Numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface

The present investigation studies heat transfer in MHD stagnation point flow of Cross fluid over a stretched surface. A Cross fluid is a kind of generalized Newtonian liquid whose viscosity relies on shear rate. Fluid is electrically conducting in the presence of an applied magnetics fluids. System...

Full description

Saved in:
Bibliographic Details
Published inResults in physics Vol. 7; pp. 1824 - 1827
Main Authors Hayat, T., Khan, M. Ijaz, Tamoor, M., Waqas, M., Alsaedi, A.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2017
Elsevier
Subjects
Online AccessGet full text
ISSN2211-3797
2211-3797
DOI10.1016/j.rinp.2017.05.022

Cover

Loading…
Abstract The present investigation studies heat transfer in MHD stagnation point flow of Cross fluid over a stretched surface. A Cross fluid is a kind of generalized Newtonian liquid whose viscosity relies on shear rate. Fluid is electrically conducting in the presence of an applied magnetics fluids. System of ordinary differential equations is obtained by appropriate transformation. The flow equations are solved with the help of Runga-Kutta-Fehlberg method. Convergent series solutions are computed for the resulting nonlinear differential system. Impact of different parameters on the velocity and temperature profiles is studied. It is observed that velocity distribution decreases for larger values of Weissenberg number. However temperature decays for rising values of Prandtl number. Further computation for surface drag force and heat transfer rate are presented and discussed through numerical data.
AbstractList The present investigation studies heat transfer in MHD stagnation point flow of Cross fluid over a stretched surface. A Cross fluid is a kind of generalized Newtonian liquid whose viscosity relies on shear rate. Fluid is electrically conducting in the presence of an applied magnetics fluids. System of ordinary differential equations is obtained by appropriate transformation. The flow equations are solved with the help of Runga-Kutta-Fehlberg method. Convergent series solutions are computed for the resulting nonlinear differential system. Impact of different parameters on the velocity and temperature profiles is studied. It is observed that velocity distribution decreases for larger values of Weissenberg number. However temperature decays for rising values of Prandtl number. Further computation for surface drag force and heat transfer rate are presented and discussed through numerical data.
The present investigation studies heat transfer in MHD stagnation point flow of Cross fluid over a stretched surface. A Cross fluid is a kind of generalized Newtonian liquid whose viscosity relies on shear rate. Fluid is electrically conducting in the presence of an applied magnetics fluids. System of ordinary differential equations is obtained by appropriate transformation. The flow equations are solved with the help of Runga-Kutta-Fehlberg method. Convergent series solutions are computed for the resulting nonlinear differential system. Impact of different parameters on the velocity and temperature profiles is studied. It is observed that velocity distribution decreases for larger values of Weissenberg number. However temperature decays for rising values of Prandtl number. Further computation for surface drag force and heat transfer rate are presented and discussed through numerical data. Keywords: Cross fluid model, Heat transfer, MHD, Runga-Kutta-Fehlberg method
Author Tamoor, M.
Hayat, T.
Alsaedi, A.
Khan, M. Ijaz
Waqas, M.
Author_xml – sequence: 1
  givenname: T.
  surname: Hayat
  fullname: Hayat, T.
  organization: Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan
– sequence: 2
  givenname: M. Ijaz
  surname: Khan
  fullname: Khan, M. Ijaz
  email: mikhan@math.qau.edu.pk
  organization: Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan
– sequence: 3
  givenname: M.
  surname: Tamoor
  fullname: Tamoor, M.
  email: t.qau33@gmail.com
  organization: Department of Basic Sciences, University of Engineering and Technology, Taxila 47050, Pakistan
– sequence: 4
  givenname: M.
  surname: Waqas
  fullname: Waqas, M.
  organization: Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan
– sequence: 5
  givenname: A.
  surname: Alsaedi
  fullname: Alsaedi, A.
  organization: Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80257, Jeddah 21589, Saudi Arabia
BookMark eNp9kctuFDEQRS0UJELID7DyD0zjctv9kNig4ZFISdjA2qp2lxOPeuyR7SHi7-POIIRYZFUuq84t1b1v2VmIgRh7D6IBAd2HXZN8ODRSQN8I3QgpX7FzKQE2bT_2Z_-837DLnHdCVEppDXDO8t1xT8lbXHj2--OCxcfAo-MPhIWXhCE7StwHfnv1meeC9-E0cog-FO6W-LhOb1PMuXZHP_N9nGnhJT5imjPHCiUq9oFmno_JoaV37LXDJdPln3rBfn798mN7tbn5_u16--lmYxWIstGopSNS0zwo0dpWDxo6h-CwBZhAC0ujHZ12fafFYGHsp5GG1knXdk6DbC_Y9Ul3jrgzh-T3mH6biN48f8R0bzAVbxcyo5poqMukcqPq0KKzEyo5CEW9bCddteRJy66XJnJ_9UCYNQWzM2sKZk3BCG1qChUa_oOsL8_2VWP98jL68YRSNeiXp2Sy9RQszT6RLfUC_xL-BP17pvA
CitedBy_id crossref_primary_10_1016_j_icheatmasstransfer_2023_106732
crossref_primary_10_1016_j_matpr_2020_11_860
crossref_primary_10_3390_coatings13040702
crossref_primary_10_3389_fphy_2023_1126003
crossref_primary_10_1142_S0217984921400248
crossref_primary_10_1108_HFF_01_2019_0031
crossref_primary_10_1002_zamm_202400749
crossref_primary_10_1007_s12648_019_01678_2
crossref_primary_10_1016_j_aej_2020_04_037
crossref_primary_10_1016_j_asej_2021_101653
crossref_primary_10_3389_fenrg_2022_985146
crossref_primary_10_1016_j_icheatmasstransfer_2021_105633
crossref_primary_10_2139_ssrn_4174856
crossref_primary_10_1142_S0217979224501972
crossref_primary_10_1080_02286203_2024_2338581
crossref_primary_10_1080_17455030_2021_2017072
crossref_primary_10_1007_s13204_019_01067_5
crossref_primary_10_1080_02286203_2022_2033499
crossref_primary_10_1016_j_icheatmasstransfer_2017_11_001
crossref_primary_10_1038_s41598_023_37197_8
crossref_primary_10_1016_j_csite_2024_104427
crossref_primary_10_1016_j_triboint_2023_108757
crossref_primary_10_1016_j_rinp_2017_10_021
crossref_primary_10_1016_j_asej_2023_102282
crossref_primary_10_1142_S0217979223500923
crossref_primary_10_1080_01430750_2022_2031292
crossref_primary_10_1016_j_padiff_2021_100162
crossref_primary_10_46481_jnsps_2023_1435
crossref_primary_10_1007_s40819_021_01144_w
crossref_primary_10_1002_htj_22030
crossref_primary_10_1080_17455030_2023_2226226
crossref_primary_10_1016_j_icheatmasstransfer_2021_105696
crossref_primary_10_1002_zamm_202100364
crossref_primary_10_1016_j_rinp_2017_07_036
crossref_primary_10_1007_s13204_019_01173_4
crossref_primary_10_1002_zamm_202300037
crossref_primary_10_1080_01430750_2021_1995492
crossref_primary_10_1016_j_rinp_2017_07_030
crossref_primary_10_1080_10407790_2023_2233694
crossref_primary_10_1371_journal_pone_0180976
crossref_primary_10_1016_j_csite_2022_101893
crossref_primary_10_1007_s40314_024_02728_0
crossref_primary_10_1016_j_csite_2024_104961
crossref_primary_10_1016_j_icheatmasstransfer_2019_104431
crossref_primary_10_1016_j_csite_2023_103261
crossref_primary_10_3390_math8050854
crossref_primary_10_1007_s13204_019_01015_3
crossref_primary_10_1016_j_cjph_2021_10_021
crossref_primary_10_3389_fphy_2021_670930
crossref_primary_10_1166_jon_2023_1938
crossref_primary_10_1016_j_icheatmasstransfer_2021_105729
crossref_primary_10_2139_ssrn_4141978
crossref_primary_10_1002_htj_22412
crossref_primary_10_1016_j_thradv_2024_100021
crossref_primary_10_1002_htj_22139
crossref_primary_10_1140_epjp_s13360_021_01625_3
crossref_primary_10_1002_htj_22375
crossref_primary_10_1088_1402_4896_abb966
crossref_primary_10_1016_j_csite_2022_101882
crossref_primary_10_1016_j_rinp_2017_06_053
crossref_primary_10_1038_s41598_018_31777_9
crossref_primary_10_1007_s41939_024_00596_z
crossref_primary_10_1140_epjp_s13360_021_01294_2
crossref_primary_10_1016_j_rinp_2017_07_014
crossref_primary_10_1016_j_cmpb_2019_105262
crossref_primary_10_1038_s41598_021_01463_4
crossref_primary_10_1016_j_ijhydene_2017_07_116
crossref_primary_10_1515_ijcre_2018_0045
crossref_primary_10_1002_htj_22428
crossref_primary_10_1002_htj_23117
crossref_primary_10_1016_j_rinp_2017_11_021
crossref_primary_10_1002_htj_22024
crossref_primary_10_1016_j_rinp_2017_08_051
crossref_primary_10_1177_09544089211058093
crossref_primary_10_1016_j_aej_2022_06_014
crossref_primary_10_1016_j_icheatmasstransfer_2022_106431
crossref_primary_10_1016_j_asej_2021_101685
crossref_primary_10_1016_j_csite_2024_105463
crossref_primary_10_1016_j_jmmm_2023_170383
crossref_primary_10_1016_j_icheatmasstransfer_2021_105664
crossref_primary_10_1140_epjp_s13360_024_04913_w
crossref_primary_10_3389_fphy_2020_616790
crossref_primary_10_1016_j_aej_2022_01_043
crossref_primary_10_1007_s00339_019_2686_6
crossref_primary_10_1016_j_ctta_2022_100039
crossref_primary_10_1080_00319104_2017_1367791
crossref_primary_10_1088_1402_4896_ac2379
crossref_primary_10_1007_s00542_023_05438_5
crossref_primary_10_1016_j_cjph_2021_12_014
crossref_primary_10_1016_j_csite_2024_105177
crossref_primary_10_1142_S0217984923410063
crossref_primary_10_1142_S1793292024501054
crossref_primary_10_1108_HFF_12_2018_0797
crossref_primary_10_1002_htj_22927
crossref_primary_10_1080_01430750_2024_2310629
crossref_primary_10_1080_17455030_2023_2176178
crossref_primary_10_3390_math8010031
crossref_primary_10_1080_10407790_2024_2342036
crossref_primary_10_1002_htj_22403
crossref_primary_10_1016_j_ijheatfluidflow_2024_109302
crossref_primary_10_1002_htj_22365
crossref_primary_10_1016_j_physa_2021_126398
crossref_primary_10_1016_j_icheatmasstransfer_2020_104674
crossref_primary_10_1080_17455030_2021_2011985
Cites_doi 10.1016/j.ijheatmasstransfer.2014.06.052
10.1063/1.4964684
10.1039/C0SM00251H
10.1016/j.rinp.2016.11.026
10.1016/j.ijheatmasstransfer.2017.05.082
10.1016/j.ijheatmasstransfer.2013.05.040
10.1016/j.aej.2016.02.007
10.1016/j.molliq.2016.09.028
10.1016/j.jtice.2013.04.006
10.1016/j.molliq.2016.05.051
10.1016/j.molliq.2016.06.047
10.1016/j.molliq.2016.05.005
10.1016/j.jmmm.2016.05.051
10.1016/j.molliq.2016.10.069
10.1016/j.molliq.2016.08.005
10.1016/j.ijheatmasstransfer.2016.06.090
10.1016/j.jtice.2015.04.018
10.1016/j.taml.2015.11.005
10.1016/j.colsurfa.2017.01.007
10.1016/j.jnnms.2016.02.003
10.1016/j.molliq.2016.04.032
10.1007/s00396-017-4089-6
ContentType Journal Article
Copyright 2017
Copyright_xml – notice: 2017
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rinp.2017.05.022
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2211-3797
EndPage 1827
ExternalDocumentID oai_doaj_org_article_94be8fee24f946acafcba42804e723b5
10_1016_j_rinp_2017_05_022
S2211379717307416
GroupedDBID --K
0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
SES
SSZ
XH2
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c410t-5a52fee4bd8403c358516fa1fa311b150ce9c9f5f76508c197b9e83f2f36f5123
IEDL.DBID M48
ISSN 2211-3797
IngestDate Wed Aug 27 01:29:12 EDT 2025
Thu Apr 24 23:03:02 EDT 2025
Tue Jul 01 01:33:34 EDT 2025
Wed May 17 00:08:02 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords MHD
Cross fluid model
Runga-Kutta-Fehlberg method
Heat transfer
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-5a52fee4bd8403c358516fa1fa311b150ce9c9f5f76508c197b9e83f2f36f5123
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211379717307416
PageCount 4
ParticipantIDs doaj_primary_oai_doaj_org_article_94be8fee24f946acafcba42804e723b5
crossref_primary_10_1016_j_rinp_2017_05_022
crossref_citationtrail_10_1016_j_rinp_2017_05_022
elsevier_sciencedirect_doi_10_1016_j_rinp_2017_05_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017
2017-00-00
2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle Results in physics
PublicationYear 2017
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Reyes, Alvarez, Vicente (b0060) 2011; 7
Hayat, Khan, Farooq, Yasmeen, Alsaedi (b0110) 2016; 224
Hayat, Khan, Waqas, Alsaedi (b0125) 2017; 518
Babu, Sandeep (b0025) 2016; 222
Mahanthesh, Gireesha, Gorla (b0085) 2016; 35
Lia, Zheng, Liu (b0030) 2016; 221
Hayat, Tamoor, Khan, Alsaedi (b0115) 2016; 6
Ramesh, Gireesha, Hayat, Alsaedi (b0105) 2016; 55
Turkyilmazoglu (b0040) 2014; 78
Hayat, Khan, Farooq, Yasmeen, Alsaedi (b0045) 2016; 220
Selimefendigil, Oztop (b0075) 2015; 56
T. Hayat, S. Qayyum, M. Waqas and A. Alsaedi, Thermally radiative stagnation point flow of Maxwell nanofluid due to unsteady convectively heated stretched surface, J. Mol. Liq. (In Press).
Hayat, Khan, Alsaedi, Khan (b0100) 2017; 295
Yasmeen, Hayat, Khan, Imtiaz, Alsaedi (b0050) 2016; 223
Eid (b0095) 2016; 220
Hayat, Waqas, Khan, Alsaedi (b0090) 2016; 102
Nandy, Mahapatra (b0065) 2013; 64
Parekh, Lee (b0055) 2011; 1447
Nadeem, Haq, Khan (b0070) 2014; 45
Khan, Hayat, Khan, Alsaedi (b0120) 2017; 113
Chen, Zheng, Shen, Chen (b0035) 2015; 5
Mahanthesh, Gireesha, Gorla, Abbasi, Shehzad (b0020) 2016; 417
L. J. Crane, Flow past a stretching plate, J. Appl. Math. Phy.
Makinde, Animasaun (b0080) 2016; 221
Hayat, Khan, Imtiaz, Alseadi, Waqas (b0015) 2016; 28
Hayat (10.1016/j.rinp.2017.05.022_b0115) 2016; 6
Nadeem (10.1016/j.rinp.2017.05.022_b0070) 2014; 45
Babu (10.1016/j.rinp.2017.05.022_b0025) 2016; 222
Eid (10.1016/j.rinp.2017.05.022_b0095) 2016; 220
Lia (10.1016/j.rinp.2017.05.022_b0030) 2016; 221
10.1016/j.rinp.2017.05.022_b0010
Hayat (10.1016/j.rinp.2017.05.022_b0125) 2017; 518
10.1016/j.rinp.2017.05.022_b0005
Parekh (10.1016/j.rinp.2017.05.022_b0055) 2011; 1447
Makinde (10.1016/j.rinp.2017.05.022_b0080) 2016; 221
Hayat (10.1016/j.rinp.2017.05.022_b0110) 2016; 224
Hayat (10.1016/j.rinp.2017.05.022_b0100) 2017; 295
Mahanthesh (10.1016/j.rinp.2017.05.022_b0020) 2016; 417
Yasmeen (10.1016/j.rinp.2017.05.022_b0050) 2016; 223
Chen (10.1016/j.rinp.2017.05.022_b0035) 2015; 5
Ramesh (10.1016/j.rinp.2017.05.022_b0105) 2016; 55
Khan (10.1016/j.rinp.2017.05.022_b0120) 2017; 113
Hayat (10.1016/j.rinp.2017.05.022_b0045) 2016; 220
Selimefendigil (10.1016/j.rinp.2017.05.022_b0075) 2015; 56
Hayat (10.1016/j.rinp.2017.05.022_b0090) 2016; 102
Hayat (10.1016/j.rinp.2017.05.022_b0015) 2016; 28
Nandy (10.1016/j.rinp.2017.05.022_b0065) 2013; 64
Mahanthesh (10.1016/j.rinp.2017.05.022_b0085) 2016; 35
Turkyilmazoglu (10.1016/j.rinp.2017.05.022_b0040) 2014; 78
Reyes (10.1016/j.rinp.2017.05.022_b0060) 2011; 7
References_xml – volume: 35
  start-page: 178
  year: 2016
  end-page: 198
  ident: b0085
  article-title: Nonlinear radiative heat transfer in MHD three-dimensional flow of water based nanofluid over a non-linearly stretching sheet with convective boundary condition
  publication-title: J Nigerian Math Soc
– volume: 28
  start-page: 102003
  year: 2016
  ident: b0015
  article-title: Similarity transformation approach for ferromagnetic mixed convection flow in the presence of chemically reactive magnetic dipole
  publication-title: AIP Phys Fluid
– volume: 220
  start-page: 49
  year: 2016
  end-page: 55
  ident: b0045
  article-title: Stagnation point flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions
  publication-title: J Mol Liq
– volume: 295
  start-page: 967
  year: 2017
  end-page: 975
  ident: b0100
  article-title: Squeezing flow of second grade liquid subject to non-Fourier heat flux and heat generation/absorption
  publication-title: Colloid Poly Sci
– volume: 518
  start-page: 263
  year: 2017
  end-page: 272
  ident: b0125
  article-title: Mathematical modeling of non-Newtonian fluid with chemical aspects: A new formulation and results by numerical technique
  publication-title: Colloid Surf A
– volume: 221
  start-page: 19
  year: 2016
  end-page: 25
  ident: b0030
  article-title: MHD viscoelastic flow and heat transfer over a vertical stretching sheet with Cattaneo-Christov heat flux effects
  publication-title: J Mol Liq
– volume: 7
  start-page: 880
  year: 2011
  end-page: 883
  ident: b0060
  article-title: Controlling friction using magnetic nanofluids
  publication-title: Soft Matter
– reference: L. J. Crane, Flow past a stretching plate, J. Appl. Math. Phy.
– volume: 417
  start-page: 189
  year: 2016
  end-page: 196
  ident: b0020
  article-title: Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary
  publication-title: J Magn Magn Mater
– volume: 45
  start-page: 121
  year: 2014
  end-page: 126
  ident: b0070
  article-title: Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles
  publication-title: J Taiwan Inst Chem Eng
– reference: T. Hayat, S. Qayyum, M. Waqas and A. Alsaedi, Thermally radiative stagnation point flow of Maxwell nanofluid due to unsteady convectively heated stretched surface, J. Mol. Liq. (In Press).
– volume: 222
  start-page: 1003
  year: 2016
  end-page: 1009
  ident: b0025
  article-title: 3D MHD slip flow of a nanofluid over a slendering stretching sheet with thermophoresis and Brownian motion effects
  publication-title: J Mol Liq
– volume: 6
  start-page: 1031
  year: 2016
  end-page: 1035
  ident: b0115
  article-title: Numerical simulation for nonlinear radiative flow by convective cylinder
  publication-title: Result Phys
– volume: 1447
  start-page: 385
  year: 2011
  end-page: 386
  ident: b0055
  article-title: Experimental investigation of thermal conductivity of magnetic nanofluids
  publication-title: AIP Conf Proc
– volume: 220
  start-page: 718
  year: 2016
  end-page: 725
  ident: b0095
  article-title: Chemical reaction effect onMHD boundary-layer flow of two-phase nanofluid model over an exponentially stretching sheet with a heat generation
  publication-title: J Mol Liq
– volume: 221
  start-page: 733
  year: 2016
  end-page: 743
  ident: b0080
  article-title: Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution
  publication-title: J Mol Liq
– volume: 223
  start-page: 1000
  year: 2016
  end-page: 1005
  ident: b0050
  article-title: Ferrofluid flow by a stretched surface in the presence of magnetic dipole and homogeneous-heterogeneous reactions
  publication-title: J Mol Liq
– volume: 56
  start-page: 42
  year: 2015
  end-page: 56
  ident: b0075
  article-title: Natural convection and entropy generation of nanofluid filled cavity having different shaped obstacles under the influence of magnetic field and internal heat generation
  publication-title: J Taiwan Inst Chem Eng
– volume: 78
  start-page: 150
  year: 2014
  end-page: 155
  ident: b0040
  article-title: Three dimensional MHD flow and heat transfer over a stretching/shrinking surface in a viscoelastic fluid with various physical effects
  publication-title: Int J Heat Mass Transf
– volume: 55
  start-page: 857
  year: 2016
  end-page: 865
  ident: b0105
  article-title: Stagnation point flow of Maxwell fluid towards a permeable surface in the presence of nanoparticles
  publication-title: Alex Eng J
– volume: 64
  start-page: 1091
  year: 2013
  end-page: 1100
  ident: b0065
  article-title: Effects of slip and heat generation/absorption on MHD stagnation flow of nanofluid past a stretching/shrinking surface with convective boundary conditions
  publication-title: Int J Heat Mass Transfer
– volume: 113
  start-page: 310
  year: 2017
  end-page: 317
  ident: b0120
  article-title: A modified homogeneous-heterogeneous reactions for MHD stagnation flow with viscous dissipation and Joule heating
  publication-title: Int. J. Heat Mass Transf.
– volume: 224
  start-page: 786
  year: 2016
  end-page: 791
  ident: b0110
  article-title: Water-carbon nanofluid flow with variable heat flux by a thin needle
  publication-title: J Mol Liq
– volume: 5
  start-page: 262
  year: 2015
  end-page: 266
  ident: b0035
  article-title: Time–space dependent fractional boundary layer flow of Maxwell fluid over an unsteady stretching surface
  publication-title: Theor Appl Mech Lett
– volume: 102
  start-page: 1123
  year: 2016
  end-page: 1129
  ident: b0090
  article-title: Analysis of thixotropic nanomaterial in a doubly stratified medium considering magnetic field effects
  publication-title: Int J Heat Mass Transfer
– volume: 78
  start-page: 150
  year: 2014
  ident: 10.1016/j.rinp.2017.05.022_b0040
  article-title: Three dimensional MHD flow and heat transfer over a stretching/shrinking surface in a viscoelastic fluid with various physical effects
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2014.06.052
– volume: 28
  start-page: 102003
  year: 2016
  ident: 10.1016/j.rinp.2017.05.022_b0015
  article-title: Similarity transformation approach for ferromagnetic mixed convection flow in the presence of chemically reactive magnetic dipole
  publication-title: AIP Phys Fluid
  doi: 10.1063/1.4964684
– volume: 7
  start-page: 880
  year: 2011
  ident: 10.1016/j.rinp.2017.05.022_b0060
  article-title: Controlling friction using magnetic nanofluids
  publication-title: Soft Matter
  doi: 10.1039/C0SM00251H
– volume: 1447
  start-page: 385
  year: 2011
  ident: 10.1016/j.rinp.2017.05.022_b0055
  article-title: Experimental investigation of thermal conductivity of magnetic nanofluids
  publication-title: AIP Conf Proc
– volume: 6
  start-page: 1031
  year: 2016
  ident: 10.1016/j.rinp.2017.05.022_b0115
  article-title: Numerical simulation for nonlinear radiative flow by convective cylinder
  publication-title: Result Phys
  doi: 10.1016/j.rinp.2016.11.026
– volume: 113
  start-page: 310
  year: 2017
  ident: 10.1016/j.rinp.2017.05.022_b0120
  article-title: A modified homogeneous-heterogeneous reactions for MHD stagnation flow with viscous dissipation and Joule heating
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.05.082
– volume: 64
  start-page: 1091
  year: 2013
  ident: 10.1016/j.rinp.2017.05.022_b0065
  article-title: Effects of slip and heat generation/absorption on MHD stagnation flow of nanofluid past a stretching/shrinking surface with convective boundary conditions
  publication-title: Int J Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2013.05.040
– volume: 55
  start-page: 857
  year: 2016
  ident: 10.1016/j.rinp.2017.05.022_b0105
  article-title: Stagnation point flow of Maxwell fluid towards a permeable surface in the presence of nanoparticles
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2016.02.007
– volume: 223
  start-page: 1000
  year: 2016
  ident: 10.1016/j.rinp.2017.05.022_b0050
  article-title: Ferrofluid flow by a stretched surface in the presence of magnetic dipole and homogeneous-heterogeneous reactions
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2016.09.028
– volume: 45
  start-page: 121
  year: 2014
  ident: 10.1016/j.rinp.2017.05.022_b0070
  article-title: Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2013.04.006
– volume: 221
  start-page: 19
  year: 2016
  ident: 10.1016/j.rinp.2017.05.022_b0030
  article-title: MHD viscoelastic flow and heat transfer over a vertical stretching sheet with Cattaneo-Christov heat flux effects
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2016.05.051
– volume: 221
  start-page: 733
  year: 2016
  ident: 10.1016/j.rinp.2017.05.022_b0080
  article-title: Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2016.06.047
– volume: 220
  start-page: 718
  year: 2016
  ident: 10.1016/j.rinp.2017.05.022_b0095
  article-title: Chemical reaction effect onMHD boundary-layer flow of two-phase nanofluid model over an exponentially stretching sheet with a heat generation
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2016.05.005
– volume: 417
  start-page: 189
  year: 2016
  ident: 10.1016/j.rinp.2017.05.022_b0020
  article-title: Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2016.05.051
– volume: 224
  start-page: 786
  year: 2016
  ident: 10.1016/j.rinp.2017.05.022_b0110
  article-title: Water-carbon nanofluid flow with variable heat flux by a thin needle
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2016.10.069
– ident: 10.1016/j.rinp.2017.05.022_b0010
– volume: 222
  start-page: 1003
  year: 2016
  ident: 10.1016/j.rinp.2017.05.022_b0025
  article-title: 3D MHD slip flow of a nanofluid over a slendering stretching sheet with thermophoresis and Brownian motion effects
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2016.08.005
– volume: 102
  start-page: 1123
  year: 2016
  ident: 10.1016/j.rinp.2017.05.022_b0090
  article-title: Analysis of thixotropic nanomaterial in a doubly stratified medium considering magnetic field effects
  publication-title: Int J Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2016.06.090
– ident: 10.1016/j.rinp.2017.05.022_b0005
– volume: 56
  start-page: 42
  year: 2015
  ident: 10.1016/j.rinp.2017.05.022_b0075
  article-title: Natural convection and entropy generation of nanofluid filled cavity having different shaped obstacles under the influence of magnetic field and internal heat generation
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2015.04.018
– volume: 5
  start-page: 262
  year: 2015
  ident: 10.1016/j.rinp.2017.05.022_b0035
  article-title: Time–space dependent fractional boundary layer flow of Maxwell fluid over an unsteady stretching surface
  publication-title: Theor Appl Mech Lett
  doi: 10.1016/j.taml.2015.11.005
– volume: 518
  start-page: 263
  year: 2017
  ident: 10.1016/j.rinp.2017.05.022_b0125
  article-title: Mathematical modeling of non-Newtonian fluid with chemical aspects: A new formulation and results by numerical technique
  publication-title: Colloid Surf A
  doi: 10.1016/j.colsurfa.2017.01.007
– volume: 35
  start-page: 178
  year: 2016
  ident: 10.1016/j.rinp.2017.05.022_b0085
  article-title: Nonlinear radiative heat transfer in MHD three-dimensional flow of water based nanofluid over a non-linearly stretching sheet with convective boundary condition
  publication-title: J Nigerian Math Soc
  doi: 10.1016/j.jnnms.2016.02.003
– volume: 220
  start-page: 49
  year: 2016
  ident: 10.1016/j.rinp.2017.05.022_b0045
  article-title: Stagnation point flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2016.04.032
– volume: 295
  start-page: 967
  year: 2017
  ident: 10.1016/j.rinp.2017.05.022_b0100
  article-title: Squeezing flow of second grade liquid subject to non-Fourier heat flux and heat generation/absorption
  publication-title: Colloid Poly Sci
  doi: 10.1007/s00396-017-4089-6
SSID ssj0001645511
Score 2.4051738
Snippet The present investigation studies heat transfer in MHD stagnation point flow of Cross fluid over a stretched surface. A Cross fluid is a kind of generalized...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1824
SubjectTerms Cross fluid model
Heat transfer
MHD
Runga-Kutta-Fehlberg method
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOilNGlLtk2CDr0VU-tlxcc8WQLJqYHchJ7FZeMNay_5-52RvGFzSS452ujFzKD5Rhp9Q8hPa4N2nqcqhSZCgCJV1fpWVckyHSVn0Wp8KHxz28zv5PW9ut8q9YU5YYUeuAjudytdPEkxcpla2Vhvk3cWMHMto-bCZfZS8HlbwVQ-XWkkQAGMtjhHnj7d6unFTEnuWnU9klWyQtvJ-QuvlMn7t5zTlsO5-kw-TUiRnpYV7pEPsd8nuzlj0w9fyHC7LpctCzp0D1MRLrpMFHdXOmY8Gle06-nN_IICBvxbzv3o47LrR5oWyydsfY7rga91F2iuikPHnEg7UEvxHQkqNdBhvUrWx6_k7uryz_m8miooVF6yeqyUVRxkJ12AOE54gXeADaghWcGYAyzoI2gmqaQRqHnWatfGE5F4Ek0CKCC-kZ1-2ccDQqPQtfMBAJANAMGEs75mPgYwAhVgW5gRtpGg8RO9OFa5WJhNHtk_g1I3KHVTKwNSn5Ffz30eC7nGq63PUDHPLZEYO_8AczGTuZi3zGVG1EatZsIYBTvAUN0rk39_j8l_kI84ZDnBOSQ742odjwDTjO44m-9_loP2Pw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhUOglNH2QbZKiQ2_FrPWy18dkk7AUkksb2JuQZCk4bOzF9tK_3xlZmyaXHHq0GNnyzDD6RpoHId-NqUvreMhCXXhwUKTKKlepLBhWesmZNyUmCt_eFat7-XOt1gdkuc-FwbDKZPsnmx6tdRqZJ27Ot00z_8XBdxFlhdfIEVeAHRZyEZP41pf_zlkKCaAA_S6kz3BCyp2Zwrz6psWylWwq4Mn5q_0plvF_sU292HpuPpCjhBnpxbSsY3Lg24_kXYzddMMnMtztpmuXDR2ap9SOi3aBop2lY0SmvqdNS29XVxTQ4MN0Aki3XdOONGy6P0i9xPXA066paeyPQ8cYUjtQQzGjBMVb02HXB-P8Z3J_c_17ucpSL4XMSZaPmTKKB--lrcGjE07gbWABAglGMGYBFToPMgoqlAjZHKtKW_mFCDyIIgAoEF_IYdu1_oRQL8rcuhqgkKkBjAlrXM5AXKAOqgYDMSNsz0HtUqFx7Hex0fuIskeNXNfIdZ0rDVyfkR_Pc7ZTmY03qS9RMM-UWCI7DnT9g046oitp_QJ-mctQycI4E5w14Gzl0pdcWDUjai9W_Urj4FXNGx__-p_zTsl7fJqOb87I4djv_DkAmtF-ixr7F4xu9XY
  priority: 102
  providerName: Elsevier
Title Numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface
URI https://dx.doi.org/10.1016/j.rinp.2017.05.022
https://doaj.org/article/94be8fee24f946acafcba42804e723b5
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqVkhcEE-xPFY-cENBiR9xc0CoLVQL1faAWLE3y88qaElKkhXw75lxsqVIVSUukRw5jj1je74Zj2cIeWWMV9axmEVfBlBQhMwqV8ksmkIFwYpgFF4UXp6Xi5X4tJbrPbJLdzQRsL9RtcN8Uqtu8-bXj9_vYMG__eur1dUNxp4sxiicDLbkA5BMClM5LCe4n2wupQCAgDoYYxi9T1VqukdzczP_yKoU0v-ayLomhk7vk3sTfqRHI8MfkL3QPCR3kh-n6x-R_nw7HsFsaF9_n1Jz0TZS3HPpkFBq6Gjd0OXiPQVkeDFaA-llWzcDjZv2J9Y-wf5AaVt7mnLl0CG51_bUULxdgqz2tN920bjwmKxOP3w5WWRTXoXMiSIfMmkkiyEI60G7447jyWAJzImGF4UFhOgC8CvKqBC-uaJStgqHPLLIywgAgT8h-03bhKeEBq5y6zzAIuMBmHFrXF644GFqSA-bxYwUOwpqNwUdx9wXG73zLvumkeoaqa5zqYHqM_L66pvLMeTGrbWPkTFXNTFcdnrRdhd6Wn26EjYcwpCZiJUojTPRWQOKVy6CYtzKGZE7tuoJeYyIApqqb_n5s__q6nNyF0ujAecF2R-6bXgJkGawc3JwdPb569k8mQTg-XF9PE9z9w9vHvjb
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoVVUuqE91KW196K2KNo7thBzLtmhp2b0UpL1ZtmOjoG2ySrLi7zPjeClcOPSYxJM4M6PxN_Y8CPmqdVUYm_nEV7kDB0XIpLSlTLxmhRMZc7rAROHFMp9fiV8rudojs10uDIZVRts_2vRgreOdaeTmdFPX0z8Z-C68KPEYOeCKZ-Q5oIEcVft8dfpvoyUXgArQ8UKCBCli8swY59XVDdatZGMFzyx7tECFOv4P1qkHa8_ZK3IYQSP9Ps7rNdlzzRvyIgRv2v4t6Zfb8dxlTfv6b-zHRVtP0dDSIUBT19G6oYv5Dwpw8HrcAqSbtm4G6tftLY6e4XzgaltXNDTIoUOIqe2ppphSgvKtaL_tvLbuHbk6-3k5myexmUJiBUuHRGqZeeeEqcCl45bjcWAOEvGaM2YAFloHQvLSF4jZLCsLU7oT7jPPcw-ogL8n-03buA-EOl6kxlaAhXQFaIwbbVMG8gJ9kBVYiAlhOw4qGyuNY8OLtdqFlN0o5LpCrqtUKuD6hHy7p9mMdTaeHH2KgrkfiTWyw422u1ZRSVQpjDuBX86EL0WurfbWaPC2UuGKjBs5IXInVvVI5eBV9RMfP_pPui_k5fxycaEuzpe_P5IDfDLu5RyT_aHbuk-AbgbzOWjvHf0W-J0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+heat+transfer+in+MHD+stagnation+point+flow+of+Cross+fluid+model+towards+a+stretched+surface&rft.jtitle=Results+in+physics&rft.au=Hayat%2C+T.&rft.au=Khan%2C+M.+Ijaz&rft.au=Tamoor%2C+M.&rft.au=Waqas%2C+M.&rft.date=2017&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=7&rft.spage=1824&rft.epage=1827&rft_id=info:doi/10.1016%2Fj.rinp.2017.05.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rinp_2017_05_022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon