4D printing of biodegradable shape memory double-network hydrogel for highly bionic devices

Hydrogels are attractive for bionic devices due to their sensing ability and flexibility, similar to human skin. However, current hydrogels hardly combine mechanical, water retention, sensing, actuating, and degradation performances, which significantly limits the application of hydrogels in highly...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials research and technology Vol. 24; pp. 2935 - 2945
Main Authors Song, Minzimo, Zhu, Guiyou, Guo, Jianwei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogels are attractive for bionic devices due to their sensing ability and flexibility, similar to human skin. However, current hydrogels hardly combine mechanical, water retention, sensing, actuating, and degradation performances, which significantly limits the application of hydrogels in highly bionic devices. In this paper, a biodegradable shape memory 4D printing hydrogel ink was prepared by bio-polyurethane (BPU), carboxymethyl chitosan (CMCS), and carbomer (CBM). The hydrogel ink had a high tensile strength (stress of 0.66 MPa, elongation at break of 643%), outstanding water retention (>85.87%), ionic conductivity (8.59 S m−1), and excellent sensing performance (S = 0.051 kPa−1, GF = 2.9). Fourier transform infrared reflection, X-ray diffractometer, and X-ray photoelectron spectroscopy data showed that the BPU, CMCS, and CBM form a double network structure through chemical, hydrogen, and ionic bonding cross-linking, respectively. After 4D printing, a continuous pore structure could be observed by scanning electron microscopy in the hydrogel model. The continuous pore structure provided channels for the movement of ions in the hydrogel model so that the pressure could be converted into a specific signal. Following the signal, a computer-controlled temperature rapidly heated the hydrogel model to 50 °C, and the hydrogel model could change shape autonomously. The excellent properties and highly bionic functions of biodegradable shape memory double-network hydrogel have broken through the limitations of applications in artificial intelligence robotics, human-machine interfaces, tissue engineering, and other fields. [Display omitted] •.First publication on shape memory bio-polyurethane as 4D printed hydrogel backbone.•Double-network structure results in hydrogel with enhanced multiperformance.•Printed hydrogel model with continuous pore structure exhibited sensing properties.•Successful application of hydrogel in bionic devices.
AbstractList Hydrogels are attractive for bionic devices due to their sensing ability and flexibility, similar to human skin. However, current hydrogels hardly combine mechanical, water retention, sensing, actuating, and degradation performances, which significantly limits the application of hydrogels in highly bionic devices. In this paper, a biodegradable shape memory 4D printing hydrogel ink was prepared by bio-polyurethane (BPU), carboxymethyl chitosan (CMCS), and carbomer (CBM). The hydrogel ink had a high tensile strength (stress of 0.66 MPa, elongation at break of 643%), outstanding water retention (>85.87%), ionic conductivity (8.59 S m−1), and excellent sensing performance (S = 0.051 kPa−1, GF = 2.9). Fourier transform infrared reflection, X-ray diffractometer, and X-ray photoelectron spectroscopy data showed that the BPU, CMCS, and CBM form a double network structure through chemical, hydrogen, and ionic bonding cross-linking, respectively. After 4D printing, a continuous pore structure could be observed by scanning electron microscopy in the hydrogel model. The continuous pore structure provided channels for the movement of ions in the hydrogel model so that the pressure could be converted into a specific signal. Following the signal, a computer-controlled temperature rapidly heated the hydrogel model to 50 °C, and the hydrogel model could change shape autonomously. The excellent properties and highly bionic functions of biodegradable shape memory double-network hydrogel have broken through the limitations of applications in artificial intelligence robotics, human-machine interfaces, tissue engineering, and other fields. [Display omitted] •.First publication on shape memory bio-polyurethane as 4D printed hydrogel backbone.•Double-network structure results in hydrogel with enhanced multiperformance.•Printed hydrogel model with continuous pore structure exhibited sensing properties.•Successful application of hydrogel in bionic devices.
Hydrogels are attractive for bionic devices due to their sensing ability and flexibility, similar to human skin. However, current hydrogels hardly combine mechanical, water retention, sensing, actuating, and degradation performances, which significantly limits the application of hydrogels in highly bionic devices. In this paper, a biodegradable shape memory 4D printing hydrogel ink was prepared by bio-polyurethane (BPU), carboxymethyl chitosan (CMCS), and carbomer (CBM). The hydrogel ink had a high tensile strength (stress of 0.66 MPa, elongation at break of 643%), outstanding water retention (>85.87%), ionic conductivity (8.59 S m−1), and excellent sensing performance (S = 0.051 kPa−1, GF = 2.9). Fourier transform infrared reflection, X-ray diffractometer, and X-ray photoelectron spectroscopy data showed that the BPU, CMCS, and CBM form a double network structure through chemical, hydrogen, and ionic bonding cross-linking, respectively. After 4D printing, a continuous pore structure could be observed by scanning electron microscopy in the hydrogel model. The continuous pore structure provided channels for the movement of ions in the hydrogel model so that the pressure could be converted into a specific signal. Following the signal, a computer-controlled temperature rapidly heated the hydrogel model to 50 °C, and the hydrogel model could change shape autonomously. The excellent properties and highly bionic functions of biodegradable shape memory double-network hydrogel have broken through the limitations of applications in artificial intelligence robotics, human-machine interfaces, tissue engineering, and other fields.
Author Song, Minzimo
Guo, Jianwei
Zhu, Guiyou
Author_xml – sequence: 1
  givenname: Minzimo
  orcidid: 0000-0002-4440-1207
  surname: Song
  fullname: Song, Minzimo
  organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
– sequence: 2
  givenname: Guiyou
  surname: Zhu
  fullname: Zhu, Guiyou
  organization: Guangzhou Tianjiang High Tech Materials Company Limited, Guangzhou, 510535, China
– sequence: 3
  givenname: Jianwei
  orcidid: 0000-0002-9830-2562
  surname: Guo
  fullname: Guo, Jianwei
  email: guojw@gdut.edu.cn
  organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
BookMark eNp9kM1KxDAUhbNQ8PcFXOUFWpPcNE3BjfgPghtduQhpctNJ7TSSVmXe3o4jLl1dOPB93HOOyN6YRiTkjLOSM67O-7Jf57kUTEDJoOSa7ZFDIUAXta7kATmdpp4xxqtGMc0Pyau8pu85jnMcO5oCbWPy2GXrbTsgnVb2Heka1ylvqE8fS1aMOH-l_EZXG59ThwMNKdNV7FbDZkuP0VGPn9HhdEL2gx0mPP29x-Tl9ub56r54fLp7uLp8LJzkbC5kU3HtQataSNlojsyKSmlbM6k11M4CBx5ajlAxDaoCWbdolUTfeNm0AMfkYef1yfZmabO2eWOSjeYnSLkzNs_RDWgQlHRtqJz1UvpGWhUEVDUEDkF5EItL7Fwup2nKGP58nJntwqY324XNdmHDwCwLL9DFDsKl5WfEbCYXcXToY0Y3L2_E__BvtLKH4w
CitedBy_id crossref_primary_10_1088_1361_665X_ad287d
crossref_primary_10_1016_j_polymertesting_2023_108105
crossref_primary_10_1016_j_giant_2023_100209
crossref_primary_10_1002_adsu_202300289
crossref_primary_10_1002_rpm_20240008
crossref_primary_10_1016_j_ceramint_2024_02_054
crossref_primary_10_3390_polym16081087
crossref_primary_10_1002_adem_202301074
Cites_doi 10.1002/adfm.201803366
10.1039/C6EE03079C
10.1016/j.compscitech.2020.108633
10.1002/adfm.202011176
10.1016/j.jcis.2021.04.001
10.1021/acsami.6b11993
10.1016/j.compscitech.2022.109263
10.1126/science.269.5223.525
10.1016/j.carbpol.2020.117590
10.1021/acsami.9b01989
10.1021/acsami.9b21659
10.1021/acsapm.0c01002
10.1002/adfm.202102433
10.1016/j.cej.2018.04.161
10.1016/j.carbpol.2020.117507
10.1021/acsami.1c08438
10.1016/j.cej.2020.124728
10.1016/j.polymer.2022.125190
10.1016/j.jhazmat.2021.125714
10.1016/j.carbpol.2020.117580
10.1039/D1MH00085C
10.1039/D2TA02576K
10.1021/acsami.9b10784
10.1016/j.carbpol.2021.117870
10.1002/adfm.202106406
10.1016/j.snb.2019.05.082
10.1126/science.aaw1974
10.1002/adfm.202107437
10.1126/scirobotics.abd5483
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jmrt.2023.03.180
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 2945
ExternalDocumentID oai_doaj_org_article_e364cbf5cad44d94a6f23573f13f6d32
10_1016_j_jmrt_2023_03_180
S2238785423006427
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ABXRA
ACGFS
ADBBV
ADCUG
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
FNPLU
GROUPED_DOAJ
GX1
HH5
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYXX
ADVLN
AFJKZ
CITATION
ID FETCH-LOGICAL-c410t-49518d3867244981e0a2568a7048837ca3131fb1e3508365347bea64ed9d49b33
IEDL.DBID IXB
ISSN 2238-7854
IngestDate Fri Oct 04 13:13:45 EDT 2024
Thu Sep 26 18:56:16 EDT 2024
Sat Sep 30 17:11:33 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Sensing
4D printing
Double-network
Shape memory
Actuator
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-49518d3867244981e0a2568a7048837ca3131fb1e3508365347bea64ed9d49b33
ORCID 0000-0002-9830-2562
0000-0002-4440-1207
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2238785423006427
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_e364cbf5cad44d94a6f23573f13f6d32
crossref_primary_10_1016_j_jmrt_2023_03_180
elsevier_sciencedirect_doi_10_1016_j_jmrt_2023_03_180
PublicationCentury 2000
PublicationDate May-June 2023
2023-05-00
2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May-June 2023
PublicationDecade 2020
PublicationTitle Journal of materials research and technology
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Su, Yin, Guo, Zhao, Guo, Zhang (bib35) 2021; 8
Lee, Cho, Kim, Moon, Seong, Shin (bib19) 2017; 10
Zheng, Shen, Zhu, Yin, Qian, Fu (bib10) 2018; 28
Wen, Tang, Ning, Hu, Zhu, Gong (bib11) 2021; 31
Qin, Sun, Yu, Zhang, Wu, Yao (bib26) 2020; 12
He, Fan, Xiao, Liu, Sun, Zhu (bib18) 2021; 204
Mao, Zhu, Pan, Liu, Tang, He (bib8) 2019; 5
Ding, Jeon, Cleveland, Gasvoda, Wells, Lee (bib23) 2022; 34
Yang, Zhang, Li, Li, Cheng, Li (bib31) 2018; 348
Dobashi, Yao, Petel, Nguyen, Sarwar, Thabet (bib2) 2022; 376
Yuan, Yi, Jiang, Liu, Cheng (bib17) 2021; 3
Zhou, Wan, Yang, Yang, Wang, Dai (bib33) 2019; 29
Yang, Yuan (bib25) 2019; 11
Tang, Yang, Lin, Peng, Chen, Jin (bib30) 2020; 393
Jiao, Lu, Lu, Yue, Xu, Xiao (bib29) 2021; 597
Zhang, Deng, Xia, Shen, Zhang, Lu (bib13) 2021; 256
Yue, Wang, Guo, Zhang, Liu (bib32) 2022; 220
He, Li, Sun, Zhao, Feng, Xu (bib24) 2021; 261
Truby, Wehner, Grosskopf, Vogt, Uzel, Wood (bib9) 2018; 30
Chen, Zhao, Liu, Nian, Li, Yin (bib15) 2019; 29
Hu, Zhang, Li (bib5) 1995; 269
Zhao, Lo, Ruan, Pi, Kim, Alsaid (bib27) 2021; 6
Guo, Bai, Zhu, Liu, Tian, Long (bib22) 2021; 31
Chien, Chuang, Jeng, Hsu (bib16) 2017; 9
Guo, Yang, Yan, An, Wang, Wu (bib3) 2022; 10
Hsieh, Hsu (bib6) 2019; 11
Sharma, Kumar, Naushad, Thakur, Vo, Gao (bib34) 2021; 416
He, Yu, Li, Zhang, Zhang, Yang (bib1) 2021; 13
Zhang, Yang, Woo, Li, Han, Dang (bib14) 2021; 256
Zhao, Feng, Zhang, He, Chen, Sun (bib20) 2021; 256
Song, Liu, Yue, Li, Guo (bib12) 2022; 256
Ge, Wang, Zhang, Alshareef, Dong (bib4) 2021; 31
Zhu, Jiang, Wang, Zhu, Zhao, Xu (bib21) 2021; 31
Mishra, Wallin, Pan, Xu, Wang, Giannelis (bib7) 2020; 5
Jing, Li, Mi, Liu, Feng, Tan (bib28) 2019; 295
Jiao (10.1016/j.jmrt.2023.03.180_bib29) 2021; 597
Truby (10.1016/j.jmrt.2023.03.180_bib9) 2018; 30
Zheng (10.1016/j.jmrt.2023.03.180_bib10) 2018; 28
Yang (10.1016/j.jmrt.2023.03.180_bib25) 2019; 11
Zhu (10.1016/j.jmrt.2023.03.180_bib21) 2021; 31
Zhao (10.1016/j.jmrt.2023.03.180_bib27) 2021; 6
Yue (10.1016/j.jmrt.2023.03.180_bib32) 2022; 220
Mishra (10.1016/j.jmrt.2023.03.180_bib7) 2020; 5
Chen (10.1016/j.jmrt.2023.03.180_bib15) 2019; 29
Zhao (10.1016/j.jmrt.2023.03.180_bib20) 2021; 256
Guo (10.1016/j.jmrt.2023.03.180_bib3) 2022; 10
He (10.1016/j.jmrt.2023.03.180_bib1) 2021; 13
Lee (10.1016/j.jmrt.2023.03.180_bib19) 2017; 10
Zhang (10.1016/j.jmrt.2023.03.180_bib13) 2021; 256
Yuan (10.1016/j.jmrt.2023.03.180_bib17) 2021; 3
Wen (10.1016/j.jmrt.2023.03.180_bib11) 2021; 31
Yang (10.1016/j.jmrt.2023.03.180_bib31) 2018; 348
Jing (10.1016/j.jmrt.2023.03.180_bib28) 2019; 295
Hu (10.1016/j.jmrt.2023.03.180_bib5) 1995; 269
He (10.1016/j.jmrt.2023.03.180_bib24) 2021; 261
Qin (10.1016/j.jmrt.2023.03.180_bib26) 2020; 12
Tang (10.1016/j.jmrt.2023.03.180_bib30) 2020; 393
Ding (10.1016/j.jmrt.2023.03.180_bib23) 2022; 34
Sharma (10.1016/j.jmrt.2023.03.180_bib34) 2021; 416
Zhang (10.1016/j.jmrt.2023.03.180_bib14) 2021; 256
Ge (10.1016/j.jmrt.2023.03.180_bib4) 2021; 31
Guo (10.1016/j.jmrt.2023.03.180_bib22) 2021; 31
Zhou (10.1016/j.jmrt.2023.03.180_bib33) 2019; 29
Dobashi (10.1016/j.jmrt.2023.03.180_bib2) 2022; 376
Su (10.1016/j.jmrt.2023.03.180_bib35) 2021; 8
Song (10.1016/j.jmrt.2023.03.180_bib12) 2022; 256
Mao (10.1016/j.jmrt.2023.03.180_bib8) 2019; 5
Chien (10.1016/j.jmrt.2023.03.180_bib16) 2017; 9
He (10.1016/j.jmrt.2023.03.180_bib18) 2021; 204
Hsieh (10.1016/j.jmrt.2023.03.180_bib6) 2019; 11
References_xml – volume: 348
  start-page: 191
  year: 2018
  end-page: 201
  ident: bib31
  article-title: Corn straw-derived biochar impregnated with Α-feooh nanorods for highly effective copper removal
  publication-title: Chem Eng J
  contributor:
    fullname: Li
– volume: 5
  year: 2020
  ident: bib7
  article-title: Autonomic perspiration in 3D-printed hydrogel
  publication-title: Actuators. Sci. Robot.
  contributor:
    fullname: Giannelis
– volume: 256
  year: 2021
  ident: bib13
  article-title: Semi-interpenetrating polymer networks prepared from Castor oil-based waterborne polyurethanes and carboxymethyl chitosan
  publication-title: Carbohydr Polym
  contributor:
    fullname: Lu
– volume: 376
  start-page: 502
  year: 2022
  end-page: 507
  ident: bib2
  article-title: Piezoionic mechanoreceptors: force-induced current generation in hydrogels
  publication-title: Science
  contributor:
    fullname: Thabet
– volume: 13
  start-page: 36286
  year: 2021
  end-page: 36294
  ident: bib1
  article-title: Digital light processing 4D printing of transparent, strong, highly conductive hydrogels
  publication-title: ACS Appl Mater Interfaces
  contributor:
    fullname: Yang
– volume: 31
  year: 2021
  ident: bib11
  article-title: Multifunctional ionic skin with sensing, Uv-filtering, water-retaining, and anti-freezing capabilities
  publication-title: Adv Funct Mater
  contributor:
    fullname: Gong
– volume: 256
  year: 2022
  ident: bib12
  article-title: 4D printing of PLA/PCL-Based bio-polyurethane via moderate cross-linking to adjust the microphase separation
  publication-title: Polymer
  contributor:
    fullname: Guo
– volume: 30
  year: 2018
  ident: bib9
  article-title: Soft somatosensitive actuators via embedded 3D printing
  publication-title: Adv Mater
  contributor:
    fullname: Wood
– volume: 393
  year: 2020
  ident: bib30
  article-title: Construction of physically crosslinked chitosan/sodium alginate/calcium ion double-network hydrogel and its application to heavy metal ions removal
  publication-title: Chem Eng J
  contributor:
    fullname: Jin
– volume: 416
  year: 2021
  ident: bib34
  article-title: Adsorptional-photocatalytic removal of fast sulphon black dye by using chitin-Cl-Poly(Itaconic acid-Co-Acrylamide)/Zirconium tungstate nanocomposite hydrogel
  publication-title: J Hazard Mater
  contributor:
    fullname: Gao
– volume: 3
  start-page: 699
  year: 2021
  end-page: 709
  ident: bib17
  article-title: Direct ink writing of hierarchically porous cellulose/alginate monolithic hydrogel as a highly effective adsorbent for environmental applications
  publication-title: ACS Appl. Polym. Mater.
  contributor:
    fullname: Cheng
– volume: 269
  start-page: 525
  year: 1995
  end-page: 527
  ident: bib5
  article-title: Synthesis and application of modulated polymer gels
  publication-title: Science
  contributor:
    fullname: Li
– volume: 256
  year: 2021
  ident: bib14
  article-title: High-mechanical strength carboxymethyl chitosan-based hydrogel film for antibacterial wound dressing
  publication-title: Carbohydr Polym
  contributor:
    fullname: Dang
– volume: 10
  start-page: 16095
  year: 2022
  end-page: 16105
  ident: bib3
  article-title: Anti-freezing, conductive and shape memory ionic glycerol-hydrogels with synchronous sensing and actuating properties for soft robotics
  publication-title: J Mater Chem A
  contributor:
    fullname: Wu
– volume: 11
  start-page: 32746
  year: 2019
  end-page: 32757
  ident: bib6
  article-title: Double-network polyurethane-gelatin hydrogel with tunable modulus for high-resolution 3D bioprinting
  publication-title: ACS Appl Mater Interfaces
  contributor:
    fullname: Hsu
– volume: 295
  start-page: 159
  year: 2019
  end-page: 167
  ident: bib28
  article-title: Highly transparent, stretchable, and rapid self-healing polyvinyl alcohol/cellulose nanofibril hydrogel sensors for sensitive pressure sensing and human motion detection
  publication-title: Sensor. Actuat. B-Chem.
  contributor:
    fullname: Tan
– volume: 8
  start-page: 1795
  year: 2021
  end-page: 1804
  ident: bib35
  article-title: Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications
  publication-title: Mater Horiz
  contributor:
    fullname: Zhang
– volume: 597
  start-page: 171
  year: 2021
  end-page: 181
  ident: bib29
  article-title: Highly stretchable and self-healing cellulose nanofiber-mediated conductive hydrogel towards strain sensing application
  publication-title: J Colloid Interface Sci
  contributor:
    fullname: Xiao
– volume: 9
  start-page: 5419
  year: 2017
  end-page: 5429
  ident: bib16
  article-title: Preparation, characterization, and mechanism for biodegradable and biocompatible polyurethane shape memory elastomers
  publication-title: ACS Appl Mater Interfaces
  contributor:
    fullname: Hsu
– volume: 11
  start-page: 16765
  year: 2019
  end-page: 16775
  ident: bib25
  article-title: Highly stretchable and transparent double-network hydrogel ionic conductors as flexible thermal–mechanical dual sensors and electroluminescent devices
  publication-title: ACS Appl Mater Interfaces
  contributor:
    fullname: Yuan
– volume: 28
  year: 2018
  ident: bib10
  article-title: Programmed deformations of 3D-printed tough physical hydrogels with high response speed and Large output force
  publication-title: Adv Funct Mater
  contributor:
    fullname: Fu
– volume: 256
  year: 2021
  ident: bib20
  article-title: Facile synthesis of self-healing and layered Sodium alginate/polyacrylamide hydrogel promoted by dynamic hydrogen bond
  publication-title: Carbohydr Polym
  contributor:
    fullname: Sun
– volume: 34
  year: 2022
  ident: bib23
  article-title: Jammed micro-flake hydrogel for four-dimensional living cell bioprinting
  publication-title: Adv Mater
  contributor:
    fullname: Lee
– volume: 261
  year: 2021
  ident: bib24
  article-title: A double-network polysaccharide-based composite hydrogel for skin wound healing
  publication-title: Carbohydr Polym
  contributor:
    fullname: Xu
– volume: 5
  year: 2019
  ident: bib8
  article-title: Direct-ink written shape-morphing film with rapid and programmable multimotion
  publication-title: Adv. Mater. Technol. -US.
  contributor:
    fullname: He
– volume: 29
  year: 2019
  ident: bib15
  article-title: 3D printing of multifunctional hydrogels
  publication-title: Adv Funct Mater
  contributor:
    fullname: Yin
– volume: 10
  start-page: 275
  year: 2017
  end-page: 285
  ident: bib19
  article-title: Highly conductive and durable poly(arylene ether sulfone) anion exchange membrane with end-group cross-linking
  publication-title: Energy Environ Sci
  contributor:
    fullname: Shin
– volume: 6
  start-page: d5483
  year: 2021
  ident: bib27
  article-title: Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel
  publication-title: Sci. Robot.
  contributor:
    fullname: Alsaid
– volume: 220
  year: 2022
  ident: bib32
  article-title: 3D reactive printing of polyaniline hybrid hydrogel microlattices with Large stretchability and high fatigue resistance for wearable pressure sensors
  publication-title: Compos Sci Technol
  contributor:
    fullname: Liu
– volume: 29
  year: 2019
  ident: bib33
  article-title: Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics
  publication-title: Adv Funct Mater
  contributor:
    fullname: Dai
– volume: 12
  start-page: 4944
  year: 2020
  end-page: 4953
  ident: bib26
  article-title: Carbon nanotubes/hydrophobically associated hydrogels as Ultrastretchable, highly sensitive, stable strain, and pressure sensors
  publication-title: ACS Appl Mater Interfaces
  contributor:
    fullname: Yao
– volume: 31
  year: 2021
  ident: bib4
  article-title: 3D printing of hydrogels for stretchable ionotronic devices
  publication-title: Adv Funct Mater
  contributor:
    fullname: Dong
– volume: 31
  year: 2021
  ident: bib21
  article-title: Skin-inspired double-hydrophobic-coating encapsulated hydrogels with enhanced water retention capacity
  publication-title: Adv Funct Mater
  contributor:
    fullname: Xu
– volume: 31
  year: 2021
  ident: bib22
  article-title: Pro-healing zwitterionic skin sensor enables multi-indicator distinction and continuous real-time monitoring
  publication-title: Adv Funct Mater
  contributor:
    fullname: Long
– volume: 204
  year: 2021
  ident: bib18
  article-title: Enhanced solar steam generation of hydrogel composite with aligned channel and shape memory behavior
  publication-title: Compos Sci Technol
  contributor:
    fullname: Zhu
– volume: 28
  year: 2018
  ident: 10.1016/j.jmrt.2023.03.180_bib10
  article-title: Programmed deformations of 3D-printed tough physical hydrogels with high response speed and Large output force
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201803366
  contributor:
    fullname: Zheng
– volume: 29
  year: 2019
  ident: 10.1016/j.jmrt.2023.03.180_bib33
  article-title: Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics
  publication-title: Adv Funct Mater
  contributor:
    fullname: Zhou
– volume: 10
  start-page: 275
  year: 2017
  ident: 10.1016/j.jmrt.2023.03.180_bib19
  article-title: Highly conductive and durable poly(arylene ether sulfone) anion exchange membrane with end-group cross-linking
  publication-title: Energy Environ Sci
  doi: 10.1039/C6EE03079C
  contributor:
    fullname: Lee
– volume: 204
  year: 2021
  ident: 10.1016/j.jmrt.2023.03.180_bib18
  article-title: Enhanced solar steam generation of hydrogel composite with aligned channel and shape memory behavior
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2020.108633
  contributor:
    fullname: He
– volume: 31
  year: 2021
  ident: 10.1016/j.jmrt.2023.03.180_bib11
  article-title: Multifunctional ionic skin with sensing, Uv-filtering, water-retaining, and anti-freezing capabilities
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202011176
  contributor:
    fullname: Wen
– volume: 597
  start-page: 171
  year: 2021
  ident: 10.1016/j.jmrt.2023.03.180_bib29
  article-title: Highly stretchable and self-healing cellulose nanofiber-mediated conductive hydrogel towards strain sensing application
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2021.04.001
  contributor:
    fullname: Jiao
– volume: 9
  start-page: 5419
  year: 2017
  ident: 10.1016/j.jmrt.2023.03.180_bib16
  article-title: Preparation, characterization, and mechanism for biodegradable and biocompatible polyurethane shape memory elastomers
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b11993
  contributor:
    fullname: Chien
– volume: 220
  year: 2022
  ident: 10.1016/j.jmrt.2023.03.180_bib32
  article-title: 3D reactive printing of polyaniline hybrid hydrogel microlattices with Large stretchability and high fatigue resistance for wearable pressure sensors
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2022.109263
  contributor:
    fullname: Yue
– volume: 269
  start-page: 525
  year: 1995
  ident: 10.1016/j.jmrt.2023.03.180_bib5
  article-title: Synthesis and application of modulated polymer gels
  publication-title: Science
  doi: 10.1126/science.269.5223.525
  contributor:
    fullname: Hu
– volume: 256
  year: 2021
  ident: 10.1016/j.jmrt.2023.03.180_bib14
  article-title: High-mechanical strength carboxymethyl chitosan-based hydrogel film for antibacterial wound dressing
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2020.117590
  contributor:
    fullname: Zhang
– volume: 11
  start-page: 16765
  year: 2019
  ident: 10.1016/j.jmrt.2023.03.180_bib25
  article-title: Highly stretchable and transparent double-network hydrogel ionic conductors as flexible thermal–mechanical dual sensors and electroluminescent devices
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b01989
  contributor:
    fullname: Yang
– volume: 12
  start-page: 4944
  year: 2020
  ident: 10.1016/j.jmrt.2023.03.180_bib26
  article-title: Carbon nanotubes/hydrophobically associated hydrogels as Ultrastretchable, highly sensitive, stable strain, and pressure sensors
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b21659
  contributor:
    fullname: Qin
– volume: 3
  start-page: 699
  year: 2021
  ident: 10.1016/j.jmrt.2023.03.180_bib17
  article-title: Direct ink writing of hierarchically porous cellulose/alginate monolithic hydrogel as a highly effective adsorbent for environmental applications
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.0c01002
  contributor:
    fullname: Yuan
– volume: 31
  year: 2021
  ident: 10.1016/j.jmrt.2023.03.180_bib21
  article-title: Skin-inspired double-hydrophobic-coating encapsulated hydrogels with enhanced water retention capacity
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202102433
  contributor:
    fullname: Zhu
– volume: 348
  start-page: 191
  year: 2018
  ident: 10.1016/j.jmrt.2023.03.180_bib31
  article-title: Corn straw-derived biochar impregnated with Α-feooh nanorods for highly effective copper removal
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2018.04.161
  contributor:
    fullname: Yang
– volume: 30
  year: 2018
  ident: 10.1016/j.jmrt.2023.03.180_bib9
  article-title: Soft somatosensitive actuators via embedded 3D printing
  publication-title: Adv Mater
  contributor:
    fullname: Truby
– volume: 256
  year: 2021
  ident: 10.1016/j.jmrt.2023.03.180_bib13
  article-title: Semi-interpenetrating polymer networks prepared from Castor oil-based waterborne polyurethanes and carboxymethyl chitosan
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2020.117507
  contributor:
    fullname: Zhang
– volume: 13
  start-page: 36286
  year: 2021
  ident: 10.1016/j.jmrt.2023.03.180_bib1
  article-title: Digital light processing 4D printing of transparent, strong, highly conductive hydrogels
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.1c08438
  contributor:
    fullname: He
– volume: 393
  year: 2020
  ident: 10.1016/j.jmrt.2023.03.180_bib30
  article-title: Construction of physically crosslinked chitosan/sodium alginate/calcium ion double-network hydrogel and its application to heavy metal ions removal
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.124728
  contributor:
    fullname: Tang
– volume: 5
  year: 2020
  ident: 10.1016/j.jmrt.2023.03.180_bib7
  article-title: Autonomic perspiration in 3D-printed hydrogel
  publication-title: Actuators. Sci. Robot.
  contributor:
    fullname: Mishra
– volume: 5
  year: 2019
  ident: 10.1016/j.jmrt.2023.03.180_bib8
  article-title: Direct-ink written shape-morphing film with rapid and programmable multimotion
  publication-title: Adv. Mater. Technol. -US.
  contributor:
    fullname: Mao
– volume: 256
  year: 2022
  ident: 10.1016/j.jmrt.2023.03.180_bib12
  article-title: 4D printing of PLA/PCL-Based bio-polyurethane via moderate cross-linking to adjust the microphase separation
  publication-title: Polymer
  doi: 10.1016/j.polymer.2022.125190
  contributor:
    fullname: Song
– volume: 416
  year: 2021
  ident: 10.1016/j.jmrt.2023.03.180_bib34
  article-title: Adsorptional-photocatalytic removal of fast sulphon black dye by using chitin-Cl-Poly(Itaconic acid-Co-Acrylamide)/Zirconium tungstate nanocomposite hydrogel
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.125714
  contributor:
    fullname: Sharma
– volume: 256
  year: 2021
  ident: 10.1016/j.jmrt.2023.03.180_bib20
  article-title: Facile synthesis of self-healing and layered Sodium alginate/polyacrylamide hydrogel promoted by dynamic hydrogen bond
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2020.117580
  contributor:
    fullname: Zhao
– volume: 8
  start-page: 1795
  year: 2021
  ident: 10.1016/j.jmrt.2023.03.180_bib35
  article-title: Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications
  publication-title: Mater Horiz
  doi: 10.1039/D1MH00085C
  contributor:
    fullname: Su
– volume: 10
  start-page: 16095
  year: 2022
  ident: 10.1016/j.jmrt.2023.03.180_bib3
  article-title: Anti-freezing, conductive and shape memory ionic glycerol-hydrogels with synchronous sensing and actuating properties for soft robotics
  publication-title: J Mater Chem A
  doi: 10.1039/D2TA02576K
  contributor:
    fullname: Guo
– volume: 34
  year: 2022
  ident: 10.1016/j.jmrt.2023.03.180_bib23
  article-title: Jammed micro-flake hydrogel for four-dimensional living cell bioprinting
  publication-title: Adv Mater
  contributor:
    fullname: Ding
– volume: 29
  year: 2019
  ident: 10.1016/j.jmrt.2023.03.180_bib15
  article-title: 3D printing of multifunctional hydrogels
  publication-title: Adv Funct Mater
  contributor:
    fullname: Chen
– volume: 11
  start-page: 32746
  year: 2019
  ident: 10.1016/j.jmrt.2023.03.180_bib6
  article-title: Double-network polyurethane-gelatin hydrogel with tunable modulus for high-resolution 3D bioprinting
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b10784
  contributor:
    fullname: Hsieh
– volume: 261
  year: 2021
  ident: 10.1016/j.jmrt.2023.03.180_bib24
  article-title: A double-network polysaccharide-based composite hydrogel for skin wound healing
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2021.117870
  contributor:
    fullname: He
– volume: 31
  year: 2021
  ident: 10.1016/j.jmrt.2023.03.180_bib22
  article-title: Pro-healing zwitterionic skin sensor enables multi-indicator distinction and continuous real-time monitoring
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202106406
  contributor:
    fullname: Guo
– volume: 295
  start-page: 159
  year: 2019
  ident: 10.1016/j.jmrt.2023.03.180_bib28
  article-title: Highly transparent, stretchable, and rapid self-healing polyvinyl alcohol/cellulose nanofibril hydrogel sensors for sensitive pressure sensing and human motion detection
  publication-title: Sensor. Actuat. B-Chem.
  doi: 10.1016/j.snb.2019.05.082
  contributor:
    fullname: Jing
– volume: 376
  start-page: 502
  year: 2022
  ident: 10.1016/j.jmrt.2023.03.180_bib2
  article-title: Piezoionic mechanoreceptors: force-induced current generation in hydrogels
  publication-title: Science
  doi: 10.1126/science.aaw1974
  contributor:
    fullname: Dobashi
– volume: 31
  year: 2021
  ident: 10.1016/j.jmrt.2023.03.180_bib4
  article-title: 3D printing of hydrogels for stretchable ionotronic devices
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202107437
  contributor:
    fullname: Ge
– volume: 6
  start-page: d5483
  year: 2021
  ident: 10.1016/j.jmrt.2023.03.180_bib27
  article-title: Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.abd5483
  contributor:
    fullname: Zhao
SSID ssj0001596081
Score 2.3723292
Snippet Hydrogels are attractive for bionic devices due to their sensing ability and flexibility, similar to human skin. However, current hydrogels hardly combine...
SourceID doaj
crossref
elsevier
SourceType Open Website
Aggregation Database
Publisher
StartPage 2935
SubjectTerms 4D printing
Actuator
Double-network
Sensing
Shape memory
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTvSAoC1i-ah86K2yWO84dnLkU6hSeyoSUg-W7bFhESSrZTnsv8cTZ6uc6KVXK7GtGcdvJnrzhrFvOMtOrWZRhNhEoRJ64aKvhPF1Ap3y3ntJoZ-_9M2t-nFX3Y1afREnrMgDF8OdRtAq-FQFh0pho5xOpNACSULSCOX2ldUomSr1wTky7zuUZvirhakrNVTMFHLX4_OSiJQzIIVTSZqQI1TqxftH4DQCnOtdtjNEivys7HCPfYjtJ_ZxpB_4mf1Rl5x-zBF1mXeJ-3mHJP6AVA_FXx7cIvJnotKuOXaveUy0hfXNH9a47O7jE88xKyfJ4qc1vd3OA8fYXx5f2O311e-LGzF0SxBByelK5ExH1gi1Nhmxm1rGqcvhTO0MfaNgggMJMnkZgRTgdQXK-Oi0itigajzAPttquzYeMK4hTDHnJehztgTGeIU5UW6SnKFzIZgJ-76xll0UUQy7YYs9WrKtJdvaKdhs2wk7J4P-fZIErfuB7GY7uNn-y80TVm3cYYfYoGB-nmr-zuKH_2PxI7ZNUxae4zHbWi1f40mORVb-a3_s3gAUQdss
  priority: 102
  providerName: Directory of Open Access Journals
Title 4D printing of biodegradable shape memory double-network hydrogel for highly bionic devices
URI https://dx.doi.org/10.1016/j.jmrt.2023.03.180
https://doaj.org/article/e364cbf5cad44d94a6f23573f13f6d32
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQp3KoaAvq0hb50Ftl7Trj2MkRaBFCai8t0kocLNtjQxAkq-1y2H-PJ8m2y4UDx1iexJpx5sN688zYVyyyUcsiihDrKFRCL1z0pTC-SqBTXntPKfTzl764Upfzcr7Dzja9MASrHH3_4NN7bz2OTEdtThdNM_2dA1tlqjLnAxRXC-ooJ25PauKbn_4_Zylzjt7fVUrzBQmMvTMDzOvuYUmQygKI61QSO-RWfOpp_LfC1FboOd9nb8eckZ8My3rHdmL7nu1tMQl-YNfqO6cjOgIx8y5x33RINBBInVH8761bRP5AoNo1x-4xj4l2wH_z2zUuu5t4z3P2yom8-H5N0m0TOMbejRywq_Mff84uxHhvgghKzlYi1zyyQqi0ybG7rmScuZzYVM7Q3womOJAgk5cRiAtel6CMj06riDWq2gMcst22a-NHxjWEGeYKBX2um8AYrzCXzHWSBToXgpmwbxtt2cVAj2E3uLE7S7q1pFs7A5t1O2GnpNB_M4nauh_oljd2tK2NoFXwqQwOlcJaOZ2IkgeShKQRigkrN-awz3ZKflXzwsePXin3ib2hpwHk-JntrpaP8UtORFb-uC_gj_v99gR5M9wk
link.rule.ids 315,786,790,870,2115,3525,27955,27956,45907
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKewAOiPIQC5T6wA1Zu874kRxpabV9XmillThYfrap2mS1bA_77_EkWVguHLg6mcSasedhffOZkM-hyEaVRWQ-VpGJFByz0UmmXZlApTz3jlLo4lJNr8XpTM62yOG6FwZhlYPv7316562HkfGgzfG8rsffc2ArdSlzPoBxtdBPyI6QudbDLr7ZwZ-DFpmT9O6yUhRgKDE0z_Q4r7uHBWIqC0CyU470kBsBquPx34hTG7Hn-CV5MSSN9Gs_r12yFZtX5PkGleBr8kN8o3hGhyhm2ibq6jYgD0TA1ij689bOI31AVO2KhvYxj7GmB4DT21VYtDfxnub0lSJ78f0KpZva0xA7P_KGXB8fXR1O2XBxAvOCT5YsFz28DFAqnYN3VfI4sTmzKa3G7QraW-DAk-MRkAxeSRDaRatEDFUQlQN4S7abtonvCFXgJyGXKMHlwgm0diLkmrlKvAjWeq9H5MtaW2be82OYNXDszqBuDerWTMBk3Y7IASr095vIbd0NtIsbMxjXRFDCuyS9DUKESliVkJMHEoekAhQjItfmMH8tlfyp-h8_f_-fcvvk6fTq4tycn1yefSDP8EmPePxItpeLx7iXs5Kl-9Stul9zHd5U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=4D+printing+of+biodegradable+shape+memory+double-network+hydrogel+for+highly+bionic+devices&rft.jtitle=Journal+of+materials+research+and+technology&rft.au=Song%2C+Minzimo&rft.au=Zhu%2C+Guiyou&rft.au=Guo%2C+Jianwei&rft.date=2023-05-01&rft.issn=2238-7854&rft.volume=24&rft.spage=2935&rft.epage=2945&rft_id=info:doi/10.1016%2Fj.jmrt.2023.03.180&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmrt_2023_03_180
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2238-7854&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2238-7854&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2238-7854&client=summon