Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects

Hydrogen production from direct water electrolysis has long been pursued as a key that may revolutionize the hydrogen economy. With the rapid availability of electricity generated using renewable energy resources, this long-pursued target is now closer to reality than ever before. To date, most stud...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 13; no. 1; pp. 3185 - 326
Main Authors Zhou, Zheng, Pei, Zengxia, Wei, Li, Zhao, Shenlong, Jian, Xian, Chen, Yuan
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogen production from direct water electrolysis has long been pursued as a key that may revolutionize the hydrogen economy. With the rapid availability of electricity generated using renewable energy resources, this long-pursued target is now closer to reality than ever before. To date, most studies regarding electrocatalytic hydrogen evolution reaction (HER) are carried out in strong acidic/alkali electrolytes. However, hydrogen production from HER under extreme pH conditions has several drawbacks, including a corrosive working environment, the requirement of expensive anion/cation exchange membranes, and acidic/alkali withstanding electrocatalysts. The more sustainable approach to address these drawbacks is to deploy neutral/near-neutral electrolytes for HER. Regretfully, both theoretical discussions and practical applications regarding HER under neutral/near-neutral conditions are relatively rare and very elusive. In this review, we systematically discuss the current understandings of HER mechanisms under neutral conditions and analyze the influences of different types of neutral electrolytes. The most recent advances in the development of neutral HER electrocatalysts are summarized and exemplified, and general electrocatalyst design principles are highlighted. Lastly, we provide our perspective on the potential future research direction. We hope that this review inspires future endeavors to realize efficient HER for hydrogen production under neutral conditions. This review summarizes the latest advances in hydrogen evolution reaction under neutral conditions to enlighten future researches.
AbstractList Hydrogen production from direct water electrolysis has long been pursued as a key that may revolutionize the hydrogen economy. With the rapid availability of electricity generated using renewable energy resources, this long-pursued target is now closer to reality than ever before. To date, most studies regarding electrocatalytic hydrogen evolution reaction (HER) are carried out in strong acidic/alkali electrolytes. However, hydrogen production from HER under extreme pH conditions has several drawbacks, including a corrosive working environment, the requirement of expensive anion/cation exchange membranes, and acidic/alkali withstanding electrocatalysts. The more sustainable approach to address these drawbacks is to deploy neutral/near-neutral electrolytes for HER. Regretfully, both theoretical discussions and practical applications regarding HER under neutral/near-neutral conditions are relatively rare and very elusive. In this review, we systematically discuss the current understandings of HER mechanisms under neutral conditions and analyze the influences of different types of neutral electrolytes. The most recent advances in the development of neutral HER electrocatalysts are summarized and exemplified, and general electrocatalyst design principles are highlighted. Lastly, we provide our perspective on the potential future research direction. We hope that this review inspires future endeavors to realize efficient HER for hydrogen production under neutral conditions.
Hydrogen production from direct water electrolysis has long been pursued as a key that may revolutionize the hydrogen economy. With the rapid availability of electricity generated using renewable energy resources, this long-pursued target is now closer to reality than ever before. To date, most studies regarding electrocatalytic hydrogen evolution reaction (HER) are carried out in strong acidic/alkali electrolytes. However, hydrogen production from HER under extreme pH conditions has several drawbacks, including a corrosive working environment, the requirement of expensive anion/cation exchange membranes, and acidic/alkali withstanding electrocatalysts. The more sustainable approach to address these drawbacks is to deploy neutral/near-neutral electrolytes for HER. Regretfully, both theoretical discussions and practical applications regarding HER under neutral/near-neutral conditions are relatively rare and very elusive. In this review, we systematically discuss the current understandings of HER mechanisms under neutral conditions and analyze the influences of different types of neutral electrolytes. The most recent advances in the development of neutral HER electrocatalysts are summarized and exemplified, and general electrocatalyst design principles are highlighted. Lastly, we provide our perspective on the potential future research direction. We hope that this review inspires future endeavors to realize efficient HER for hydrogen production under neutral conditions. This review summarizes the latest advances in hydrogen evolution reaction under neutral conditions to enlighten future researches.
Author Jian, Xian
Pei, Zengxia
Zhou, Zheng
Zhao, Shenlong
Chen, Yuan
Wei, Li
AuthorAffiliation School of Chemical and Biomolecular Engineering
The University of Sydney
School of Materials and Energy
University of Electronic Science and Technology of China
AuthorAffiliation_xml – name: School of Chemical and Biomolecular Engineering
– name: University of Electronic Science and Technology of China
– name: The University of Sydney
– name: School of Materials and Energy
Author_xml – sequence: 1
  givenname: Zheng
  surname: Zhou
  fullname: Zhou, Zheng
– sequence: 2
  givenname: Zengxia
  surname: Pei
  fullname: Pei, Zengxia
– sequence: 3
  givenname: Li
  surname: Wei
  fullname: Wei, Li
– sequence: 4
  givenname: Shenlong
  surname: Zhao
  fullname: Zhao, Shenlong
– sequence: 5
  givenname: Xian
  surname: Jian
  fullname: Jian, Xian
– sequence: 6
  givenname: Yuan
  surname: Chen
  fullname: Chen, Yuan
BookMark eNp9kctLxDAQxoMo-Lx4FyLexNVJmqStNx_rAwQvei7ZZLp2qWlNUmEv_u1mXR8g4mmG-X4zX_iySVZd55CQXQbHDLLyxAIisEKqyQrZYLkUI5mDWv3qVcnXyWYIMwDFIS83yNu4RRN9Z3TU7Tw2hj7Nre-m6Ci-du0Qm87RwVn01OEQvW5pf0NN52yzkMIpNYP36OISClEnxU3DEfVoFmNtX7UzmAZJofUQB4-0913ok2_YJmu1bgPufNYt8ng1fri4Gd3dX99enN2NjGAQR6Iu84xzoSSrEXhp6kIxxZXWwjKFssyF0BM7sSwvM8FloWVWgJYAkmMBKtsiB8u7yfllwBCrWTd4lywrLiTkqhQgEnW4pEx6X_BYV71vnrWfVwyqRb7VJYzHH_meJxh-waaJehFKSqlp_17ZX674YL5P_3xZ1ds6MXv_Mdk7vo-V7Q
CitedBy_id crossref_primary_10_1002_adfm_202110748
crossref_primary_10_1002_smll_202311076
crossref_primary_10_1021_acs_jpcc_2c03687
crossref_primary_10_1002_chem_202302593
crossref_primary_10_1016_j_cej_2025_161070
crossref_primary_10_1016_j_jcis_2023_03_033
crossref_primary_10_1002_adma_202109321
crossref_primary_10_1002_cplu_202300129
crossref_primary_10_1002_cctc_202200756
crossref_primary_10_1021_acscatal_1c04268
crossref_primary_10_1016_j_jpowsour_2024_235075
crossref_primary_10_1021_acsami_2c01208
crossref_primary_10_1080_17518253_2024_2325983
crossref_primary_10_1002_adfm_202422918
crossref_primary_10_1002_asia_202401172
crossref_primary_10_1002_adfm_202307109
crossref_primary_10_1016_j_jcis_2021_08_090
crossref_primary_10_1016_j_recm_2024_09_001
crossref_primary_10_1002_ange_202416402
crossref_primary_10_1002_adfm_202112367
crossref_primary_10_1002_adma_202307035
crossref_primary_10_1016_j_jcis_2024_04_009
crossref_primary_10_1002_advs_202309775
crossref_primary_10_1016_j_cej_2021_131309
crossref_primary_10_1016_j_ijhydene_2024_02_291
crossref_primary_10_1039_D3EE02695G
crossref_primary_10_1016_j_ccr_2024_215935
crossref_primary_10_1039_D3QM00978E
crossref_primary_10_1016_j_electacta_2023_142722
crossref_primary_10_1039_D2MA00288D
crossref_primary_10_1002_cssc_202301547
crossref_primary_10_1002_ange_202422091
crossref_primary_10_1039_D4TA02268H
crossref_primary_10_1002_aenm_202300628
crossref_primary_10_1002_cctc_202100007
crossref_primary_10_1021_acsami_4c11560
crossref_primary_10_1016_j_ijhydene_2022_01_137
crossref_primary_10_1002_cssc_202200086
crossref_primary_10_1016_j_cej_2024_150439
crossref_primary_10_1016_j_ijhydene_2024_03_209
crossref_primary_10_1002_adfm_202214375
crossref_primary_10_1016_j_apcatb_2022_122081
crossref_primary_10_1021_acsami_4c18604
crossref_primary_10_1021_acs_jpcc_4c06121
crossref_primary_10_1002_chem_202102915
crossref_primary_10_1016_j_jcis_2024_08_031
crossref_primary_10_1002_inf2_12357
crossref_primary_10_1021_acsanm_1c01233
crossref_primary_10_1016_j_cattod_2023_114141
crossref_primary_10_3390_catal13050851
crossref_primary_10_1021_acsaem_1c02877
crossref_primary_10_1016_S1872_2067_24_60086_0
crossref_primary_10_1002_ange_202210753
crossref_primary_10_1002_cphc_202400640
crossref_primary_10_1021_acs_nanolett_2c02900
crossref_primary_10_1016_j_jallcom_2025_178510
crossref_primary_10_1021_acscatal_4c05730
crossref_primary_10_1016_j_jelechem_2022_116448
crossref_primary_10_1021_acsmaterialslett_1c00532
crossref_primary_10_1016_j_jallcom_2022_165802
crossref_primary_10_1038_s41467_022_33984_5
crossref_primary_10_1016_j_ijhydene_2023_03_175
crossref_primary_10_1016_j_molliq_2024_126537
crossref_primary_10_1021_acs_energyfuels_2c04272
crossref_primary_10_1016_j_ijhydene_2023_06_229
crossref_primary_10_1002_aenm_202405035
crossref_primary_10_1016_j_apsusc_2024_161614
crossref_primary_10_1016_j_nxnano_2024_100073
crossref_primary_10_1002_smll_202406113
crossref_primary_10_1016_j_physb_2024_416773
crossref_primary_10_1002_adom_202403085
crossref_primary_10_1016_j_apcatb_2022_122072
crossref_primary_10_1016_j_envres_2023_117816
crossref_primary_10_1021_acscatal_4c05986
crossref_primary_10_1016_j_apcatb_2022_121666
crossref_primary_10_1016_j_nanoen_2022_107232
crossref_primary_10_1002_cctc_202300328
crossref_primary_10_1002_adfm_202423760
crossref_primary_10_2298_JSC210520050A
crossref_primary_10_1016_j_ijhydene_2021_11_182
crossref_primary_10_1021_acs_chemmater_3c02093
crossref_primary_10_1016_j_apcatb_2021_119960
crossref_primary_10_1021_acsami_4c00690
crossref_primary_10_1021_acs_chemrev_4c00155
crossref_primary_10_1039_D3DT03951J
crossref_primary_10_1039_D4RA07274J
crossref_primary_10_1016_j_jallcom_2022_164880
crossref_primary_10_1016_j_flatc_2022_100334
crossref_primary_10_1016_j_ijhydene_2024_03_192
crossref_primary_10_1021_acs_energyfuels_1c02706
crossref_primary_10_1021_acsomega_1c06522
crossref_primary_10_1038_s41467_022_34685_9
crossref_primary_10_1016_j_cej_2021_132312
crossref_primary_10_1002_cey2_555
crossref_primary_10_1016_j_flatc_2023_100572
crossref_primary_10_1002_cey2_679
crossref_primary_10_1007_s11581_024_05376_w
crossref_primary_10_1016_j_carbon_2023_118082
crossref_primary_10_1016_j_jechem_2025_01_073
crossref_primary_10_1016_j_jpowsour_2021_230934
crossref_primary_10_1002_adma_202415712
crossref_primary_10_1039_D4TA03866E
crossref_primary_10_1021_acscatal_2c02081
crossref_primary_10_1002_smll_202408782
crossref_primary_10_1016_j_jssc_2024_124553
crossref_primary_10_1021_acs_energyfuels_4c05304
crossref_primary_10_1002_smtd_202300461
crossref_primary_10_1007_s11426_022_1545_0
crossref_primary_10_1016_j_colsurfa_2024_136055
crossref_primary_10_1039_D3TA02004E
crossref_primary_10_1016_j_cattod_2022_04_005
crossref_primary_10_1021_jacs_4c16596
crossref_primary_10_1038_s41467_021_27118_6
crossref_primary_10_1021_acscatal_2c04939
crossref_primary_10_1002_ppsc_202200142
crossref_primary_10_1016_j_ijhydene_2022_08_184
crossref_primary_10_1002_anie_202416402
crossref_primary_10_1016_j_ijhydene_2023_05_098
crossref_primary_10_1016_j_mtener_2021_100902
crossref_primary_10_1016_j_mtphys_2021_100469
crossref_primary_10_1002_adfm_202421442
crossref_primary_10_1002_aenm_202301438
crossref_primary_10_1016_j_checat_2024_100901
crossref_primary_10_1557_s43579_023_00454_y
crossref_primary_10_1016_j_ijhydene_2025_02_246
crossref_primary_10_1016_j_ijhydene_2024_03_094
crossref_primary_10_1021_acsami_2c20863
crossref_primary_10_1039_D3QI00171G
crossref_primary_10_1002_anie_202422091
crossref_primary_10_1016_j_ijhydene_2021_12_173
crossref_primary_10_1016_j_mattod_2023_08_024
crossref_primary_10_1016_j_seppur_2024_131173
crossref_primary_10_1016_j_fuel_2025_135020
crossref_primary_10_1021_acscatal_4c01173
crossref_primary_10_1002_smsc_202300036
crossref_primary_10_1021_acscatal_3c03821
crossref_primary_10_3390_catal12091055
crossref_primary_10_1007_s12678_023_00837_8
crossref_primary_10_1002_smtd_202401067
crossref_primary_10_1021_acsnano_4c06220
crossref_primary_10_1039_D1EE02512K
crossref_primary_10_1016_j_ijhydene_2024_11_370
crossref_primary_10_1016_j_checat_2022_01_022
crossref_primary_10_1016_j_apcatb_2024_124928
crossref_primary_10_1016_j_jcis_2022_03_149
crossref_primary_10_1016_j_jcis_2022_11_080
crossref_primary_10_1021_acsanm_4c03373
crossref_primary_10_1039_D3QM00600J
crossref_primary_10_1149_1945_7111_acb84d
crossref_primary_10_1002_chem_202102209
crossref_primary_10_1002_adma_202411339
crossref_primary_10_1016_S1872_2067_21_63830_5
crossref_primary_10_1002_adfm_202418617
crossref_primary_10_1021_acsami_2c18799
crossref_primary_10_1016_j_electacta_2024_144072
crossref_primary_10_1016_j_apsusc_2024_159629
crossref_primary_10_1038_s41467_023_35782_z
crossref_primary_10_1016_j_electacta_2022_140091
crossref_primary_10_1016_j_gee_2022_04_009
crossref_primary_10_1002_adfm_202102285
crossref_primary_10_1016_j_joule_2022_01_007
crossref_primary_10_1002_adma_202307799
crossref_primary_10_1021_acsnano_1c06796
crossref_primary_10_1021_jacs_4c17133
crossref_primary_10_1002_eem2_12344
crossref_primary_10_1002_cctc_202400259
crossref_primary_10_1016_j_ijhydene_2022_07_163
crossref_primary_10_1016_j_electacta_2022_141740
crossref_primary_10_1021_acs_iecr_4c00482
crossref_primary_10_1016_j_chempr_2023_08_014
crossref_primary_10_1016_j_ijhydene_2021_10_186
crossref_primary_10_1039_D4TA04113E
crossref_primary_10_1016_j_ijhydene_2023_01_020
crossref_primary_10_1016_j_ijhydene_2024_10_229
crossref_primary_10_1021_acsaem_2c02102
crossref_primary_10_1039_D3EE03363E
crossref_primary_10_1088_2752_5724_acc51d
crossref_primary_10_1021_acs_energyfuels_3c03233
crossref_primary_10_1039_D4EE01855A
crossref_primary_10_1039_D3TA01522J
crossref_primary_10_1002_aenm_202302436
crossref_primary_10_1002_smtd_202100871
crossref_primary_10_1016_j_mseb_2024_117753
crossref_primary_10_1016_j_cclet_2023_109282
crossref_primary_10_1016_j_mtener_2020_100618
crossref_primary_10_1002_asia_202400220
crossref_primary_10_1016_j_ccr_2022_214563
crossref_primary_10_1021_acs_jpcc_4c01056
crossref_primary_10_1039_D3CC03104G
crossref_primary_10_3390_sci6040080
crossref_primary_10_1002_celc_202300710
crossref_primary_10_1016_j_cej_2024_154776
crossref_primary_10_1088_2053_1591_abecad
crossref_primary_10_1021_acs_inorgchem_1c03533
crossref_primary_10_1016_j_cej_2022_137419
crossref_primary_10_1007_s12274_024_6887_8
crossref_primary_10_1016_j_ijhydene_2024_10_234
crossref_primary_10_1002_anie_202210753
crossref_primary_10_1016_j_apcatb_2025_125030
crossref_primary_10_1002_adfm_202208212
crossref_primary_10_1002_adma_202304867
crossref_primary_10_1002_chem_202302770
crossref_primary_10_1016_j_bioelechem_2024_108724
crossref_primary_10_1016_j_nanoen_2023_108694
crossref_primary_10_1007_s11426_024_2121_0
crossref_primary_10_1016_j_jallcom_2022_167931
crossref_primary_10_1038_s41467_023_39681_1
crossref_primary_10_1038_s41598_023_44758_4
crossref_primary_10_1149_1945_7111_ad576b
crossref_primary_10_1016_j_enchem_2021_100055
crossref_primary_10_1039_D3NR06120E
crossref_primary_10_1016_j_cej_2021_130062
crossref_primary_10_1016_j_surfin_2024_104519
crossref_primary_10_1039_D4SC07181F
crossref_primary_10_1016_j_apcatb_2024_124469
crossref_primary_10_1002_aenm_202101699
crossref_primary_10_1016_j_colsurfa_2024_134049
crossref_primary_10_1149_1945_7111_ac8d2f
crossref_primary_10_1016_j_jelechem_2024_118825
crossref_primary_10_1039_D4TA02089H
crossref_primary_10_1016_j_mattod_2025_03_003
crossref_primary_10_1002_celc_202100914
crossref_primary_10_1016_j_cej_2025_160490
crossref_primary_10_1007_s40242_025_4207_9
crossref_primary_10_1039_D4TA03436H
crossref_primary_10_1016_j_ijhydene_2024_05_104
crossref_primary_10_1016_j_cej_2021_130995
crossref_primary_10_1002_cplu_202300679
crossref_primary_10_1002_adma_202417757
crossref_primary_10_1002_anie_202421640
crossref_primary_10_1002_slct_202100553
crossref_primary_10_1007_s12274_023_5449_9
crossref_primary_10_1002_smsc_202100032
crossref_primary_10_1016_j_electacta_2023_143679
crossref_primary_10_1021_acsaem_4c01118
crossref_primary_10_1021_acscatal_2c04042
crossref_primary_10_1016_j_jssc_2021_122018
crossref_primary_10_1002_sstr_202300194
crossref_primary_10_1016_j_ijhydene_2023_09_258
crossref_primary_10_1002_adfm_202305893
crossref_primary_10_1016_j_ijhydene_2022_04_069
crossref_primary_10_1002_advs_202205605
crossref_primary_10_1016_j_ijhydene_2024_09_314
crossref_primary_10_1039_D2NR04285A
crossref_primary_10_1016_j_jpcs_2023_111796
crossref_primary_10_1039_D1MA00814E
crossref_primary_10_3390_ma16206816
crossref_primary_10_1016_S1872_2067_24_60105_1
crossref_primary_10_1016_j_apcatb_2021_120034
crossref_primary_10_1088_2399_7532_abfeb8
crossref_primary_10_1016_j_ijhydene_2024_07_361
crossref_primary_10_1016_j_apsusc_2022_153482
crossref_primary_10_1039_D3TA00071K
crossref_primary_10_1002_smll_202309078
crossref_primary_10_1002_idm2_12172
crossref_primary_10_1016_j_ccr_2025_216556
crossref_primary_10_1021_acsami_1c14588
crossref_primary_10_1016_j_ijhydene_2023_09_012
crossref_primary_10_1016_S1872_2067_24_60034_3
crossref_primary_10_1063_5_0064697
crossref_primary_10_1002_ange_202421640
crossref_primary_10_1007_s40242_024_3278_3
crossref_primary_10_1021_acs_energyfuels_4c04603
crossref_primary_10_1016_j_apsusc_2021_151853
crossref_primary_10_1016_j_ijhydene_2024_06_202
crossref_primary_10_1039_D4NR01538J
crossref_primary_10_1186_s11671_025_04232_8
crossref_primary_10_1016_j_jallcom_2023_170656
crossref_primary_10_1021_acscatal_4c05712
crossref_primary_10_1016_j_ijhydene_2024_10_262
crossref_primary_10_1002_adma_202404658
crossref_primary_10_1016_j_nanoen_2020_105641
crossref_primary_10_1016_j_ijhydene_2024_03_118
crossref_primary_10_1021_acscatal_2c05512
crossref_primary_10_1002_aenm_202304418
crossref_primary_10_1038_s41467_022_33007_3
crossref_primary_10_1016_j_cej_2024_151236
crossref_primary_10_1002_celc_202400259
crossref_primary_10_1002_cnma_202200355
crossref_primary_10_1021_acs_jpcc_4c06554
crossref_primary_10_1002_adma_202408461
crossref_primary_10_1021_acsaem_4c00601
crossref_primary_10_1016_j_mtener_2024_101595
crossref_primary_10_1002_aenm_202203164
crossref_primary_10_1021_acsaem_3c00863
crossref_primary_10_1360_SSC_2024_0249
crossref_primary_10_1016_j_mtener_2021_100883
crossref_primary_10_3390_catal13030551
crossref_primary_10_1002_eem2_12766
crossref_primary_10_1103_PhysRevB_107_235414
crossref_primary_10_1016_j_jhazmat_2022_129551
crossref_primary_10_1039_D1QI00377A
crossref_primary_10_1016_j_fuel_2024_133288
crossref_primary_10_1016_j_jcis_2021_08_035
crossref_primary_10_1016_j_rinma_2024_100625
crossref_primary_10_1016_j_ijhydene_2024_07_386
crossref_primary_10_1016_j_surfin_2024_105245
crossref_primary_10_1039_D1TA09142E
crossref_primary_10_2139_ssrn_4103926
crossref_primary_10_1039_D4NJ04638B
crossref_primary_10_3390_hydrogen4040049
crossref_primary_10_1039_D2QM00931E
crossref_primary_10_1002_aenm_202401956
crossref_primary_10_1016_j_apcata_2021_118293
crossref_primary_10_1016_j_ceramint_2024_10_397
crossref_primary_10_1002_ppap_202400144
crossref_primary_10_1002_smll_202207342
crossref_primary_10_1021_acscatal_4c04048
crossref_primary_10_1002_ece2_10
crossref_primary_10_1021_acsanm_2c04071
crossref_primary_10_3390_coatings13061102
crossref_primary_10_1016_j_jmst_2023_11_020
crossref_primary_10_1002_adma_202106541
crossref_primary_10_1016_j_mssp_2022_106765
crossref_primary_10_1016_j_jmst_2024_06_013
crossref_primary_10_1002_slct_202303018
crossref_primary_10_1002_smll_202106260
crossref_primary_10_1016_j_cej_2023_144748
crossref_primary_10_1016_j_ccr_2024_215752
crossref_primary_10_1016_j_seppur_2025_132028
crossref_primary_10_1016_j_checat_2022_100499
crossref_primary_10_1016_j_jcis_2024_06_084
crossref_primary_10_1039_D1CC06409F
crossref_primary_10_1002_ente_202300182
crossref_primary_10_1007_s12274_024_6485_9
crossref_primary_10_1016_j_seppur_2023_126115
crossref_primary_10_1002_eem2_12424
crossref_primary_10_1016_j_comptc_2024_115044
crossref_primary_10_2139_ssrn_4098289
crossref_primary_10_1002_slct_202104041
crossref_primary_10_1039_D3DT04034H
crossref_primary_10_3866_PKU_WHXB202305041
Cites_doi 10.1038/nchem.1574
10.1039/C8EE00976G
10.1002/celc.201402085
10.1039/C7NR03515B
10.1016/j.nanoen.2017.06.027
10.1021/jacs.7b06434
10.1039/c2ee22611a
10.1021/jacs.0c01104
10.1016/j.apcatb.2019.118555
10.1039/C6TA09052D
10.1002/aenm.201402031
10.1039/C6NR09883E
10.1021/acs.jpcc.5b05295
10.1039/C6NJ03194C
10.1021/acscatal.5b00556
10.1021/jacs.5b11986
10.1002/1439-7633(20020301)3:2/3<153::AID-CBIC153>3.0.CO;2-B
10.1039/C4CS00448E
10.1002/celc.201700392
10.1002/adma.201605502
10.1039/C4NR04924A
10.1016/j.pecs.2009.11.002
10.1039/C5CC04965B
10.1016/S0013-4686(02)00329-8
10.1021/ja4094764
10.1002/adfm.201707244
10.1016/j.electacta.2018.07.094
10.1021/acsami.6b15399
10.1021/acscatal.5b01637
10.1038/s41560-018-0296-8
10.1021/ja0540019
10.1016/j.apcata.2019.117226
10.1016/j.elecom.2019.106647
10.1021/acsami.6b15980
10.1039/C4EE00957F
10.1021/acs.jpcc.6b05230
10.1021/cs5014943
10.1021/nn5048553
10.1016/j.nanoen.2015.12.025
10.1016/j.ijhydene.2015.02.038
10.1126/science.1211934
10.1021/acs.jpcc.6b07954
10.1533/9780857093790
10.1021/acscatal.6b02849
10.1016/j.rser.2013.08.090
10.1016/j.apcatb.2019.03.037
10.1016/j.jcis.2018.08.040
10.1016/j.ijhydene.2019.11.154
10.1002/adfm.201606635
10.1039/C6EE03768B
10.1039/C9TA08812A
10.1021/acscatal.8b01076
10.1038/s41467-019-12773-7
10.1126/sciadv.1500259
10.1002/chem.201702923
10.1016/j.electacta.2016.08.129
10.1039/C7TA06000A
10.1002/anie.201702934
10.1039/C9EE02380A
10.1021/acscatal.7b04276
10.1021/acs.jpcc.5b12137
10.1002/advs.201500426
10.1002/smll.201900358
10.1002/anie.201901409
10.1021/acs.accounts.6b00595
10.1007/s12274-017-1634-z
10.1016/j.ijhydene.2009.05.126
10.1039/C6TA03588D
10.1002/aenm.201902666
10.1021/acs.jpcc.5b03276
10.1016/j.apcatb.2015.06.045
10.1021/cs4011698
10.1016/j.electacta.2017.09.008
10.1039/C5CS00434A
10.1021/acscatal.9b02609
10.1002/advs.201901458
10.1039/C4TA03962A
10.1016/S0013-4686(00)00523-5
10.1021/acscatal.6b02479
10.1021/acsami.8b17961
10.1002/anie.201710556
10.1039/C7TA02333B
10.1039/C6TA06101J
10.1016/j.apcatb.2014.09.016
10.1039/C9TA08030A
10.1002/adma.201606521
10.1039/C7CY00703E
10.1038/ncomms6848
10.1002/celc.201901860
10.1021/ja503372r
10.1002/aenm.201502319
10.1126/science.aad4998
10.1021/jacs.8b04006
10.1016/j.nanoen.2017.08.031
10.1039/c3ta12062g
10.1002/anie.201601367
10.1002/cssc.201700693
10.1021/acsomega.8b02223
10.1002/adma.201707261
10.1039/C9TA05601G
10.1039/C7CC01584D
10.1016/j.electacta.2014.12.096
10.1016/j.apcatb.2019.05.010
10.1021/ja0504690
10.1021/acscatal.9b00407
10.1016/j.pnsc.2016.05.014
10.1038/nenergy.2017.31
10.1016/S0926-860X(02)00428-3
10.1039/C8TA02204F
10.1002/anie.201808929
10.1038/nmat3313
10.1007/s12274-019-2379-7
10.1126/sciadv.1501602
10.1021/jacs.8b13228
10.1039/C8TA08519F
10.1007/s12274-017-1818-6
10.1039/C7TA09254G
10.1039/C7TA03198J
10.1002/anie.201706921
10.1021/am507811a
10.1016/j.apcatb.2016.05.027
10.1002/anie.201402998
10.1016/j.matlet.2019.127041
10.1039/c1ee01970h
10.1002/cssc.201601583
10.1039/C4TA04339A
10.1016/j.elecom.2017.08.011
10.1016/j.electacta.2020.135696
10.1039/C5CP02330K
10.1039/c1cp21717h
10.1039/C5TA08611F
10.1039/B801144N
10.1039/C5RA26748J
10.1002/adma.201605838
10.1021/acsnano.7b01908
10.1016/j.electacta.2017.01.147
10.1021/cs501106g
10.1016/j.ijhydene.2013.01.151
10.1002/anie.201311111
10.1016/j.apcatb.2009.01.003
10.1016/j.elecom.2011.03.032
10.1016/j.jpowsour.2015.01.009
10.1021/acscatal.7b00199
10.1038/s41560-019-0404-4
10.1021/acsami.9b07415
10.1021/cs500070x
10.1039/C9CC05522C
10.1016/j.jpowsour.2015.04.091
10.1039/C6TA01328G
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/d0ee01856b
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 326
ExternalDocumentID 10_1039_D0EE01856B
d0ee01856b
GroupedDBID 0-7
0R
29G
4.4
5GY
70
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
M4U
N9A
O-G
O9-
P2P
RCNCU
RIG
RPMJG
RRC
RSCEA
SKA
SLH
TOV
UCJ
0R~
70~
AAJAE
AARTK
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c410t-4f973224651fe029cf861626aa4d16e59744abdbd17934258a5380a50052e8063
ISSN 1754-5692
IngestDate Mon Jun 30 11:59:59 EDT 2025
Thu Apr 24 23:01:52 EDT 2025
Tue Jul 01 01:45:46 EDT 2025
Sat Jan 08 03:54:55 EST 2022
Wed Nov 11 00:36:16 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c410t-4f973224651fe029cf861626aa4d16e59744abdbd17934258a5380a50052e8063
Notes Zheng Zhou received his PhD degree from the school of Chemical & Biomolecule Engineering, the University of Sydney, Australia, in 2019. He is currently working as a postdoctoral fellow with Prof. Yuan Chen at the University of Sydney. His research focuses on catalyst design and energy conversion electrolysis, including metal-air batteries, transition metal-based electrocatalysts for hydrogen evolution, oxygen reduction, oxygen evolution reactions, etc.
Zengxia Pei received his PhD from City University of Hong Kong in 2017. Currently, he works as an Australian Research Council Discovery Early Career Researcher Award (ARC DECRA) Fellow at the University of Sydney. His research focuses on the design and development of nanomaterials for sustainable energy conversion and storage in fields including electrocatalysis and aqueous batteries.
Yuan Chen received a bachelor's degree from Tsinghua University and a PhD from Yale University. He is a professor at The University of Sydney. His research focuses on carbon materials and their sustainable energy and environmental applications, including supercapacitors, batteries, electrocatalysts, membranes, and antibacterial coatings. He is a fellow of the Royal society of chemistry and institution of chemical engineers. He is currently serving as an editor for Carbon and Journal of Alloys and Compounds.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9059-3839
0000-0001-8771-2921
0000-0002-3202-7879
0000-0002-9955-1704
PQID 2450769404
PQPubID 2047494
PageCount 22
ParticipantIDs crossref_citationtrail_10_1039_D0EE01856B
proquest_journals_2450769404
crossref_primary_10_1039_D0EE01856B
rsc_primary_d0ee01856b
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 20200101
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Hota (D0EE01856B-(cit113)/*[position()=1]) 2018; 3
Shi (D0EE01856B-(cit1)/*[position()=1]) 2016; 45
Feng (D0EE01856B-(cit133)/*[position()=1]) 2016; 4
Tao (D0EE01856B-(cit102)/*[position()=1]) 2019; 254
Zheng (D0EE01856B-(cit120)/*[position()=1]) 2018; 57
Peng (D0EE01856B-(cit98)/*[position()=1]) 2015; 5
Cao (D0EE01856B-(cit112)/*[position()=1]) 2020; 335
Pei (D0EE01856B-(cit22)/*[position()=1]) 2013; 1
Hao (D0EE01856B-(cit131)/*[position()=1]) 2017; 5
Liu (D0EE01856B-(cit145)/*[position()=1]) 2015; 51
Wang (D0EE01856B-(cit14)/*[position()=1]) 2017; 29
Pei (D0EE01856B-(cit23)/*[position()=1]) 2016; 180
Seh (D0EE01856B-(cit93)/*[position()=1]) 2017; 355
Yu (D0EE01856B-(cit87)/*[position()=1]) 2019; 6
Liu (D0EE01856B-(cit41)/*[position()=1]) 2019; 58
Zhu (D0EE01856B-(cit66)/*[position()=1]) 2016; 4
Gao (D0EE01856B-(cit86)/*[position()=1]) 2015; 7
Shinagawa (D0EE01856B-(cit21)/*[position()=1]) 2014; 1
Wang (D0EE01856B-(cit47)/*[position()=1]) 2019; 10
Katsounaros (D0EE01856B-(cit31)/*[position()=1]) 2011; 13
Sheng (D0EE01856B-(cit27)/*[position()=1]) 2015; 6
Hsu (D0EE01856B-(cit54)/*[position()=1]) 2018; 30
Xing (D0EE01856B-(cit70)/*[position()=1]) 2014; 5
Li (D0EE01856B-(cit95)/*[position()=1]) 2019; 55
Subbaraman (D0EE01856B-(cit121)/*[position()=1]) 2011; 334
Huang (D0EE01856B-(cit125)/*[position()=1]) 2018; 6
Irshad (D0EE01856B-(cit104)/*[position()=1]) 2017; 9
Shinagawa (D0EE01856B-(cit32)/*[position()=1]) 2015; 119
Cui (D0EE01856B-(cit67)/*[position()=1]) 2015; 164
Yan (D0EE01856B-(cit118)/*[position()=1]) 2019; 7
Wang (D0EE01856B-(cit144)/*[position()=1]) 2020; 7
Zhang (D0EE01856B-(cit40)/*[position()=1]) 2017; 29
Gao (D0EE01856B-(cit20)/*[position()=1]) 2020; 13
Wu (D0EE01856B-(cit89)/*[position()=1]) 2019; 11
You (D0EE01856B-(cit39)/*[position()=1]) 2017; 139
Zhang (D0EE01856B-(cit135)/*[position()=1]) 2017; 7
Ren (D0EE01856B-(cit106)/*[position()=1]) 2018; 11
Armstrong (D0EE01856B-(cit71)/*[position()=1]) 2009; 38
Zeng (D0EE01856B-(cit154)/*[position()=1]) 2019; 7
Li (D0EE01856B-(cit123)/*[position()=1]) 2016; 3
Feng (D0EE01856B-(cit148)/*[position()=1]) 2017; 56
Liu (D0EE01856B-(cit63)/*[position()=1]) 2017; 4
Ledezma-Yanez (D0EE01856B-(cit10)/*[position()=1]) 2017; 2
Pei (D0EE01856B-(cit24)/*[position()=1]) 2016; 20
Chen (D0EE01856B-(cit147)/*[position()=1]) 2009; 34
Kandiel (D0EE01856B-(cit111)/*[position()=1]) 2019; 586
Liu (D0EE01856B-(cit114)/*[position()=1]) 2016; 7
Zou (D0EE01856B-(cit4)/*[position()=1]) 2015; 44
Murthy (D0EE01856B-(cit50)/*[position()=1]) 2017; 83
Basile (D0EE01856B-(cit53)/*[position()=1]) 2011; 65
Liu (D0EE01856B-(cit100)/*[position()=1]) 2017; 29
Strmcnik (D0EE01856B-(cit29)/*[position()=1]) 2013; 5
Qin (D0EE01856B-(cit76)/*[position()=1]) 2016; 120
Pu (D0EE01856B-(cit65)/*[position()=1]) 2016; 196
Basile (D0EE01856B-(cit17)/*[position()=1]) 2011
Wang (D0EE01856B-(cit132)/*[position()=1]) 2017; 23
Tian (D0EE01856B-(cit64)/*[position()=1]) 2014; 136
Shinagawa (D0EE01856B-(cit49)/*[position()=1]) 2017; 10
Zhou (D0EE01856B-(cit134)/*[position()=1]) 2017; 229
Carmo (D0EE01856B-(cit15)/*[position()=1]) 2013; 38
Liu (D0EE01856B-(cit46)/*[position()=1]) 2019; 141
Callejas (D0EE01856B-(cit153)/*[position()=1]) 2014; 8
Tang (D0EE01856B-(cit138)/*[position()=1]) 2015; 40
Ma (D0EE01856B-(cit115)/*[position()=1]) 2017; 10
Kenney (D0EE01856B-(cit128)/*[position()=1]) 2019; 12
Auinger (D0EE01856B-(cit35)/*[position()=1]) 2011; 13
Yan (D0EE01856B-(cit94)/*[position()=1]) 2020; 265
Zhou (D0EE01856B-(cit48)/*[position()=1]) 2017; 5
Ji (D0EE01856B-(cit146)/*[position()=1]) 2017; 252
Anantharaj (D0EE01856B-(cit7)/*[position()=1]) 2017; 39
Zhang (D0EE01856B-(cit117)/*[position()=1]) 2017; 56
Sun (D0EE01856B-(cit122)/*[position()=1]) 2013; 135
Garces-Pineda (D0EE01856B-(cit155)/*[position()=1]) 2019; 4
Zeng (D0EE01856B-(cit16)/*[position()=1]) 2010; 36
Jasion (D0EE01856B-(cit74)/*[position()=1]) 2015; 5
Zhang (D0EE01856B-(cit101)/*[position()=1]) 2016; 6
Liu (D0EE01856B-(cit108)/*[position()=1]) 2017; 40
Shinagawa (D0EE01856B-(cit52)/*[position()=1]) 2015; 287
Liu (D0EE01856B-(cit105)/*[position()=1]) 2016; 55
Miao (D0EE01856B-(cit119)/*[position()=1]) 2015; 1
Anantharaj (D0EE01856B-(cit6)/*[position()=1]) 2016; 6
Wu (D0EE01856B-(cit136)/*[position()=1]) 2016; 26
Cai (D0EE01856B-(cit143)/*[position()=1]) 2018; 8
Sun (D0EE01856B-(cit109)/*[position()=1]) 2017; 9
Tavakkoli (D0EE01856B-(cit60)/*[position()=1]) 2017; 7
Zhao (D0EE01856B-(cit96)/*[position()=1]) 2020; 262
Shinagawa (D0EE01856B-(cit51)/*[position()=1]) 2016; 120
Gandía (D0EE01856B-(cit18)/*[position()=1]) 2013
Zhang (D0EE01856B-(cit129)/*[position()=1]) 2016; 6
Anantharaj (D0EE01856B-(cit137)/*[position()=1]) 2017; 9
Shinagawa (D0EE01856B-(cit34)/*[position()=1]) 2016; 120
Xiao (D0EE01856B-(cit62)/*[position()=1]) 2014; 7
Dinda (D0EE01856B-(cit79)/*[position()=1]) 2016; 4
Ma (D0EE01856B-(cit58)/*[position()=1]) 2017; 10
Fan (D0EE01856B-(cit139)/*[position()=1]) 2016; 215
Xie (D0EE01856B-(cit151)/*[position()=1]) 2017; 5
Shi (D0EE01856B-(cit85)/*[position()=1]) 2015; 154
Zhang (D0EE01856B-(cit116)/*[position()=1]) 2017; 27
Zeng (D0EE01856B-(cit57)/*[position()=1]) 2019; 7
Huang (D0EE01856B-(cit38)/*[position()=1]) 2016; 138
Conway (D0EE01856B-(cit43)/*[position()=1]) 2000; 45
Murthy (D0EE01856B-(cit19)/*[position()=1]) 2018; 283
De Valladares (D0EE01856B-(cit2)/*[position()=1])
Sarno (D0EE01856B-(cit55)/*[position()=1]) 2020; 111
Zheng (D0EE01856B-(cit36)/*[position()=1]) 2016; 2
Tan (D0EE01856B-(cit90)/*[position()=1]) 2019; 11
Feng (D0EE01856B-(cit150)/*[position()=1]) 2015; 7
Subbaraman (D0EE01856B-(cit26)/*[position()=1]) 2012; 11
Wan (D0EE01856B-(cit81)/*[position()=1]) 2014; 53
Jiang (D0EE01856B-(cit75)/*[position()=1]) 2014; 2
Liu (D0EE01856B-(cit92)/*[position()=1]) 2019; 58
Zhou (D0EE01856B-(cit80)/*[position()=1]) 2019; 15
Liu (D0EE01856B-(cit61)/*[position()=1]) 2005; 127
Pu (D0EE01856B-(cit69)/*[position()=1]) 2017; 41
Son (D0EE01856B-(cit28)/*[position()=1]) 2015; 119
Zhu (D0EE01856B-(cit44)/*[position()=1]) 2020; 142
Zhang (D0EE01856B-(cit103)/*[position()=1]) 2017; 29
Chen (D0EE01856B-(cit68)/*[position()=1]) 2017; 53
Zhang (D0EE01856B-(cit140)/*[position()=1]) 2017; 11
Zhao (D0EE01856B-(cit127)/*[position()=1]) 2015; 5
Li (D0EE01856B-(cit88)/*[position()=1]) 2014; 2
Zhang (D0EE01856B-(cit107)/*[position()=1]) 2018; 8
Wang (D0EE01856B-(cit141)/*[position()=1]) 2018; 532
Shinagawa (D0EE01856B-(cit30)/*[position()=1]) 2015; 17
Dinh (D0EE01856B-(cit25)/*[position()=1]) 2018; 4
Conway (D0EE01856B-(cit33)/*[position()=1]) 2002; 47
Cheng (D0EE01856B-(cit37)/*[position()=1]) 2018; 140
Men (D0EE01856B-(cit91)/*[position()=1]) 2019; 9
Yan (D0EE01856B-(cit77)/*[position()=1]) 2014; 4
Yan (D0EE01856B-(cit152)/*[position()=1]) 2017; 5
Hinnemann (D0EE01856B-(cit78)/*[position()=1]) 2005; 127
He (D0EE01856B-(cit142)/*[position()=1]) 2018; 28
Anantharaj (D0EE01856B-(cit8)/*[position()=1]) 2020; 10
Harnisch (D0EE01856B-(cit84)/*[position()=1]) 2009; 89
Li (D0EE01856B-(cit124)/*[position()=1]) 2018; 6
Frey (D0EE01856B-(cit72)/*[position()=1]) 2002; 3
Tran (D0EE01856B-(cit97)/*[position()=1]) 2012; 5
Pu (D0EE01856B-(cit149)/*[position()=1]) 2017; 9
Pei (D0EE01856B-(cit13)/*[position()=1]) 2018; 6
Huang (D0EE01856B-(cit126)/*[position()=1]) 2019; 251
D0EE01856B-(cit3)/*[position()=1]
Wang (D0EE01856B-(cit5)/*[position()=1]) 2014; 29
Merki (D0EE01856B-(cit9)/*[position()=1]) 2011; 4
Di Giovanni (D0EE01856B-(cit73)/*[position()=1]) 2014; 4
Pei (D0EE01856B-(cit11)/*[position()=1]) 2016; 4
Tsuji (D0EE01856B-(cit45)/*[position()=1]) 2017; 50
Zou (D0EE01856B-(cit42)/*[position()=1]) 2014; 53
Furimsky (D0EE01856B-(cit82)/*[position()=1]) 2003; 240
Liang (D0EE01856B-(cit130)/*[position()=1]) 2014; 4
Xie (D0EE01856B-(cit56)/*[position()=1]) 2019; 9
Wu (D0EE01856B-(cit99)/*[position()=1]) 2018; 57
Wang (D0EE01856B-(cit110)/*[position()=1]) 2020; 45
Gupta (D0EE01856B-(cit83)/*[position()=1]) 2015; 279
Pei (D0EE01856B-(cit12)/*[position()=1]) 2017; 11
Lu (D0EE01856B-(cit59)/*[position()=1]) 2018; 11
References_xml – issn: 2013
  publication-title: Renewable hydrogen technologies: production, purification, storage, applications and safety
  doi: Gandía Arzamedi Diéguez
– doi: De Valladares
– issn: 2011
  publication-title: Advanced membrane science and technology for sustainable energy and environmental applications
  doi: Basile Nunes
– volume: 5
  start-page: 300
  year: 2013
  ident: D0EE01856B-(cit29)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1574
– volume: 11
  start-page: 1898
  year: 2018
  ident: D0EE01856B-(cit59)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00976G
– volume: 1
  start-page: 1497
  year: 2014
  ident: D0EE01856B-(cit21)/*[position()=1]
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201402085
– volume: 9
  start-page: 16674
  year: 2017
  ident: D0EE01856B-(cit109)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR03515B
– volume: 39
  start-page: 30
  year: 2017
  ident: D0EE01856B-(cit7)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.06.027
– volume: 139
  start-page: 12283
  year: 2017
  ident: D0EE01856B-(cit39)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06434
– volume: 5
  start-page: 8912
  year: 2012
  ident: D0EE01856B-(cit97)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22611a
– volume: 142
  start-page: 8748
  year: 2020
  ident: D0EE01856B-(cit44)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c01104
– volume: 265
  start-page: 118555
  year: 2020
  ident: D0EE01856B-(cit94)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118555
– volume: 5
  start-page: 765
  year: 2017
  ident: D0EE01856B-(cit152)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09052D
– volume: 5
  start-page: 1402031
  year: 2015
  ident: D0EE01856B-(cit98)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201402031
– volume: 9
  start-page: 3555
  year: 2017
  ident: D0EE01856B-(cit149)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR09883E
– volume: 119
  start-page: 20453
  year: 2015
  ident: D0EE01856B-(cit32)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b05295
– volume: 41
  start-page: 2154
  year: 2017
  ident: D0EE01856B-(cit69)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C6NJ03194C
– volume: 5
  start-page: 4115
  year: 2015
  ident: D0EE01856B-(cit127)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00556
– volume: 138
  start-page: 1359
  year: 2016
  ident: D0EE01856B-(cit38)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11986
– volume: 3
  start-page: 153
  year: 2002
  ident: D0EE01856B-(cit72)/*[position()=1]
  publication-title: ChemBioChem
  doi: 10.1002/1439-7633(20020301)3:2/3<153::AID-CBIC153>3.0.CO;2-B
– volume: 44
  start-page: 5148
  year: 2015
  ident: D0EE01856B-(cit4)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00448E
– volume: 4
  start-page: 1840
  year: 2017
  ident: D0EE01856B-(cit63)/*[position()=1]
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201700392
– volume: 29
  start-page: 1605502
  year: 2017
  ident: D0EE01856B-(cit103)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605502
– volume: 7
  start-page: 2306
  year: 2015
  ident: D0EE01856B-(cit86)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR04924A
– volume: 36
  start-page: 307
  year: 2010
  ident: D0EE01856B-(cit16)/*[position()=1]
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2009.11.002
– volume: 51
  start-page: 12954
  year: 2015
  ident: D0EE01856B-(cit145)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC04965B
– volume: 47
  start-page: 3571
  year: 2002
  ident: D0EE01856B-(cit33)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(02)00329-8
– volume: 135
  start-page: 17699
  year: 2013
  ident: D0EE01856B-(cit122)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4094764
– volume: 28
  start-page: 1707244
  year: 2018
  ident: D0EE01856B-(cit142)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201707244
– volume: 283
  start-page: 1525
  year: 2018
  ident: D0EE01856B-(cit19)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.07.094
– volume: 9
  start-page: 19746
  year: 2017
  ident: D0EE01856B-(cit104)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15399
– volume: 5
  start-page: 6653
  year: 2015
  ident: D0EE01856B-(cit74)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01637
– volume: 4
  start-page: 107
  year: 2018
  ident: D0EE01856B-(cit25)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0296-8
– volume: 127
  start-page: 14871
  year: 2005
  ident: D0EE01856B-(cit61)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0540019
– volume: 586
  start-page: 117226
  year: 2019
  ident: D0EE01856B-(cit111)/*[position()=1]
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2019.117226
– volume: 111
  start-page: 106647
  year: 2020
  ident: D0EE01856B-(cit55)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2019.106647
– volume: 9
  start-page: 8714
  year: 2017
  ident: D0EE01856B-(cit137)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15980
– volume: 7
  start-page: 2624
  year: 2014
  ident: D0EE01856B-(cit62)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE00957F
– volume: 120
  start-page: 14581
  year: 2016
  ident: D0EE01856B-(cit76)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b05230
– ident: D0EE01856B-(cit2)/*[position()=1]
– volume: 5
  start-page: 145
  year: 2014
  ident: D0EE01856B-(cit70)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/cs5014943
– volume: 8
  start-page: 11101
  year: 2014
  ident: D0EE01856B-(cit153)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn5048553
– volume: 20
  start-page: 254
  year: 2016
  ident: D0EE01856B-(cit24)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.12.025
– volume: 40
  start-page: 4727
  year: 2015
  ident: D0EE01856B-(cit138)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.02.038
– volume: 334
  start-page: 1256
  year: 2011
  ident: D0EE01856B-(cit121)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1211934
– volume: 120
  start-page: 24187
  year: 2016
  ident: D0EE01856B-(cit34)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b07954
– volume-title: Advanced membrane science and technology for sustainable energy and environmental applications
  year: 2011
  ident: D0EE01856B-(cit17)/*[position()=1]
  doi: 10.1533/9780857093790
– volume: 7
  start-page: 98
  year: 2016
  ident: D0EE01856B-(cit114)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02849
– volume: 29
  start-page: 573
  year: 2014
  ident: D0EE01856B-(cit5)/*[position()=1]
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2013.08.090
– volume: 251
  start-page: 181
  year: 2019
  ident: D0EE01856B-(cit126)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.03.037
– volume: 532
  start-page: 774
  year: 2018
  ident: D0EE01856B-(cit141)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.08.040
– volume: 45
  start-page: 2504
  year: 2020
  ident: D0EE01856B-(cit110)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.11.154
– volume: 27
  start-page: 1606635
  year: 2017
  ident: D0EE01856B-(cit116)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201606635
– volume: 10
  start-page: 788
  year: 2017
  ident: D0EE01856B-(cit58)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03768B
– volume: 7
  start-page: 22453
  year: 2019
  ident: D0EE01856B-(cit118)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA08812A
– volume: 8
  start-page: 5200
  year: 2018
  ident: D0EE01856B-(cit107)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01076
– volume: 10
  start-page: 4876
  year: 2019
  ident: D0EE01856B-(cit47)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12773-7
– volume: 1
  start-page: e1500259
  year: 2015
  ident: D0EE01856B-(cit119)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500259
– volume: 23
  start-page: 12718
  year: 2017
  ident: D0EE01856B-(cit132)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201702923
– volume: 215
  start-page: 366
  year: 2016
  ident: D0EE01856B-(cit139)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.08.129
– volume: 5
  start-page: 20390
  year: 2017
  ident: D0EE01856B-(cit48)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA06000A
– volume: 56
  start-page: 8120
  year: 2017
  ident: D0EE01856B-(cit148)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201702934
– volume: 13
  start-page: 174
  year: 2020
  ident: D0EE01856B-(cit20)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02380A
– volume: 8
  start-page: 3895
  year: 2018
  ident: D0EE01856B-(cit143)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b04276
– volume: 120
  start-page: 1785
  year: 2016
  ident: D0EE01856B-(cit51)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b12137
– volume: 3
  start-page: 1500426
  year: 2016
  ident: D0EE01856B-(cit123)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500426
– volume: 15
  start-page: e1900358
  year: 2019
  ident: D0EE01856B-(cit80)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201900358
– volume: 58
  start-page: 4679
  year: 2019
  ident: D0EE01856B-(cit41)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201901409
– volume: 50
  start-page: 396
  year: 2017
  ident: D0EE01856B-(cit45)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00595
– volume: 11
  start-page: 323
  year: 2017
  ident: D0EE01856B-(cit140)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1634-z
– volume: 34
  start-page: 6596
  year: 2009
  ident: D0EE01856B-(cit147)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.05.126
– volume: 4
  start-page: 12205
  year: 2016
  ident: D0EE01856B-(cit11)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA03588D
– volume: 10
  start-page: 1902666
  year: 2020
  ident: D0EE01856B-(cit8)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902666
– volume: 119
  start-page: 10321
  year: 2015
  ident: D0EE01856B-(cit28)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b03276
– volume: 180
  start-page: 463
  year: 2016
  ident: D0EE01856B-(cit23)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2015.06.045
– volume: 4
  start-page: 681
  year: 2014
  ident: D0EE01856B-(cit73)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/cs4011698
– volume: 252
  start-page: 516
  year: 2017
  ident: D0EE01856B-(cit146)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.09.008
– volume: 45
  start-page: 1529
  year: 2016
  ident: D0EE01856B-(cit1)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00434A
– volume: 9
  start-page: 8712
  year: 2019
  ident: D0EE01856B-(cit56)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02609
– volume: 58
  start-page: 4679
  year: 2019
  ident: D0EE01856B-(cit92)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201901409
– volume: 6
  start-page: 1901458
  year: 2019
  ident: D0EE01856B-(cit87)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201901458
– volume: 2
  start-page: 18420
  year: 2014
  ident: D0EE01856B-(cit88)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03962A
– volume: 45
  start-page: 4075
  year: 2000
  ident: D0EE01856B-(cit43)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(00)00523-5
– volume: 6
  start-page: 8069
  year: 2016
  ident: D0EE01856B-(cit6)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02479
– volume: 11
  start-page: 3880
  year: 2019
  ident: D0EE01856B-(cit90)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b17961
– volume: 57
  start-page: 7568
  year: 2018
  ident: D0EE01856B-(cit120)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201710556
– volume: 5
  start-page: 7806
  year: 2017
  ident: D0EE01856B-(cit151)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02333B
– volume: 4
  start-page: 15486
  year: 2016
  ident: D0EE01856B-(cit79)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06101J
– volume: 164
  start-page: 144
  year: 2015
  ident: D0EE01856B-(cit67)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2014.09.016
– volume: 7
  start-page: 25628
  year: 2019
  ident: D0EE01856B-(cit57)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA08030A
– volume: 29
  start-page: 1606521
  year: 2017
  ident: D0EE01856B-(cit100)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606521
– volume: 7
  start-page: 2689
  year: 2017
  ident: D0EE01856B-(cit135)/*[position()=1]
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C7CY00703E
– volume: 6
  start-page: 5848
  year: 2015
  ident: D0EE01856B-(cit27)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6848
– volume: 7
  start-page: 289
  year: 2020
  ident: D0EE01856B-(cit144)/*[position()=1]
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201901860
– volume: 136
  start-page: 7587
  year: 2014
  ident: D0EE01856B-(cit64)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja503372r
– volume: 6
  start-page: 1502319
  year: 2016
  ident: D0EE01856B-(cit129)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502319
– volume: 355
  start-page: eaad4998
  year: 2017
  ident: D0EE01856B-(cit93)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 140
  start-page: 7787
  year: 2018
  ident: D0EE01856B-(cit37)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04006
– volume: 40
  start-page: 264
  year: 2017
  ident: D0EE01856B-(cit108)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.031
– volume: 1
  start-page: 10099
  year: 2013
  ident: D0EE01856B-(cit22)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta12062g
– volume: 55
  start-page: 6725
  year: 2016
  ident: D0EE01856B-(cit105)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201601367
– volume: 10
  start-page: 3188
  year: 2017
  ident: D0EE01856B-(cit115)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201700693
– volume: 3
  start-page: 17070
  year: 2018
  ident: D0EE01856B-(cit113)/*[position()=1]
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b02223
– volume: 30
  start-page: 1707261
  year: 2018
  ident: D0EE01856B-(cit54)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707261
– volume: 7
  start-page: 16793
  year: 2019
  ident: D0EE01856B-(cit154)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA05601G
– volume: 29
  start-page: 1605502
  year: 2017
  ident: D0EE01856B-(cit40)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605502
– volume: 53
  start-page: 5507
  year: 2017
  ident: D0EE01856B-(cit68)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC01584D
– volume: 154
  start-page: 345
  year: 2015
  ident: D0EE01856B-(cit85)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.12.096
– volume: 254
  start-page: 424
  year: 2019
  ident: D0EE01856B-(cit102)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.05.010
– volume: 127
  start-page: 5308
  year: 2005
  ident: D0EE01856B-(cit78)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0504690
– volume: 9
  start-page: 3744
  year: 2019
  ident: D0EE01856B-(cit91)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00407
– volume: 65
  start-page: 50
  year: 2011
  ident: D0EE01856B-(cit53)/*[position()=1]
  publication-title: Sci-Tech News
– volume: 26
  start-page: 303
  year: 2016
  ident: D0EE01856B-(cit136)/*[position()=1]
  publication-title: Prog. Nat. Sci.: Mater. Int.
  doi: 10.1016/j.pnsc.2016.05.014
– volume: 2
  start-page: 17031
  year: 2017
  ident: D0EE01856B-(cit10)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.31
– volume: 240
  start-page: 1
  year: 2003
  ident: D0EE01856B-(cit82)/*[position()=1]
  publication-title: Appl. Catal., A
  doi: 10.1016/S0926-860X(02)00428-3
– volume: 6
  start-page: 9467
  year: 2018
  ident: D0EE01856B-(cit125)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02204F
– ident: D0EE01856B-(cit3)/*[position()=1]
– volume: 57
  start-page: 15445
  year: 2018
  ident: D0EE01856B-(cit99)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201808929
– volume: 11
  start-page: 550
  year: 2012
  ident: D0EE01856B-(cit26)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3313
– volume: 12
  start-page: 1431
  year: 2019
  ident: D0EE01856B-(cit128)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2379-7
– volume: 2
  start-page: e1501602
  year: 2016
  ident: D0EE01856B-(cit36)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501602
– volume: 141
  start-page: 3232
  year: 2019
  ident: D0EE01856B-(cit46)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13228
– volume: 6
  start-page: 24767
  year: 2018
  ident: D0EE01856B-(cit124)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08519F
– volume: 11
  start-page: 2024
  year: 2018
  ident: D0EE01856B-(cit106)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1818-6
– volume: 6
  start-page: 489
  year: 2018
  ident: D0EE01856B-(cit13)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09254G
– volume: 5
  start-page: 12091
  year: 2017
  ident: D0EE01856B-(cit131)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03198J
– volume: 56
  start-page: 13694
  year: 2017
  ident: D0EE01856B-(cit117)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201706921
– volume: 7
  start-page: 980
  year: 2015
  ident: D0EE01856B-(cit150)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am507811a
– volume: 196
  start-page: 193
  year: 2016
  ident: D0EE01856B-(cit65)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2016.05.027
– volume: 53
  start-page: 6407
  year: 2014
  ident: D0EE01856B-(cit81)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201402998
– volume: 262
  start-page: 127041
  year: 2020
  ident: D0EE01856B-(cit96)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2019.127041
– volume: 4
  start-page: 3878
  year: 2011
  ident: D0EE01856B-(cit9)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01970h
– volume: 10
  start-page: 1318
  year: 2017
  ident: D0EE01856B-(cit49)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201601583
– volume: 2
  start-page: 19407
  year: 2014
  ident: D0EE01856B-(cit75)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04339A
– volume: 83
  start-page: 6
  year: 2017
  ident: D0EE01856B-(cit50)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2017.08.011
– volume: 335
  start-page: 135696
  year: 2020
  ident: D0EE01856B-(cit112)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.135696
– volume: 17
  start-page: 15111
  year: 2015
  ident: D0EE01856B-(cit30)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP02330K
– volume: 13
  start-page: 16384
  year: 2011
  ident: D0EE01856B-(cit35)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp21717h
– volume: 4
  start-page: 6860
  year: 2016
  ident: D0EE01856B-(cit133)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA08611F
– volume-title: Renewable hydrogen technologies: production, purification, storage, applications and safety
  year: 2013
  ident: D0EE01856B-(cit18)/*[position()=1]
– volume: 38
  start-page: 36
  year: 2009
  ident: D0EE01856B-(cit71)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B801144N
– volume: 6
  start-page: 9647
  year: 2016
  ident: D0EE01856B-(cit101)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA26748J
– volume: 29
  start-page: 1605838
  year: 2017
  ident: D0EE01856B-(cit14)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605838
– volume: 11
  start-page: 6004
  year: 2017
  ident: D0EE01856B-(cit12)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01908
– volume: 229
  start-page: 121
  year: 2017
  ident: D0EE01856B-(cit134)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.01.147
– volume: 4
  start-page: 4065
  year: 2014
  ident: D0EE01856B-(cit130)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/cs501106g
– volume: 38
  start-page: 4901
  year: 2013
  ident: D0EE01856B-(cit15)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.01.151
– volume: 53
  start-page: 4372
  year: 2014
  ident: D0EE01856B-(cit42)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201311111
– volume: 89
  start-page: 455
  year: 2009
  ident: D0EE01856B-(cit84)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2009.01.003
– volume: 13
  start-page: 634
  year: 2011
  ident: D0EE01856B-(cit31)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2011.03.032
– volume: 279
  start-page: 620
  year: 2015
  ident: D0EE01856B-(cit83)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.01.009
– volume: 7
  start-page: 3121
  year: 2017
  ident: D0EE01856B-(cit60)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b00199
– volume: 4
  start-page: 519
  year: 2019
  ident: D0EE01856B-(cit155)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0404-4
– volume: 11
  start-page: 25986
  year: 2019
  ident: D0EE01856B-(cit89)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b07415
– volume: 4
  start-page: 1693
  year: 2014
  ident: D0EE01856B-(cit77)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/cs500070x
– volume: 55
  start-page: 10884
  year: 2019
  ident: D0EE01856B-(cit95)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC05522C
– volume: 287
  start-page: 465
  year: 2015
  ident: D0EE01856B-(cit52)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.04.091
– volume: 4
  start-page: 7169
  year: 2016
  ident: D0EE01856B-(cit66)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA01328G
SSID ssj0062079
Score 2.6867492
Snippet Hydrogen production from direct water electrolysis has long been pursued as a key that may revolutionize the hydrogen economy. With the rapid availability of...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3185
SubjectTerms Anion exchanging
Cation exchange
Cation exchanging
Electrocatalysts
Electrolysis
Electrolytes
Energy resources
Energy sources
Hydrogen
Hydrogen evolution reactions
Hydrogen production
Hydrogen-based energy
pH effects
Renewable energy
Renewable resources
Working conditions
Title Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects
URI https://www.proquest.com/docview/2450769404
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLe67gIHNB4THQNZggvaMpzE9hJuGxQqXhc2Me0SxbFDJ01t1TZo48CVf5vPrzhlRQIuUWvna6N8v3yvfA-EnmkXgwvwTioB5pv-EuW8JPDgKSLAIk_iWsc7Pn7io1P67oyd9Xo_O1lLzVIcVN_X1pX8D1dhDfiqq2T_gbPtj8ICfAb-whE4DMe_4vHQzrAxIZhr3Xl1fC3n06-6cf8398dmzu18b6IaHdLYm410nrm0eVo6GlC5_kxNt8jF8BZEock_t0kCC5_maZuQ6LwuU6S5WAnt20JCjaZOAZ0vuwwYOh9PG_NWZKyc4jTC2SQWnMPS1UVQFnb1w0Unwm2iu5-B9nLqyF3YIiGdsIWVtIeMRozbQXgHqrN2SPiKeE5vwNDKWl333dHbqa28v6ESSKo7qkqiFAECLoLia9MRw-YG2kzA30j6aPPo_fHbL16p84SYto3tVftOt2n-IlCv2jbBYdmY-2kyxmo52UJ3nLuBjyx27qKemtxDtztNKO-jH7-jCHsU4RZF2MADOxTh2QgHFL3EDkN4FUP72CIIewTtY9jBFj-4xc8DdPpmePJqFLmpHFFFY7KMaK0bPCWUs7hWJMmrOuMxuMVlSWXMlXZQaSmkkFr0g0bIStCpRA_eYInKwCLeRv3JdKIeIswqlYFFLBjLJIWtnFUiVlSUkteMZ_UAPff3s6hcy3o9OeWyMKkTaV68JsOhuffHA_S0PXdmG7WsPWvXs6VwD_KiSCg4RTynhA7QNrCqpQ-cHaCd9RvFTNY7f6J6hG4F6O-i_nLeqMdgwy7FE4evX3oEoOY
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocatalytic+hydrogen+evolution+under+neutral+pH+conditions%3A+current+understandings%2C+recent+advances%2C+and+future+prospects&rft.jtitle=Energy+%26+environmental+science&rft.au=Zhou%2C+Zheng&rft.au=Pei%2C+Zengxia&rft.au=Wei%2C+Li&rft.au=Zhao%2C+Shenlong&rft.date=2020-01-01&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=13&rft.issue=1&rft.spage=3185&rft.epage=326&rft_id=info:doi/10.1039%2Fd0ee01856b&rft.externalDocID=d0ee01856b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon