Unexpected versatile electrical transport behaviors of ferromagnetic nickel films
Perpendicular magnetic anisotropy (PMA) of magnets is paramount for electrically controlled spintronics due to their intrinsic potentials for higher memory density, scalability, thermal stability and endurance, surpassing an in-plane magnetic anisotropy (IMA). Nickel film is a long-lived fundamental...
Saved in:
Published in | Journal of physics. Condensed matter Vol. 36; no. 23; pp. 235801 - 235808 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
12.06.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0953-8984 1361-648X 1361-648X |
DOI | 10.1088/1361-648X/ad2e25 |
Cover
Loading…
Abstract | Perpendicular magnetic anisotropy (PMA) of magnets is paramount for electrically controlled spintronics due to their intrinsic potentials for higher memory density, scalability, thermal stability and endurance, surpassing an in-plane magnetic anisotropy (IMA). Nickel film is a long-lived fundamental element ferromagnet, yet its electrical transport behavior associated with magnetism has not been comprehensively studied, hindering corresponding spintronic applications exploiting nickel-based compounds. Here, we systematically investigate the highly versatile magnetism and corresponding transport behavior of nickel films. As the thickness reduces within the general thickness regime of a magnet layer for a memory device, the hardness of nickel films’ ferromagnetic loop of anomalous Hall effect increases and then decreases, reflecting the magnetic transitions from IMA to PMA and back to IMA. Additionally, the square ferromagnetic loop changes from a hard to a soft one at rising temperatures, indicating a shift from PMA to IMA. Furthermore, we observe a butterfly magnetoresistance resulting from the anisotropic magnetoresistance effect, which evolves in conjunction with the thickness and temperature-dependent magnetic transformations as a complementary support. Our findings unveil the rich magnetic dynamics and most importantly settle down the most useful guiding information for current-driven spintronic applications based on nickel film: The hysteresis loop is squarest for the ∼8 nm-thick nickel film, of highest hardness with R xy r / R xy s ∼ 1 and minimum H s − H c , up to 125 K; otherwise, extra care should be taken for a different thickness or at a higher temperature. |
---|---|
AbstractList | Perpendicular magnetic anisotropy (PMA) of magnets is paramount for electrically controlled spintronics due to their intrinsic potentials for higher memory density, scalability, thermal stability and endurance, surpassing an in-plane magnetic anisotropy (IMA). Nickel film is a long-lived fundamental element ferromagnet, yet its electrical transport behavior associated with magnetism has not been comprehensively studied, hindering corresponding spintronic applications exploiting nickel-based compounds. Here, we systematically investigate the highly versatile magnetism and corresponding transport behavior of nickel films. As the thickness reduces within the general thickness regime of a magnet layer for a memory device, the hardness of nickel films' ferromagnetic loop of anomalous Hall effect increases and then decreases, reflecting the magnetic transitions from IMA to PMA and back to IMA. Additionally, the square ferromagnetic loop changes from a hard to a soft one at rising temperatures, indicating a shift from PMA to IMA. Furthermore, we observe a butterfly magnetoresistance resulting from the anisotropic magnetoresistance effect, which evolves in conjunction with the thickness and temperature-dependent magnetic transformations as a complementary support. Our findings unveil the rich magnetic dynamics and most importantly settle down the most useful guiding information for current-driven spintronic applications based on nickel film: The hysteresis loop is squarest for the ∼8 nm-thick nickel film, of highest hardness withRxyr/Rxys∼ 1 and minimumHs-Hc, up to 125 K; otherwise, extra care should be taken for a different thickness or at a higher temperature.Perpendicular magnetic anisotropy (PMA) of magnets is paramount for electrically controlled spintronics due to their intrinsic potentials for higher memory density, scalability, thermal stability and endurance, surpassing an in-plane magnetic anisotropy (IMA). Nickel film is a long-lived fundamental element ferromagnet, yet its electrical transport behavior associated with magnetism has not been comprehensively studied, hindering corresponding spintronic applications exploiting nickel-based compounds. Here, we systematically investigate the highly versatile magnetism and corresponding transport behavior of nickel films. As the thickness reduces within the general thickness regime of a magnet layer for a memory device, the hardness of nickel films' ferromagnetic loop of anomalous Hall effect increases and then decreases, reflecting the magnetic transitions from IMA to PMA and back to IMA. Additionally, the square ferromagnetic loop changes from a hard to a soft one at rising temperatures, indicating a shift from PMA to IMA. Furthermore, we observe a butterfly magnetoresistance resulting from the anisotropic magnetoresistance effect, which evolves in conjunction with the thickness and temperature-dependent magnetic transformations as a complementary support. Our findings unveil the rich magnetic dynamics and most importantly settle down the most useful guiding information for current-driven spintronic applications based on nickel film: The hysteresis loop is squarest for the ∼8 nm-thick nickel film, of highest hardness withRxyr/Rxys∼ 1 and minimumHs-Hc, up to 125 K; otherwise, extra care should be taken for a different thickness or at a higher temperature. Perpendicular magnetic anisotropy (PMA) of magnets is paramount for electrically controlled spintronics due to their intrinsic potentials for higher memory density, scalability, thermal stability and endurance, surpassing an in-plane magnetic anisotropy (IMA). Nickel film is a long-lived fundamental element ferromagnet, yet its electrical transport behavior associated with magnetism has not been comprehensively studied, hindering corresponding spintronic applications exploiting nickel-based compounds. Here, we systematically investigate the highly versatile magnetism and corresponding transport behavior of nickel films. As the thickness reduces within the general thickness regime of a magnet layer for a memory device, the hardness of nickel films' ferromagnetic loop of anomalous Hall effect increases and then decreases, reflecting the magnetic transitions from IMA to PMA and back to IMA. Additionally, the square ferromagnetic loop changes from a hard to a soft one at rising temperatures, indicating a shift from PMA to IMA. Furthermore, we observe a butterfly magnetoresistance resulting from the anisotropic magnetoresistance effect, which evolves in conjunction with the thickness and temperature-dependent magnetic transformations as a complementary support. Our findings unveil the rich magnetic dynamics and most importantly settle down the most useful guiding information for current-driven spintronic applications based on nickel film: The hysteresis loop is squarest for the ∼8 nm-thick nickel film, of highest hardness with / ∼ 1 and minimum - , up to 125 K; otherwise, extra care should be taken for a different thickness or at a higher temperature. Perpendicular magnetic anisotropy (PMA) of magnets is paramount for electrically controlled spintronics due to their intrinsic potentials for higher memory density, scalability, thermal stability and endurance, surpassing an in-plane magnetic anisotropy (IMA). Nickel film is a long-lived fundamental element ferromagnet, yet its electrical transport behavior associated with magnetism has not been comprehensively studied, hindering corresponding spintronic applications exploiting nickel-based compounds. Here, we systematically investigate the highly versatile magnetism and corresponding transport behavior of nickel films. As the thickness reduces within the general thickness regime of a magnet layer for a memory device, the hardness of nickel films’ ferromagnetic loop of anomalous Hall effect increases and then decreases, reflecting the magnetic transitions from IMA to PMA and back to IMA. Additionally, the square ferromagnetic loop changes from a hard to a soft one at rising temperatures, indicating a shift from PMA to IMA. Furthermore, we observe a butterfly magnetoresistance resulting from the anisotropic magnetoresistance effect, which evolves in conjunction with the thickness and temperature-dependent magnetic transformations as a complementary support. Our findings unveil the rich magnetic dynamics and most importantly settle down the most useful guiding information for current-driven spintronic applications based on nickel film: The hysteresis loop is squarest for the ∼8 nm-thick nickel film, of highest hardness with R xy r / R xy s ∼ 1 and minimum H s − H c , up to 125 K; otherwise, extra care should be taken for a different thickness or at a higher temperature. |
Author | Zhang, Kai-Xuan Chen, Zuxin Xu, Hanshu Liu, Meizhuang Wang, Xiangqi Keum, Jihoon |
Author_xml | – sequence: 1 givenname: Kai-Xuan orcidid: 0000-0002-9958-6018 surname: Zhang fullname: Zhang, Kai-Xuan organization: Seoul National University Center for Quantum Materials, Department of Physics and Astronomy, Seoul 08826, Republic of Korea – sequence: 2 givenname: Hanshu orcidid: 0000-0002-6387-101X surname: Xu fullname: Xu, Hanshu organization: School of Biomedical Engineering, Anhui Medical University Department of Applied Physics, Hefei 230032, People’s Republic of China – sequence: 3 givenname: Jihoon surname: Keum fullname: Keum, Jihoon organization: Seoul National University Center for Quantum Materials, Department of Physics and Astronomy, Seoul 08826, Republic of Korea – sequence: 4 givenname: Xiangqi surname: Wang fullname: Wang, Xiangqi organization: Jihua Laboratory Testing Center, Jihua Laboratory , Foshan 528000, People’s Republic of China – sequence: 5 givenname: Meizhuang surname: Liu fullname: Liu, Meizhuang organization: School of Semiconductor Science and Technology, South China Normal University , Foshan 528225, People’s Republic of China – sequence: 6 givenname: Zuxin surname: Chen fullname: Chen, Zuxin organization: Guangdong Provincial Key Laboratory of Chip and Integration Technology , Guangzhou 510631, People’s Republic of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38417165$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kEtLxTAQRoMoen3sXUl3urCaNEmbLkV8gSCCgruQphONpklNekX_vblcdSFiGAjMnG9gziZa9cEDQrsEHxEsxDGhNSlrJh6OVV9BxVfQ7Ke1ima45bQUrWAbaDOlZ4wxE5Stow0qGGlIzWfo9t7D-wh6gr54g5jUZB0U4HInWq1cMUXl0xjiVHTwpN5siKkIpjAQYxjUo4fJ6sJb_QKuMNYNaRutGeUS7Hz9W-j-_Ozu9LK8vrm4Oj25LjUjeCo5Zwx61fOmb0x-ijdMcK6pgY7kYxpFRNc1TcsqbJhq86Bre1PRWrUNhY5uoYPl3jGG1zmkSQ42aXBOeQjzJKuWUlbXmPKM7n2h826AXo7RDip-yG8NGaiXgI4hpQhGajtlFcHn862TBMuFb7mQKxdy5dJ3DuJfwe_d_0QOlxEbRvkc5tFnS__h-3_gepC0lhXNxQUmcuwN_QRKKp-d |
CODEN | JCOMEL |
CitedBy_id | crossref_primary_10_1088_2053_1591_ad6f71 crossref_primary_10_1088_1402_4896_ada4fb crossref_primary_10_1002_adma_202412037 crossref_primary_10_1021_acsnano_4c16450 crossref_primary_10_1021_acsaelm_4c00939 |
Cites_doi | 10.1126/science.1110549 10.1103/PhysRev.116.1441 10.1126/science.1218197 10.1002/adma.202302350 10.12693/APhysPolA.127.995 10.1103/PhysRevB.87.174411 10.1038/nmat2613 10.1002/adfm.202301731 10.1126/sciadv.aay8912 10.1126/science.1145799 10.1038/s41928-019-0273-7 10.1063/1.362144 10.1002/adma.202004110 10.1103/RevModPhys.87.1213 10.1002/adfm.202105992 10.1063/5.0012305 10.1038/nnano.2016.18 10.1016/0304-8853(96)00062-5 10.1103/PhysRevLett.109.166601 10.1103/PhysRevB.50.13467 10.1016/j.jmmm.2007.12.019 10.1103/RevModPhys.90.015005 10.1103/RevModPhys.57.287 10.1038/nnano.2016.84 10.1007/s12274-021-3987-6 10.1103/PhysRevLett.122.217203 10.1002/adma.202312824 10.1103/PhysRevLett.84.3149 10.1016/S0038-1098(73)80015-8 10.1103/PhysRevB.63.134432 10.1103/RevModPhys.89.025008 10.1038/nature10309 10.1103/PhysRevLett.106.117601 10.1038/s41563-022-01275-5 10.1103/PhysRevLett.109.096602 10.1103/PhysRevLett.26.192 10.1038/s41563-018-0236-9 10.1038/s41928-020-0461-5 10.1103/PhysRevB.54.9353 10.1103/RevModPhys.76.323 10.1038/s41586-022-04768-0 10.1103/PhysRevB.87.155151 10.1103/PhysRevLett.76.4250 |
ContentType | Journal Article |
Copyright | 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. 2024 IOP Publishing Ltd. |
Copyright_xml | – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. – notice: 2024 IOP Publishing Ltd. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1088/1361-648X/ad2e25 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1361-648X |
ExternalDocumentID | 38417165 10_1088_1361_648X_ad2e25 cmad2e25 |
Genre | Journal Article |
GrantInformation_xml | – fundername: The Pearl River Talent Recruitment Program grantid: 2019ZT08X639 – fundername: Samsung Science and Technology Foundation grantid: SSTF-BA2101-05 funderid: http://dx.doi.org/10.13039/501100014364 – fundername: Leading Researcher Program of the National Research Foundation of Korea grantid: 2020R1A3B2079375 – fundername: National Natural Science Foundation of China grantid: 62104703 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | --- -~X 1JI 4.4 53G 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABHWH ABLJU ABQJV ABVAM ACAFW ACGFS ACHIP ACNCT ADEQX AEFHF AEINN AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 EBS EDWGO EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE RIN RNS RO9 ROL RPA SY9 TN5 W28 WH7 XPP YQT ZMT ~02 AAYXX CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c410t-5544edad57d7ffffa574855c3feb1d2e7a18bb779420f4a9c3fb9df236a973eb3 |
IEDL.DBID | IOP |
ISSN | 0953-8984 1361-648X |
IngestDate | Fri Jul 11 13:05:50 EDT 2025 Thu Aug 28 04:41:03 EDT 2025 Wed Aug 27 16:27:34 EDT 2025 Thu Apr 24 23:10:51 EDT 2025 Wed Aug 27 01:32:45 EDT 2025 Tue Aug 20 22:16:36 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | ferromagnetic nickel thin film magnetic transition perpendicular magnetic anisotropy (PMA) butterfly magnetoresistance transport and spintronics |
Language | English |
License | This article is available under the terms of the IOP-Standard License. 2024 IOP Publishing Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-5544edad57d7ffffa574855c3feb1d2e7a18bb779420f4a9c3fb9df236a973eb3 |
Notes | JPCM-122835.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6387-101X 0000-0002-9958-6018 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1361-648X/ad2e25/pdf |
PMID | 38417165 |
PQID | 2933466035 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2933466035 crossref_primary_10_1088_1361_648X_ad2e25 pubmed_primary_38417165 iop_journals_10_1088_1361_648X_ad2e25 crossref_citationtrail_10_1088_1361_648X_ad2e25 |
PublicationCentury | 2000 |
PublicationDate | 2024-06-12 |
PublicationDateYYYYMMDD | 2024-06-12 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of physics. Condensed matter |
PublicationTitleAbbrev | JPhysCM |
PublicationTitleAlternate | J. Phys.: Condens. Matter |
PublicationYear | 2024 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Beaurepaire (cmad2e25bib29) 1996; 76 Miron (cmad2e25bib12) 2011; 476 Bochi (cmad2e25bib37) 1996; 79 Dieny (cmad2e25bib25) 2020; 3 Lee (cmad2e25bib35) 1985; 57 Tedrow (cmad2e25bib31) 1971; 26 Ralph (cmad2e25bib10) 2008; 320 Zhang (cmad2e25bib20) 2021; 31 Cui (cmad2e25bib27) 2023; 35 Kim (cmad2e25bib41) 2020; 128 Liu (cmad2e25bib14) 2012; 109 Johansen (cmad2e25bib18) 2019; 122 Parkin (cmad2e25bib9) 2008; 320 Felsch (cmad2e25bib33) 1973; 13 Berger (cmad2e25bib6) 1996; 54 Yu (cmad2e25bib16) 2019; 18 Baltz (cmad2e25bib4) 2018; 90 Jungwirth (cmad2e25bib3) 2016; 11 Li (cmad2e25bib34) 2013; 87 Katine (cmad2e25bib7) 2000; 84 Åkerman (cmad2e25bib8) 2005; 308 Liu (cmad2e25bib13) 2012; 336 Dieny (cmad2e25bib22) 2017; 89 Yun (cmad2e25bib17) 2023; 33 Zhang (cmad2e25bib19) 2021; 33 Chen (cmad2e25bib40) 2022; 15 Zhang (cmad2e25bib21) 2024 Neugebauer (cmad2e25bib28) 1959; 116 Parlak (cmad2e25bib38) 2015; 127 Yang (cmad2e25bib26) 2022; 606 Seo (cmad2e25bib43) 2020; 6 Sinova (cmad2e25bib2) 2015; 87 Weiler (cmad2e25bib32) 2011; 106 Miron (cmad2e25bib11) 2010; 9 Schulz (cmad2e25bib36) 1994; 50 Zutic (cmad2e25bib1) 2004; 76 Lin (cmad2e25bib23) 2019; 2 Kao (cmad2e25bib39) 2022; 21 van Gorkom (cmad2e25bib42) 2001; 63 Haney (cmad2e25bib15) 2013; 87 Kim (cmad2e25bib30) 2012; 109 Slonczewski (cmad2e25bib5) 1996; 159 Lau (cmad2e25bib24) 2016; 11 |
References_xml | – volume: 308 start-page: 508 year: 2005 ident: cmad2e25bib8 publication-title: Science doi: 10.1126/science.1110549 – volume: 116 start-page: 1441 year: 1959 ident: cmad2e25bib28 publication-title: Phys. Rev. doi: 10.1103/PhysRev.116.1441 – volume: 336 start-page: 555 year: 2012 ident: cmad2e25bib13 publication-title: Science doi: 10.1126/science.1218197 – volume: 35 year: 2023 ident: cmad2e25bib27 publication-title: Adv. Mater. doi: 10.1002/adma.202302350 – volume: 127 start-page: 995 year: 2015 ident: cmad2e25bib38 publication-title: Acta Phys. Pol. A doi: 10.12693/APhysPolA.127.995 – volume: 87 year: 2013 ident: cmad2e25bib15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.174411 – volume: 9 start-page: 230 year: 2010 ident: cmad2e25bib11 publication-title: Nat. Mater. doi: 10.1038/nmat2613 – volume: 33 year: 2023 ident: cmad2e25bib17 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202301731 – volume: 6 start-page: eaay8912 year: 2020 ident: cmad2e25bib43 publication-title: Sci. Adv. doi: 10.1126/sciadv.aay8912 – volume: 320 start-page: 190 year: 2008 ident: cmad2e25bib9 publication-title: Science doi: 10.1126/science.1145799 – volume: 2 start-page: 274 year: 2019 ident: cmad2e25bib23 publication-title: Nat. Electron. doi: 10.1038/s41928-019-0273-7 – volume: 79 start-page: 5845 year: 1996 ident: cmad2e25bib37 publication-title: J. Appl. Phys. doi: 10.1063/1.362144 – volume: 33 year: 2021 ident: cmad2e25bib19 publication-title: Adv. Mater. doi: 10.1002/adma.202004110 – volume: 87 start-page: 1213 year: 2015 ident: cmad2e25bib2 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.87.1213 – volume: 31 year: 2021 ident: cmad2e25bib20 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202105992 – volume: 128 year: 2020 ident: cmad2e25bib41 publication-title: J. Appl. Phys. doi: 10.1063/5.0012305 – volume: 11 start-page: 231 year: 2016 ident: cmad2e25bib3 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.18 – volume: 159 start-page: L1 year: 1996 ident: cmad2e25bib5 publication-title: J. Magn. Magn. Mater. doi: 10.1016/0304-8853(96)00062-5 – volume: 109 year: 2012 ident: cmad2e25bib30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.166601 – volume: 50 year: 1994 ident: cmad2e25bib36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.13467 – volume: 320 start-page: 1190 year: 2008 ident: cmad2e25bib10 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2007.12.019 – volume: 90 year: 2018 ident: cmad2e25bib4 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.90.015005 – volume: 57 start-page: 287 year: 1985 ident: cmad2e25bib35 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.57.287 – volume: 11 start-page: 758 year: 2016 ident: cmad2e25bib24 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.84 – volume: 15 start-page: 4677 year: 2022 ident: cmad2e25bib40 publication-title: Nano Res. doi: 10.1007/s12274-021-3987-6 – volume: 122 year: 2019 ident: cmad2e25bib18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.217203 – year: 2024 ident: cmad2e25bib21 publication-title: Adv. Mater. doi: 10.1002/adma.202312824 – volume: 84 start-page: 3149 year: 2000 ident: cmad2e25bib7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.3149 – volume: 13 start-page: 569 year: 1973 ident: cmad2e25bib33 publication-title: Solid State Commun. doi: 10.1016/S0038-1098(73)80015-8 – volume: 63 year: 2001 ident: cmad2e25bib42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.63.134432 – volume: 89 year: 2017 ident: cmad2e25bib22 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.89.025008 – volume: 476 start-page: 189 year: 2011 ident: cmad2e25bib12 publication-title: Nature doi: 10.1038/nature10309 – volume: 106 year: 2011 ident: cmad2e25bib32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.117601 – volume: 21 start-page: 1029 year: 2022 ident: cmad2e25bib39 publication-title: Nat. Mater. doi: 10.1038/s41563-022-01275-5 – volume: 109 year: 2012 ident: cmad2e25bib14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.096602 – volume: 26 start-page: 192 year: 1971 ident: cmad2e25bib31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.26.192 – volume: 18 start-page: 29 year: 2019 ident: cmad2e25bib16 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0236-9 – volume: 3 start-page: 446 year: 2020 ident: cmad2e25bib25 publication-title: Nat. Electron. doi: 10.1038/s41928-020-0461-5 – volume: 54 start-page: 9353 year: 1996 ident: cmad2e25bib6 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.9353 – volume: 76 start-page: 323 year: 2004 ident: cmad2e25bib1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.76.323 – volume: 606 start-page: 663 year: 2022 ident: cmad2e25bib26 publication-title: Nature doi: 10.1038/s41586-022-04768-0 – volume: 87 year: 2013 ident: cmad2e25bib34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.155151 – volume: 76 start-page: 4250 year: 1996 ident: cmad2e25bib29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.4250 |
SSID | ssj0004834 |
Score | 2.4730103 |
Snippet | Perpendicular magnetic anisotropy (PMA) of magnets is paramount for electrically controlled spintronics due to their intrinsic potentials for higher memory... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 235801 |
SubjectTerms | butterfly magnetoresistance ferromagnetic nickel thin film magnetic transition perpendicular magnetic anisotropy (PMA) transport and spintronics |
Title | Unexpected versatile electrical transport behaviors of ferromagnetic nickel films |
URI | https://iopscience.iop.org/article/10.1088/1361-648X/ad2e25 https://www.ncbi.nlm.nih.gov/pubmed/38417165 https://www.proquest.com/docview/2933466035 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7yoNBL2_SRbpsEFdpDD961LVmW6SmUhKTQF3RhDwUhy1II2bWXtfeSX58ZP7aktCHEJ4NH8nj0-szMfAPwnjw_XCRRkFhyM-IRGyjuKEYstj41PraKspG_fpNnU_Fllsy24NMmF6Za9lv_GG87ouDOhH1AnJpEXEaBFGo2MUXs4mQbdrmSksoXnH__8ScpUrUuZeJTC1SmRO-j_FcPt86kbXzv_-Fme-ycPoXfg8JdtMnVeN3kY3v9F5fjA7_oGTzp4Sg77kT3YMuVz-FRGxZq6xfwc1pSCQCLsJRR_AYO49yxrnQOjS5rBm50NuT716zyzLvVqlqYi5JSJFl5iVvFnPnL-aJ-CdPTk1-fz4K-CENgRRQ2AcIN4QpTJGmRerxMkhKfjOUed3nUNjWRyvMUl3UcemEyfJBnhY-5NFnK8Vf9FeyUVeleA7PYOi-8U9wKIUKbGx-lhpvMqNC6IhrBZBgGbXuGciqUMdetp1wpTYbSZCjdGWoEHzctlh07xx2yH9D-ul-i9R1y7JacXWgudcw1JRWHkV4WfgTvhumhcTWSi8WUrlrXGsETF1KGHLvZ7-bNRjGuBHETJW_uqchbeBwjggraQkkHsNOs1u4QEVCTH7Uz_QZyr_8j |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCbWDh166bZ2XbOnBqyHHZzYlmzLx2Fb0O7RB9AAuWmyLA1BEzuInct-_Ug_WnRoiwHzyYApmSYpiQbJjwDvKfLDRRR4kaEwIx6xnuSWcsRC4xLtQiOpGvnHSXw0EV-n0bTrc9rUwpTLbusf4m0LFNyKsEuIk6OAx4EXCzkd6Ty0YTRa5m4DHkY85gSef3x6dl0YKZuwMmGqeTKVootT3jbLjXNpA999t8vZHD3jx_CzZ7rNOLkcrutsaH7_hef4H1_1BHY6t5R9bMmfwgNb7MJWkx5qqj04nxTUCsCge8oojwPVObesbaFDWmZ1j5HO-rr_ipWOObtalQv9q6BSSVbMcMuYMzebL6pnMBl_ufh05HXNGDwjAr_20O0QNtd5lOSJw0tHCeHKGO5wt0eOEx3ILEtweYe-EzrFB1mau5DHOk04_rLvw2ZRFvYAmMHRWe6s5EYI4ZtMuyDRXKda-sbmwQBGvSqU6ZDKqWHGXDURcykVCUuRsFQrrAF8uBqxbFE67qE9RB2obqlW99CxG3RmoXisQq6ouNgPFOpnAO96E1G4KinUogtbriuFThQXcexznOZ5aztXjHEpCKMoevGPjLyFR2efx-r78cm3l7AdolPlNb2TXsFmvVrb1-gU1dmbxvD_AMFkBJY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unexpected+versatile+electrical+transport+behaviors+of+ferromagnetic+nickel+films&rft.jtitle=Journal+of+physics.+Condensed+matter&rft.au=Zhang%2C+Kai-Xuan&rft.au=Xu%2C+Hanshu&rft.au=Keum%2C+Jihoon&rft.au=Wang%2C+Xiangqi&rft.date=2024-06-12&rft.eissn=1361-648X&rft.volume=36&rft.issue=23&rft_id=info:doi/10.1088%2F1361-648X%2Fad2e25&rft_id=info%3Apmid%2F38417165&rft.externalDocID=38417165 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-8984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-8984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-8984&client=summon |