degradation and microbial inactivation publication-title: J Photochem Photobiol, A doi: 10.1016/j.jphotochem.2019.04.007 – volume: 238 start-page: 592 year: 2018 ident: 10.1016/j.jmat.2021.01.008_bib25 article-title: Highly crystalline sulfur-doped carbon nitride as photocatalyst for efficient visible-light hydrogen generation publication-title: Appl Catal, B doi: 10.1016/j.apcatb.2018.07.023 – volume: 176–177 start-page: 44 year: 2015 ident: 10.1016/j.jmat.2021.01.008_bib53 article-title: Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance publication-title: Appl Catal, B doi: 10.1016/j.apcatb.2015.03.045 – volume: 8 start-page: 1702992 year: 2018 ident: 10.1016/j.jmat.2021.01.008_bib18 article-title: Metal-Free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne for improving the hole mobility of graphitic carbon nitride publication-title: Adv Energ Mater doi: 10.1002/aenm.201702992 – volume: 102 start-page: 477 year: 2016 ident: 10.1016/j.jmat.2021.01.008_bib35 article-title: Molten salt synthesis of water-dispersible polymeric carbon nitride nanoseaweeds and their application as luminescent probes publication-title: Carbon doi: 10.1016/j.carbon.2016.02.065 – volume: 295 start-page: 164 year: 2014 ident: 10.1016/j.jmat.2021.01.008_bib44 article-title: A g-C3N4-CdS composite catalyst with high visible-light-driven catalytic activity and photostability for methylene blue degradation publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2014.01.022 – volume: 29 start-page: 1605148 year: 2017 ident: 10.1016/j.jmat.2021.01.008_bib4 article-title: Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution publication-title: Adv Mater doi: 10.1002/adma.201605148 – volume: 42 start-page: 5485 year: 2016 ident: 10.1016/j.jmat.2021.01.008_bib9 article-title: Investigation for the effects of ball milling process on the physical characteristics, the behaviors of carriers and the photocatalytic activity of sulfur doped g-C3N4 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.08.077 – volume: 13 start-page: 18 year: 2020 ident: 10.1016/j.jmat.2021.01.008_bib2 article-title: Graphitic carbon nitride with different dimensionalities for energy and environmental applications publication-title: Nano Res doi: 10.1007/s12274-019-2589-z – volume: 22 start-page: 4763 year: 2012 ident: 10.1016/j.jmat.2021.01.008_bib11 article-title: Graphene-like carbon nitride nanosheets for improved photocatalytic activities publication-title: Adv Funct Mater doi: 10.1002/adfm.201200922 – volume: 7 start-page: 1770 year: 2020 ident: 10.1016/j.jmat.2021.01.008_bib13 article-title: High-efficiency photocatalytic water splitting by a N-doped porous g-C3N4 nanosheet polymer photocatalyst derived from urea and N,N-dimethylformamide publication-title: Inorg Chem Front doi: 10.1039/D0QI00117A – volume: 12 start-page: 12656 year: 2020 ident: 10.1016/j.jmat.2021.01.008_bib15 article-title: Synthesis of sulfur doped 2D graphitic carbon nitride nanosheets for efficient photocatalytic degradation of phenol and hydrogen evolution publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b19057 – volume: 76 start-page: 104972 year: 2020 ident: 10.1016/j.jmat.2021.01.008_bib51 article-title: Ferroelectric-field accelerated charge transfer in 2D CuInP2S6 heterostructure for enhanced photocatalytic H2 evolution publication-title: Nanomater Energy doi: 10.1016/j.nanoen.2020.104972 – volume: 5 start-page: 39549 year: 2015 ident: 10.1016/j.jmat.2021.01.008_bib29 article-title: Template synthesis of carbon self-doped g-C3N4 with enhanced visible to near-infrared absorption and photocatalytic performance publication-title: RSC Adv doi: 10.1039/C5RA03433G – volume: 18 start-page: 6453 year: 2016 ident: 10.1016/j.jmat.2021.01.008_bib45 article-title: Hydrothermal synthesis of g-C3N4/CdWO4 nanocomposite and enhanced photocatalytic activity for tetracycline degradation under visible light publication-title: CrystEngComm doi: 10.1039/C6CE01019A – volume: 12 start-page: 1 year: 2020 ident: 10.1016/j.jmat.2021.01.008_bib30 article-title: One-step synthesis of dandelion-like lanthanum titanate nanostructures for enhanced photocatalytic performance publication-title: NPG Asia Mater doi: 10.1038/s41427-019-0194-y – volume: 8 start-page: 1701503 year: 2018 ident: 10.1016/j.jmat.2021.01.008_bib12 article-title: g-C3N4-based heterostructured photocatalysts publication-title: Adv Energy Mater doi: 10.1002/aenm.201701503 – volume: 225 start-page: 307 year: 2018 ident: 10.1016/j.jmat.2021.01.008_bib34 article-title: Molten salt synthesis of tetragonal carbon nitride hollow tubes and their application for removal of pollutants from wastewater publication-title: Appl Catal, B doi: 10.1016/j.apcatb.2017.11.082 – volume: 480 start-page: 126 year: 2016 ident: 10.1016/j.jmat.2021.01.008_bib40 article-title: Facile synthesis of novel CaFe2O4/g-C3N4 nanocomposites for degradation of methylene blue under visible-light irradiation publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2016.07.012 – volume: 206 start-page: 417 year: 2017 ident: 10.1016/j.jmat.2021.01.008_bib27 article-title: Facile synthesis of oxygen doped carbon nitride hollow microsphere for photocatalysis publication-title: Appl Catal, B doi: 10.1016/j.apcatb.2017.01.041 – volume: 436 start-page: 29 year: 2014 ident: 10.1016/j.jmat.2021.01.008_bib10 article-title: Enhancing the photocatalytic activity of bulk g-C3N4 by introducing mesoporous structure and hybridizing with graphene publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2014.09.004 – volume: 7 start-page: 11506 year: 2019 ident: 10.1016/j.jmat.2021.01.008_bib23 article-title: The doping of phosphorus atoms into graphitic carbon nitride with highly enhanced photocatalytic hydrogen evolution publication-title: J Mater Chem doi: 10.1039/C9TA01646E – volume: 107 start-page: 1 year: 2016 ident: 10.1016/j.jmat.2021.01.008_bib38 article-title: Constructing confined surface carbon defects in ultrathin graphitic carbon nitride for photocatalytic free radical manipulation publication-title: Carbon doi: 10.1016/j.carbon.2016.05.028 – volume: 9 start-page: 1708 year: 2017 ident: 10.1016/j.jmat.2021.01.008_bib41 article-title: A facile one-step synthesis of Fe-doped g-C3N4 nanosheets and their improved visible light photocatalytic performances publication-title: ChemCatChem doi: 10.1002/cctc.201700492 – volume: 217 start-page: 388 year: 2017 ident: 10.1016/j.jmat.2021.01.008_bib21 article-title: Doping of graphitic carbon nitride for photocatalysis: a review publication-title: Appl Catal, B doi: 10.1016/j.apcatb.2017.06.003 – volume: 239 start-page: 16 year: 2018 ident: 10.1016/j.jmat.2021.01.008_bib8 article-title: Chemical vs thermal exfoliation of g-C3N4 for NOx removal under visible light irradiation publication-title: Appl Catal, B doi: 10.1016/j.apcatb.2018.07.078 – volume: 132 start-page: 11642 year: 2010 ident: 10.1016/j.jmat.2021.01.008_bib37 article-title: Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4 publication-title: J Am Chem Soc doi: 10.1021/ja103798k – volume: 27 start-page: 966 year: 2014 ident: 10.1016/j.jmat.2021.01.008_bib43 article-title: Visible-light enhancement of methylene blue photodegradation by graphitic carbon nitride-titania composites publication-title: Mater Sci Semicond Process doi: 10.1016/j.mssp.2014.08.004 – volume: 511 start-page: 145549 year: 2020 ident: 10.1016/j.jmat.2021.01.008_bib26 article-title: Insight into the effect of boron doping on electronic structure, photocatalytic and adsorption performance of g-C3N4 by first-principles study publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2020.145549 – volume: 99 start-page: 2895 year: 2016 ident: 10.1016/j.jmat.2021.01.008_bib31 article-title: Low-temperature rapid synthesis of rod-like ZrB2 powders by molten-salt and microwave co-assisted carbothermal reduction publication-title: J Am Ceram Soc doi: 10.1111/jace.14414 – volume: 232 start-page: 330 year: 2018 ident: 10.1016/j.jmat.2021.01.008_bib5 article-title: Drastic promoting the visible photoreactivity of layered carbon nitride by polymerization of dicyandiamide at high pressure publication-title: Appl Catal, B doi: 10.1016/j.apcatb.2018.03.066 – volume: 46 start-page: 7888 year: 2020 ident: 10.1016/j.jmat.2021.01.008_bib24 article-title: Facile synthesis of carbon self-doped g-C3N4 for enhanced photocatalytic hydrogen evolution publication-title: Ceram Int doi: 10.1016/j.ceramint.2019.12.008 – volume: 536 start-page: 664 year: 2019 ident: 10.1016/j.jmat.2021.01.008_bib32 article-title: Facile molten salt synthesis of atomically thin boron nitride nanosheets and their co-catalytic effect on the performance of carbon nitride photocatalyst publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2018.10.098 – volume: 125 start-page: 1179 year: 2018 ident: 10.1016/j.jmat.2021.01.008_bib42 article-title: Photocatalytic degradation of methylene blue over boron-doped g-C3N4 together with nitrogenvacancies under visible light irradiation publication-title: React Kinet Mech Catal doi: 10.1007/s11144-018-1414-0 – volume: 34 start-page: 7272 year: 2018 ident: 10.1016/j.jmat.2021.01.008_bib6 article-title: Graphitic carbon nitride doped with the s-block metals: adsorbent for the removal of methyl blue and copper (II) ions publication-title: Langmuir doi: 10.1021/acs.langmuir.8b01041 – volume: 391 start-page: 376 year: 2017 ident: 10.1016/j.jmat.2021.01.008_bib14 article-title: Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2016.06.180 – volume: 11 start-page: 3462 year: 2018 ident: 10.1016/j.jmat.2021.01.008_bib16 article-title: Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production publication-title: Nano Res doi: 10.1007/s12274-018-2003-2 – volume: 567 start-page: 300 year: 2020 ident: 10.1016/j.jmat.2021.01.008_bib19 article-title: Two-dimensional/one-dimensional molybdenum sulfide (MoS2) nanoflake/graphitic carbon nitride (g-C3N4) hollow nanotube photocatalyst for enhanced photocatalytic hydrogen production activity publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2020.02.029 – volume: 2 start-page: 5340 year: 2014 ident: 10.1016/j.jmat.2021.01.008_bib50 article-title: Preparation of sphere-like g-C3N4/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants publication-title: J Mater Chem doi: 10.1039/c3ta14617k – volume: 6 start-page: 1601273 year: 2016 ident: 10.1016/j.jmat.2021.01.008_bib17 article-title: Macroscopic foam-like holey ultrathin g-C3N4 nanosheets for drastic improvement of visiblelight photocatalytic activity publication-title: Adv Energ Mater doi: 10.1002/aenm.201601273 – volume: 8 start-page: 12017 year: 2012 ident: 10.1016/j.jmat.2021.01.008_bib28 article-title: A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity publication-title: Chem Commun doi: 10.1039/c2cc35862j – volume: 7 start-page: 901 year: 2019 ident: 10.1016/j.jmat.2021.01.008_bib1 article-title: Graphitic carbon nitride based materials for electrochemical energy storage publication-title: J Mater Chem doi: 10.1039/C8TA08464E – volume: 8 start-page: 3708 year: 2015 ident: 10.1016/j.jmat.2021.01.008_bib22 article-title: Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production publication-title: Energy Environ Sci doi: 10.1039/C5EE02650D – volume: 9 start-page: 3342 year: 2019 ident: 10.1016/j.jmat.2021.01.008_bib36 article-title: Cyano and potassium-rich g-C3N4 hollow tubes for efficient visible-light-driven hydrogen evolution publication-title: Catal Sci Technol doi: 10.1039/C9CY00925F – volume: 386 start-page: 124010 year: 2020 ident: 10.1016/j.jmat.2021.01.008_bib48 article-title: Fabrication of g-C3N4/BiOBr heterojunctions on carbon fibers as weaveable photocatalyst for degrading tetracycline hydrochloride under visible light publication-title: Chem Eng J doi: 10.1016/j.cej.2020.124010 – volume: 192 start-page: 193 year: 2016 ident: 10.1016/j.jmat.2021.01.008_bib3 article-title: Photoelectrochemical CO2 reduction by a p-type boron-doped g-C3N4 electrode under visible light publication-title: Appl Catal, B doi: 10.1016/j.apcatb.2016.03.055 – volume: 553 start-page: 530 year: 2019 ident: 10.1016/j.jmat.2021.01.008_bib39 article-title: Ultrathin g-C3N4 with enriched surface carbon vacancies enables highly efficient photocatalytic nitrogen fixation publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2019.06.012 – volume: 9 start-page: 15381 year: 2019 ident: 10.1016/j.jmat.2021.01.008_bib7 article-title: Effect of calcination temperature, pH and catalyst loading on photodegradation efficiency of urea derived graphitic carbon nitride towards methylene blue dye solution publication-title: RSC Adv doi: 10.1039/C9RA02201E – volume: 7 start-page: 20640 year: 2019 ident: 10.1016/j.jmat.2021.01.008_bib20 article-title: Preparation and enhanced photocatalytic performance of sulfur doping terminal-methylated g-C3N4 nanosheets with extended visible-light response publication-title: J Mater Chem doi: 10.1039/C9TA07014A – volume: 3 start-page: 19624 year: 2013 ident: 10.1016/j.jmat.2021.01.008_bib52 article-title: g-C3N4/BiOBr visible-light-driven composite: synthesis via a reactable ionic liquid and the improving photocatalytic activity publication-title: RSC Adv doi: 10.1039/c3ra42269k – volume: 4 start-page: 1714 year: 2017 ident: 10.1016/j.jmat.2021.01.008_bib46 article-title: Fabrication of CuBi2O4/g-C3N4 p-n heterojunction with enhanced visible light photocatalytic efficiency toward tetracycline degradation publication-title: Inorg Chem Front doi: 10.1039/C7QI00402H |
SSID | ssib044744977 ssib044084538 |
Score | 2.4329026 |
Snippet | In this paper, sulfur doped g-C3N4 (S-g-C3N4) was successfully prepared at 500 °C for 3 h via a modified molten salt method using dicyandiamide as the main raw... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1131 |
SubjectTerms | g-C3N4 Methylene blue Molten salt Photocatalytic activity Sulfur doped Tetracycline |
Title | Synthesis of sulfur doped g-C3N4 with enhanced photocatalytic activity in molten salt |
URI | https://dx.doi.org/10.1016/j.jmat.2021.01.008 https://doaj.org/article/36a6f55fb99a4b7aaadceaff5c22a7df |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iyYsoKq5f5OBNgm2aNOlRRRFBL7rgreRTV9Z2cbuHvfjbnWm72pNehNJDSadlOmTepJP3CDl1XkNW5YpBqeCYsD4wnXvLACEpp31AUjDstnjIb8fi7lk-D6S-sCesowfuHHee5SaPUkZbFEZYZYzxLpgYpePcKB9x9oWcNyimIJJQRlnIn8gSQglRtDKMHBAHgylZ9ztoumavN4CHUCzytOXwRK3JQZZqyfwHyWqQgG62yGaPHOlF98bbZC1UO2T8uKwAws0nc1pHOl9M4-KD-noWPH1hV9mDoLjQSkP12v7pp7PXuqnbJZslmKG4qwHFI-ikou_1FPAznZtps0vGN9dPV7esV0pgTqRJw2RQWMdxm1lEDDYzzsO8VRQxMZLrxHETjFLWQO5RufRRe6dF6kTMhC4Sk-2R9aquwj6hOrfceZXa6MB2zAzk_wj-THkaY5B8RNKVZ0rX04ijmsW0XPWLvZXozRK9WSZwJHpEzr7vmXUkGr-OvkSHf49EAuz2AoRF2YdF-VdYjIhcfa6yxxIdRgBTk18efvAfDz8kG2iya0U7IuvNxyIcA3Zp7EkbpnC-_7z-Amyb7hg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+sulfur+doped+g-C3N4+with+enhanced+photocatalytic+activity+in+molten+salt&rft.jtitle=Journal+of+Materiomics&rft.au=Guan%2C+Keke&rft.au=Li%2C+Junyi&rft.au=Lei%2C+Wen&rft.au=Wang%2C+Honghong&rft.date=2021-09-01&rft.pub=Elsevier+B.V&rft.issn=2352-8478&rft.volume=7&rft.issue=5&rft.spage=1131&rft.epage=1142&rft_id=info:doi/10.1016%2Fj.jmat.2021.01.008&rft.externalDocID=S2352847821000162 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-8478&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-8478&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-8478&client=summon |