Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects
Hydrogen production from direct water electrolysis has long been pursued as a key that may revolutionize the hydrogen economy. With the rapid availability of electricity generated using renewable energy resources, this long-pursued target is now closer to reality than ever before. To date, most stud...
Saved in:
Published in | Energy & environmental science Vol. 13; no. 1; pp. 3185 - 326 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogen production from direct water electrolysis has long been pursued as a key that may revolutionize the hydrogen economy. With the rapid availability of electricity generated using renewable energy resources, this long-pursued target is now closer to reality than ever before. To date, most studies regarding electrocatalytic hydrogen evolution reaction (HER) are carried out in strong acidic/alkali electrolytes. However, hydrogen production from HER under extreme pH conditions has several drawbacks, including a corrosive working environment, the requirement of expensive anion/cation exchange membranes, and acidic/alkali withstanding electrocatalysts. The more sustainable approach to address these drawbacks is to deploy neutral/near-neutral electrolytes for HER. Regretfully, both theoretical discussions and practical applications regarding HER under neutral/near-neutral conditions are relatively rare and very elusive. In this review, we systematically discuss the current understandings of HER mechanisms under neutral conditions and analyze the influences of different types of neutral electrolytes. The most recent advances in the development of neutral HER electrocatalysts are summarized and exemplified, and general electrocatalyst design principles are highlighted. Lastly, we provide our perspective on the potential future research direction. We hope that this review inspires future endeavors to realize efficient HER for hydrogen production under neutral conditions.
This review summarizes the latest advances in hydrogen evolution reaction under neutral conditions to enlighten future researches. |
---|---|
AbstractList | Hydrogen production from direct water electrolysis has long been pursued as a key that may revolutionize the hydrogen economy. With the rapid availability of electricity generated using renewable energy resources, this long-pursued target is now closer to reality than ever before. To date, most studies regarding electrocatalytic hydrogen evolution reaction (HER) are carried out in strong acidic/alkali electrolytes. However, hydrogen production from HER under extreme pH conditions has several drawbacks, including a corrosive working environment, the requirement of expensive anion/cation exchange membranes, and acidic/alkali withstanding electrocatalysts. The more sustainable approach to address these drawbacks is to deploy neutral/near-neutral electrolytes for HER. Regretfully, both theoretical discussions and practical applications regarding HER under neutral/near-neutral conditions are relatively rare and very elusive. In this review, we systematically discuss the current understandings of HER mechanisms under neutral conditions and analyze the influences of different types of neutral electrolytes. The most recent advances in the development of neutral HER electrocatalysts are summarized and exemplified, and general electrocatalyst design principles are highlighted. Lastly, we provide our perspective on the potential future research direction. We hope that this review inspires future endeavors to realize efficient HER for hydrogen production under neutral conditions. Hydrogen production from direct water electrolysis has long been pursued as a key that may revolutionize the hydrogen economy. With the rapid availability of electricity generated using renewable energy resources, this long-pursued target is now closer to reality than ever before. To date, most studies regarding electrocatalytic hydrogen evolution reaction (HER) are carried out in strong acidic/alkali electrolytes. However, hydrogen production from HER under extreme pH conditions has several drawbacks, including a corrosive working environment, the requirement of expensive anion/cation exchange membranes, and acidic/alkali withstanding electrocatalysts. The more sustainable approach to address these drawbacks is to deploy neutral/near-neutral electrolytes for HER. Regretfully, both theoretical discussions and practical applications regarding HER under neutral/near-neutral conditions are relatively rare and very elusive. In this review, we systematically discuss the current understandings of HER mechanisms under neutral conditions and analyze the influences of different types of neutral electrolytes. The most recent advances in the development of neutral HER electrocatalysts are summarized and exemplified, and general electrocatalyst design principles are highlighted. Lastly, we provide our perspective on the potential future research direction. We hope that this review inspires future endeavors to realize efficient HER for hydrogen production under neutral conditions. This review summarizes the latest advances in hydrogen evolution reaction under neutral conditions to enlighten future researches. |
Author | Jian, Xian Pei, Zengxia Zhou, Zheng Zhao, Shenlong Chen, Yuan Wei, Li |
AuthorAffiliation | School of Chemical and Biomolecular Engineering The University of Sydney School of Materials and Energy University of Electronic Science and Technology of China |
AuthorAffiliation_xml | – name: School of Chemical and Biomolecular Engineering – name: University of Electronic Science and Technology of China – name: The University of Sydney – name: School of Materials and Energy |
Author_xml | – sequence: 1 givenname: Zheng surname: Zhou fullname: Zhou, Zheng – sequence: 2 givenname: Zengxia surname: Pei fullname: Pei, Zengxia – sequence: 3 givenname: Li surname: Wei fullname: Wei, Li – sequence: 4 givenname: Shenlong surname: Zhao fullname: Zhao, Shenlong – sequence: 5 givenname: Xian surname: Jian fullname: Jian, Xian – sequence: 6 givenname: Yuan surname: Chen fullname: Chen, Yuan |
BookMark | eNp9kctLxDAQxoMo-Lx4FyLexNVJmqStNx_rAwQvei7ZZLp2qWlNUmEv_u1mXR8g4mmG-X4zX_iySVZd55CQXQbHDLLyxAIisEKqyQrZYLkUI5mDWv3qVcnXyWYIMwDFIS83yNu4RRN9Z3TU7Tw2hj7Nre-m6Ci-du0Qm87RwVn01OEQvW5pf0NN52yzkMIpNYP36OISClEnxU3DEfVoFmNtX7UzmAZJofUQB4-0913ok2_YJmu1bgPufNYt8ng1fri4Gd3dX99enN2NjGAQR6Iu84xzoSSrEXhp6kIxxZXWwjKFssyF0BM7sSwvM8FloWVWgJYAkmMBKtsiB8u7yfllwBCrWTd4lywrLiTkqhQgEnW4pEx6X_BYV71vnrWfVwyqRb7VJYzHH_meJxh-waaJehFKSqlp_17ZX674YL5P_3xZ1ds6MXv_Mdk7vo-V7Q |
CitedBy_id | crossref_primary_10_1002_adfm_202110748 crossref_primary_10_1002_smll_202311076 crossref_primary_10_1021_acs_jpcc_2c03687 crossref_primary_10_1002_chem_202302593 crossref_primary_10_1016_j_cej_2025_161070 crossref_primary_10_1016_j_jcis_2023_03_033 crossref_primary_10_1002_adma_202109321 crossref_primary_10_1002_cplu_202300129 crossref_primary_10_1002_cctc_202200756 crossref_primary_10_1021_acscatal_1c04268 crossref_primary_10_1016_j_jpowsour_2024_235075 crossref_primary_10_1021_acsami_2c01208 crossref_primary_10_1080_17518253_2024_2325983 crossref_primary_10_1002_adfm_202422918 crossref_primary_10_1002_asia_202401172 crossref_primary_10_1002_adfm_202307109 crossref_primary_10_1016_j_jcis_2021_08_090 crossref_primary_10_1016_j_recm_2024_09_001 crossref_primary_10_1002_ange_202416402 crossref_primary_10_1002_adfm_202112367 crossref_primary_10_1002_adma_202307035 crossref_primary_10_1016_j_jcis_2024_04_009 crossref_primary_10_1002_advs_202309775 crossref_primary_10_1016_j_cej_2021_131309 crossref_primary_10_1016_j_ijhydene_2024_02_291 crossref_primary_10_1039_D3EE02695G crossref_primary_10_1016_j_ccr_2024_215935 crossref_primary_10_1039_D3QM00978E crossref_primary_10_1016_j_electacta_2023_142722 crossref_primary_10_1039_D2MA00288D crossref_primary_10_1002_cssc_202301547 crossref_primary_10_1002_ange_202422091 crossref_primary_10_1039_D4TA02268H crossref_primary_10_1002_aenm_202300628 crossref_primary_10_1002_cctc_202100007 crossref_primary_10_1021_acsami_4c11560 crossref_primary_10_1016_j_ijhydene_2022_01_137 crossref_primary_10_1002_cssc_202200086 crossref_primary_10_1016_j_cej_2024_150439 crossref_primary_10_1016_j_ijhydene_2024_03_209 crossref_primary_10_1002_adfm_202214375 crossref_primary_10_1016_j_apcatb_2022_122081 crossref_primary_10_1021_acsami_4c18604 crossref_primary_10_1021_acs_jpcc_4c06121 crossref_primary_10_1002_chem_202102915 crossref_primary_10_1016_j_jcis_2024_08_031 crossref_primary_10_1002_inf2_12357 crossref_primary_10_1021_acsanm_1c01233 crossref_primary_10_1016_j_cattod_2023_114141 crossref_primary_10_3390_catal13050851 crossref_primary_10_1021_acsaem_1c02877 crossref_primary_10_1016_S1872_2067_24_60086_0 crossref_primary_10_1002_ange_202210753 crossref_primary_10_1002_cphc_202400640 crossref_primary_10_1021_acs_nanolett_2c02900 crossref_primary_10_1016_j_jallcom_2025_178510 crossref_primary_10_1021_acscatal_4c05730 crossref_primary_10_1016_j_jelechem_2022_116448 crossref_primary_10_1021_acsmaterialslett_1c00532 crossref_primary_10_1016_j_jallcom_2022_165802 crossref_primary_10_1038_s41467_022_33984_5 crossref_primary_10_1016_j_ijhydene_2023_03_175 crossref_primary_10_1016_j_molliq_2024_126537 crossref_primary_10_1021_acs_energyfuels_2c04272 crossref_primary_10_1016_j_ijhydene_2023_06_229 crossref_primary_10_1002_aenm_202405035 crossref_primary_10_1016_j_apsusc_2024_161614 crossref_primary_10_1016_j_nxnano_2024_100073 crossref_primary_10_1002_smll_202406113 crossref_primary_10_1016_j_physb_2024_416773 crossref_primary_10_1002_adom_202403085 crossref_primary_10_1016_j_apcatb_2022_122072 crossref_primary_10_1016_j_envres_2023_117816 crossref_primary_10_1021_acscatal_4c05986 crossref_primary_10_1016_j_apcatb_2022_121666 crossref_primary_10_1016_j_nanoen_2022_107232 crossref_primary_10_1002_cctc_202300328 crossref_primary_10_1002_adfm_202423760 crossref_primary_10_2298_JSC210520050A crossref_primary_10_1016_j_ijhydene_2021_11_182 crossref_primary_10_1021_acs_chemmater_3c02093 crossref_primary_10_1016_j_apcatb_2021_119960 crossref_primary_10_1021_acsami_4c00690 crossref_primary_10_1021_acs_chemrev_4c00155 crossref_primary_10_1039_D3DT03951J crossref_primary_10_1039_D4RA07274J crossref_primary_10_1016_j_jallcom_2022_164880 crossref_primary_10_1016_j_flatc_2022_100334 crossref_primary_10_1016_j_ijhydene_2024_03_192 crossref_primary_10_1021_acs_energyfuels_1c02706 crossref_primary_10_1021_acsomega_1c06522 crossref_primary_10_1038_s41467_022_34685_9 crossref_primary_10_1016_j_cej_2021_132312 crossref_primary_10_1002_cey2_555 crossref_primary_10_1016_j_flatc_2023_100572 crossref_primary_10_1002_cey2_679 crossref_primary_10_1007_s11581_024_05376_w crossref_primary_10_1016_j_carbon_2023_118082 crossref_primary_10_1016_j_jechem_2025_01_073 crossref_primary_10_1016_j_jpowsour_2021_230934 crossref_primary_10_1002_adma_202415712 crossref_primary_10_1039_D4TA03866E crossref_primary_10_1021_acscatal_2c02081 crossref_primary_10_1002_smll_202408782 crossref_primary_10_1016_j_jssc_2024_124553 crossref_primary_10_1021_acs_energyfuels_4c05304 crossref_primary_10_1002_smtd_202300461 crossref_primary_10_1007_s11426_022_1545_0 crossref_primary_10_1016_j_colsurfa_2024_136055 crossref_primary_10_1039_D3TA02004E crossref_primary_10_1016_j_cattod_2022_04_005 crossref_primary_10_1021_jacs_4c16596 crossref_primary_10_1038_s41467_021_27118_6 crossref_primary_10_1021_acscatal_2c04939 crossref_primary_10_1002_ppsc_202200142 crossref_primary_10_1016_j_ijhydene_2022_08_184 crossref_primary_10_1002_anie_202416402 crossref_primary_10_1016_j_ijhydene_2023_05_098 crossref_primary_10_1016_j_mtener_2021_100902 crossref_primary_10_1016_j_mtphys_2021_100469 crossref_primary_10_1002_adfm_202421442 crossref_primary_10_1002_aenm_202301438 crossref_primary_10_1016_j_checat_2024_100901 crossref_primary_10_1557_s43579_023_00454_y crossref_primary_10_1016_j_ijhydene_2025_02_246 crossref_primary_10_1016_j_ijhydene_2024_03_094 crossref_primary_10_1021_acsami_2c20863 crossref_primary_10_1039_D3QI00171G crossref_primary_10_1002_anie_202422091 crossref_primary_10_1016_j_ijhydene_2021_12_173 crossref_primary_10_1016_j_mattod_2023_08_024 crossref_primary_10_1016_j_seppur_2024_131173 crossref_primary_10_1016_j_fuel_2025_135020 crossref_primary_10_1021_acscatal_4c01173 crossref_primary_10_1002_smsc_202300036 crossref_primary_10_1021_acscatal_3c03821 crossref_primary_10_3390_catal12091055 crossref_primary_10_1007_s12678_023_00837_8 crossref_primary_10_1002_smtd_202401067 crossref_primary_10_1021_acsnano_4c06220 crossref_primary_10_1039_D1EE02512K crossref_primary_10_1016_j_ijhydene_2024_11_370 crossref_primary_10_1016_j_checat_2022_01_022 crossref_primary_10_1016_j_apcatb_2024_124928 crossref_primary_10_1016_j_jcis_2022_03_149 crossref_primary_10_1016_j_jcis_2022_11_080 crossref_primary_10_1021_acsanm_4c03373 crossref_primary_10_1039_D3QM00600J crossref_primary_10_1149_1945_7111_acb84d crossref_primary_10_1002_chem_202102209 crossref_primary_10_1002_adma_202411339 crossref_primary_10_1016_S1872_2067_21_63830_5 crossref_primary_10_1002_adfm_202418617 crossref_primary_10_1021_acsami_2c18799 crossref_primary_10_1016_j_electacta_2024_144072 crossref_primary_10_1016_j_apsusc_2024_159629 crossref_primary_10_1038_s41467_023_35782_z crossref_primary_10_1016_j_electacta_2022_140091 crossref_primary_10_1016_j_gee_2022_04_009 crossref_primary_10_1002_adfm_202102285 crossref_primary_10_1016_j_joule_2022_01_007 crossref_primary_10_1002_adma_202307799 crossref_primary_10_1021_acsnano_1c06796 crossref_primary_10_1021_jacs_4c17133 crossref_primary_10_1002_eem2_12344 crossref_primary_10_1002_cctc_202400259 crossref_primary_10_1016_j_ijhydene_2022_07_163 crossref_primary_10_1016_j_electacta_2022_141740 crossref_primary_10_1021_acs_iecr_4c00482 crossref_primary_10_1016_j_chempr_2023_08_014 crossref_primary_10_1016_j_ijhydene_2021_10_186 crossref_primary_10_1039_D4TA04113E crossref_primary_10_1016_j_ijhydene_2023_01_020 crossref_primary_10_1016_j_ijhydene_2024_10_229 crossref_primary_10_1021_acsaem_2c02102 crossref_primary_10_1039_D3EE03363E crossref_primary_10_1088_2752_5724_acc51d crossref_primary_10_1021_acs_energyfuels_3c03233 crossref_primary_10_1039_D4EE01855A crossref_primary_10_1039_D3TA01522J crossref_primary_10_1002_aenm_202302436 crossref_primary_10_1002_smtd_202100871 crossref_primary_10_1016_j_mseb_2024_117753 crossref_primary_10_1016_j_cclet_2023_109282 crossref_primary_10_1016_j_mtener_2020_100618 crossref_primary_10_1002_asia_202400220 crossref_primary_10_1016_j_ccr_2022_214563 crossref_primary_10_1021_acs_jpcc_4c01056 crossref_primary_10_1039_D3CC03104G crossref_primary_10_3390_sci6040080 crossref_primary_10_1002_celc_202300710 crossref_primary_10_1016_j_cej_2024_154776 crossref_primary_10_1088_2053_1591_abecad crossref_primary_10_1021_acs_inorgchem_1c03533 crossref_primary_10_1016_j_cej_2022_137419 crossref_primary_10_1007_s12274_024_6887_8 crossref_primary_10_1016_j_ijhydene_2024_10_234 crossref_primary_10_1002_anie_202210753 crossref_primary_10_1016_j_apcatb_2025_125030 crossref_primary_10_1002_adfm_202208212 crossref_primary_10_1002_adma_202304867 crossref_primary_10_1002_chem_202302770 crossref_primary_10_1016_j_bioelechem_2024_108724 crossref_primary_10_1016_j_nanoen_2023_108694 crossref_primary_10_1007_s11426_024_2121_0 crossref_primary_10_1016_j_jallcom_2022_167931 crossref_primary_10_1038_s41467_023_39681_1 crossref_primary_10_1038_s41598_023_44758_4 crossref_primary_10_1149_1945_7111_ad576b crossref_primary_10_1016_j_enchem_2021_100055 crossref_primary_10_1039_D3NR06120E crossref_primary_10_1016_j_cej_2021_130062 crossref_primary_10_1016_j_surfin_2024_104519 crossref_primary_10_1039_D4SC07181F crossref_primary_10_1016_j_apcatb_2024_124469 crossref_primary_10_1002_aenm_202101699 crossref_primary_10_1016_j_colsurfa_2024_134049 crossref_primary_10_1149_1945_7111_ac8d2f crossref_primary_10_1016_j_jelechem_2024_118825 crossref_primary_10_1039_D4TA02089H crossref_primary_10_1016_j_mattod_2025_03_003 crossref_primary_10_1002_celc_202100914 crossref_primary_10_1016_j_cej_2025_160490 crossref_primary_10_1007_s40242_025_4207_9 crossref_primary_10_1039_D4TA03436H crossref_primary_10_1016_j_ijhydene_2024_05_104 crossref_primary_10_1016_j_cej_2021_130995 crossref_primary_10_1002_cplu_202300679 crossref_primary_10_1002_adma_202417757 crossref_primary_10_1002_anie_202421640 crossref_primary_10_1002_slct_202100553 crossref_primary_10_1007_s12274_023_5449_9 crossref_primary_10_1002_smsc_202100032 crossref_primary_10_1016_j_electacta_2023_143679 crossref_primary_10_1021_acsaem_4c01118 crossref_primary_10_1021_acscatal_2c04042 crossref_primary_10_1016_j_jssc_2021_122018 crossref_primary_10_1002_sstr_202300194 crossref_primary_10_1016_j_ijhydene_2023_09_258 crossref_primary_10_1002_adfm_202305893 crossref_primary_10_1016_j_ijhydene_2022_04_069 crossref_primary_10_1002_advs_202205605 crossref_primary_10_1016_j_ijhydene_2024_09_314 crossref_primary_10_1039_D2NR04285A crossref_primary_10_1016_j_jpcs_2023_111796 crossref_primary_10_1039_D1MA00814E crossref_primary_10_3390_ma16206816 crossref_primary_10_1016_S1872_2067_24_60105_1 crossref_primary_10_1016_j_apcatb_2021_120034 crossref_primary_10_1088_2399_7532_abfeb8 crossref_primary_10_1016_j_ijhydene_2024_07_361 crossref_primary_10_1016_j_apsusc_2022_153482 crossref_primary_10_1039_D3TA00071K crossref_primary_10_1002_smll_202309078 crossref_primary_10_1002_idm2_12172 crossref_primary_10_1016_j_ccr_2025_216556 crossref_primary_10_1021_acsami_1c14588 crossref_primary_10_1016_j_ijhydene_2023_09_012 crossref_primary_10_1016_S1872_2067_24_60034_3 crossref_primary_10_1063_5_0064697 crossref_primary_10_1002_ange_202421640 crossref_primary_10_1007_s40242_024_3278_3 crossref_primary_10_1021_acs_energyfuels_4c04603 crossref_primary_10_1016_j_apsusc_2021_151853 crossref_primary_10_1016_j_ijhydene_2024_06_202 crossref_primary_10_1039_D4NR01538J crossref_primary_10_1186_s11671_025_04232_8 crossref_primary_10_1016_j_jallcom_2023_170656 crossref_primary_10_1021_acscatal_4c05712 crossref_primary_10_1016_j_ijhydene_2024_10_262 crossref_primary_10_1002_adma_202404658 crossref_primary_10_1016_j_nanoen_2020_105641 crossref_primary_10_1016_j_ijhydene_2024_03_118 crossref_primary_10_1021_acscatal_2c05512 crossref_primary_10_1002_aenm_202304418 crossref_primary_10_1038_s41467_022_33007_3 crossref_primary_10_1016_j_cej_2024_151236 crossref_primary_10_1002_celc_202400259 crossref_primary_10_1002_cnma_202200355 crossref_primary_10_1021_acs_jpcc_4c06554 crossref_primary_10_1002_adma_202408461 crossref_primary_10_1021_acsaem_4c00601 crossref_primary_10_1016_j_mtener_2024_101595 crossref_primary_10_1002_aenm_202203164 crossref_primary_10_1021_acsaem_3c00863 crossref_primary_10_1360_SSC_2024_0249 crossref_primary_10_1016_j_mtener_2021_100883 crossref_primary_10_3390_catal13030551 crossref_primary_10_1002_eem2_12766 crossref_primary_10_1103_PhysRevB_107_235414 crossref_primary_10_1016_j_jhazmat_2022_129551 crossref_primary_10_1039_D1QI00377A crossref_primary_10_1016_j_fuel_2024_133288 crossref_primary_10_1016_j_jcis_2021_08_035 crossref_primary_10_1016_j_rinma_2024_100625 crossref_primary_10_1016_j_ijhydene_2024_07_386 crossref_primary_10_1016_j_surfin_2024_105245 crossref_primary_10_1039_D1TA09142E crossref_primary_10_2139_ssrn_4103926 crossref_primary_10_1039_D4NJ04638B crossref_primary_10_3390_hydrogen4040049 crossref_primary_10_1039_D2QM00931E crossref_primary_10_1002_aenm_202401956 crossref_primary_10_1016_j_apcata_2021_118293 crossref_primary_10_1016_j_ceramint_2024_10_397 crossref_primary_10_1002_ppap_202400144 crossref_primary_10_1002_smll_202207342 crossref_primary_10_1021_acscatal_4c04048 crossref_primary_10_1002_ece2_10 crossref_primary_10_1021_acsanm_2c04071 crossref_primary_10_3390_coatings13061102 crossref_primary_10_1016_j_jmst_2023_11_020 crossref_primary_10_1002_adma_202106541 crossref_primary_10_1016_j_mssp_2022_106765 crossref_primary_10_1016_j_jmst_2024_06_013 crossref_primary_10_1002_slct_202303018 crossref_primary_10_1002_smll_202106260 crossref_primary_10_1016_j_cej_2023_144748 crossref_primary_10_1016_j_ccr_2024_215752 crossref_primary_10_1016_j_seppur_2025_132028 crossref_primary_10_1016_j_checat_2022_100499 crossref_primary_10_1016_j_jcis_2024_06_084 crossref_primary_10_1039_D1CC06409F crossref_primary_10_1002_ente_202300182 crossref_primary_10_1007_s12274_024_6485_9 crossref_primary_10_1016_j_seppur_2023_126115 crossref_primary_10_1002_eem2_12424 crossref_primary_10_1016_j_comptc_2024_115044 crossref_primary_10_2139_ssrn_4098289 crossref_primary_10_1002_slct_202104041 crossref_primary_10_1039_D3DT04034H crossref_primary_10_3866_PKU_WHXB202305041 |
Cites_doi | 10.1038/nchem.1574 10.1039/C8EE00976G 10.1002/celc.201402085 10.1039/C7NR03515B 10.1016/j.nanoen.2017.06.027 10.1021/jacs.7b06434 10.1039/c2ee22611a 10.1021/jacs.0c01104 10.1016/j.apcatb.2019.118555 10.1039/C6TA09052D 10.1002/aenm.201402031 10.1039/C6NR09883E 10.1021/acs.jpcc.5b05295 10.1039/C6NJ03194C 10.1021/acscatal.5b00556 10.1021/jacs.5b11986 10.1002/1439-7633(20020301)3:2/3<153::AID-CBIC153>3.0.CO;2-B 10.1039/C4CS00448E 10.1002/celc.201700392 10.1002/adma.201605502 10.1039/C4NR04924A 10.1016/j.pecs.2009.11.002 10.1039/C5CC04965B 10.1016/S0013-4686(02)00329-8 10.1021/ja4094764 10.1002/adfm.201707244 10.1016/j.electacta.2018.07.094 10.1021/acsami.6b15399 10.1021/acscatal.5b01637 10.1038/s41560-018-0296-8 10.1021/ja0540019 10.1016/j.apcata.2019.117226 10.1016/j.elecom.2019.106647 10.1021/acsami.6b15980 10.1039/C4EE00957F 10.1021/acs.jpcc.6b05230 10.1021/cs5014943 10.1021/nn5048553 10.1016/j.nanoen.2015.12.025 10.1016/j.ijhydene.2015.02.038 10.1126/science.1211934 10.1021/acs.jpcc.6b07954 10.1533/9780857093790 10.1021/acscatal.6b02849 10.1016/j.rser.2013.08.090 10.1016/j.apcatb.2019.03.037 10.1016/j.jcis.2018.08.040 10.1016/j.ijhydene.2019.11.154 10.1002/adfm.201606635 10.1039/C6EE03768B 10.1039/C9TA08812A 10.1021/acscatal.8b01076 10.1038/s41467-019-12773-7 10.1126/sciadv.1500259 10.1002/chem.201702923 10.1016/j.electacta.2016.08.129 10.1039/C7TA06000A 10.1002/anie.201702934 10.1039/C9EE02380A 10.1021/acscatal.7b04276 10.1021/acs.jpcc.5b12137 10.1002/advs.201500426 10.1002/smll.201900358 10.1002/anie.201901409 10.1021/acs.accounts.6b00595 10.1007/s12274-017-1634-z 10.1016/j.ijhydene.2009.05.126 10.1039/C6TA03588D 10.1002/aenm.201902666 10.1021/acs.jpcc.5b03276 10.1016/j.apcatb.2015.06.045 10.1021/cs4011698 10.1016/j.electacta.2017.09.008 10.1039/C5CS00434A 10.1021/acscatal.9b02609 10.1002/advs.201901458 10.1039/C4TA03962A 10.1016/S0013-4686(00)00523-5 10.1021/acscatal.6b02479 10.1021/acsami.8b17961 10.1002/anie.201710556 10.1039/C7TA02333B 10.1039/C6TA06101J 10.1016/j.apcatb.2014.09.016 10.1039/C9TA08030A 10.1002/adma.201606521 10.1039/C7CY00703E 10.1038/ncomms6848 10.1002/celc.201901860 10.1021/ja503372r 10.1002/aenm.201502319 10.1126/science.aad4998 10.1021/jacs.8b04006 10.1016/j.nanoen.2017.08.031 10.1039/c3ta12062g 10.1002/anie.201601367 10.1002/cssc.201700693 10.1021/acsomega.8b02223 10.1002/adma.201707261 10.1039/C9TA05601G 10.1039/C7CC01584D 10.1016/j.electacta.2014.12.096 10.1016/j.apcatb.2019.05.010 10.1021/ja0504690 10.1021/acscatal.9b00407 10.1016/j.pnsc.2016.05.014 10.1038/nenergy.2017.31 10.1016/S0926-860X(02)00428-3 10.1039/C8TA02204F 10.1002/anie.201808929 10.1038/nmat3313 10.1007/s12274-019-2379-7 10.1126/sciadv.1501602 10.1021/jacs.8b13228 10.1039/C8TA08519F 10.1007/s12274-017-1818-6 10.1039/C7TA09254G 10.1039/C7TA03198J 10.1002/anie.201706921 10.1021/am507811a 10.1016/j.apcatb.2016.05.027 10.1002/anie.201402998 10.1016/j.matlet.2019.127041 10.1039/c1ee01970h 10.1002/cssc.201601583 10.1039/C4TA04339A 10.1016/j.elecom.2017.08.011 10.1016/j.electacta.2020.135696 10.1039/C5CP02330K 10.1039/c1cp21717h 10.1039/C5TA08611F 10.1039/B801144N 10.1039/C5RA26748J 10.1002/adma.201605838 10.1021/acsnano.7b01908 10.1016/j.electacta.2017.01.147 10.1021/cs501106g 10.1016/j.ijhydene.2013.01.151 10.1002/anie.201311111 10.1016/j.apcatb.2009.01.003 10.1016/j.elecom.2011.03.032 10.1016/j.jpowsour.2015.01.009 10.1021/acscatal.7b00199 10.1038/s41560-019-0404-4 10.1021/acsami.9b07415 10.1021/cs500070x 10.1039/C9CC05522C 10.1016/j.jpowsour.2015.04.091 10.1039/C6TA01328G |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/d0ee01856b |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 326 |
ExternalDocumentID | 10_1039_D0EE01856B d0ee01856b |
GroupedDBID | 0-7 0R 29G 4.4 5GY 70 705 7~J AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 EBS ECGLT EE0 EF- GNO HZ H~N J3I JG M4U N9A O-G O9- P2P RCNCU RIG RPMJG RRC RSCEA SKA SLH TOV UCJ 0R~ 70~ AAJAE AARTK AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c410t-4f973224651fe029cf861626aa4d16e59744abdbd17934258a5380a50052e8063 |
ISSN | 1754-5692 |
IngestDate | Mon Jun 30 11:59:59 EDT 2025 Thu Apr 24 23:01:52 EDT 2025 Tue Jul 01 01:45:46 EDT 2025 Sat Jan 08 03:54:55 EST 2022 Wed Nov 11 00:36:16 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c410t-4f973224651fe029cf861626aa4d16e59744abdbd17934258a5380a50052e8063 |
Notes | Zheng Zhou received his PhD degree from the school of Chemical & Biomolecule Engineering, the University of Sydney, Australia, in 2019. He is currently working as a postdoctoral fellow with Prof. Yuan Chen at the University of Sydney. His research focuses on catalyst design and energy conversion electrolysis, including metal-air batteries, transition metal-based electrocatalysts for hydrogen evolution, oxygen reduction, oxygen evolution reactions, etc. Zengxia Pei received his PhD from City University of Hong Kong in 2017. Currently, he works as an Australian Research Council Discovery Early Career Researcher Award (ARC DECRA) Fellow at the University of Sydney. His research focuses on the design and development of nanomaterials for sustainable energy conversion and storage in fields including electrocatalysis and aqueous batteries. Yuan Chen received a bachelor's degree from Tsinghua University and a PhD from Yale University. He is a professor at The University of Sydney. His research focuses on carbon materials and their sustainable energy and environmental applications, including supercapacitors, batteries, electrocatalysts, membranes, and antibacterial coatings. He is a fellow of the Royal society of chemistry and institution of chemical engineers. He is currently serving as an editor for Carbon and Journal of Alloys and Compounds. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9059-3839 0000-0001-8771-2921 0000-0002-3202-7879 0000-0002-9955-1704 |
PQID | 2450769404 |
PQPubID | 2047494 |
PageCount | 22 |
ParticipantIDs | crossref_citationtrail_10_1039_D0EE01856B proquest_journals_2450769404 crossref_primary_10_1039_D0EE01856B rsc_primary_d0ee01856b |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 20200101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Hota (D0EE01856B-(cit113)/*[position()=1]) 2018; 3 Shi (D0EE01856B-(cit1)/*[position()=1]) 2016; 45 Feng (D0EE01856B-(cit133)/*[position()=1]) 2016; 4 Tao (D0EE01856B-(cit102)/*[position()=1]) 2019; 254 Zheng (D0EE01856B-(cit120)/*[position()=1]) 2018; 57 Peng (D0EE01856B-(cit98)/*[position()=1]) 2015; 5 Cao (D0EE01856B-(cit112)/*[position()=1]) 2020; 335 Pei (D0EE01856B-(cit22)/*[position()=1]) 2013; 1 Hao (D0EE01856B-(cit131)/*[position()=1]) 2017; 5 Liu (D0EE01856B-(cit145)/*[position()=1]) 2015; 51 Wang (D0EE01856B-(cit14)/*[position()=1]) 2017; 29 Pei (D0EE01856B-(cit23)/*[position()=1]) 2016; 180 Seh (D0EE01856B-(cit93)/*[position()=1]) 2017; 355 Yu (D0EE01856B-(cit87)/*[position()=1]) 2019; 6 Liu (D0EE01856B-(cit41)/*[position()=1]) 2019; 58 Zhu (D0EE01856B-(cit66)/*[position()=1]) 2016; 4 Gao (D0EE01856B-(cit86)/*[position()=1]) 2015; 7 Shinagawa (D0EE01856B-(cit21)/*[position()=1]) 2014; 1 Wang (D0EE01856B-(cit47)/*[position()=1]) 2019; 10 Katsounaros (D0EE01856B-(cit31)/*[position()=1]) 2011; 13 Sheng (D0EE01856B-(cit27)/*[position()=1]) 2015; 6 Hsu (D0EE01856B-(cit54)/*[position()=1]) 2018; 30 Xing (D0EE01856B-(cit70)/*[position()=1]) 2014; 5 Li (D0EE01856B-(cit95)/*[position()=1]) 2019; 55 Subbaraman (D0EE01856B-(cit121)/*[position()=1]) 2011; 334 Huang (D0EE01856B-(cit125)/*[position()=1]) 2018; 6 Irshad (D0EE01856B-(cit104)/*[position()=1]) 2017; 9 Shinagawa (D0EE01856B-(cit32)/*[position()=1]) 2015; 119 Cui (D0EE01856B-(cit67)/*[position()=1]) 2015; 164 Yan (D0EE01856B-(cit118)/*[position()=1]) 2019; 7 Wang (D0EE01856B-(cit144)/*[position()=1]) 2020; 7 Zhang (D0EE01856B-(cit40)/*[position()=1]) 2017; 29 Gao (D0EE01856B-(cit20)/*[position()=1]) 2020; 13 Wu (D0EE01856B-(cit89)/*[position()=1]) 2019; 11 You (D0EE01856B-(cit39)/*[position()=1]) 2017; 139 Zhang (D0EE01856B-(cit135)/*[position()=1]) 2017; 7 Ren (D0EE01856B-(cit106)/*[position()=1]) 2018; 11 Armstrong (D0EE01856B-(cit71)/*[position()=1]) 2009; 38 Zeng (D0EE01856B-(cit154)/*[position()=1]) 2019; 7 Li (D0EE01856B-(cit123)/*[position()=1]) 2016; 3 Feng (D0EE01856B-(cit148)/*[position()=1]) 2017; 56 Liu (D0EE01856B-(cit63)/*[position()=1]) 2017; 4 Ledezma-Yanez (D0EE01856B-(cit10)/*[position()=1]) 2017; 2 Pei (D0EE01856B-(cit24)/*[position()=1]) 2016; 20 Chen (D0EE01856B-(cit147)/*[position()=1]) 2009; 34 Kandiel (D0EE01856B-(cit111)/*[position()=1]) 2019; 586 Liu (D0EE01856B-(cit114)/*[position()=1]) 2016; 7 Zou (D0EE01856B-(cit4)/*[position()=1]) 2015; 44 Murthy (D0EE01856B-(cit50)/*[position()=1]) 2017; 83 Basile (D0EE01856B-(cit53)/*[position()=1]) 2011; 65 Liu (D0EE01856B-(cit100)/*[position()=1]) 2017; 29 Strmcnik (D0EE01856B-(cit29)/*[position()=1]) 2013; 5 Qin (D0EE01856B-(cit76)/*[position()=1]) 2016; 120 Pu (D0EE01856B-(cit65)/*[position()=1]) 2016; 196 Basile (D0EE01856B-(cit17)/*[position()=1]) 2011 Wang (D0EE01856B-(cit132)/*[position()=1]) 2017; 23 Tian (D0EE01856B-(cit64)/*[position()=1]) 2014; 136 Shinagawa (D0EE01856B-(cit49)/*[position()=1]) 2017; 10 Zhou (D0EE01856B-(cit134)/*[position()=1]) 2017; 229 Carmo (D0EE01856B-(cit15)/*[position()=1]) 2013; 38 Liu (D0EE01856B-(cit46)/*[position()=1]) 2019; 141 Callejas (D0EE01856B-(cit153)/*[position()=1]) 2014; 8 Tang (D0EE01856B-(cit138)/*[position()=1]) 2015; 40 Ma (D0EE01856B-(cit115)/*[position()=1]) 2017; 10 Kenney (D0EE01856B-(cit128)/*[position()=1]) 2019; 12 Auinger (D0EE01856B-(cit35)/*[position()=1]) 2011; 13 Yan (D0EE01856B-(cit94)/*[position()=1]) 2020; 265 Zhou (D0EE01856B-(cit48)/*[position()=1]) 2017; 5 Ji (D0EE01856B-(cit146)/*[position()=1]) 2017; 252 Anantharaj (D0EE01856B-(cit7)/*[position()=1]) 2017; 39 Zhang (D0EE01856B-(cit117)/*[position()=1]) 2017; 56 Sun (D0EE01856B-(cit122)/*[position()=1]) 2013; 135 Garces-Pineda (D0EE01856B-(cit155)/*[position()=1]) 2019; 4 Zeng (D0EE01856B-(cit16)/*[position()=1]) 2010; 36 Jasion (D0EE01856B-(cit74)/*[position()=1]) 2015; 5 Zhang (D0EE01856B-(cit101)/*[position()=1]) 2016; 6 Liu (D0EE01856B-(cit108)/*[position()=1]) 2017; 40 Shinagawa (D0EE01856B-(cit52)/*[position()=1]) 2015; 287 Liu (D0EE01856B-(cit105)/*[position()=1]) 2016; 55 Miao (D0EE01856B-(cit119)/*[position()=1]) 2015; 1 Anantharaj (D0EE01856B-(cit6)/*[position()=1]) 2016; 6 Wu (D0EE01856B-(cit136)/*[position()=1]) 2016; 26 Cai (D0EE01856B-(cit143)/*[position()=1]) 2018; 8 Sun (D0EE01856B-(cit109)/*[position()=1]) 2017; 9 Tavakkoli (D0EE01856B-(cit60)/*[position()=1]) 2017; 7 Zhao (D0EE01856B-(cit96)/*[position()=1]) 2020; 262 Shinagawa (D0EE01856B-(cit51)/*[position()=1]) 2016; 120 Gandía (D0EE01856B-(cit18)/*[position()=1]) 2013 Zhang (D0EE01856B-(cit129)/*[position()=1]) 2016; 6 Anantharaj (D0EE01856B-(cit137)/*[position()=1]) 2017; 9 Shinagawa (D0EE01856B-(cit34)/*[position()=1]) 2016; 120 Xiao (D0EE01856B-(cit62)/*[position()=1]) 2014; 7 Dinda (D0EE01856B-(cit79)/*[position()=1]) 2016; 4 Ma (D0EE01856B-(cit58)/*[position()=1]) 2017; 10 Fan (D0EE01856B-(cit139)/*[position()=1]) 2016; 215 Xie (D0EE01856B-(cit151)/*[position()=1]) 2017; 5 Shi (D0EE01856B-(cit85)/*[position()=1]) 2015; 154 Zhang (D0EE01856B-(cit116)/*[position()=1]) 2017; 27 Zeng (D0EE01856B-(cit57)/*[position()=1]) 2019; 7 Huang (D0EE01856B-(cit38)/*[position()=1]) 2016; 138 Conway (D0EE01856B-(cit43)/*[position()=1]) 2000; 45 Murthy (D0EE01856B-(cit19)/*[position()=1]) 2018; 283 De Valladares (D0EE01856B-(cit2)/*[position()=1]) Sarno (D0EE01856B-(cit55)/*[position()=1]) 2020; 111 Zheng (D0EE01856B-(cit36)/*[position()=1]) 2016; 2 Tan (D0EE01856B-(cit90)/*[position()=1]) 2019; 11 Feng (D0EE01856B-(cit150)/*[position()=1]) 2015; 7 Subbaraman (D0EE01856B-(cit26)/*[position()=1]) 2012; 11 Wan (D0EE01856B-(cit81)/*[position()=1]) 2014; 53 Jiang (D0EE01856B-(cit75)/*[position()=1]) 2014; 2 Liu (D0EE01856B-(cit92)/*[position()=1]) 2019; 58 Zhou (D0EE01856B-(cit80)/*[position()=1]) 2019; 15 Liu (D0EE01856B-(cit61)/*[position()=1]) 2005; 127 Pu (D0EE01856B-(cit69)/*[position()=1]) 2017; 41 Son (D0EE01856B-(cit28)/*[position()=1]) 2015; 119 Zhu (D0EE01856B-(cit44)/*[position()=1]) 2020; 142 Zhang (D0EE01856B-(cit103)/*[position()=1]) 2017; 29 Chen (D0EE01856B-(cit68)/*[position()=1]) 2017; 53 Zhang (D0EE01856B-(cit140)/*[position()=1]) 2017; 11 Zhao (D0EE01856B-(cit127)/*[position()=1]) 2015; 5 Li (D0EE01856B-(cit88)/*[position()=1]) 2014; 2 Zhang (D0EE01856B-(cit107)/*[position()=1]) 2018; 8 Wang (D0EE01856B-(cit141)/*[position()=1]) 2018; 532 Shinagawa (D0EE01856B-(cit30)/*[position()=1]) 2015; 17 Dinh (D0EE01856B-(cit25)/*[position()=1]) 2018; 4 Conway (D0EE01856B-(cit33)/*[position()=1]) 2002; 47 Cheng (D0EE01856B-(cit37)/*[position()=1]) 2018; 140 Men (D0EE01856B-(cit91)/*[position()=1]) 2019; 9 Yan (D0EE01856B-(cit77)/*[position()=1]) 2014; 4 Yan (D0EE01856B-(cit152)/*[position()=1]) 2017; 5 Hinnemann (D0EE01856B-(cit78)/*[position()=1]) 2005; 127 He (D0EE01856B-(cit142)/*[position()=1]) 2018; 28 Anantharaj (D0EE01856B-(cit8)/*[position()=1]) 2020; 10 Harnisch (D0EE01856B-(cit84)/*[position()=1]) 2009; 89 Li (D0EE01856B-(cit124)/*[position()=1]) 2018; 6 Frey (D0EE01856B-(cit72)/*[position()=1]) 2002; 3 Tran (D0EE01856B-(cit97)/*[position()=1]) 2012; 5 Pu (D0EE01856B-(cit149)/*[position()=1]) 2017; 9 Pei (D0EE01856B-(cit13)/*[position()=1]) 2018; 6 Huang (D0EE01856B-(cit126)/*[position()=1]) 2019; 251 D0EE01856B-(cit3)/*[position()=1] Wang (D0EE01856B-(cit5)/*[position()=1]) 2014; 29 Merki (D0EE01856B-(cit9)/*[position()=1]) 2011; 4 Di Giovanni (D0EE01856B-(cit73)/*[position()=1]) 2014; 4 Pei (D0EE01856B-(cit11)/*[position()=1]) 2016; 4 Tsuji (D0EE01856B-(cit45)/*[position()=1]) 2017; 50 Zou (D0EE01856B-(cit42)/*[position()=1]) 2014; 53 Furimsky (D0EE01856B-(cit82)/*[position()=1]) 2003; 240 Liang (D0EE01856B-(cit130)/*[position()=1]) 2014; 4 Xie (D0EE01856B-(cit56)/*[position()=1]) 2019; 9 Wu (D0EE01856B-(cit99)/*[position()=1]) 2018; 57 Wang (D0EE01856B-(cit110)/*[position()=1]) 2020; 45 Gupta (D0EE01856B-(cit83)/*[position()=1]) 2015; 279 Pei (D0EE01856B-(cit12)/*[position()=1]) 2017; 11 Lu (D0EE01856B-(cit59)/*[position()=1]) 2018; 11 |
References_xml | – issn: 2013 publication-title: Renewable hydrogen technologies: production, purification, storage, applications and safety doi: Gandía Arzamedi Diéguez – doi: De Valladares – issn: 2011 publication-title: Advanced membrane science and technology for sustainable energy and environmental applications doi: Basile Nunes – volume: 5 start-page: 300 year: 2013 ident: D0EE01856B-(cit29)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1574 – volume: 11 start-page: 1898 year: 2018 ident: D0EE01856B-(cit59)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00976G – volume: 1 start-page: 1497 year: 2014 ident: D0EE01856B-(cit21)/*[position()=1] publication-title: ChemElectroChem doi: 10.1002/celc.201402085 – volume: 9 start-page: 16674 year: 2017 ident: D0EE01856B-(cit109)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR03515B – volume: 39 start-page: 30 year: 2017 ident: D0EE01856B-(cit7)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.06.027 – volume: 139 start-page: 12283 year: 2017 ident: D0EE01856B-(cit39)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06434 – volume: 5 start-page: 8912 year: 2012 ident: D0EE01856B-(cit97)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22611a – volume: 142 start-page: 8748 year: 2020 ident: D0EE01856B-(cit44)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01104 – volume: 265 start-page: 118555 year: 2020 ident: D0EE01856B-(cit94)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118555 – volume: 5 start-page: 765 year: 2017 ident: D0EE01856B-(cit152)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09052D – volume: 5 start-page: 1402031 year: 2015 ident: D0EE01856B-(cit98)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201402031 – volume: 9 start-page: 3555 year: 2017 ident: D0EE01856B-(cit149)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR09883E – volume: 119 start-page: 20453 year: 2015 ident: D0EE01856B-(cit32)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b05295 – volume: 41 start-page: 2154 year: 2017 ident: D0EE01856B-(cit69)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C6NJ03194C – volume: 5 start-page: 4115 year: 2015 ident: D0EE01856B-(cit127)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.5b00556 – volume: 138 start-page: 1359 year: 2016 ident: D0EE01856B-(cit38)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11986 – volume: 3 start-page: 153 year: 2002 ident: D0EE01856B-(cit72)/*[position()=1] publication-title: ChemBioChem doi: 10.1002/1439-7633(20020301)3:2/3<153::AID-CBIC153>3.0.CO;2-B – volume: 44 start-page: 5148 year: 2015 ident: D0EE01856B-(cit4)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00448E – volume: 4 start-page: 1840 year: 2017 ident: D0EE01856B-(cit63)/*[position()=1] publication-title: ChemElectroChem doi: 10.1002/celc.201700392 – volume: 29 start-page: 1605502 year: 2017 ident: D0EE01856B-(cit103)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201605502 – volume: 7 start-page: 2306 year: 2015 ident: D0EE01856B-(cit86)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR04924A – volume: 36 start-page: 307 year: 2010 ident: D0EE01856B-(cit16)/*[position()=1] publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2009.11.002 – volume: 51 start-page: 12954 year: 2015 ident: D0EE01856B-(cit145)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC04965B – volume: 47 start-page: 3571 year: 2002 ident: D0EE01856B-(cit33)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(02)00329-8 – volume: 135 start-page: 17699 year: 2013 ident: D0EE01856B-(cit122)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4094764 – volume: 28 start-page: 1707244 year: 2018 ident: D0EE01856B-(cit142)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707244 – volume: 283 start-page: 1525 year: 2018 ident: D0EE01856B-(cit19)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.07.094 – volume: 9 start-page: 19746 year: 2017 ident: D0EE01856B-(cit104)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15399 – volume: 5 start-page: 6653 year: 2015 ident: D0EE01856B-(cit74)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.5b01637 – volume: 4 start-page: 107 year: 2018 ident: D0EE01856B-(cit25)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-018-0296-8 – volume: 127 start-page: 14871 year: 2005 ident: D0EE01856B-(cit61)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0540019 – volume: 586 start-page: 117226 year: 2019 ident: D0EE01856B-(cit111)/*[position()=1] publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2019.117226 – volume: 111 start-page: 106647 year: 2020 ident: D0EE01856B-(cit55)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2019.106647 – volume: 9 start-page: 8714 year: 2017 ident: D0EE01856B-(cit137)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15980 – volume: 7 start-page: 2624 year: 2014 ident: D0EE01856B-(cit62)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00957F – volume: 120 start-page: 14581 year: 2016 ident: D0EE01856B-(cit76)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b05230 – ident: D0EE01856B-(cit2)/*[position()=1] – volume: 5 start-page: 145 year: 2014 ident: D0EE01856B-(cit70)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/cs5014943 – volume: 8 start-page: 11101 year: 2014 ident: D0EE01856B-(cit153)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn5048553 – volume: 20 start-page: 254 year: 2016 ident: D0EE01856B-(cit24)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.12.025 – volume: 40 start-page: 4727 year: 2015 ident: D0EE01856B-(cit138)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.02.038 – volume: 334 start-page: 1256 year: 2011 ident: D0EE01856B-(cit121)/*[position()=1] publication-title: Science doi: 10.1126/science.1211934 – volume: 120 start-page: 24187 year: 2016 ident: D0EE01856B-(cit34)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b07954 – volume-title: Advanced membrane science and technology for sustainable energy and environmental applications year: 2011 ident: D0EE01856B-(cit17)/*[position()=1] doi: 10.1533/9780857093790 – volume: 7 start-page: 98 year: 2016 ident: D0EE01856B-(cit114)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b02849 – volume: 29 start-page: 573 year: 2014 ident: D0EE01856B-(cit5)/*[position()=1] publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2013.08.090 – volume: 251 start-page: 181 year: 2019 ident: D0EE01856B-(cit126)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.03.037 – volume: 532 start-page: 774 year: 2018 ident: D0EE01856B-(cit141)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.08.040 – volume: 45 start-page: 2504 year: 2020 ident: D0EE01856B-(cit110)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.11.154 – volume: 27 start-page: 1606635 year: 2017 ident: D0EE01856B-(cit116)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201606635 – volume: 10 start-page: 788 year: 2017 ident: D0EE01856B-(cit58)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03768B – volume: 7 start-page: 22453 year: 2019 ident: D0EE01856B-(cit118)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA08812A – volume: 8 start-page: 5200 year: 2018 ident: D0EE01856B-(cit107)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.8b01076 – volume: 10 start-page: 4876 year: 2019 ident: D0EE01856B-(cit47)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-12773-7 – volume: 1 start-page: e1500259 year: 2015 ident: D0EE01856B-(cit119)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.1500259 – volume: 23 start-page: 12718 year: 2017 ident: D0EE01856B-(cit132)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201702923 – volume: 215 start-page: 366 year: 2016 ident: D0EE01856B-(cit139)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.08.129 – volume: 5 start-page: 20390 year: 2017 ident: D0EE01856B-(cit48)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA06000A – volume: 56 start-page: 8120 year: 2017 ident: D0EE01856B-(cit148)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201702934 – volume: 13 start-page: 174 year: 2020 ident: D0EE01856B-(cit20)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02380A – volume: 8 start-page: 3895 year: 2018 ident: D0EE01856B-(cit143)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b04276 – volume: 120 start-page: 1785 year: 2016 ident: D0EE01856B-(cit51)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b12137 – volume: 3 start-page: 1500426 year: 2016 ident: D0EE01856B-(cit123)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201500426 – volume: 15 start-page: e1900358 year: 2019 ident: D0EE01856B-(cit80)/*[position()=1] publication-title: Small doi: 10.1002/smll.201900358 – volume: 58 start-page: 4679 year: 2019 ident: D0EE01856B-(cit41)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201901409 – volume: 50 start-page: 396 year: 2017 ident: D0EE01856B-(cit45)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00595 – volume: 11 start-page: 323 year: 2017 ident: D0EE01856B-(cit140)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-017-1634-z – volume: 34 start-page: 6596 year: 2009 ident: D0EE01856B-(cit147)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.05.126 – volume: 4 start-page: 12205 year: 2016 ident: D0EE01856B-(cit11)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA03588D – volume: 10 start-page: 1902666 year: 2020 ident: D0EE01856B-(cit8)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902666 – volume: 119 start-page: 10321 year: 2015 ident: D0EE01856B-(cit28)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b03276 – volume: 180 start-page: 463 year: 2016 ident: D0EE01856B-(cit23)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2015.06.045 – volume: 4 start-page: 681 year: 2014 ident: D0EE01856B-(cit73)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/cs4011698 – volume: 252 start-page: 516 year: 2017 ident: D0EE01856B-(cit146)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.09.008 – volume: 45 start-page: 1529 year: 2016 ident: D0EE01856B-(cit1)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00434A – volume: 9 start-page: 8712 year: 2019 ident: D0EE01856B-(cit56)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.9b02609 – volume: 58 start-page: 4679 year: 2019 ident: D0EE01856B-(cit92)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201901409 – volume: 6 start-page: 1901458 year: 2019 ident: D0EE01856B-(cit87)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201901458 – volume: 2 start-page: 18420 year: 2014 ident: D0EE01856B-(cit88)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03962A – volume: 45 start-page: 4075 year: 2000 ident: D0EE01856B-(cit43)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(00)00523-5 – volume: 6 start-page: 8069 year: 2016 ident: D0EE01856B-(cit6)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b02479 – volume: 11 start-page: 3880 year: 2019 ident: D0EE01856B-(cit90)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b17961 – volume: 57 start-page: 7568 year: 2018 ident: D0EE01856B-(cit120)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201710556 – volume: 5 start-page: 7806 year: 2017 ident: D0EE01856B-(cit151)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02333B – volume: 4 start-page: 15486 year: 2016 ident: D0EE01856B-(cit79)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA06101J – volume: 164 start-page: 144 year: 2015 ident: D0EE01856B-(cit67)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2014.09.016 – volume: 7 start-page: 25628 year: 2019 ident: D0EE01856B-(cit57)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA08030A – volume: 29 start-page: 1606521 year: 2017 ident: D0EE01856B-(cit100)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201606521 – volume: 7 start-page: 2689 year: 2017 ident: D0EE01856B-(cit135)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY00703E – volume: 6 start-page: 5848 year: 2015 ident: D0EE01856B-(cit27)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms6848 – volume: 7 start-page: 289 year: 2020 ident: D0EE01856B-(cit144)/*[position()=1] publication-title: ChemElectroChem doi: 10.1002/celc.201901860 – volume: 136 start-page: 7587 year: 2014 ident: D0EE01856B-(cit64)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja503372r – volume: 6 start-page: 1502319 year: 2016 ident: D0EE01856B-(cit129)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502319 – volume: 355 start-page: eaad4998 year: 2017 ident: D0EE01856B-(cit93)/*[position()=1] publication-title: Science doi: 10.1126/science.aad4998 – volume: 140 start-page: 7787 year: 2018 ident: D0EE01856B-(cit37)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04006 – volume: 40 start-page: 264 year: 2017 ident: D0EE01856B-(cit108)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.08.031 – volume: 1 start-page: 10099 year: 2013 ident: D0EE01856B-(cit22)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta12062g – volume: 55 start-page: 6725 year: 2016 ident: D0EE01856B-(cit105)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201601367 – volume: 10 start-page: 3188 year: 2017 ident: D0EE01856B-(cit115)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201700693 – volume: 3 start-page: 17070 year: 2018 ident: D0EE01856B-(cit113)/*[position()=1] publication-title: ACS Omega doi: 10.1021/acsomega.8b02223 – volume: 30 start-page: 1707261 year: 2018 ident: D0EE01856B-(cit54)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201707261 – volume: 7 start-page: 16793 year: 2019 ident: D0EE01856B-(cit154)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05601G – volume: 29 start-page: 1605502 year: 2017 ident: D0EE01856B-(cit40)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201605502 – volume: 53 start-page: 5507 year: 2017 ident: D0EE01856B-(cit68)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC01584D – volume: 154 start-page: 345 year: 2015 ident: D0EE01856B-(cit85)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.12.096 – volume: 254 start-page: 424 year: 2019 ident: D0EE01856B-(cit102)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.05.010 – volume: 127 start-page: 5308 year: 2005 ident: D0EE01856B-(cit78)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0504690 – volume: 9 start-page: 3744 year: 2019 ident: D0EE01856B-(cit91)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.9b00407 – volume: 65 start-page: 50 year: 2011 ident: D0EE01856B-(cit53)/*[position()=1] publication-title: Sci-Tech News – volume: 26 start-page: 303 year: 2016 ident: D0EE01856B-(cit136)/*[position()=1] publication-title: Prog. Nat. Sci.: Mater. Int. doi: 10.1016/j.pnsc.2016.05.014 – volume: 2 start-page: 17031 year: 2017 ident: D0EE01856B-(cit10)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2017.31 – volume: 240 start-page: 1 year: 2003 ident: D0EE01856B-(cit82)/*[position()=1] publication-title: Appl. Catal., A doi: 10.1016/S0926-860X(02)00428-3 – volume: 6 start-page: 9467 year: 2018 ident: D0EE01856B-(cit125)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02204F – ident: D0EE01856B-(cit3)/*[position()=1] – volume: 57 start-page: 15445 year: 2018 ident: D0EE01856B-(cit99)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201808929 – volume: 11 start-page: 550 year: 2012 ident: D0EE01856B-(cit26)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3313 – volume: 12 start-page: 1431 year: 2019 ident: D0EE01856B-(cit128)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-019-2379-7 – volume: 2 start-page: e1501602 year: 2016 ident: D0EE01856B-(cit36)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.1501602 – volume: 141 start-page: 3232 year: 2019 ident: D0EE01856B-(cit46)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13228 – volume: 6 start-page: 24767 year: 2018 ident: D0EE01856B-(cit124)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08519F – volume: 11 start-page: 2024 year: 2018 ident: D0EE01856B-(cit106)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-017-1818-6 – volume: 6 start-page: 489 year: 2018 ident: D0EE01856B-(cit13)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09254G – volume: 5 start-page: 12091 year: 2017 ident: D0EE01856B-(cit131)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03198J – volume: 56 start-page: 13694 year: 2017 ident: D0EE01856B-(cit117)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201706921 – volume: 7 start-page: 980 year: 2015 ident: D0EE01856B-(cit150)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am507811a – volume: 196 start-page: 193 year: 2016 ident: D0EE01856B-(cit65)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2016.05.027 – volume: 53 start-page: 6407 year: 2014 ident: D0EE01856B-(cit81)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201402998 – volume: 262 start-page: 127041 year: 2020 ident: D0EE01856B-(cit96)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.127041 – volume: 4 start-page: 3878 year: 2011 ident: D0EE01856B-(cit9)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01970h – volume: 10 start-page: 1318 year: 2017 ident: D0EE01856B-(cit49)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201601583 – volume: 2 start-page: 19407 year: 2014 ident: D0EE01856B-(cit75)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04339A – volume: 83 start-page: 6 year: 2017 ident: D0EE01856B-(cit50)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2017.08.011 – volume: 335 start-page: 135696 year: 2020 ident: D0EE01856B-(cit112)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.135696 – volume: 17 start-page: 15111 year: 2015 ident: D0EE01856B-(cit30)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP02330K – volume: 13 start-page: 16384 year: 2011 ident: D0EE01856B-(cit35)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp21717h – volume: 4 start-page: 6860 year: 2016 ident: D0EE01856B-(cit133)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA08611F – volume-title: Renewable hydrogen technologies: production, purification, storage, applications and safety year: 2013 ident: D0EE01856B-(cit18)/*[position()=1] – volume: 38 start-page: 36 year: 2009 ident: D0EE01856B-(cit71)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/B801144N – volume: 6 start-page: 9647 year: 2016 ident: D0EE01856B-(cit101)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA26748J – volume: 29 start-page: 1605838 year: 2017 ident: D0EE01856B-(cit14)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201605838 – volume: 11 start-page: 6004 year: 2017 ident: D0EE01856B-(cit12)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b01908 – volume: 229 start-page: 121 year: 2017 ident: D0EE01856B-(cit134)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.01.147 – volume: 4 start-page: 4065 year: 2014 ident: D0EE01856B-(cit130)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/cs501106g – volume: 38 start-page: 4901 year: 2013 ident: D0EE01856B-(cit15)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.01.151 – volume: 53 start-page: 4372 year: 2014 ident: D0EE01856B-(cit42)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201311111 – volume: 89 start-page: 455 year: 2009 ident: D0EE01856B-(cit84)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2009.01.003 – volume: 13 start-page: 634 year: 2011 ident: D0EE01856B-(cit31)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2011.03.032 – volume: 279 start-page: 620 year: 2015 ident: D0EE01856B-(cit83)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.01.009 – volume: 7 start-page: 3121 year: 2017 ident: D0EE01856B-(cit60)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b00199 – volume: 4 start-page: 519 year: 2019 ident: D0EE01856B-(cit155)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-019-0404-4 – volume: 11 start-page: 25986 year: 2019 ident: D0EE01856B-(cit89)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b07415 – volume: 4 start-page: 1693 year: 2014 ident: D0EE01856B-(cit77)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/cs500070x – volume: 55 start-page: 10884 year: 2019 ident: D0EE01856B-(cit95)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC05522C – volume: 287 start-page: 465 year: 2015 ident: D0EE01856B-(cit52)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.04.091 – volume: 4 start-page: 7169 year: 2016 ident: D0EE01856B-(cit66)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA01328G |
SSID | ssj0062079 |
Score | 2.6867492 |
Snippet | Hydrogen production from direct water electrolysis has long been pursued as a key that may revolutionize the hydrogen economy. With the rapid availability of... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3185 |
SubjectTerms | Anion exchanging Cation exchange Cation exchanging Electrocatalysts Electrolysis Electrolytes Energy resources Energy sources Hydrogen Hydrogen evolution reactions Hydrogen production Hydrogen-based energy pH effects Renewable energy Renewable resources Working conditions |
Title | Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects |
URI | https://www.proquest.com/docview/2450769404 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLe67gIHNB4THQNZggvaMpzE9hJuGxQqXhc2Me0SxbFDJ01t1TZo48CVf5vPrzhlRQIuUWvna6N8v3yvfA-EnmkXgwvwTioB5pv-EuW8JPDgKSLAIk_iWsc7Pn7io1P67oyd9Xo_O1lLzVIcVN_X1pX8D1dhDfiqq2T_gbPtj8ICfAb-whE4DMe_4vHQzrAxIZhr3Xl1fC3n06-6cf8398dmzu18b6IaHdLYm410nrm0eVo6GlC5_kxNt8jF8BZEock_t0kCC5_maZuQ6LwuU6S5WAnt20JCjaZOAZ0vuwwYOh9PG_NWZKyc4jTC2SQWnMPS1UVQFnb1w0Unwm2iu5-B9nLqyF3YIiGdsIWVtIeMRozbQXgHqrN2SPiKeE5vwNDKWl333dHbqa28v6ESSKo7qkqiFAECLoLia9MRw-YG2kzA30j6aPPo_fHbL16p84SYto3tVftOt2n-IlCv2jbBYdmY-2kyxmo52UJ3nLuBjyx27qKemtxDtztNKO-jH7-jCHsU4RZF2MADOxTh2QgHFL3EDkN4FUP72CIIewTtY9jBFj-4xc8DdPpmePJqFLmpHFFFY7KMaK0bPCWUs7hWJMmrOuMxuMVlSWXMlXZQaSmkkFr0g0bIStCpRA_eYInKwCLeRv3JdKIeIswqlYFFLBjLJIWtnFUiVlSUkteMZ_UAPff3s6hcy3o9OeWyMKkTaV68JsOhuffHA_S0PXdmG7WsPWvXs6VwD_KiSCg4RTynhA7QNrCqpQ-cHaCd9RvFTNY7f6J6hG4F6O-i_nLeqMdgwy7FE4evX3oEoOY |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocatalytic+hydrogen+evolution+under+neutral+pH+conditions%3A+current+understandings%2C+recent+advances%2C+and+future+prospects&rft.jtitle=Energy+%26+environmental+science&rft.au=Zhou%2C+Zheng&rft.au=Pei%2C+Zengxia&rft.au=Wei%2C+Li&rft.au=Zhao%2C+Shenlong&rft.date=2020-01-01&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=13&rft.issue=1&rft.spage=3185&rft.epage=326&rft_id=info:doi/10.1039%2Fd0ee01856b&rft.externalDocID=d0ee01856b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |