Numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface
The present investigation studies heat transfer in MHD stagnation point flow of Cross fluid over a stretched surface. A Cross fluid is a kind of generalized Newtonian liquid whose viscosity relies on shear rate. Fluid is electrically conducting in the presence of an applied magnetics fluids. System...
Saved in:
Published in | Results in physics Vol. 7; pp. 1824 - 1827 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2017
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2211-3797 2211-3797 |
DOI | 10.1016/j.rinp.2017.05.022 |
Cover
Loading…
Abstract | The present investigation studies heat transfer in MHD stagnation point flow of Cross fluid over a stretched surface. A Cross fluid is a kind of generalized Newtonian liquid whose viscosity relies on shear rate. Fluid is electrically conducting in the presence of an applied magnetics fluids. System of ordinary differential equations is obtained by appropriate transformation. The flow equations are solved with the help of Runga-Kutta-Fehlberg method. Convergent series solutions are computed for the resulting nonlinear differential system. Impact of different parameters on the velocity and temperature profiles is studied. It is observed that velocity distribution decreases for larger values of Weissenberg number. However temperature decays for rising values of Prandtl number. Further computation for surface drag force and heat transfer rate are presented and discussed through numerical data. |
---|---|
AbstractList | The present investigation studies heat transfer in MHD stagnation point flow of Cross fluid over a stretched surface. A Cross fluid is a kind of generalized Newtonian liquid whose viscosity relies on shear rate. Fluid is electrically conducting in the presence of an applied magnetics fluids. System of ordinary differential equations is obtained by appropriate transformation. The flow equations are solved with the help of Runga-Kutta-Fehlberg method. Convergent series solutions are computed for the resulting nonlinear differential system. Impact of different parameters on the velocity and temperature profiles is studied. It is observed that velocity distribution decreases for larger values of Weissenberg number. However temperature decays for rising values of Prandtl number. Further computation for surface drag force and heat transfer rate are presented and discussed through numerical data. The present investigation studies heat transfer in MHD stagnation point flow of Cross fluid over a stretched surface. A Cross fluid is a kind of generalized Newtonian liquid whose viscosity relies on shear rate. Fluid is electrically conducting in the presence of an applied magnetics fluids. System of ordinary differential equations is obtained by appropriate transformation. The flow equations are solved with the help of Runga-Kutta-Fehlberg method. Convergent series solutions are computed for the resulting nonlinear differential system. Impact of different parameters on the velocity and temperature profiles is studied. It is observed that velocity distribution decreases for larger values of Weissenberg number. However temperature decays for rising values of Prandtl number. Further computation for surface drag force and heat transfer rate are presented and discussed through numerical data. Keywords: Cross fluid model, Heat transfer, MHD, Runga-Kutta-Fehlberg method |
Author | Tamoor, M. Hayat, T. Alsaedi, A. Khan, M. Ijaz Waqas, M. |
Author_xml | – sequence: 1 givenname: T. surname: Hayat fullname: Hayat, T. organization: Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan – sequence: 2 givenname: M. Ijaz surname: Khan fullname: Khan, M. Ijaz email: mikhan@math.qau.edu.pk organization: Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan – sequence: 3 givenname: M. surname: Tamoor fullname: Tamoor, M. email: t.qau33@gmail.com organization: Department of Basic Sciences, University of Engineering and Technology, Taxila 47050, Pakistan – sequence: 4 givenname: M. surname: Waqas fullname: Waqas, M. organization: Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan – sequence: 5 givenname: A. surname: Alsaedi fullname: Alsaedi, A. organization: Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80257, Jeddah 21589, Saudi Arabia |
BookMark | eNp9kctuFDEQRS0UJELID7DyD0zjctv9kNig4ZFISdjA2qp2lxOPeuyR7SHi7-POIIRYZFUuq84t1b1v2VmIgRh7D6IBAd2HXZN8ODRSQN8I3QgpX7FzKQE2bT_2Z_-837DLnHdCVEppDXDO8t1xT8lbXHj2--OCxcfAo-MPhIWXhCE7StwHfnv1meeC9-E0cog-FO6W-LhOb1PMuXZHP_N9nGnhJT5imjPHCiUq9oFmno_JoaV37LXDJdPln3rBfn798mN7tbn5_u16--lmYxWIstGopSNS0zwo0dpWDxo6h-CwBZhAC0ujHZ12fafFYGHsp5GG1knXdk6DbC_Y9Ul3jrgzh-T3mH6biN48f8R0bzAVbxcyo5poqMukcqPq0KKzEyo5CEW9bCddteRJy66XJnJ_9UCYNQWzM2sKZk3BCG1qChUa_oOsL8_2VWP98jL68YRSNeiXp2Sy9RQszT6RLfUC_xL-BP17pvA |
CitedBy_id | crossref_primary_10_1016_j_icheatmasstransfer_2023_106732 crossref_primary_10_1016_j_matpr_2020_11_860 crossref_primary_10_3390_coatings13040702 crossref_primary_10_3389_fphy_2023_1126003 crossref_primary_10_1142_S0217984921400248 crossref_primary_10_1108_HFF_01_2019_0031 crossref_primary_10_1002_zamm_202400749 crossref_primary_10_1007_s12648_019_01678_2 crossref_primary_10_1016_j_aej_2020_04_037 crossref_primary_10_1016_j_asej_2021_101653 crossref_primary_10_3389_fenrg_2022_985146 crossref_primary_10_1016_j_icheatmasstransfer_2021_105633 crossref_primary_10_2139_ssrn_4174856 crossref_primary_10_1142_S0217979224501972 crossref_primary_10_1080_02286203_2024_2338581 crossref_primary_10_1080_17455030_2021_2017072 crossref_primary_10_1007_s13204_019_01067_5 crossref_primary_10_1080_02286203_2022_2033499 crossref_primary_10_1016_j_icheatmasstransfer_2017_11_001 crossref_primary_10_1038_s41598_023_37197_8 crossref_primary_10_1016_j_csite_2024_104427 crossref_primary_10_1016_j_triboint_2023_108757 crossref_primary_10_1016_j_rinp_2017_10_021 crossref_primary_10_1016_j_asej_2023_102282 crossref_primary_10_1142_S0217979223500923 crossref_primary_10_1080_01430750_2022_2031292 crossref_primary_10_1016_j_padiff_2021_100162 crossref_primary_10_46481_jnsps_2023_1435 crossref_primary_10_1007_s40819_021_01144_w crossref_primary_10_1002_htj_22030 crossref_primary_10_1080_17455030_2023_2226226 crossref_primary_10_1016_j_icheatmasstransfer_2021_105696 crossref_primary_10_1002_zamm_202100364 crossref_primary_10_1016_j_rinp_2017_07_036 crossref_primary_10_1007_s13204_019_01173_4 crossref_primary_10_1002_zamm_202300037 crossref_primary_10_1080_01430750_2021_1995492 crossref_primary_10_1016_j_rinp_2017_07_030 crossref_primary_10_1080_10407790_2023_2233694 crossref_primary_10_1371_journal_pone_0180976 crossref_primary_10_1016_j_csite_2022_101893 crossref_primary_10_1007_s40314_024_02728_0 crossref_primary_10_1016_j_csite_2024_104961 crossref_primary_10_1016_j_icheatmasstransfer_2019_104431 crossref_primary_10_1016_j_csite_2023_103261 crossref_primary_10_3390_math8050854 crossref_primary_10_1007_s13204_019_01015_3 crossref_primary_10_1016_j_cjph_2021_10_021 crossref_primary_10_3389_fphy_2021_670930 crossref_primary_10_1166_jon_2023_1938 crossref_primary_10_1016_j_icheatmasstransfer_2021_105729 crossref_primary_10_2139_ssrn_4141978 crossref_primary_10_1002_htj_22412 crossref_primary_10_1016_j_thradv_2024_100021 crossref_primary_10_1002_htj_22139 crossref_primary_10_1140_epjp_s13360_021_01625_3 crossref_primary_10_1002_htj_22375 crossref_primary_10_1088_1402_4896_abb966 crossref_primary_10_1016_j_csite_2022_101882 crossref_primary_10_1016_j_rinp_2017_06_053 crossref_primary_10_1038_s41598_018_31777_9 crossref_primary_10_1007_s41939_024_00596_z crossref_primary_10_1140_epjp_s13360_021_01294_2 crossref_primary_10_1016_j_rinp_2017_07_014 crossref_primary_10_1016_j_cmpb_2019_105262 crossref_primary_10_1038_s41598_021_01463_4 crossref_primary_10_1016_j_ijhydene_2017_07_116 crossref_primary_10_1515_ijcre_2018_0045 crossref_primary_10_1002_htj_22428 crossref_primary_10_1002_htj_23117 crossref_primary_10_1016_j_rinp_2017_11_021 crossref_primary_10_1002_htj_22024 crossref_primary_10_1016_j_rinp_2017_08_051 crossref_primary_10_1177_09544089211058093 crossref_primary_10_1016_j_aej_2022_06_014 crossref_primary_10_1016_j_icheatmasstransfer_2022_106431 crossref_primary_10_1016_j_asej_2021_101685 crossref_primary_10_1016_j_csite_2024_105463 crossref_primary_10_1016_j_jmmm_2023_170383 crossref_primary_10_1016_j_icheatmasstransfer_2021_105664 crossref_primary_10_1140_epjp_s13360_024_04913_w crossref_primary_10_3389_fphy_2020_616790 crossref_primary_10_1016_j_aej_2022_01_043 crossref_primary_10_1007_s00339_019_2686_6 crossref_primary_10_1016_j_ctta_2022_100039 crossref_primary_10_1080_00319104_2017_1367791 crossref_primary_10_1088_1402_4896_ac2379 crossref_primary_10_1007_s00542_023_05438_5 crossref_primary_10_1016_j_cjph_2021_12_014 crossref_primary_10_1016_j_csite_2024_105177 crossref_primary_10_1142_S0217984923410063 crossref_primary_10_1142_S1793292024501054 crossref_primary_10_1108_HFF_12_2018_0797 crossref_primary_10_1002_htj_22927 crossref_primary_10_1080_01430750_2024_2310629 crossref_primary_10_1080_17455030_2023_2176178 crossref_primary_10_3390_math8010031 crossref_primary_10_1080_10407790_2024_2342036 crossref_primary_10_1002_htj_22403 crossref_primary_10_1016_j_ijheatfluidflow_2024_109302 crossref_primary_10_1002_htj_22365 crossref_primary_10_1016_j_physa_2021_126398 crossref_primary_10_1016_j_icheatmasstransfer_2020_104674 crossref_primary_10_1080_17455030_2021_2011985 |
Cites_doi | 10.1016/j.ijheatmasstransfer.2014.06.052 10.1063/1.4964684 10.1039/C0SM00251H 10.1016/j.rinp.2016.11.026 10.1016/j.ijheatmasstransfer.2017.05.082 10.1016/j.ijheatmasstransfer.2013.05.040 10.1016/j.aej.2016.02.007 10.1016/j.molliq.2016.09.028 10.1016/j.jtice.2013.04.006 10.1016/j.molliq.2016.05.051 10.1016/j.molliq.2016.06.047 10.1016/j.molliq.2016.05.005 10.1016/j.jmmm.2016.05.051 10.1016/j.molliq.2016.10.069 10.1016/j.molliq.2016.08.005 10.1016/j.ijheatmasstransfer.2016.06.090 10.1016/j.jtice.2015.04.018 10.1016/j.taml.2015.11.005 10.1016/j.colsurfa.2017.01.007 10.1016/j.jnnms.2016.02.003 10.1016/j.molliq.2016.04.032 10.1007/s00396-017-4089-6 |
ContentType | Journal Article |
Copyright | 2017 |
Copyright_xml | – notice: 2017 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rinp.2017.05.022 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2211-3797 |
EndPage | 1827 |
ExternalDocumentID | oai_doaj_org_article_94be8fee24f946acafcba42804e723b5 10_1016_j_rinp_2017_05_022 S2211379717307416 |
GroupedDBID | --K 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M48 M~E NCXOZ O-L O9- OK1 RIG ROL SES SSZ XH2 AAFWJ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPKN AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c410t-5a52fee4bd8403c358516fa1fa311b150ce9c9f5f76508c197b9e83f2f36f5123 |
IEDL.DBID | M48 |
ISSN | 2211-3797 |
IngestDate | Wed Aug 27 01:29:12 EDT 2025 Thu Apr 24 23:03:02 EDT 2025 Tue Jul 01 01:33:34 EDT 2025 Wed May 17 00:08:02 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | MHD Cross fluid model Runga-Kutta-Fehlberg method Heat transfer |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-5a52fee4bd8403c358516fa1fa311b150ce9c9f5f76508c197b9e83f2f36f5123 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211379717307416 |
PageCount | 4 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_94be8fee24f946acafcba42804e723b5 crossref_primary_10_1016_j_rinp_2017_05_022 crossref_citationtrail_10_1016_j_rinp_2017_05_022 elsevier_sciencedirect_doi_10_1016_j_rinp_2017_05_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017 2017-00-00 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | Results in physics |
PublicationYear | 2017 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Reyes, Alvarez, Vicente (b0060) 2011; 7 Hayat, Khan, Farooq, Yasmeen, Alsaedi (b0110) 2016; 224 Hayat, Khan, Waqas, Alsaedi (b0125) 2017; 518 Babu, Sandeep (b0025) 2016; 222 Mahanthesh, Gireesha, Gorla (b0085) 2016; 35 Lia, Zheng, Liu (b0030) 2016; 221 Hayat, Tamoor, Khan, Alsaedi (b0115) 2016; 6 Ramesh, Gireesha, Hayat, Alsaedi (b0105) 2016; 55 Turkyilmazoglu (b0040) 2014; 78 Hayat, Khan, Farooq, Yasmeen, Alsaedi (b0045) 2016; 220 Selimefendigil, Oztop (b0075) 2015; 56 T. Hayat, S. Qayyum, M. Waqas and A. Alsaedi, Thermally radiative stagnation point flow of Maxwell nanofluid due to unsteady convectively heated stretched surface, J. Mol. Liq. (In Press). Hayat, Khan, Alsaedi, Khan (b0100) 2017; 295 Yasmeen, Hayat, Khan, Imtiaz, Alsaedi (b0050) 2016; 223 Eid (b0095) 2016; 220 Hayat, Waqas, Khan, Alsaedi (b0090) 2016; 102 Nandy, Mahapatra (b0065) 2013; 64 Parekh, Lee (b0055) 2011; 1447 Nadeem, Haq, Khan (b0070) 2014; 45 Khan, Hayat, Khan, Alsaedi (b0120) 2017; 113 Chen, Zheng, Shen, Chen (b0035) 2015; 5 Mahanthesh, Gireesha, Gorla, Abbasi, Shehzad (b0020) 2016; 417 L. J. Crane, Flow past a stretching plate, J. Appl. Math. Phy. Makinde, Animasaun (b0080) 2016; 221 Hayat, Khan, Imtiaz, Alseadi, Waqas (b0015) 2016; 28 Hayat (10.1016/j.rinp.2017.05.022_b0115) 2016; 6 Nadeem (10.1016/j.rinp.2017.05.022_b0070) 2014; 45 Babu (10.1016/j.rinp.2017.05.022_b0025) 2016; 222 Eid (10.1016/j.rinp.2017.05.022_b0095) 2016; 220 Lia (10.1016/j.rinp.2017.05.022_b0030) 2016; 221 10.1016/j.rinp.2017.05.022_b0010 Hayat (10.1016/j.rinp.2017.05.022_b0125) 2017; 518 10.1016/j.rinp.2017.05.022_b0005 Parekh (10.1016/j.rinp.2017.05.022_b0055) 2011; 1447 Makinde (10.1016/j.rinp.2017.05.022_b0080) 2016; 221 Hayat (10.1016/j.rinp.2017.05.022_b0110) 2016; 224 Hayat (10.1016/j.rinp.2017.05.022_b0100) 2017; 295 Mahanthesh (10.1016/j.rinp.2017.05.022_b0020) 2016; 417 Yasmeen (10.1016/j.rinp.2017.05.022_b0050) 2016; 223 Chen (10.1016/j.rinp.2017.05.022_b0035) 2015; 5 Ramesh (10.1016/j.rinp.2017.05.022_b0105) 2016; 55 Khan (10.1016/j.rinp.2017.05.022_b0120) 2017; 113 Hayat (10.1016/j.rinp.2017.05.022_b0045) 2016; 220 Selimefendigil (10.1016/j.rinp.2017.05.022_b0075) 2015; 56 Hayat (10.1016/j.rinp.2017.05.022_b0090) 2016; 102 Hayat (10.1016/j.rinp.2017.05.022_b0015) 2016; 28 Nandy (10.1016/j.rinp.2017.05.022_b0065) 2013; 64 Mahanthesh (10.1016/j.rinp.2017.05.022_b0085) 2016; 35 Turkyilmazoglu (10.1016/j.rinp.2017.05.022_b0040) 2014; 78 Reyes (10.1016/j.rinp.2017.05.022_b0060) 2011; 7 |
References_xml | – volume: 35 start-page: 178 year: 2016 end-page: 198 ident: b0085 article-title: Nonlinear radiative heat transfer in MHD three-dimensional flow of water based nanofluid over a non-linearly stretching sheet with convective boundary condition publication-title: J Nigerian Math Soc – volume: 28 start-page: 102003 year: 2016 ident: b0015 article-title: Similarity transformation approach for ferromagnetic mixed convection flow in the presence of chemically reactive magnetic dipole publication-title: AIP Phys Fluid – volume: 220 start-page: 49 year: 2016 end-page: 55 ident: b0045 article-title: Stagnation point flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions publication-title: J Mol Liq – volume: 295 start-page: 967 year: 2017 end-page: 975 ident: b0100 article-title: Squeezing flow of second grade liquid subject to non-Fourier heat flux and heat generation/absorption publication-title: Colloid Poly Sci – volume: 518 start-page: 263 year: 2017 end-page: 272 ident: b0125 article-title: Mathematical modeling of non-Newtonian fluid with chemical aspects: A new formulation and results by numerical technique publication-title: Colloid Surf A – volume: 221 start-page: 19 year: 2016 end-page: 25 ident: b0030 article-title: MHD viscoelastic flow and heat transfer over a vertical stretching sheet with Cattaneo-Christov heat flux effects publication-title: J Mol Liq – volume: 7 start-page: 880 year: 2011 end-page: 883 ident: b0060 article-title: Controlling friction using magnetic nanofluids publication-title: Soft Matter – reference: L. J. Crane, Flow past a stretching plate, J. Appl. Math. Phy. – volume: 417 start-page: 189 year: 2016 end-page: 196 ident: b0020 article-title: Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary publication-title: J Magn Magn Mater – volume: 45 start-page: 121 year: 2014 end-page: 126 ident: b0070 article-title: Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles publication-title: J Taiwan Inst Chem Eng – reference: T. Hayat, S. Qayyum, M. Waqas and A. Alsaedi, Thermally radiative stagnation point flow of Maxwell nanofluid due to unsteady convectively heated stretched surface, J. Mol. Liq. (In Press). – volume: 222 start-page: 1003 year: 2016 end-page: 1009 ident: b0025 article-title: 3D MHD slip flow of a nanofluid over a slendering stretching sheet with thermophoresis and Brownian motion effects publication-title: J Mol Liq – volume: 6 start-page: 1031 year: 2016 end-page: 1035 ident: b0115 article-title: Numerical simulation for nonlinear radiative flow by convective cylinder publication-title: Result Phys – volume: 1447 start-page: 385 year: 2011 end-page: 386 ident: b0055 article-title: Experimental investigation of thermal conductivity of magnetic nanofluids publication-title: AIP Conf Proc – volume: 220 start-page: 718 year: 2016 end-page: 725 ident: b0095 article-title: Chemical reaction effect onMHD boundary-layer flow of two-phase nanofluid model over an exponentially stretching sheet with a heat generation publication-title: J Mol Liq – volume: 221 start-page: 733 year: 2016 end-page: 743 ident: b0080 article-title: Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution publication-title: J Mol Liq – volume: 223 start-page: 1000 year: 2016 end-page: 1005 ident: b0050 article-title: Ferrofluid flow by a stretched surface in the presence of magnetic dipole and homogeneous-heterogeneous reactions publication-title: J Mol Liq – volume: 56 start-page: 42 year: 2015 end-page: 56 ident: b0075 article-title: Natural convection and entropy generation of nanofluid filled cavity having different shaped obstacles under the influence of magnetic field and internal heat generation publication-title: J Taiwan Inst Chem Eng – volume: 78 start-page: 150 year: 2014 end-page: 155 ident: b0040 article-title: Three dimensional MHD flow and heat transfer over a stretching/shrinking surface in a viscoelastic fluid with various physical effects publication-title: Int J Heat Mass Transf – volume: 55 start-page: 857 year: 2016 end-page: 865 ident: b0105 article-title: Stagnation point flow of Maxwell fluid towards a permeable surface in the presence of nanoparticles publication-title: Alex Eng J – volume: 64 start-page: 1091 year: 2013 end-page: 1100 ident: b0065 article-title: Effects of slip and heat generation/absorption on MHD stagnation flow of nanofluid past a stretching/shrinking surface with convective boundary conditions publication-title: Int J Heat Mass Transfer – volume: 113 start-page: 310 year: 2017 end-page: 317 ident: b0120 article-title: A modified homogeneous-heterogeneous reactions for MHD stagnation flow with viscous dissipation and Joule heating publication-title: Int. J. Heat Mass Transf. – volume: 224 start-page: 786 year: 2016 end-page: 791 ident: b0110 article-title: Water-carbon nanofluid flow with variable heat flux by a thin needle publication-title: J Mol Liq – volume: 5 start-page: 262 year: 2015 end-page: 266 ident: b0035 article-title: Time–space dependent fractional boundary layer flow of Maxwell fluid over an unsteady stretching surface publication-title: Theor Appl Mech Lett – volume: 102 start-page: 1123 year: 2016 end-page: 1129 ident: b0090 article-title: Analysis of thixotropic nanomaterial in a doubly stratified medium considering magnetic field effects publication-title: Int J Heat Mass Transfer – volume: 78 start-page: 150 year: 2014 ident: 10.1016/j.rinp.2017.05.022_b0040 article-title: Three dimensional MHD flow and heat transfer over a stretching/shrinking surface in a viscoelastic fluid with various physical effects publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2014.06.052 – volume: 28 start-page: 102003 year: 2016 ident: 10.1016/j.rinp.2017.05.022_b0015 article-title: Similarity transformation approach for ferromagnetic mixed convection flow in the presence of chemically reactive magnetic dipole publication-title: AIP Phys Fluid doi: 10.1063/1.4964684 – volume: 7 start-page: 880 year: 2011 ident: 10.1016/j.rinp.2017.05.022_b0060 article-title: Controlling friction using magnetic nanofluids publication-title: Soft Matter doi: 10.1039/C0SM00251H – volume: 1447 start-page: 385 year: 2011 ident: 10.1016/j.rinp.2017.05.022_b0055 article-title: Experimental investigation of thermal conductivity of magnetic nanofluids publication-title: AIP Conf Proc – volume: 6 start-page: 1031 year: 2016 ident: 10.1016/j.rinp.2017.05.022_b0115 article-title: Numerical simulation for nonlinear radiative flow by convective cylinder publication-title: Result Phys doi: 10.1016/j.rinp.2016.11.026 – volume: 113 start-page: 310 year: 2017 ident: 10.1016/j.rinp.2017.05.022_b0120 article-title: A modified homogeneous-heterogeneous reactions for MHD stagnation flow with viscous dissipation and Joule heating publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.05.082 – volume: 64 start-page: 1091 year: 2013 ident: 10.1016/j.rinp.2017.05.022_b0065 article-title: Effects of slip and heat generation/absorption on MHD stagnation flow of nanofluid past a stretching/shrinking surface with convective boundary conditions publication-title: Int J Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2013.05.040 – volume: 55 start-page: 857 year: 2016 ident: 10.1016/j.rinp.2017.05.022_b0105 article-title: Stagnation point flow of Maxwell fluid towards a permeable surface in the presence of nanoparticles publication-title: Alex Eng J doi: 10.1016/j.aej.2016.02.007 – volume: 223 start-page: 1000 year: 2016 ident: 10.1016/j.rinp.2017.05.022_b0050 article-title: Ferrofluid flow by a stretched surface in the presence of magnetic dipole and homogeneous-heterogeneous reactions publication-title: J Mol Liq doi: 10.1016/j.molliq.2016.09.028 – volume: 45 start-page: 121 year: 2014 ident: 10.1016/j.rinp.2017.05.022_b0070 article-title: Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles publication-title: J Taiwan Inst Chem Eng doi: 10.1016/j.jtice.2013.04.006 – volume: 221 start-page: 19 year: 2016 ident: 10.1016/j.rinp.2017.05.022_b0030 article-title: MHD viscoelastic flow and heat transfer over a vertical stretching sheet with Cattaneo-Christov heat flux effects publication-title: J Mol Liq doi: 10.1016/j.molliq.2016.05.051 – volume: 221 start-page: 733 year: 2016 ident: 10.1016/j.rinp.2017.05.022_b0080 article-title: Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution publication-title: J Mol Liq doi: 10.1016/j.molliq.2016.06.047 – volume: 220 start-page: 718 year: 2016 ident: 10.1016/j.rinp.2017.05.022_b0095 article-title: Chemical reaction effect onMHD boundary-layer flow of two-phase nanofluid model over an exponentially stretching sheet with a heat generation publication-title: J Mol Liq doi: 10.1016/j.molliq.2016.05.005 – volume: 417 start-page: 189 year: 2016 ident: 10.1016/j.rinp.2017.05.022_b0020 article-title: Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2016.05.051 – volume: 224 start-page: 786 year: 2016 ident: 10.1016/j.rinp.2017.05.022_b0110 article-title: Water-carbon nanofluid flow with variable heat flux by a thin needle publication-title: J Mol Liq doi: 10.1016/j.molliq.2016.10.069 – ident: 10.1016/j.rinp.2017.05.022_b0010 – volume: 222 start-page: 1003 year: 2016 ident: 10.1016/j.rinp.2017.05.022_b0025 article-title: 3D MHD slip flow of a nanofluid over a slendering stretching sheet with thermophoresis and Brownian motion effects publication-title: J Mol Liq doi: 10.1016/j.molliq.2016.08.005 – volume: 102 start-page: 1123 year: 2016 ident: 10.1016/j.rinp.2017.05.022_b0090 article-title: Analysis of thixotropic nanomaterial in a doubly stratified medium considering magnetic field effects publication-title: Int J Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2016.06.090 – ident: 10.1016/j.rinp.2017.05.022_b0005 – volume: 56 start-page: 42 year: 2015 ident: 10.1016/j.rinp.2017.05.022_b0075 article-title: Natural convection and entropy generation of nanofluid filled cavity having different shaped obstacles under the influence of magnetic field and internal heat generation publication-title: J Taiwan Inst Chem Eng doi: 10.1016/j.jtice.2015.04.018 – volume: 5 start-page: 262 year: 2015 ident: 10.1016/j.rinp.2017.05.022_b0035 article-title: Time–space dependent fractional boundary layer flow of Maxwell fluid over an unsteady stretching surface publication-title: Theor Appl Mech Lett doi: 10.1016/j.taml.2015.11.005 – volume: 518 start-page: 263 year: 2017 ident: 10.1016/j.rinp.2017.05.022_b0125 article-title: Mathematical modeling of non-Newtonian fluid with chemical aspects: A new formulation and results by numerical technique publication-title: Colloid Surf A doi: 10.1016/j.colsurfa.2017.01.007 – volume: 35 start-page: 178 year: 2016 ident: 10.1016/j.rinp.2017.05.022_b0085 article-title: Nonlinear radiative heat transfer in MHD three-dimensional flow of water based nanofluid over a non-linearly stretching sheet with convective boundary condition publication-title: J Nigerian Math Soc doi: 10.1016/j.jnnms.2016.02.003 – volume: 220 start-page: 49 year: 2016 ident: 10.1016/j.rinp.2017.05.022_b0045 article-title: Stagnation point flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions publication-title: J Mol Liq doi: 10.1016/j.molliq.2016.04.032 – volume: 295 start-page: 967 year: 2017 ident: 10.1016/j.rinp.2017.05.022_b0100 article-title: Squeezing flow of second grade liquid subject to non-Fourier heat flux and heat generation/absorption publication-title: Colloid Poly Sci doi: 10.1007/s00396-017-4089-6 |
SSID | ssj0001645511 |
Score | 2.4051738 |
Snippet | The present investigation studies heat transfer in MHD stagnation point flow of Cross fluid over a stretched surface. A Cross fluid is a kind of generalized... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1824 |
SubjectTerms | Cross fluid model Heat transfer MHD Runga-Kutta-Fehlberg method |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOilNGlLtk2CDr0VU-tlxcc8WQLJqYHchJ7FZeMNay_5-52RvGFzSS452ujFzKD5Rhp9Q8hPa4N2nqcqhSZCgCJV1fpWVckyHSVn0Wp8KHxz28zv5PW9ut8q9YU5YYUeuAjudytdPEkxcpla2Vhvk3cWMHMto-bCZfZS8HlbwVQ-XWkkQAGMtjhHnj7d6unFTEnuWnU9klWyQtvJ-QuvlMn7t5zTlsO5-kw-TUiRnpYV7pEPsd8nuzlj0w9fyHC7LpctCzp0D1MRLrpMFHdXOmY8Gle06-nN_IICBvxbzv3o47LrR5oWyydsfY7rga91F2iuikPHnEg7UEvxHQkqNdBhvUrWx6_k7uryz_m8miooVF6yeqyUVRxkJ12AOE54gXeADaghWcGYAyzoI2gmqaQRqHnWatfGE5F4Ek0CKCC-kZ1-2ccDQqPQtfMBAJANAMGEs75mPgYwAhVgW5gRtpGg8RO9OFa5WJhNHtk_g1I3KHVTKwNSn5Ffz30eC7nGq63PUDHPLZEYO_8AczGTuZi3zGVG1EatZsIYBTvAUN0rk39_j8l_kI84ZDnBOSQ742odjwDTjO44m-9_loP2Pw priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhUOglNH2QbZKiQ2_FrPWy18dkk7AUkksb2JuQZCk4bOzF9tK_3xlZmyaXHHq0GNnyzDD6RpoHId-NqUvreMhCXXhwUKTKKlepLBhWesmZNyUmCt_eFat7-XOt1gdkuc-FwbDKZPsnmx6tdRqZJ27Ot00z_8XBdxFlhdfIEVeAHRZyEZP41pf_zlkKCaAA_S6kz3BCyp2Zwrz6psWylWwq4Mn5q_0plvF_sU292HpuPpCjhBnpxbSsY3Lg24_kXYzddMMnMtztpmuXDR2ap9SOi3aBop2lY0SmvqdNS29XVxTQ4MN0Aki3XdOONGy6P0i9xPXA066paeyPQ8cYUjtQQzGjBMVb02HXB-P8Z3J_c_17ucpSL4XMSZaPmTKKB--lrcGjE07gbWABAglGMGYBFToPMgoqlAjZHKtKW_mFCDyIIgAoEF_IYdu1_oRQL8rcuhqgkKkBjAlrXM5AXKAOqgYDMSNsz0HtUqFx7Hex0fuIskeNXNfIdZ0rDVyfkR_Pc7ZTmY03qS9RMM-UWCI7DnT9g046oitp_QJ-mctQycI4E5w14Gzl0pdcWDUjai9W_Urj4FXNGx__-p_zTsl7fJqOb87I4djv_DkAmtF-ixr7F4xu9XY priority: 102 providerName: Elsevier |
Title | Numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface |
URI | https://dx.doi.org/10.1016/j.rinp.2017.05.022 https://doaj.org/article/94be8fee24f946acafcba42804e723b5 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqVkhcEE-xPFY-cENBiR9xc0CoLVQL1faAWLE3y88qaElKkhXw75lxsqVIVSUukRw5jj1je74Zj2cIeWWMV9axmEVfBlBQhMwqV8ksmkIFwYpgFF4UXp6Xi5X4tJbrPbJLdzQRsL9RtcN8Uqtu8-bXj9_vYMG__eur1dUNxp4sxiicDLbkA5BMClM5LCe4n2wupQCAgDoYYxi9T1VqukdzczP_yKoU0v-ayLomhk7vk3sTfqRHI8MfkL3QPCR3kh-n6x-R_nw7HsFsaF9_n1Jz0TZS3HPpkFBq6Gjd0OXiPQVkeDFaA-llWzcDjZv2J9Y-wf5AaVt7mnLl0CG51_bUULxdgqz2tN920bjwmKxOP3w5WWRTXoXMiSIfMmkkiyEI60G7447jyWAJzImGF4UFhOgC8CvKqBC-uaJStgqHPLLIywgAgT8h-03bhKeEBq5y6zzAIuMBmHFrXF644GFqSA-bxYwUOwpqNwUdx9wXG73zLvumkeoaqa5zqYHqM_L66pvLMeTGrbWPkTFXNTFcdnrRdhd6Wn26EjYcwpCZiJUojTPRWQOKVy6CYtzKGZE7tuoJeYyIApqqb_n5s__q6nNyF0ujAecF2R-6bXgJkGawc3JwdPb569k8mQTg-XF9PE9z9w9vHvjb |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoVVUuqE91KW196K2KNo7thBzLtmhp2b0UpL1ZtmOjoG2ySrLi7zPjeClcOPSYxJM4M6PxN_Y8CPmqdVUYm_nEV7kDB0XIpLSlTLxmhRMZc7rAROHFMp9fiV8rudojs10uDIZVRts_2vRgreOdaeTmdFPX0z8Z-C68KPEYOeCKZ-Q5oIEcVft8dfpvoyUXgArQ8UKCBCli8swY59XVDdatZGMFzyx7tECFOv4P1qkHa8_ZK3IYQSP9Ps7rNdlzzRvyIgRv2v4t6Zfb8dxlTfv6b-zHRVtP0dDSIUBT19G6oYv5Dwpw8HrcAqSbtm4G6tftLY6e4XzgaltXNDTIoUOIqe2ppphSgvKtaL_tvLbuHbk6-3k5myexmUJiBUuHRGqZeeeEqcCl45bjcWAOEvGaM2YAFloHQvLSF4jZLCsLU7oT7jPPcw-ogL8n-03buA-EOl6kxlaAhXQFaIwbbVMG8gJ9kBVYiAlhOw4qGyuNY8OLtdqFlN0o5LpCrqtUKuD6hHy7p9mMdTaeHH2KgrkfiTWyw422u1ZRSVQpjDuBX86EL0WurfbWaPC2UuGKjBs5IXInVvVI5eBV9RMfP_pPui_k5fxycaEuzpe_P5IDfDLu5RyT_aHbuk-AbgbzOWjvHf0W-J0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+heat+transfer+in+MHD+stagnation+point+flow+of+Cross+fluid+model+towards+a+stretched+surface&rft.jtitle=Results+in+physics&rft.au=Hayat%2C+T.&rft.au=Khan%2C+M.+Ijaz&rft.au=Tamoor%2C+M.&rft.au=Waqas%2C+M.&rft.date=2017&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=7&rft.spage=1824&rft.epage=1827&rft_id=info:doi/10.1016%2Fj.rinp.2017.05.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rinp_2017_05_022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon |