Unexpected versatile electrical transport behaviors of ferromagnetic nickel films

Perpendicular magnetic anisotropy (PMA) of magnets is paramount for electrically controlled spintronics due to their intrinsic potentials for higher memory density, scalability, thermal stability and endurance, surpassing an in-plane magnetic anisotropy (IMA). Nickel film is a long-lived fundamental...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Condensed matter Vol. 36; no. 23; pp. 235801 - 235808
Main Authors Zhang, Kai-Xuan, Xu, Hanshu, Keum, Jihoon, Wang, Xiangqi, Liu, Meizhuang, Chen, Zuxin
Format Journal Article
LanguageEnglish
Published England IOP Publishing 12.06.2024
Subjects
Online AccessGet full text
ISSN0953-8984
1361-648X
1361-648X
DOI10.1088/1361-648X/ad2e25

Cover

Loading…
Abstract Perpendicular magnetic anisotropy (PMA) of magnets is paramount for electrically controlled spintronics due to their intrinsic potentials for higher memory density, scalability, thermal stability and endurance, surpassing an in-plane magnetic anisotropy (IMA). Nickel film is a long-lived fundamental element ferromagnet, yet its electrical transport behavior associated with magnetism has not been comprehensively studied, hindering corresponding spintronic applications exploiting nickel-based compounds. Here, we systematically investigate the highly versatile magnetism and corresponding transport behavior of nickel films. As the thickness reduces within the general thickness regime of a magnet layer for a memory device, the hardness of nickel films’ ferromagnetic loop of anomalous Hall effect increases and then decreases, reflecting the magnetic transitions from IMA to PMA and back to IMA. Additionally, the square ferromagnetic loop changes from a hard to a soft one at rising temperatures, indicating a shift from PMA to IMA. Furthermore, we observe a butterfly magnetoresistance resulting from the anisotropic magnetoresistance effect, which evolves in conjunction with the thickness and temperature-dependent magnetic transformations as a complementary support. Our findings unveil the rich magnetic dynamics and most importantly settle down the most useful guiding information for current-driven spintronic applications based on nickel film: The hysteresis loop is squarest for the ∼8 nm-thick nickel film, of highest hardness with R xy r / R xy s ∼ 1 and minimum H s − H c , up to 125 K; otherwise, extra care should be taken for a different thickness or at a higher temperature.
AbstractList Perpendicular magnetic anisotropy (PMA) of magnets is paramount for electrically controlled spintronics due to their intrinsic potentials for higher memory density, scalability, thermal stability and endurance, surpassing an in-plane magnetic anisotropy (IMA). Nickel film is a long-lived fundamental element ferromagnet, yet its electrical transport behavior associated with magnetism has not been comprehensively studied, hindering corresponding spintronic applications exploiting nickel-based compounds. Here, we systematically investigate the highly versatile magnetism and corresponding transport behavior of nickel films. As the thickness reduces within the general thickness regime of a magnet layer for a memory device, the hardness of nickel films' ferromagnetic loop of anomalous Hall effect increases and then decreases, reflecting the magnetic transitions from IMA to PMA and back to IMA. Additionally, the square ferromagnetic loop changes from a hard to a soft one at rising temperatures, indicating a shift from PMA to IMA. Furthermore, we observe a butterfly magnetoresistance resulting from the anisotropic magnetoresistance effect, which evolves in conjunction with the thickness and temperature-dependent magnetic transformations as a complementary support. Our findings unveil the rich magnetic dynamics and most importantly settle down the most useful guiding information for current-driven spintronic applications based on nickel film: The hysteresis loop is squarest for the ∼8 nm-thick nickel film, of highest hardness withRxyr/Rxys∼ 1 and minimumHs-Hc, up to 125 K; otherwise, extra care should be taken for a different thickness or at a higher temperature.Perpendicular magnetic anisotropy (PMA) of magnets is paramount for electrically controlled spintronics due to their intrinsic potentials for higher memory density, scalability, thermal stability and endurance, surpassing an in-plane magnetic anisotropy (IMA). Nickel film is a long-lived fundamental element ferromagnet, yet its electrical transport behavior associated with magnetism has not been comprehensively studied, hindering corresponding spintronic applications exploiting nickel-based compounds. Here, we systematically investigate the highly versatile magnetism and corresponding transport behavior of nickel films. As the thickness reduces within the general thickness regime of a magnet layer for a memory device, the hardness of nickel films' ferromagnetic loop of anomalous Hall effect increases and then decreases, reflecting the magnetic transitions from IMA to PMA and back to IMA. Additionally, the square ferromagnetic loop changes from a hard to a soft one at rising temperatures, indicating a shift from PMA to IMA. Furthermore, we observe a butterfly magnetoresistance resulting from the anisotropic magnetoresistance effect, which evolves in conjunction with the thickness and temperature-dependent magnetic transformations as a complementary support. Our findings unveil the rich magnetic dynamics and most importantly settle down the most useful guiding information for current-driven spintronic applications based on nickel film: The hysteresis loop is squarest for the ∼8 nm-thick nickel film, of highest hardness withRxyr/Rxys∼ 1 and minimumHs-Hc, up to 125 K; otherwise, extra care should be taken for a different thickness or at a higher temperature.
Perpendicular magnetic anisotropy (PMA) of magnets is paramount for electrically controlled spintronics due to their intrinsic potentials for higher memory density, scalability, thermal stability and endurance, surpassing an in-plane magnetic anisotropy (IMA). Nickel film is a long-lived fundamental element ferromagnet, yet its electrical transport behavior associated with magnetism has not been comprehensively studied, hindering corresponding spintronic applications exploiting nickel-based compounds. Here, we systematically investigate the highly versatile magnetism and corresponding transport behavior of nickel films. As the thickness reduces within the general thickness regime of a magnet layer for a memory device, the hardness of nickel films' ferromagnetic loop of anomalous Hall effect increases and then decreases, reflecting the magnetic transitions from IMA to PMA and back to IMA. Additionally, the square ferromagnetic loop changes from a hard to a soft one at rising temperatures, indicating a shift from PMA to IMA. Furthermore, we observe a butterfly magnetoresistance resulting from the anisotropic magnetoresistance effect, which evolves in conjunction with the thickness and temperature-dependent magnetic transformations as a complementary support. Our findings unveil the rich magnetic dynamics and most importantly settle down the most useful guiding information for current-driven spintronic applications based on nickel film: The hysteresis loop is squarest for the ∼8 nm-thick nickel film, of highest hardness with / ∼ 1 and minimum - , up to 125 K; otherwise, extra care should be taken for a different thickness or at a higher temperature.
Perpendicular magnetic anisotropy (PMA) of magnets is paramount for electrically controlled spintronics due to their intrinsic potentials for higher memory density, scalability, thermal stability and endurance, surpassing an in-plane magnetic anisotropy (IMA). Nickel film is a long-lived fundamental element ferromagnet, yet its electrical transport behavior associated with magnetism has not been comprehensively studied, hindering corresponding spintronic applications exploiting nickel-based compounds. Here, we systematically investigate the highly versatile magnetism and corresponding transport behavior of nickel films. As the thickness reduces within the general thickness regime of a magnet layer for a memory device, the hardness of nickel films’ ferromagnetic loop of anomalous Hall effect increases and then decreases, reflecting the magnetic transitions from IMA to PMA and back to IMA. Additionally, the square ferromagnetic loop changes from a hard to a soft one at rising temperatures, indicating a shift from PMA to IMA. Furthermore, we observe a butterfly magnetoresistance resulting from the anisotropic magnetoresistance effect, which evolves in conjunction with the thickness and temperature-dependent magnetic transformations as a complementary support. Our findings unveil the rich magnetic dynamics and most importantly settle down the most useful guiding information for current-driven spintronic applications based on nickel film: The hysteresis loop is squarest for the ∼8 nm-thick nickel film, of highest hardness with R xy r / R xy s ∼ 1 and minimum H s − H c , up to 125 K; otherwise, extra care should be taken for a different thickness or at a higher temperature.
Author Zhang, Kai-Xuan
Chen, Zuxin
Xu, Hanshu
Liu, Meizhuang
Wang, Xiangqi
Keum, Jihoon
Author_xml – sequence: 1
  givenname: Kai-Xuan
  orcidid: 0000-0002-9958-6018
  surname: Zhang
  fullname: Zhang, Kai-Xuan
  organization: Seoul National University Center for Quantum Materials, Department of Physics and Astronomy, Seoul 08826, Republic of Korea
– sequence: 2
  givenname: Hanshu
  orcidid: 0000-0002-6387-101X
  surname: Xu
  fullname: Xu, Hanshu
  organization: School of Biomedical Engineering, Anhui Medical University Department of Applied Physics, Hefei 230032, People’s Republic of China
– sequence: 3
  givenname: Jihoon
  surname: Keum
  fullname: Keum, Jihoon
  organization: Seoul National University Center for Quantum Materials, Department of Physics and Astronomy, Seoul 08826, Republic of Korea
– sequence: 4
  givenname: Xiangqi
  surname: Wang
  fullname: Wang, Xiangqi
  organization: Jihua Laboratory Testing Center, Jihua Laboratory , Foshan 528000, People’s Republic of China
– sequence: 5
  givenname: Meizhuang
  surname: Liu
  fullname: Liu, Meizhuang
  organization: School of Semiconductor Science and Technology, South China Normal University , Foshan 528225, People’s Republic of China
– sequence: 6
  givenname: Zuxin
  surname: Chen
  fullname: Chen, Zuxin
  organization: Guangdong Provincial Key Laboratory of Chip and Integration Technology , Guangzhou 510631, People’s Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38417165$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtLxTAQRoMoen3sXUl3urCaNEmbLkV8gSCCgruQphONpklNekX_vblcdSFiGAjMnG9gziZa9cEDQrsEHxEsxDGhNSlrJh6OVV9BxVfQ7Ke1ima45bQUrWAbaDOlZ4wxE5Stow0qGGlIzWfo9t7D-wh6gr54g5jUZB0U4HInWq1cMUXl0xjiVHTwpN5siKkIpjAQYxjUo4fJ6sJb_QKuMNYNaRutGeUS7Hz9W-j-_Ozu9LK8vrm4Oj25LjUjeCo5Zwx61fOmb0x-ijdMcK6pgY7kYxpFRNc1TcsqbJhq86Bre1PRWrUNhY5uoYPl3jGG1zmkSQ42aXBOeQjzJKuWUlbXmPKM7n2h826AXo7RDip-yG8NGaiXgI4hpQhGajtlFcHn862TBMuFb7mQKxdy5dJ3DuJfwe_d_0QOlxEbRvkc5tFnS__h-3_gepC0lhXNxQUmcuwN_QRKKp-d
CODEN JCOMEL
CitedBy_id crossref_primary_10_1088_2053_1591_ad6f71
crossref_primary_10_1088_1402_4896_ada4fb
crossref_primary_10_1002_adma_202412037
crossref_primary_10_1021_acsnano_4c16450
crossref_primary_10_1021_acsaelm_4c00939
Cites_doi 10.1126/science.1110549
10.1103/PhysRev.116.1441
10.1126/science.1218197
10.1002/adma.202302350
10.12693/APhysPolA.127.995
10.1103/PhysRevB.87.174411
10.1038/nmat2613
10.1002/adfm.202301731
10.1126/sciadv.aay8912
10.1126/science.1145799
10.1038/s41928-019-0273-7
10.1063/1.362144
10.1002/adma.202004110
10.1103/RevModPhys.87.1213
10.1002/adfm.202105992
10.1063/5.0012305
10.1038/nnano.2016.18
10.1016/0304-8853(96)00062-5
10.1103/PhysRevLett.109.166601
10.1103/PhysRevB.50.13467
10.1016/j.jmmm.2007.12.019
10.1103/RevModPhys.90.015005
10.1103/RevModPhys.57.287
10.1038/nnano.2016.84
10.1007/s12274-021-3987-6
10.1103/PhysRevLett.122.217203
10.1002/adma.202312824
10.1103/PhysRevLett.84.3149
10.1016/S0038-1098(73)80015-8
10.1103/PhysRevB.63.134432
10.1103/RevModPhys.89.025008
10.1038/nature10309
10.1103/PhysRevLett.106.117601
10.1038/s41563-022-01275-5
10.1103/PhysRevLett.109.096602
10.1103/PhysRevLett.26.192
10.1038/s41563-018-0236-9
10.1038/s41928-020-0461-5
10.1103/PhysRevB.54.9353
10.1103/RevModPhys.76.323
10.1038/s41586-022-04768-0
10.1103/PhysRevB.87.155151
10.1103/PhysRevLett.76.4250
ContentType Journal Article
Copyright 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
2024 IOP Publishing Ltd.
Copyright_xml – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
– notice: 2024 IOP Publishing Ltd.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1088/1361-648X/ad2e25
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1361-648X
ExternalDocumentID 38417165
10_1088_1361_648X_ad2e25
cmad2e25
Genre Journal Article
GrantInformation_xml – fundername: The Pearl River Talent Recruitment Program
  grantid: 2019ZT08X639
– fundername: Samsung Science and Technology Foundation
  grantid: SSTF-BA2101-05
  funderid: http://dx.doi.org/10.13039/501100014364
– fundername: Leading Researcher Program of the National Research Foundation of Korea
  grantid: 2020R1A3B2079375
– fundername: National Natural Science Foundation of China
  grantid: 62104703
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID ---
-~X
1JI
4.4
53G
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ACNCT
ADEQX
AEFHF
AEINN
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
WH7
XPP
YQT
ZMT
~02
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c410t-5544edad57d7ffffa574855c3feb1d2e7a18bb779420f4a9c3fb9df236a973eb3
IEDL.DBID IOP
ISSN 0953-8984
1361-648X
IngestDate Fri Jul 11 13:05:50 EDT 2025
Thu Aug 28 04:41:03 EDT 2025
Wed Aug 27 16:27:34 EDT 2025
Thu Apr 24 23:10:51 EDT 2025
Wed Aug 27 01:32:45 EDT 2025
Tue Aug 20 22:16:36 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords ferromagnetic nickel thin film
magnetic transition
perpendicular magnetic anisotropy (PMA)
butterfly magnetoresistance
transport and spintronics
Language English
License This article is available under the terms of the IOP-Standard License.
2024 IOP Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-5544edad57d7ffffa574855c3feb1d2e7a18bb779420f4a9c3fb9df236a973eb3
Notes JPCM-122835.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6387-101X
0000-0002-9958-6018
OpenAccessLink https://iopscience.iop.org/article/10.1088/1361-648X/ad2e25/pdf
PMID 38417165
PQID 2933466035
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2933466035
crossref_primary_10_1088_1361_648X_ad2e25
pubmed_primary_38417165
iop_journals_10_1088_1361_648X_ad2e25
crossref_citationtrail_10_1088_1361_648X_ad2e25
PublicationCentury 2000
PublicationDate 2024-06-12
PublicationDateYYYYMMDD 2024-06-12
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-12
  day: 12
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of physics. Condensed matter
PublicationTitleAbbrev JPhysCM
PublicationTitleAlternate J. Phys.: Condens. Matter
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Beaurepaire (cmad2e25bib29) 1996; 76
Miron (cmad2e25bib12) 2011; 476
Bochi (cmad2e25bib37) 1996; 79
Dieny (cmad2e25bib25) 2020; 3
Lee (cmad2e25bib35) 1985; 57
Tedrow (cmad2e25bib31) 1971; 26
Ralph (cmad2e25bib10) 2008; 320
Zhang (cmad2e25bib20) 2021; 31
Cui (cmad2e25bib27) 2023; 35
Kim (cmad2e25bib41) 2020; 128
Liu (cmad2e25bib14) 2012; 109
Johansen (cmad2e25bib18) 2019; 122
Parkin (cmad2e25bib9) 2008; 320
Felsch (cmad2e25bib33) 1973; 13
Berger (cmad2e25bib6) 1996; 54
Yu (cmad2e25bib16) 2019; 18
Baltz (cmad2e25bib4) 2018; 90
Jungwirth (cmad2e25bib3) 2016; 11
Li (cmad2e25bib34) 2013; 87
Katine (cmad2e25bib7) 2000; 84
Åkerman (cmad2e25bib8) 2005; 308
Liu (cmad2e25bib13) 2012; 336
Dieny (cmad2e25bib22) 2017; 89
Yun (cmad2e25bib17) 2023; 33
Zhang (cmad2e25bib19) 2021; 33
Chen (cmad2e25bib40) 2022; 15
Zhang (cmad2e25bib21) 2024
Neugebauer (cmad2e25bib28) 1959; 116
Parlak (cmad2e25bib38) 2015; 127
Yang (cmad2e25bib26) 2022; 606
Seo (cmad2e25bib43) 2020; 6
Sinova (cmad2e25bib2) 2015; 87
Weiler (cmad2e25bib32) 2011; 106
Miron (cmad2e25bib11) 2010; 9
Schulz (cmad2e25bib36) 1994; 50
Zutic (cmad2e25bib1) 2004; 76
Lin (cmad2e25bib23) 2019; 2
Kao (cmad2e25bib39) 2022; 21
van Gorkom (cmad2e25bib42) 2001; 63
Haney (cmad2e25bib15) 2013; 87
Kim (cmad2e25bib30) 2012; 109
Slonczewski (cmad2e25bib5) 1996; 159
Lau (cmad2e25bib24) 2016; 11
References_xml – volume: 308
  start-page: 508
  year: 2005
  ident: cmad2e25bib8
  publication-title: Science
  doi: 10.1126/science.1110549
– volume: 116
  start-page: 1441
  year: 1959
  ident: cmad2e25bib28
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.116.1441
– volume: 336
  start-page: 555
  year: 2012
  ident: cmad2e25bib13
  publication-title: Science
  doi: 10.1126/science.1218197
– volume: 35
  year: 2023
  ident: cmad2e25bib27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202302350
– volume: 127
  start-page: 995
  year: 2015
  ident: cmad2e25bib38
  publication-title: Acta Phys. Pol. A
  doi: 10.12693/APhysPolA.127.995
– volume: 87
  year: 2013
  ident: cmad2e25bib15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.174411
– volume: 9
  start-page: 230
  year: 2010
  ident: cmad2e25bib11
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2613
– volume: 33
  year: 2023
  ident: cmad2e25bib17
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202301731
– volume: 6
  start-page: eaay8912
  year: 2020
  ident: cmad2e25bib43
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay8912
– volume: 320
  start-page: 190
  year: 2008
  ident: cmad2e25bib9
  publication-title: Science
  doi: 10.1126/science.1145799
– volume: 2
  start-page: 274
  year: 2019
  ident: cmad2e25bib23
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0273-7
– volume: 79
  start-page: 5845
  year: 1996
  ident: cmad2e25bib37
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.362144
– volume: 33
  year: 2021
  ident: cmad2e25bib19
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202004110
– volume: 87
  start-page: 1213
  year: 2015
  ident: cmad2e25bib2
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.87.1213
– volume: 31
  year: 2021
  ident: cmad2e25bib20
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202105992
– volume: 128
  year: 2020
  ident: cmad2e25bib41
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0012305
– volume: 11
  start-page: 231
  year: 2016
  ident: cmad2e25bib3
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.18
– volume: 159
  start-page: L1
  year: 1996
  ident: cmad2e25bib5
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/0304-8853(96)00062-5
– volume: 109
  year: 2012
  ident: cmad2e25bib30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.166601
– volume: 50
  year: 1994
  ident: cmad2e25bib36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.13467
– volume: 320
  start-page: 1190
  year: 2008
  ident: cmad2e25bib10
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2007.12.019
– volume: 90
  year: 2018
  ident: cmad2e25bib4
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.90.015005
– volume: 57
  start-page: 287
  year: 1985
  ident: cmad2e25bib35
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.57.287
– volume: 11
  start-page: 758
  year: 2016
  ident: cmad2e25bib24
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.84
– volume: 15
  start-page: 4677
  year: 2022
  ident: cmad2e25bib40
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3987-6
– volume: 122
  year: 2019
  ident: cmad2e25bib18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.217203
– year: 2024
  ident: cmad2e25bib21
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202312824
– volume: 84
  start-page: 3149
  year: 2000
  ident: cmad2e25bib7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.3149
– volume: 13
  start-page: 569
  year: 1973
  ident: cmad2e25bib33
  publication-title: Solid State Commun.
  doi: 10.1016/S0038-1098(73)80015-8
– volume: 63
  year: 2001
  ident: cmad2e25bib42
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.63.134432
– volume: 89
  year: 2017
  ident: cmad2e25bib22
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.89.025008
– volume: 476
  start-page: 189
  year: 2011
  ident: cmad2e25bib12
  publication-title: Nature
  doi: 10.1038/nature10309
– volume: 106
  year: 2011
  ident: cmad2e25bib32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.117601
– volume: 21
  start-page: 1029
  year: 2022
  ident: cmad2e25bib39
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-022-01275-5
– volume: 109
  year: 2012
  ident: cmad2e25bib14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.096602
– volume: 26
  start-page: 192
  year: 1971
  ident: cmad2e25bib31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.26.192
– volume: 18
  start-page: 29
  year: 2019
  ident: cmad2e25bib16
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0236-9
– volume: 3
  start-page: 446
  year: 2020
  ident: cmad2e25bib25
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-0461-5
– volume: 54
  start-page: 9353
  year: 1996
  ident: cmad2e25bib6
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.9353
– volume: 76
  start-page: 323
  year: 2004
  ident: cmad2e25bib1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.76.323
– volume: 606
  start-page: 663
  year: 2022
  ident: cmad2e25bib26
  publication-title: Nature
  doi: 10.1038/s41586-022-04768-0
– volume: 87
  year: 2013
  ident: cmad2e25bib34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.155151
– volume: 76
  start-page: 4250
  year: 1996
  ident: cmad2e25bib29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.76.4250
SSID ssj0004834
Score 2.4730103
Snippet Perpendicular magnetic anisotropy (PMA) of magnets is paramount for electrically controlled spintronics due to their intrinsic potentials for higher memory...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 235801
SubjectTerms butterfly magnetoresistance
ferromagnetic nickel thin film
magnetic transition
perpendicular magnetic anisotropy (PMA)
transport and spintronics
Title Unexpected versatile electrical transport behaviors of ferromagnetic nickel films
URI https://iopscience.iop.org/article/10.1088/1361-648X/ad2e25
https://www.ncbi.nlm.nih.gov/pubmed/38417165
https://www.proquest.com/docview/2933466035
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7yoNBL2_SRbpsEFdpDD961LVmW6SmUhKTQF3RhDwUhy1II2bWXtfeSX58ZP7aktCHEJ4NH8nj0-szMfAPwnjw_XCRRkFhyM-IRGyjuKEYstj41PraKspG_fpNnU_Fllsy24NMmF6Za9lv_GG87ouDOhH1AnJpEXEaBFGo2MUXs4mQbdrmSksoXnH__8ScpUrUuZeJTC1SmRO-j_FcPt86kbXzv_-Fme-ycPoXfg8JdtMnVeN3kY3v9F5fjA7_oGTzp4Sg77kT3YMuVz-FRGxZq6xfwc1pSCQCLsJRR_AYO49yxrnQOjS5rBm50NuT716zyzLvVqlqYi5JSJFl5iVvFnPnL-aJ-CdPTk1-fz4K-CENgRRQ2AcIN4QpTJGmRerxMkhKfjOUed3nUNjWRyvMUl3UcemEyfJBnhY-5NFnK8Vf9FeyUVeleA7PYOi-8U9wKIUKbGx-lhpvMqNC6IhrBZBgGbXuGciqUMdetp1wpTYbSZCjdGWoEHzctlh07xx2yH9D-ul-i9R1y7JacXWgudcw1JRWHkV4WfgTvhumhcTWSi8WUrlrXGsETF1KGHLvZ7-bNRjGuBHETJW_uqchbeBwjggraQkkHsNOs1u4QEVCTH7Uz_QZyr_8j
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCbWDh166bZ2XbOnBqyHHZzYlmzLx2Fb0O7RB9AAuWmyLA1BEzuInct-_Ug_WnRoiwHzyYApmSYpiQbJjwDvKfLDRRR4kaEwIx6xnuSWcsRC4xLtQiOpGvnHSXw0EV-n0bTrc9rUwpTLbusf4m0LFNyKsEuIk6OAx4EXCzkd6Ty0YTRa5m4DHkY85gSef3x6dl0YKZuwMmGqeTKVootT3jbLjXNpA999t8vZHD3jx_CzZ7rNOLkcrutsaH7_hef4H1_1BHY6t5R9bMmfwgNb7MJWkx5qqj04nxTUCsCge8oojwPVObesbaFDWmZ1j5HO-rr_ipWOObtalQv9q6BSSVbMcMuYMzebL6pnMBl_ufh05HXNGDwjAr_20O0QNtd5lOSJw0tHCeHKGO5wt0eOEx3ILEtweYe-EzrFB1mau5DHOk04_rLvw2ZRFvYAmMHRWe6s5EYI4ZtMuyDRXKda-sbmwQBGvSqU6ZDKqWHGXDURcykVCUuRsFQrrAF8uBqxbFE67qE9RB2obqlW99CxG3RmoXisQq6ouNgPFOpnAO96E1G4KinUogtbriuFThQXcexznOZ5aztXjHEpCKMoevGPjLyFR2efx-r78cm3l7AdolPlNb2TXsFmvVrb1-gU1dmbxvD_AMFkBJY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unexpected+versatile+electrical+transport+behaviors+of+ferromagnetic+nickel+films&rft.jtitle=Journal+of+physics.+Condensed+matter&rft.au=Zhang%2C+Kai-Xuan&rft.au=Xu%2C+Hanshu&rft.au=Keum%2C+Jihoon&rft.au=Wang%2C+Xiangqi&rft.date=2024-06-12&rft.eissn=1361-648X&rft.volume=36&rft.issue=23&rft_id=info:doi/10.1088%2F1361-648X%2Fad2e25&rft_id=info%3Apmid%2F38417165&rft.externalDocID=38417165
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-8984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-8984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-8984&client=summon