Milk adulterant detection: Conventional and biosensor based approaches: A review
Milk adulteration is one of the major global concerns as milk is being consumed as a wholesome dairy product in every part of the world. The fraudulent practice of milk adulteration is on the rise, which is making people apprehensive about the purity and quality of milk. The adulterants such as wate...
Saved in:
Published in | Sensing and Bio-Sensing Research Vol. 33; p. 100433 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Milk adulteration is one of the major global concerns as milk is being consumed as a wholesome dairy product in every part of the world. The fraudulent practice of milk adulteration is on the rise, which is making people apprehensive about the purity and quality of milk. The adulterants such as water, vegetable and animal fat, extraneous proteins and chemical components viz. melamine, urea, formalin, detergents, ammonium sulphate, boric acid, caustic soda, benzoic acid, salicylic acid, hydrogen peroxide and sugars deliberately mixed in milk can be an be harmful to the health of consumers. This necessitates the availability of procedures and technologies that could curb this ill practice of milk adulteration. Over the years, various methods have been developed for the detection of milk adulterants. The chromatographic methods such as HPLC and GC, coupled with mass spectrometry have been used for selective identification as well as detection of different milk adulterants. Immunological techniques such as ELISA and various DNA based procedures like PCR have also been used for the specific detection of some common milk adulterants. Spectroscopic methods, namely FTIR and NIR in association with chemometrics have raised the bar of adulterant detection systems. The equipments such as electronic nose and electronic tongue are some of the fancy procedures used in milk and other food adulterants detection. The biosensors are the detection systems that can be used for rapid and real time detection of milk adulterants. This review brings insight into the biosensor application in milk adulterant detection and also tries to explore the potential of biosensors in identifying some common milk adulterants.
•The detection of milk adulterants becomes very important in terms of maintaining good human health.•The testing of some milk adulterants is comparatively simple and rapid, but there are some which requires costly equipment set up and cumbersome operational procedures.•Biosensors used for milk adulterant detection ensures real time and specific detection.•This review brings insights into traditional and biosensor applications to detect some common milk adulterants. |
---|---|
AbstractList | Milk adulteration is one of the major global concerns as milk is being consumed as a wholesome dairy product in every part of the world. The fraudulent practice of milk adulteration is on the rise, which is making people apprehensive about the purity and quality of milk. The adulterants such as water, vegetable and animal fat, extraneous proteins and chemical components viz. melamine, urea, formalin, detergents, ammonium sulphate, boric acid, caustic soda, benzoic acid, salicylic acid, hydrogen peroxide and sugars deliberately mixed in milk can be an be harmful to the health of consumers. This necessitates the availability of procedures and technologies that could curb this ill practice of milk adulteration. Over the years, various methods have been developed for the detection of milk adulterants. The chromatographic methods such as HPLC and GC, coupled with mass spectrometry have been used for selective identification as well as detection of different milk adulterants. Immunological techniques such as ELISA and various DNA based procedures like PCR have also been used for the specific detection of some common milk adulterants. Spectroscopic methods, namely FTIR and NIR in association with chemometrics have raised the bar of adulterant detection systems. The equipments such as electronic nose and electronic tongue are some of the fancy procedures used in milk and other food adulterants detection. The biosensors are the detection systems that can be used for rapid and real time detection of milk adulterants. This review brings insight into the biosensor application in milk adulterant detection and also tries to explore the potential of biosensors in identifying some common milk adulterants. Milk adulteration is one of the major global concerns as milk is being consumed as a wholesome dairy product in every part of the world. The fraudulent practice of milk adulteration is on the rise, which is making people apprehensive about the purity and quality of milk. The adulterants such as water, vegetable and animal fat, extraneous proteins and chemical components viz. melamine, urea, formalin, detergents, ammonium sulphate, boric acid, caustic soda, benzoic acid, salicylic acid, hydrogen peroxide and sugars deliberately mixed in milk can be an be harmful to the health of consumers. This necessitates the availability of procedures and technologies that could curb this ill practice of milk adulteration. Over the years, various methods have been developed for the detection of milk adulterants. The chromatographic methods such as HPLC and GC, coupled with mass spectrometry have been used for selective identification as well as detection of different milk adulterants. Immunological techniques such as ELISA and various DNA based procedures like PCR have also been used for the specific detection of some common milk adulterants. Spectroscopic methods, namely FTIR and NIR in association with chemometrics have raised the bar of adulterant detection systems. The equipments such as electronic nose and electronic tongue are some of the fancy procedures used in milk and other food adulterants detection. The biosensors are the detection systems that can be used for rapid and real time detection of milk adulterants. This review brings insight into the biosensor application in milk adulterant detection and also tries to explore the potential of biosensors in identifying some common milk adulterants. •The detection of milk adulterants becomes very important in terms of maintaining good human health.•The testing of some milk adulterants is comparatively simple and rapid, but there are some which requires costly equipment set up and cumbersome operational procedures.•Biosensors used for milk adulterant detection ensures real time and specific detection.•This review brings insights into traditional and biosensor applications to detect some common milk adulterants. |
ArticleNumber | 100433 |
Author | Chawla, Prince Sharma, Avinash Nagraik, Rupak Kumar, Deepak Kumar, Avvaru Praveen |
Author_xml | – sequence: 1 givenname: Rupak surname: Nagraik fullname: Nagraik, Rupak email: rupak.nagraik@gmail.com organization: Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229, India – sequence: 2 givenname: Avinash surname: Sharma fullname: Sharma, Avinash organization: Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229, India – sequence: 3 givenname: Deepak surname: Kumar fullname: Kumar, Deepak organization: Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India – sequence: 4 givenname: Prince surname: Chawla fullname: Chawla, Prince organization: Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Jalandhar, India – sequence: 5 givenname: Avvaru Praveen surname: Kumar fullname: Kumar, Avvaru Praveen email: drkumar.kr@gmail.com organization: Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, PO Box 1888, Adama, Ethiopia |
BookMark | eNp9kMFO3DAQQC0EEpTyA5z8A7v12E42WfWCVoUigeBQztZkPKHepvbKTqn69012K1Rx4DSjkd6T5n0QxzFFFuIS1BIU1J-2y9KVvNRKw3RQ1pgjcaY12AU0yh7_t5-Ki1K2SilY1TU0-kw83ofhh0T_axg5Yxyl55FpDCmu5SbFF47zjoPE6GUXUuFYUpYdFvYSd7uckL5zWcsrmfkl8O-P4qTHofDFv3kunq6_fNt8Xdw93Nxuru4WZEGNC9sqRZZaa_QKdNevfM9EbVV11FdNZVbMipC8ab0Gb72pGzZcddjVAC0pcy5uD16fcOt2OfzE_MclDG5_SPnZYR4DDewQGmTbAZnGWm9x0hPVoI03uqn2Ln1wUU6lZO5ffaDcnNht3ZzYzYndIfEENW8gCiPOtcaMYXgf_XxAeQo0RcuuUOBI7EOe4k8fhPfwv-b8mU0 |
CitedBy_id | crossref_primary_10_1016_j_gltp_2021_08_015 crossref_primary_10_1016_j_foodcont_2025_111247 crossref_primary_10_1109_LSENS_2023_3247426 crossref_primary_10_1016_j_fbio_2022_101695 crossref_primary_10_1093_fqsafe_fyae039 crossref_primary_10_1016_j_foohum_2024_100339 crossref_primary_10_1016_j_idairyj_2022_105470 crossref_primary_10_3390_foods14040693 crossref_primary_10_1016_j_matlet_2021_131606 crossref_primary_10_3390_biomimetics6040072 crossref_primary_10_3390_foods12152855 crossref_primary_10_4236_fns_2023_141001 crossref_primary_10_1002_fsn3_3732 crossref_primary_10_1109_TIM_2022_3147313 crossref_primary_10_3390_s24175688 crossref_primary_10_1002_cem_3395 crossref_primary_10_1007_s00604_022_05302_9 crossref_primary_10_1002_efd2_116 crossref_primary_10_1016_j_foodchem_2023_135965 crossref_primary_10_1088_1742_6596_2426_1_012040 crossref_primary_10_1021_acsanm_4c02263 crossref_primary_10_1016_j_foodchem_2025_143093 crossref_primary_10_1016_j_idairyj_2024_105922 crossref_primary_10_1590_fst_67022 crossref_primary_10_1007_s12161_022_02427_8 crossref_primary_10_1021_acsomega_2c01033 crossref_primary_10_1002_slct_202302027 crossref_primary_10_1016_j_tifs_2022_06_001 crossref_primary_10_1016_j_microc_2023_108990 crossref_primary_10_1109_TNANO_2021_3123175 crossref_primary_10_3390_app13179821 crossref_primary_10_1080_19440049_2024_2358518 crossref_primary_10_1111_1750_3841_16143 crossref_primary_10_48084_etasr_7091 crossref_primary_10_1039_D3LC00730H crossref_primary_10_1039_D4AY01919A crossref_primary_10_1080_07388551_2023_2175196 crossref_primary_10_28979_jarnas_1569065 crossref_primary_10_1021_acsabm_4c00846 crossref_primary_10_1080_01468030_2024_2442289 crossref_primary_10_1155_2021_4250122 crossref_primary_10_1016_j_foodcont_2024_110624 crossref_primary_10_1016_j_matlet_2021_131240 crossref_primary_10_1016_j_trac_2024_118012 crossref_primary_10_1039_D1AY01339D crossref_primary_10_1016_j_jfca_2024_106382 crossref_primary_10_21603_1019_8946_2023_5_6 |
Cites_doi | 10.1016/j.snb.2012.12.089 10.1016/j.talanta.2007.02.007 10.3168/jds.2012-6417 10.3329/ralf.v4i2.33721 10.3168/jds.2011-5235 10.1039/C4RA13080D 10.1080/13102818.2005.10817216 10.1016/j.tibtech.2004.10.003 10.1186/s40550-016-0045-3 10.14202/vetworld.2018.830-833 10.1016/j.foodcont.2018.04.046 10.1080/00032719.2011.633192 10.1007/s13369-012-0411-2 10.1016/j.foodcont.2018.08.006 10.1080/13547500802645905 10.1080/10408398.2013.798257 10.1080/10942912.2017.1289542 10.1255/jnirs.1077 10.1007/s13594-011-0008-7 10.1016/j.foodchem.2018.08.021 10.1109/JSEN.2015.2494624 10.1007/s12161-014-9873-z 10.1016/j.snb.2008.09.025 10.3168/jds.2014-8247 10.1016/j.foodchem.2013.05.106 10.1166/jnn.2011.4248 10.1080/87559129.2014.994818 10.1080/10826068.2016.1172235 10.4103/0976-9668.136174 10.1093/jaoac/89.3.849 10.1080/19440040903289720 10.1016/j.tifs.2015.07.007 10.1007/s00216-010-4599-2 10.1111/j.1365-2567.2012.03616.x 10.1016/S0165-9936(01)00136-4 10.1016/j.foodchem.2015.10.016 10.1016/j.foodchem.2016.11.034 10.1016/j.jpba.2017.09.025 10.1016/j.foodchem.2013.08.064 10.3168/jds.S0022-0302(05)72993-3 10.1016/j.snb.2016.09.100 10.1016/j.bios.2004.05.018 10.1016/j.bios.2010.03.018 10.1111/1541-4337.12181 10.1002/rcm.1460 10.5307/JBE.2014.39.4.357 10.1016/j.snb.2009.04.022 10.1007/s13594-011-0052-3 10.1016/j.bios.2010.07.113 10.1016/j.foodchem.2012.02.154 10.1007/s13197-019-03807-5 10.1111/1471-0307.12274 10.1007/s42535-019-00078-5 10.1111/j.1365-2621.2009.02087.x 10.1016/j.matpr.2020.12.233 10.1021/ac990776m 10.1016/j.foodres.2014.03.001 10.1016/j.talanta.2010.07.035 10.1007/s12043-002-0049-9 10.1016/j.foodchem.2016.09.037 10.1080/09540100120055701 10.1021/jf404924x 10.3168/jds.2011-4926 10.1016/j.fbio.2013.04.005 10.1631/jzus.B1100389 10.1126/science.322.5906.1310 10.1016/j.foodchem.2010.10.045 10.1016/j.foodchem.2016.11.109 10.1111/j.1757-837X.2009.00018.x 10.1080/19440049.2019.1591643 10.3168/jds.2015-9919 10.1631/jzus.2005.B1101 10.3390/s18103227 10.1155/2016/1807647 10.3168/jds.2016-11695 10.3168/jds.2018-16194 10.1111/j.1365-2621.2004.00861.x |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.sbsr.2021.100433 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-1804 |
ExternalDocumentID | oai_doaj_org_article_a18ae4b1c3844d4a853cc6123d3285c0 10_1016_j_sbsr_2021_100433 S2214180421000386 |
GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ IXB KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c410t-4900c4c9432712bf7dfecc955bcf58537ee0cacd39d21d4d368e3e5bab6119c03 |
IEDL.DBID | IXB |
ISSN | 2214-1804 |
IngestDate | Wed Aug 27 01:31:20 EDT 2025 Thu Apr 24 23:11:45 EDT 2025 Tue Jul 01 02:09:55 EDT 2025 Tue Jul 25 21:01:24 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Approaches Adulterants Detection Biosensors Milk |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-4900c4c9432712bf7dfecc955bcf58537ee0cacd39d21d4d368e3e5bab6119c03 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2214180421000386 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a18ae4b1c3844d4a853cc6123d3285c0 crossref_primary_10_1016_j_sbsr_2021_100433 crossref_citationtrail_10_1016_j_sbsr_2021_100433 elsevier_sciencedirect_doi_10_1016_j_sbsr_2021_100433 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2021 2021-08-00 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
PublicationDecade | 2020 |
PublicationTitle | Sensing and Bio-Sensing Research |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Mishra, Mishra, Bhand (bb0380) 2010; 26 Haasnoot, Marchesini, Koopal (bb0415) 2006; 89 Nagraik, Kaushal, Gupta, Kumar (bb0345) 2020; 33 Zavar, Heydari, Rounaghi (bb0395) 2013; 38 Amari, El Bari, Bouchikhi (bb0295) 2009; 102 Filazi, Sireli, Ekici, Can, Karagoz (bb0105) 2012; 95 Khan, Krishna, Majumder, Gupta (bb0075) 2015; 8 Yang, Huang, Zhang, Thomas, Pei (bb0015) 2009; 1 Kamal, Karoui (bb0135) 2015; 46 Handford, Campbell, Elliott (bb0065) 2016; 15 Naik, Mishra, Danielsson, Bhand (bb0385) 2015; 3 Mabood, Jabeen, Ahmed, Hussain, Al Mashaykhi, Al Rubaiey, Farooq, Boqué, Ali, Hussain, Al-Harrasi (bb0155) 2017; 221 Karunathilaka, Yakes, He, Brückner, Mossoba (bb0160) 2018; 92 Mascini, Tombelli (bb0305) 2008; 13 Liu, Todd, Zhang, Shi, Liu (bb0035) 2012; 13 Sharma, Rajput, Barui (bb0045) 2012 Tripathy, Ghole, Deep, Vanjari, Singh (bb0095) 2017; 217 Lawley, Walker (bb0040) 2013; 138 Wang, Haughey, Sun, Eremin, Li, Liu, Xu, Shen, Lei (bb0200) 2011; 399 Sakamoto, Suzuki, Saito, Shimizu, Kobayashi, Nagashima, Moriyasu, Fukaya, Saito (bb0170) 2018; 148 Kaneko, Horii, Akitomi, Kato, Shiratori, Waga (bb0365) 2018; 18 Renny, Daniel, Krastanov, Zachariah, Elizabeth (bb0370) 2005; 19 Ambrose, Cho (bb0120) 2014; 39 Lowe, Davis, Collyer, Higson, Newman, Turner, Marks (bb0310) 2007; 41 Ezhilan, Gumpu, Ramachandra, Nesakumar, Babu, Krishnan, Rayappan (bb0390) 2017; 238 Rahman, Habib, Ali, Islam, Rashid (bb0085) 2017; 4 Ntakatsane, Liu, Zhou (bb0055) 2013; 96 Lopez-Calleja, Gonzalez, Fajardo, Martin, Hernandez, Garcia, Martin (bb0210) 2005; 88 Di Domenico, Di Giuseppe, Rodríguez, Cammà (bb0220) 2017; 100 Yang, Liu, Kexin (bb0235) 2013; 2 Haasnoot, Verheijen (bb0410) 2001; 13 Li, Xu, Sun (bb0190) 2015; 5 Yildiz, Unluturk (bb0270) 2009; 44 Zhang, Zhang, Ni, Xue, Gu, Huang (bb0260) 2014; 145 Rodrigues, Givisiez, Queiroga, Azevedo, Gebreyes, Oliveira (bb0215) 2012; 95 Bunaciu, Aboul-Enein, Hoang (bb0140) 2016; 196 Guan, Liu, Ye, Yang (bb0265) 2005; 6 Hurley, Elyse, Coleman, Williams (bb0205) 2004; 39 Chávez, Jauregui, Palomares, Macías, Jiménez, Salinas (bb0185) 2012; 92 Retama, Cabarcos, Mecerreyes, Lopez-Ruiz (bb0330) 2004; 20 Das, Reardon (bb0340) 2012; 45 Herrero-Martínez, Simó-Alfonso, Ramis-Ramos, Gelfi, Righetti (bb0250) 2000; 21 Chilbule, Singh, Mann, Arora, Sharma, Rao (bb0110) 2019; 56 Qureshi, Niazi, Kallempudi, Gurbuz (bb0325) 2010; 25 Wu, Li, Chua, Li (bb0355) 2013; 178 Kruså, Torre, Marina (bb0090) 2000; 72 Aquino, Silva, Freitas, Felicio, Cruz, Conte-Junior (bb0060) 2014; 62 Jha, Jaiswal, Grewal, Gupta, Bhardwaj (bb0080) 2016; 56 Shan, Shi, Zhu, Xue (bb0405) 2007; 72 Poonia, Jha, Sharma, Singh, Rai, Sharma (bb0005) 2017; 70 Jalili, Murshid (bb0070) 2017; 1 Cheng, Su, Yao, Han, Wang, Zhao (bb0350) 2016; 11 Jirankalgikar, De (bb0275) 2014; 5 Chen, Chang, Chung, Lee, Ling (bb0280) 2004; 18 Jawaid, Talpur, Sherazi, Nizamani, Khaskheli (bb0150) 2013; 141 Agharkar, Mane (bb0175) 2021 Hazra, Sharma, Sharma, Arora (bb0230) 2018; 20 Trivedi, Lakshminarayana, Kothari, Patel, Kapse, Makhija, Patel, Panchal (bb0375) 2009; 140 Trimboli, Costanzo, Lopreiato, Ceniti, Morittu, Spina, Britti (bb0240) 2019; 102 Dias, Peres, Veloso, Reis, Vilas-Boas, Machado (bb0300) 2009; 136 Tittlemier (bb0125) 2010; 27 Ewida, El-Magiud (bb0225) 2018; 11 Cattaneo, Holroyd (bb0145) 2013; 21 Durante, Becari, Lima, Peres (bb0425) 2015; 16 Nascimento, Santos, Pereira-Filho, Rocha (bb0130) 2017; 221 Xin, Stone (bb0010) 2008; 322 Singh, Gandhi (bb0025) 2015; 31 Jablonski, Moore, Harnly (bb0100) 2014; 62 Patel (bb0315) 2002; 21 Mohanan, Panicker, Iype, Laila, Domini, Bindu (bb0290) 2002; 59 Hu, Shi, Shi, Zou, Arslan, Zhang, Huang, Li, Xu (bb0180) 2019; 272 Brandt, Hoheisel (bb0320) 2004; 22 Calvano, De Ceglie, D’Accolti, Zambonin (bb0285) 2012; 134 Akyilmaz, Oyman, Cınar, Odabas (bb0400) 2017; 20 Guo, Wang, Zhang, Li, Shang, Sun, Yang, Ma, Hu (bb0360) 2018 Tao, Zhang, Feng, Shi, Liu (bb0195) 2016; 99 Pizzano, Nicolai, Manzo, Addeo (bb0255) 2011; 91 Scano, Murgia, Pirisi, Caboni (bb0115) 2014; 97 Guo, Zhong, Wu, Fu, Chen, Zheng, Lin (bb0165) 2010; 82 Pesic, Barac, Vrvic, Ristic, Macej, Stanojevic (bb0245) 2011; 125 Palomera, Balaguera, Arya, Hernández, Tomar, Ramírez-Vick, Singh (bb0335) 2011; 11 Azad, Ahmed (bb0030) 2016; 3 Kendall, Kuznesof, Dean, Chan, Clark, Home, Stolz, Zhong, Liu, Brereton, Frewer (bb0020) 2019; 95 Hussain, Sun, Pu (bb0050) 2019; 36 Sakti, Chabibah, Ayu, Padaga, Aulanni’am (bb0420) 2016 Kruså (10.1016/j.sbsr.2021.100433_bb0090) 2000; 72 Tittlemier (10.1016/j.sbsr.2021.100433_bb0125) 2010; 27 Liu (10.1016/j.sbsr.2021.100433_bb0035) 2012; 13 Sharma (10.1016/j.sbsr.2021.100433_bb0045) 2012 Lawley (10.1016/j.sbsr.2021.100433_bb0040) 2013; 138 Poonia (10.1016/j.sbsr.2021.100433_bb0005) 2017; 70 Guo (10.1016/j.sbsr.2021.100433_bb0165) 2010; 82 Qureshi (10.1016/j.sbsr.2021.100433_bb0325) 2010; 25 Rahman (10.1016/j.sbsr.2021.100433_bb0085) 2017; 4 Kendall (10.1016/j.sbsr.2021.100433_bb0020) 2019; 95 Azad (10.1016/j.sbsr.2021.100433_bb0030) 2016; 3 Ambrose (10.1016/j.sbsr.2021.100433_bb0120) 2014; 39 Lopez-Calleja (10.1016/j.sbsr.2021.100433_bb0210) 2005; 88 Zhang (10.1016/j.sbsr.2021.100433_bb0260) 2014; 145 Zavar (10.1016/j.sbsr.2021.100433_bb0395) 2013; 38 Aquino (10.1016/j.sbsr.2021.100433_bb0060) 2014; 62 Jablonski (10.1016/j.sbsr.2021.100433_bb0100) 2014; 62 Bunaciu (10.1016/j.sbsr.2021.100433_bb0140) 2016; 196 Khan (10.1016/j.sbsr.2021.100433_bb0075) 2015; 8 Dias (10.1016/j.sbsr.2021.100433_bb0300) 2009; 136 Karunathilaka (10.1016/j.sbsr.2021.100433_bb0160) 2018; 92 Guo (10.1016/j.sbsr.2021.100433_bb0360) 2018 Kaneko (10.1016/j.sbsr.2021.100433_bb0365) 2018; 18 Pizzano (10.1016/j.sbsr.2021.100433_bb0255) 2011; 91 Jha (10.1016/j.sbsr.2021.100433_bb0080) 2016; 56 Sakti (10.1016/j.sbsr.2021.100433_bb0420) 2016 Wang (10.1016/j.sbsr.2021.100433_bb0200) 2011; 399 Amari (10.1016/j.sbsr.2021.100433_bb0295) 2009; 102 Yang (10.1016/j.sbsr.2021.100433_bb0235) 2013; 2 Mishra (10.1016/j.sbsr.2021.100433_bb0380) 2010; 26 Chávez (10.1016/j.sbsr.2021.100433_bb0185) 2012; 92 Calvano (10.1016/j.sbsr.2021.100433_bb0285) 2012; 134 Das (10.1016/j.sbsr.2021.100433_bb0340) 2012; 45 Cattaneo (10.1016/j.sbsr.2021.100433_bb0145) 2013; 21 Di Domenico (10.1016/j.sbsr.2021.100433_bb0220) 2017; 100 Brandt (10.1016/j.sbsr.2021.100433_bb0320) 2004; 22 Jalili (10.1016/j.sbsr.2021.100433_bb0070) 2017; 1 Tripathy (10.1016/j.sbsr.2021.100433_bb0095) 2017; 217 Nascimento (10.1016/j.sbsr.2021.100433_bb0130) 2017; 221 Sakamoto (10.1016/j.sbsr.2021.100433_bb0170) 2018; 148 Durante (10.1016/j.sbsr.2021.100433_bb0425) 2015; 16 Palomera (10.1016/j.sbsr.2021.100433_bb0335) 2011; 11 Renny (10.1016/j.sbsr.2021.100433_bb0370) 2005; 19 Li (10.1016/j.sbsr.2021.100433_bb0190) 2015; 5 Handford (10.1016/j.sbsr.2021.100433_bb0065) 2016; 15 Trimboli (10.1016/j.sbsr.2021.100433_bb0240) 2019; 102 Rodrigues (10.1016/j.sbsr.2021.100433_bb0215) 2012; 95 Haasnoot (10.1016/j.sbsr.2021.100433_bb0415) 2006; 89 Mascini (10.1016/j.sbsr.2021.100433_bb0305) 2008; 13 Nagraik (10.1016/j.sbsr.2021.100433_bb0345) 2020; 33 Yang (10.1016/j.sbsr.2021.100433_bb0015) 2009; 1 Hurley (10.1016/j.sbsr.2021.100433_bb0205) 2004; 39 Mabood (10.1016/j.sbsr.2021.100433_bb0155) 2017; 221 Cheng (10.1016/j.sbsr.2021.100433_bb0350) 2016; 11 Hu (10.1016/j.sbsr.2021.100433_bb0180) 2019; 272 Jirankalgikar (10.1016/j.sbsr.2021.100433_bb0275) 2014; 5 Jawaid (10.1016/j.sbsr.2021.100433_bb0150) 2013; 141 Guan (10.1016/j.sbsr.2021.100433_bb0265) 2005; 6 Wu (10.1016/j.sbsr.2021.100433_bb0355) 2013; 178 Tao (10.1016/j.sbsr.2021.100433_bb0195) 2016; 99 Herrero-Martínez (10.1016/j.sbsr.2021.100433_bb0250) 2000; 21 Hazra (10.1016/j.sbsr.2021.100433_bb0230) 2018; 20 Xin (10.1016/j.sbsr.2021.100433_bb0010) 2008; 322 Naik (10.1016/j.sbsr.2021.100433_bb0385) 2015; 3 Pesic (10.1016/j.sbsr.2021.100433_bb0245) 2011; 125 Shan (10.1016/j.sbsr.2021.100433_bb0405) 2007; 72 Scano (10.1016/j.sbsr.2021.100433_bb0115) 2014; 97 Retama (10.1016/j.sbsr.2021.100433_bb0330) 2004; 20 Haasnoot (10.1016/j.sbsr.2021.100433_bb0410) 2001; 13 Patel (10.1016/j.sbsr.2021.100433_bb0315) 2002; 21 Yildiz (10.1016/j.sbsr.2021.100433_bb0270) 2009; 44 Ntakatsane (10.1016/j.sbsr.2021.100433_bb0055) 2013; 96 Kamal (10.1016/j.sbsr.2021.100433_bb0135) 2015; 46 Agharkar (10.1016/j.sbsr.2021.100433_bb0175) 2021 Chen (10.1016/j.sbsr.2021.100433_bb0280) 2004; 18 Trivedi (10.1016/j.sbsr.2021.100433_bb0375) 2009; 140 Singh (10.1016/j.sbsr.2021.100433_bb0025) 2015; 31 Hussain (10.1016/j.sbsr.2021.100433_bb0050) 2019; 36 Ewida (10.1016/j.sbsr.2021.100433_bb0225) 2018; 11 Mohanan (10.1016/j.sbsr.2021.100433_bb0290) 2002; 59 Chilbule (10.1016/j.sbsr.2021.100433_bb0110) 2019; 56 Akyilmaz (10.1016/j.sbsr.2021.100433_bb0400) 2017; 20 Ezhilan (10.1016/j.sbsr.2021.100433_bb0390) 2017; 238 Lowe (10.1016/j.sbsr.2021.100433_bb0310) 2007; 41 Filazi (10.1016/j.sbsr.2021.100433_bb0105) 2012; 95 |
References_xml | – year: 2016 ident: bb0420 article-title: Development of QCM biosensor with specific cow milk protein antibody for candidate milk adulteration detection publication-title: J Sens. – volume: 70 start-page: 23 year: 2017 end-page: 42 ident: bb0005 article-title: Detection of adulteration in milk: a review publication-title: Int. J. Dairy Technol. – volume: 62 start-page: 5198 year: 2014 end-page: 5206 ident: bb0100 article-title: Nontargeted detection of adulteration of skim milk powder with foreign proteins using UHPLC–UV publication-title: J. Agric. Food Chem. – volume: 16 start-page: 861 year: 2015 end-page: 865 ident: bb0425 article-title: Electrical impedance sensor for real-time detection of bovine milk adulteration publication-title: IEEE Sensors J. – start-page: 413 year: 2018 ident: bb0360 article-title: Development of a dual-channel LSPR biosensing system for detection of melamine using AuNPs-based aptamer publication-title: Frontier Research and Innovation in Optoelectronics Technology and Industry: Proceedings of the 11th International Symposium on Photonics and Optoelectronics (SOPO 2018) – volume: 100 start-page: 106 year: 2017 end-page: 112 ident: bb0220 article-title: Validation of a fast real-time PCR method to detect fraud and mislabeling in milk and dairy products publication-title: J. Dairy Sci. – volume: 399 start-page: 2275 year: 2011 end-page: 2284 ident: bb0200 article-title: Development of a fluorescence polarization immunoassay for the detection of melamine in milk and milk powder publication-title: Anal. Bioanal. Chem. – volume: 1 start-page: 111 year: 2009 end-page: 116 ident: bb0015 article-title: Milk adulteration with melamine in China: crisis and response publication-title: Qual. Assur. Saf. Crop. Foods – volume: 6 start-page: 1101 year: 2005 ident: bb0265 article-title: Use of fluorometry for determination of skim milk powder adulteration in fresh milk publication-title: J. Zhejiang Univ. Sci B – volume: 20 start-page: 86 year: 2017 end-page: 93 ident: bb0400 article-title: A new polyaniline–catalase–glutaraldehyde-modified biosensor for hydrogen peroxide detection publication-title: Prep. Biochem. Biotechnol. – volume: 13 start-page: 525 year: 2012 end-page: 532 ident: bb0035 article-title: Recent developments in the detection of melamine publication-title: J Zhejiang Univ. Sci. B – volume: 21 start-page: 633 year: 2000 end-page: 640 ident: bb0250 article-title: Determination of cow's milk and ripening time in nonbovine cheese by capillary electrophoresis of the ethanol-water protein fraction publication-title: Electro. Int. J. – volume: 39 start-page: 873 year: 2004 end-page: 878 ident: bb0205 article-title: Application of immunological methods for the detection of species adulteration in dairy products publication-title: Int. J. Food Sci. Technol. – volume: 95 start-page: 602 year: 2012 end-page: 608 ident: bb0105 article-title: Determination of melamine in milk and dairy products by high performance liquid chromatography publication-title: J. Dairy Sci. – volume: 92 start-page: 137 year: 2018 end-page: 146 ident: bb0160 article-title: First use of handheld Raman spectroscopic devices and on-board chemometric analysis for the detection of milk powder adulteration publication-title: Food. Contam. – volume: 178 start-page: 541 year: 2013 end-page: 546 ident: bb0355 article-title: Rapid detection of melamine based on immunoassay using portable surface plasmon resonance biosensor publication-title: Sensors Actuators B Chem. – volume: 221 start-page: 1232 year: 2017 end-page: 1244 ident: bb0130 article-title: Recent advances on determination of milk adulterants publication-title: Food Chem. – volume: 20 start-page: S69 year: 2018 end-page: S75 ident: bb0230 article-title: A species specific simplex polymerase chain reaction-based approach for detection of goat tallow in heat clarified milk fat (ghee) publication-title: Int. J. Food Prop. – volume: 13 start-page: 637 year: 2008 end-page: 657 ident: bb0305 article-title: Biosensors for biomarkers in medical diagnostics publication-title: Biomarkers – volume: 322 start-page: 1310 year: 2008 end-page: 1311 ident: bb0010 article-title: Chinese probe unmasks high-tech adulteration with melamine publication-title: Science – volume: 4 start-page: 99 year: 2017 end-page: 106 ident: bb0085 article-title: Physico-chemical analysis and detection of adulteration in raw milk collected from Goals of different places of Sadarupazila in Mymensingh district publication-title: Res. Agric. Livest. Fish. – volume: 102 start-page: 5962 year: 2019 end-page: 5970 ident: bb0240 article-title: Detection of buffalo milk adulteration with cow milk by capillary electrophoresis analysis publication-title: J. Dairy Sci. – volume: 13 start-page: 131 year: 2001 end-page: 134 ident: bb0410 article-title: A direct (non-competitive) immunoassay for gentamicin residues with an optical biosensor publication-title: Food Agric. Immunol. – volume: 96 start-page: 2130 year: 2013 end-page: 2136 ident: bb0055 article-title: Rapid detection of milk fat adulteration with vegetable oil by fluorescence spectroscopy publication-title: J. Dairy Sci. – volume: 97 start-page: 6057 year: 2014 end-page: 6066 ident: bb0115 article-title: A gas chromatography–mass spectrometry-based metabolomic approach for the characterization of goat milk compared with cow milk publication-title: J. Dairy Sci. – volume: 21 start-page: 96 year: 2002 end-page: 115 ident: bb0315 article-title: (Bio) sensors for measurement of analytes implicated in food safety: a review publication-title: TrAC-Trends. Anal. Chem. – volume: 38 start-page: 29 year: 2013 end-page: 36 ident: bb0395 article-title: Electrochemical determination of salicylic acid at a new biosensor based on polypyrrole-banana tissue composite publication-title: Arab. J. Sci. Eng. – volume: 125 start-page: 1443 year: 2011 end-page: 1449 ident: bb0245 article-title: Qualitative and quantitative analysis of bovine milk adulteration in caprine and ovine milks using native-PAGE publication-title: Food Chem. – volume: 5 start-page: 1125 year: 2015 end-page: 1147 ident: bb0190 article-title: Chemical sensors and biosensors for the detection of melamine publication-title: RSC Adv. – volume: 72 start-page: 1767 year: 2007 end-page: 1772 ident: bb0405 article-title: Inhibitive detection of benzoic acid using a novel phenols biosensor based on polyaniline–polyacrylonitrile composite matrix publication-title: Talanta – volume: 89 start-page: 849 year: 2006 end-page: 855 ident: bb0415 article-title: Spreeta-based biosensor immunoassays to detect fraudulent adulteration in milk and milk powder publication-title: J. AOAC Int. – volume: 272 start-page: 58 year: 2019 end-page: 65 ident: bb0180 article-title: Use of a smartphone for visual detection of melamine in milk based on Au@ Carbon quantum dots nanocomposites publication-title: Food Chem. – volume: 5 start-page: 317 year: 2014 ident: bb0275 article-title: Detection of tallow adulteration in cow ghee by derivative spectrophotometry publication-title: J. Nat. Sci. Biol. Med. – volume: 11 start-page: 830 year: 2018 ident: bb0225 article-title: Species adulteration in raw milk samples using polymerase chain reaction-restriction fragment length polymorphism publication-title: Vet. World. – volume: 25 start-page: 2318 year: 2010 end-page: 2323 ident: bb0325 article-title: Label-free capacitive biosensor for sensitive detection of multiple biomarkers using gold interdigitated capacitor arrays publication-title: Biosens. Bioelectron. – volume: 31 start-page: 236 year: 2015 end-page: 261 ident: bb0025 article-title: Milk preservatives and adulterants: processing, regulatory and safety issues publication-title: Food Rev. Int. – year: 2021 ident: bb0175 article-title: Utilization of gold nanoparticles to detect formalin adulteration in milk publication-title: Mater. Today Proc. – volume: 92 start-page: 121 year: 2012 end-page: 132 ident: bb0185 article-title: A highly sensitive sandwich ELISA for the determination of glycomacropeptide to detect liquid whey in raw milk publication-title: Dairy Sci. Technol. – volume: 44 start-page: 2577 year: 2009 end-page: 2582 ident: bb0270 article-title: Differential scanning calorimetry as a tool to detect antibiotic residues in ultra high temperature whole milk publication-title: Int. J. Food Sci. Technol. – volume: 27 start-page: 129 year: 2010 end-page: 145 ident: bb0125 article-title: Methods for the analysis of melamine and related compounds in foods: a review publication-title: Food Addit. Contam. – volume: 59 start-page: 525 year: 2002 end-page: 529 ident: bb0290 article-title: A new ultrasonic method to detect chemical additives in branded milk publication-title: Pramana – volume: 19 start-page: 198 year: 2005 end-page: 201 ident: bb0370 article-title: Enzyme based sensor for detection of urea in milk publication-title: Biotechnol. Biotechnol. Equip. – volume: 99 start-page: 1773 year: 2016 end-page: 1779 ident: bb0195 article-title: Development of a colloidal gold immunochromatographic strip assay for simple and fast detection of human α-lactalbumin in genetically modified cow milk publication-title: J. Dairy Sci. – volume: 2 start-page: 61 year: 2013 end-page: 67 ident: bb0235 article-title: Detection of adulterated milk using two-dimensional correlation spectroscopy combined with multi-way partial least squares publication-title: Food Biosci. – volume: 148 start-page: 136 year: 2018 end-page: 141 ident: bb0170 article-title: Structural characterization of dimethyldithiodenafil and dimethylthiocarbodenafil, analogs of sildenafil publication-title: J. Pharm. Biomed. Anal. – volume: 56 start-page: 1662 year: 2016 end-page: 1684 ident: bb0080 article-title: Detection of adulterants and contaminants in liquid foods - a review publication-title: Crit. Rev. Food Sci. Nutr. – volume: 145 start-page: 342 year: 2014 end-page: 348 ident: bb0260 article-title: Rapid identification of adulterated cow milk by non-linear pattern recognition methods based on near infrared spectroscopy publication-title: Food Chem. – volume: 21 start-page: 341 year: 2013 end-page: 349 ident: bb0145 article-title: The use of near infrared spectroscopy for determination of adulteration and contamination in milk and milk powder: updating knowledge publication-title: J. Near Infrared Spectrosc. – volume: 138 start-page: 1 year: 2013 end-page: 11 ident: bb0040 article-title: Intestinal colonization resistance publication-title: Immunology – volume: 1 start-page: 1 year: 2017 end-page: 4 ident: bb0070 article-title: A review paper on melamine in milk and dairy products publication-title: J. Dairy Vet. – volume: 88 start-page: 3115 year: 2005 end-page: 3120 ident: bb0210 article-title: Application of polymerase chain reaction to detect adulteration of sheep’s milk with goats’ milk publication-title: J. Dairy Sci. – volume: 18 start-page: 3227 year: 2018 ident: bb0365 article-title: An aptamer-based biosensor for direct, label-free detection of melamine in raw milk publication-title: Sensors – volume: 95 start-page: 2749 year: 2012 end-page: 2752 ident: bb0215 article-title: Milk adulteration: detection of bovine milk in bulk goat milk produced by smallholders in northeastern Brazil by a duplex PCR assay publication-title: J. Dairy Sci. – volume: 11 start-page: 6683 year: 2011 end-page: 6689 ident: bb0335 article-title: Zinc oxide nanorods modified indium tin oxide surface for amperometric urea biosensor publication-title: J. Nanosci. Nanotechnol. – volume: 217 start-page: 756 year: 2017 end-page: 765 ident: bb0095 article-title: A comprehensive approach for milk adulteration detection using inherent bio-physical properties as ‘Universal Markers’: towards a miniaturized adulteration detection platform publication-title: Food Chem. – volume: 62 start-page: 233 year: 2014 end-page: 237 ident: bb0060 article-title: Identifying cheese whey an adulterant in milk: limited contribution of a sensometric approach publication-title: Food Res. Int. – volume: 39 start-page: 357 year: 2014 end-page: 365 ident: bb0120 article-title: A review of technologies for detection and measurement of adulterants in cereals and cereal products publication-title: J. Biosyst. Eng. – volume: 46 start-page: 27 year: 2015 end-page: 48 ident: bb0135 article-title: Analytical methods coupled with chemometric tools for determining the authenticity and detecting the adulteration of dairy products: a review publication-title: Trends Food Sci. Technol. – volume: 91 start-page: 77 year: 2011 end-page: 95 ident: bb0255 article-title: Authentication of dairy products by immunochemical methods: a review publication-title: Dairy Sci. Technol. – volume: 45 start-page: 251 year: 2012 end-page: 261 ident: bb0340 article-title: Fiber-optic biosensor for the detection of atrazine: characterization and continuous measurements publication-title: Anal. Lett. – volume: 8 start-page: 93 year: 2015 end-page: 102 ident: bb0075 article-title: Detection of urea adulteration in milk using near-infrared Raman spectroscopy publication-title: Food Anal. Methods – volume: 22 start-page: 617 year: 2004 end-page: 622 ident: bb0320 article-title: Peptide nucleic acids on microarrays and other biosensors publication-title: Trends Biotechnol. – volume: 140 start-page: 260 year: 2009 end-page: 266 ident: bb0375 article-title: Potentiometric biosensor for urea determination in milk publication-title: Sensors Actuators B Chem. – volume: 3 start-page: 12 year: 2015 end-page: 17 ident: bb0385 article-title: Android integrated urea biosensor for public health awareness publication-title: Sens. Biosens. Res. – volume: 33 start-page: 21 year: 2020 end-page: 25 ident: bb0345 article-title: PCR based genetic marker for the detection of publication-title: Vegetos – volume: 141 start-page: 3066 year: 2013 end-page: 3071 ident: bb0150 article-title: Rapid detection of melamine adulteration in dairy milk by SB-ATR–Fourier Transform Infrared Spectroscopy publication-title: Food Chem. – volume: 36 start-page: 851 year: 2019 end-page: 862 ident: bb0050 article-title: SERS detection of urea and ammonium sulfate adulterants in milk with coffee ring effect publication-title: Food. Addit. Contam. Part A – volume: 196 start-page: 877 year: 2016 end-page: 884 ident: bb0140 article-title: Vibrational spectroscopy used in milk products analysis: a review publication-title: Food Chem. – volume: 221 start-page: 746 year: 2017 end-page: 750 ident: bb0155 article-title: Development of new NIR-spectroscopy method combined with multivariate analysis for detection of adulteration in camel milk with goat milk publication-title: Food Chem. – volume: 82 start-page: 1654 year: 2010 end-page: 1658 ident: bb0165 article-title: Visual detection of melamine in milk products by label-free gold nanoparticles publication-title: Talanta – volume: 41 start-page: 18 year: 2007 ident: bb0310 article-title: Handbook of biosensors and biochips publication-title: Development – volume: 3 start-page: 22 year: 2016 ident: bb0030 article-title: Common milk adulteration and their detection techniques publication-title: Int. J. Food. Contam. – volume: 18 start-page: 1167 year: 2004 end-page: 1171 ident: bb0280 article-title: Quantification of cow milk adulteration in goat milk using high-performance liquid chromatography with electrospray ionization mass spectrometry publication-title: Rapid Commun. Mass Spectrom. – volume: 56 start-page: 3170 year: 2019 end-page: 3176 ident: bb0110 article-title: Development and validation of an analytical method for determination of bronopol and kathon preservative in milk publication-title: J. Food Sci. Technol. – volume: 95 start-page: 339 year: 2019 end-page: 351 ident: bb0020 article-title: Chinese consumer's attitudes, perceptions and behavioural responses towards food fraud publication-title: Food Control – volume: 26 start-page: 1560 year: 2010 end-page: 1564 ident: bb0380 article-title: Flow injection analysis biosensor for urea analysis in adulterated milk using enzyme thermistor publication-title: Biosens. Bioelectron. – volume: 72 start-page: 1814 year: 2000 end-page: 1818 ident: bb0090 article-title: A reversed-phase high-performance liquid chromatographic method for the determination of soya bean proteins in bovine milks publication-title: Anal. Chem. – volume: 102 start-page: 33 year: 2009 ident: bb0295 article-title: Conception and development of a portable electronic nose system for classification of raw milk using principal component analysis approach publication-title: Sens. Transducers – volume: 238 start-page: 1283 year: 2017 end-page: 1292 ident: bb0390 article-title: Design and development of electrochemical biosensor for the simultaneous detection of melamine and urea in adulterated milk samples publication-title: Sensors Actuators B Chem. – volume: 11 year: 2016 ident: bb0350 article-title: Highly sensitive detection of melamine using a one-step sample treatment combined with a portable Ag nanostructure array SERS sensor publication-title: PLoS One – volume: 15 start-page: 130 year: 2016 end-page: 142 ident: bb0065 article-title: Impacts of milk fraud on food safety and nutrition with special emphasis on developing countries publication-title: Compr. Rev. Food Sci. Food Saf. – year: 2012 ident: bb0045 article-title: Detection of adulterants in milk: a laboratory manual publication-title: Karnal-132001, Haryana, India – volume: 20 start-page: 1111 year: 2004 end-page: 1117 ident: bb0330 article-title: Design of an amperometric biosensor using polypyrrole-microgel composites containing glucose oxidase publication-title: Biosens. Bioelectron. – volume: 136 start-page: 209 year: 2009 end-page: 217 ident: bb0300 article-title: An electronic tongue taste evaluation: identification of goat milk adulteration with bovine milk publication-title: Sensors Actuators B Chem. – volume: 134 start-page: 1192 year: 2012 end-page: 1198 ident: bb0285 article-title: MALDI-TOF mass spectrometry detection of extra-virgin olive oil adulteration with hazelnut oil by analysis of phospholipids using an ionic liquid as matrix and extraction solvent publication-title: Food Chem. – volume: 178 start-page: 541 year: 2013 ident: 10.1016/j.sbsr.2021.100433_bb0355 article-title: Rapid detection of melamine based on immunoassay using portable surface plasmon resonance biosensor publication-title: Sensors Actuators B Chem. doi: 10.1016/j.snb.2012.12.089 – volume: 72 start-page: 1767 year: 2007 ident: 10.1016/j.sbsr.2021.100433_bb0405 article-title: Inhibitive detection of benzoic acid using a novel phenols biosensor based on polyaniline–polyacrylonitrile composite matrix publication-title: Talanta doi: 10.1016/j.talanta.2007.02.007 – volume: 96 start-page: 2130 year: 2013 ident: 10.1016/j.sbsr.2021.100433_bb0055 article-title: Rapid detection of milk fat adulteration with vegetable oil by fluorescence spectroscopy publication-title: J. Dairy Sci. doi: 10.3168/jds.2012-6417 – volume: 4 start-page: 99 year: 2017 ident: 10.1016/j.sbsr.2021.100433_bb0085 article-title: Physico-chemical analysis and detection of adulteration in raw milk collected from Goals of different places of Sadarupazila in Mymensingh district publication-title: Res. Agric. Livest. Fish. doi: 10.3329/ralf.v4i2.33721 – volume: 95 start-page: 2749 year: 2012 ident: 10.1016/j.sbsr.2021.100433_bb0215 article-title: Milk adulteration: detection of bovine milk in bulk goat milk produced by smallholders in northeastern Brazil by a duplex PCR assay publication-title: J. Dairy Sci. doi: 10.3168/jds.2011-5235 – volume: 5 start-page: 1125 year: 2015 ident: 10.1016/j.sbsr.2021.100433_bb0190 article-title: Chemical sensors and biosensors for the detection of melamine publication-title: RSC Adv. doi: 10.1039/C4RA13080D – volume: 41 start-page: 18 year: 2007 ident: 10.1016/j.sbsr.2021.100433_bb0310 article-title: Handbook of biosensors and biochips publication-title: Development – volume: 19 start-page: 198 year: 2005 ident: 10.1016/j.sbsr.2021.100433_bb0370 article-title: Enzyme based sensor for detection of urea in milk publication-title: Biotechnol. Biotechnol. Equip. doi: 10.1080/13102818.2005.10817216 – volume: 22 start-page: 617 year: 2004 ident: 10.1016/j.sbsr.2021.100433_bb0320 article-title: Peptide nucleic acids on microarrays and other biosensors publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2004.10.003 – volume: 3 start-page: 22 year: 2016 ident: 10.1016/j.sbsr.2021.100433_bb0030 article-title: Common milk adulteration and their detection techniques publication-title: Int. J. Food. Contam. doi: 10.1186/s40550-016-0045-3 – volume: 11 start-page: 830 year: 2018 ident: 10.1016/j.sbsr.2021.100433_bb0225 article-title: Species adulteration in raw milk samples using polymerase chain reaction-restriction fragment length polymorphism publication-title: Vet. World. doi: 10.14202/vetworld.2018.830-833 – volume: 92 start-page: 137 year: 2018 ident: 10.1016/j.sbsr.2021.100433_bb0160 article-title: First use of handheld Raman spectroscopic devices and on-board chemometric analysis for the detection of milk powder adulteration publication-title: Food. Contam. doi: 10.1016/j.foodcont.2018.04.046 – volume: 45 start-page: 251 year: 2012 ident: 10.1016/j.sbsr.2021.100433_bb0340 article-title: Fiber-optic biosensor for the detection of atrazine: characterization and continuous measurements publication-title: Anal. Lett. doi: 10.1080/00032719.2011.633192 – volume: 38 start-page: 29 year: 2013 ident: 10.1016/j.sbsr.2021.100433_bb0395 article-title: Electrochemical determination of salicylic acid at a new biosensor based on polypyrrole-banana tissue composite publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-012-0411-2 – volume: 95 start-page: 339 year: 2019 ident: 10.1016/j.sbsr.2021.100433_bb0020 article-title: Chinese consumer's attitudes, perceptions and behavioural responses towards food fraud publication-title: Food Control doi: 10.1016/j.foodcont.2018.08.006 – volume: 13 start-page: 637 year: 2008 ident: 10.1016/j.sbsr.2021.100433_bb0305 article-title: Biosensors for biomarkers in medical diagnostics publication-title: Biomarkers doi: 10.1080/13547500802645905 – volume: 1 start-page: 1 year: 2017 ident: 10.1016/j.sbsr.2021.100433_bb0070 article-title: A review paper on melamine in milk and dairy products publication-title: J. Dairy Vet. – volume: 56 start-page: 1662 year: 2016 ident: 10.1016/j.sbsr.2021.100433_bb0080 article-title: Detection of adulterants and contaminants in liquid foods - a review publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2013.798257 – volume: 20 start-page: S69 year: 2018 ident: 10.1016/j.sbsr.2021.100433_bb0230 article-title: A species specific simplex polymerase chain reaction-based approach for detection of goat tallow in heat clarified milk fat (ghee) publication-title: Int. J. Food Prop. doi: 10.1080/10942912.2017.1289542 – volume: 21 start-page: 341 year: 2013 ident: 10.1016/j.sbsr.2021.100433_bb0145 article-title: The use of near infrared spectroscopy for determination of adulteration and contamination in milk and milk powder: updating knowledge publication-title: J. Near Infrared Spectrosc. doi: 10.1255/jnirs.1077 – volume: 91 start-page: 77 year: 2011 ident: 10.1016/j.sbsr.2021.100433_bb0255 article-title: Authentication of dairy products by immunochemical methods: a review publication-title: Dairy Sci. Technol. doi: 10.1007/s13594-011-0008-7 – volume: 272 start-page: 58 year: 2019 ident: 10.1016/j.sbsr.2021.100433_bb0180 article-title: Use of a smartphone for visual detection of melamine in milk based on Au@ Carbon quantum dots nanocomposites publication-title: Food Chem. doi: 10.1016/j.foodchem.2018.08.021 – volume: 16 start-page: 861 year: 2015 ident: 10.1016/j.sbsr.2021.100433_bb0425 article-title: Electrical impedance sensor for real-time detection of bovine milk adulteration publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2015.2494624 – volume: 8 start-page: 93 year: 2015 ident: 10.1016/j.sbsr.2021.100433_bb0075 article-title: Detection of urea adulteration in milk using near-infrared Raman spectroscopy publication-title: Food Anal. Methods doi: 10.1007/s12161-014-9873-z – volume: 136 start-page: 209 year: 2009 ident: 10.1016/j.sbsr.2021.100433_bb0300 article-title: An electronic tongue taste evaluation: identification of goat milk adulteration with bovine milk publication-title: Sensors Actuators B Chem. doi: 10.1016/j.snb.2008.09.025 – volume: 97 start-page: 6057 year: 2014 ident: 10.1016/j.sbsr.2021.100433_bb0115 article-title: A gas chromatography–mass spectrometry-based metabolomic approach for the characterization of goat milk compared with cow milk publication-title: J. Dairy Sci. doi: 10.3168/jds.2014-8247 – volume: 141 start-page: 3066 year: 2013 ident: 10.1016/j.sbsr.2021.100433_bb0150 article-title: Rapid detection of melamine adulteration in dairy milk by SB-ATR–Fourier Transform Infrared Spectroscopy publication-title: Food Chem. doi: 10.1016/j.foodchem.2013.05.106 – volume: 11 start-page: 6683 year: 2011 ident: 10.1016/j.sbsr.2021.100433_bb0335 article-title: Zinc oxide nanorods modified indium tin oxide surface for amperometric urea biosensor publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2011.4248 – volume: 31 start-page: 236 year: 2015 ident: 10.1016/j.sbsr.2021.100433_bb0025 article-title: Milk preservatives and adulterants: processing, regulatory and safety issues publication-title: Food Rev. Int. doi: 10.1080/87559129.2014.994818 – volume: 20 start-page: 86 year: 2017 ident: 10.1016/j.sbsr.2021.100433_bb0400 article-title: A new polyaniline–catalase–glutaraldehyde-modified biosensor for hydrogen peroxide detection publication-title: Prep. Biochem. Biotechnol. doi: 10.1080/10826068.2016.1172235 – volume: 5 start-page: 317 year: 2014 ident: 10.1016/j.sbsr.2021.100433_bb0275 article-title: Detection of tallow adulteration in cow ghee by derivative spectrophotometry publication-title: J. Nat. Sci. Biol. Med. doi: 10.4103/0976-9668.136174 – volume: 89 start-page: 849 year: 2006 ident: 10.1016/j.sbsr.2021.100433_bb0415 article-title: Spreeta-based biosensor immunoassays to detect fraudulent adulteration in milk and milk powder publication-title: J. AOAC Int. doi: 10.1093/jaoac/89.3.849 – volume: 27 start-page: 129 year: 2010 ident: 10.1016/j.sbsr.2021.100433_bb0125 article-title: Methods for the analysis of melamine and related compounds in foods: a review publication-title: Food Addit. Contam. doi: 10.1080/19440040903289720 – volume: 46 start-page: 27 year: 2015 ident: 10.1016/j.sbsr.2021.100433_bb0135 article-title: Analytical methods coupled with chemometric tools for determining the authenticity and detecting the adulteration of dairy products: a review publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2015.07.007 – volume: 399 start-page: 2275 year: 2011 ident: 10.1016/j.sbsr.2021.100433_bb0200 article-title: Development of a fluorescence polarization immunoassay for the detection of melamine in milk and milk powder publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-010-4599-2 – volume: 138 start-page: 1 year: 2013 ident: 10.1016/j.sbsr.2021.100433_bb0040 article-title: Intestinal colonization resistance publication-title: Immunology doi: 10.1111/j.1365-2567.2012.03616.x – volume: 21 start-page: 96 year: 2002 ident: 10.1016/j.sbsr.2021.100433_bb0315 article-title: (Bio) sensors for measurement of analytes implicated in food safety: a review publication-title: TrAC-Trends. Anal. Chem. doi: 10.1016/S0165-9936(01)00136-4 – volume: 196 start-page: 877 year: 2016 ident: 10.1016/j.sbsr.2021.100433_bb0140 article-title: Vibrational spectroscopy used in milk products analysis: a review publication-title: Food Chem. doi: 10.1016/j.foodchem.2015.10.016 – volume: 221 start-page: 1232 year: 2017 ident: 10.1016/j.sbsr.2021.100433_bb0130 article-title: Recent advances on determination of milk adulterants publication-title: Food Chem. doi: 10.1016/j.foodchem.2016.11.034 – volume: 148 start-page: 136 year: 2018 ident: 10.1016/j.sbsr.2021.100433_bb0170 article-title: Structural characterization of dimethyldithiodenafil and dimethylthiocarbodenafil, analogs of sildenafil publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2017.09.025 – volume: 145 start-page: 342 year: 2014 ident: 10.1016/j.sbsr.2021.100433_bb0260 article-title: Rapid identification of adulterated cow milk by non-linear pattern recognition methods based on near infrared spectroscopy publication-title: Food Chem. doi: 10.1016/j.foodchem.2013.08.064 – volume: 11 year: 2016 ident: 10.1016/j.sbsr.2021.100433_bb0350 article-title: Highly sensitive detection of melamine using a one-step sample treatment combined with a portable Ag nanostructure array SERS sensor publication-title: PLoS One – volume: 88 start-page: 3115 year: 2005 ident: 10.1016/j.sbsr.2021.100433_bb0210 article-title: Application of polymerase chain reaction to detect adulteration of sheep’s milk with goats’ milk publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(05)72993-3 – volume: 238 start-page: 1283 year: 2017 ident: 10.1016/j.sbsr.2021.100433_bb0390 article-title: Design and development of electrochemical biosensor for the simultaneous detection of melamine and urea in adulterated milk samples publication-title: Sensors Actuators B Chem. doi: 10.1016/j.snb.2016.09.100 – volume: 20 start-page: 1111 year: 2004 ident: 10.1016/j.sbsr.2021.100433_bb0330 article-title: Design of an amperometric biosensor using polypyrrole-microgel composites containing glucose oxidase publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2004.05.018 – volume: 25 start-page: 2318 year: 2010 ident: 10.1016/j.sbsr.2021.100433_bb0325 article-title: Label-free capacitive biosensor for sensitive detection of multiple biomarkers using gold interdigitated capacitor arrays publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2010.03.018 – volume: 15 start-page: 130 year: 2016 ident: 10.1016/j.sbsr.2021.100433_bb0065 article-title: Impacts of milk fraud on food safety and nutrition with special emphasis on developing countries publication-title: Compr. Rev. Food Sci. Food Saf. doi: 10.1111/1541-4337.12181 – volume: 18 start-page: 1167 year: 2004 ident: 10.1016/j.sbsr.2021.100433_bb0280 article-title: Quantification of cow milk adulteration in goat milk using high-performance liquid chromatography with electrospray ionization mass spectrometry publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.1460 – volume: 39 start-page: 357 year: 2014 ident: 10.1016/j.sbsr.2021.100433_bb0120 article-title: A review of technologies for detection and measurement of adulterants in cereals and cereal products publication-title: J. Biosyst. Eng. doi: 10.5307/JBE.2014.39.4.357 – volume: 140 start-page: 260 year: 2009 ident: 10.1016/j.sbsr.2021.100433_bb0375 article-title: Potentiometric biosensor for urea determination in milk publication-title: Sensors Actuators B Chem. doi: 10.1016/j.snb.2009.04.022 – volume: 92 start-page: 121 year: 2012 ident: 10.1016/j.sbsr.2021.100433_bb0185 article-title: A highly sensitive sandwich ELISA for the determination of glycomacropeptide to detect liquid whey in raw milk publication-title: Dairy Sci. Technol. doi: 10.1007/s13594-011-0052-3 – volume: 26 start-page: 1560 year: 2010 ident: 10.1016/j.sbsr.2021.100433_bb0380 article-title: Flow injection analysis biosensor for urea analysis in adulterated milk using enzyme thermistor publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2010.07.113 – volume: 134 start-page: 1192 year: 2012 ident: 10.1016/j.sbsr.2021.100433_bb0285 article-title: MALDI-TOF mass spectrometry detection of extra-virgin olive oil adulteration with hazelnut oil by analysis of phospholipids using an ionic liquid as matrix and extraction solvent publication-title: Food Chem. doi: 10.1016/j.foodchem.2012.02.154 – volume: 56 start-page: 3170 year: 2019 ident: 10.1016/j.sbsr.2021.100433_bb0110 article-title: Development and validation of an analytical method for determination of bronopol and kathon preservative in milk publication-title: J. Food Sci. Technol. doi: 10.1007/s13197-019-03807-5 – volume: 70 start-page: 23 year: 2017 ident: 10.1016/j.sbsr.2021.100433_bb0005 article-title: Detection of adulteration in milk: a review publication-title: Int. J. Dairy Technol. doi: 10.1111/1471-0307.12274 – volume: 21 start-page: 633 year: 2000 ident: 10.1016/j.sbsr.2021.100433_bb0250 article-title: Determination of cow's milk and ripening time in nonbovine cheese by capillary electrophoresis of the ethanol-water protein fraction publication-title: Electro. Int. J. – volume: 33 start-page: 21 year: 2020 ident: 10.1016/j.sbsr.2021.100433_bb0345 article-title: PCR based genetic marker for the detection of Leptospira interrogans causing leptospirosis publication-title: Vegetos doi: 10.1007/s42535-019-00078-5 – volume: 44 start-page: 2577 year: 2009 ident: 10.1016/j.sbsr.2021.100433_bb0270 article-title: Differential scanning calorimetry as a tool to detect antibiotic residues in ultra high temperature whole milk publication-title: Int. J. Food Sci. Technol. doi: 10.1111/j.1365-2621.2009.02087.x – year: 2021 ident: 10.1016/j.sbsr.2021.100433_bb0175 article-title: Utilization of gold nanoparticles to detect formalin adulteration in milk publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.12.233 – volume: 72 start-page: 1814 year: 2000 ident: 10.1016/j.sbsr.2021.100433_bb0090 article-title: A reversed-phase high-performance liquid chromatographic method for the determination of soya bean proteins in bovine milks publication-title: Anal. Chem. doi: 10.1021/ac990776m – volume: 62 start-page: 233 year: 2014 ident: 10.1016/j.sbsr.2021.100433_bb0060 article-title: Identifying cheese whey an adulterant in milk: limited contribution of a sensometric approach publication-title: Food Res. Int. doi: 10.1016/j.foodres.2014.03.001 – volume: 82 start-page: 1654 year: 2010 ident: 10.1016/j.sbsr.2021.100433_bb0165 article-title: Visual detection of melamine in milk products by label-free gold nanoparticles publication-title: Talanta doi: 10.1016/j.talanta.2010.07.035 – volume: 59 start-page: 525 year: 2002 ident: 10.1016/j.sbsr.2021.100433_bb0290 article-title: A new ultrasonic method to detect chemical additives in branded milk publication-title: Pramana doi: 10.1007/s12043-002-0049-9 – volume: 3 start-page: 12 year: 2015 ident: 10.1016/j.sbsr.2021.100433_bb0385 article-title: Android integrated urea biosensor for public health awareness publication-title: Sens. Biosens. Res. – volume: 217 start-page: 756 year: 2017 ident: 10.1016/j.sbsr.2021.100433_bb0095 article-title: A comprehensive approach for milk adulteration detection using inherent bio-physical properties as ‘Universal Markers’: towards a miniaturized adulteration detection platform publication-title: Food Chem. doi: 10.1016/j.foodchem.2016.09.037 – volume: 102 start-page: 33 year: 2009 ident: 10.1016/j.sbsr.2021.100433_bb0295 article-title: Conception and development of a portable electronic nose system for classification of raw milk using principal component analysis approach publication-title: Sens. Transducers – volume: 13 start-page: 131 year: 2001 ident: 10.1016/j.sbsr.2021.100433_bb0410 article-title: A direct (non-competitive) immunoassay for gentamicin residues with an optical biosensor publication-title: Food Agric. Immunol. doi: 10.1080/09540100120055701 – volume: 62 start-page: 5198 year: 2014 ident: 10.1016/j.sbsr.2021.100433_bb0100 article-title: Nontargeted detection of adulteration of skim milk powder with foreign proteins using UHPLC–UV publication-title: J. Agric. Food Chem. doi: 10.1021/jf404924x – volume: 95 start-page: 602 year: 2012 ident: 10.1016/j.sbsr.2021.100433_bb0105 article-title: Determination of melamine in milk and dairy products by high performance liquid chromatography publication-title: J. Dairy Sci. doi: 10.3168/jds.2011-4926 – volume: 2 start-page: 61 year: 2013 ident: 10.1016/j.sbsr.2021.100433_bb0235 article-title: Detection of adulterated milk using two-dimensional correlation spectroscopy combined with multi-way partial least squares publication-title: Food Biosci. doi: 10.1016/j.fbio.2013.04.005 – volume: 13 start-page: 525 year: 2012 ident: 10.1016/j.sbsr.2021.100433_bb0035 article-title: Recent developments in the detection of melamine publication-title: J Zhejiang Univ. Sci. B doi: 10.1631/jzus.B1100389 – volume: 322 start-page: 1310 year: 2008 ident: 10.1016/j.sbsr.2021.100433_bb0010 article-title: Chinese probe unmasks high-tech adulteration with melamine publication-title: Science doi: 10.1126/science.322.5906.1310 – start-page: 413 year: 2018 ident: 10.1016/j.sbsr.2021.100433_bb0360 article-title: Development of a dual-channel LSPR biosensing system for detection of melamine using AuNPs-based aptamer – volume: 125 start-page: 1443 year: 2011 ident: 10.1016/j.sbsr.2021.100433_bb0245 article-title: Qualitative and quantitative analysis of bovine milk adulteration in caprine and ovine milks using native-PAGE publication-title: Food Chem. doi: 10.1016/j.foodchem.2010.10.045 – volume: 221 start-page: 746 year: 2017 ident: 10.1016/j.sbsr.2021.100433_bb0155 article-title: Development of new NIR-spectroscopy method combined with multivariate analysis for detection of adulteration in camel milk with goat milk publication-title: Food Chem. doi: 10.1016/j.foodchem.2016.11.109 – volume: 1 start-page: 111 year: 2009 ident: 10.1016/j.sbsr.2021.100433_bb0015 article-title: Milk adulteration with melamine in China: crisis and response publication-title: Qual. Assur. Saf. Crop. Foods doi: 10.1111/j.1757-837X.2009.00018.x – volume: 36 start-page: 851 year: 2019 ident: 10.1016/j.sbsr.2021.100433_bb0050 article-title: SERS detection of urea and ammonium sulfate adulterants in milk with coffee ring effect publication-title: Food. Addit. Contam. Part A doi: 10.1080/19440049.2019.1591643 – volume: 99 start-page: 1773 year: 2016 ident: 10.1016/j.sbsr.2021.100433_bb0195 article-title: Development of a colloidal gold immunochromatographic strip assay for simple and fast detection of human α-lactalbumin in genetically modified cow milk publication-title: J. Dairy Sci. doi: 10.3168/jds.2015-9919 – volume: 6 start-page: 1101 year: 2005 ident: 10.1016/j.sbsr.2021.100433_bb0265 article-title: Use of fluorometry for determination of skim milk powder adulteration in fresh milk publication-title: J. Zhejiang Univ. Sci B doi: 10.1631/jzus.2005.B1101 – volume: 18 start-page: 3227 year: 2018 ident: 10.1016/j.sbsr.2021.100433_bb0365 article-title: An aptamer-based biosensor for direct, label-free detection of melamine in raw milk publication-title: Sensors doi: 10.3390/s18103227 – year: 2016 ident: 10.1016/j.sbsr.2021.100433_bb0420 article-title: Development of QCM biosensor with specific cow milk protein antibody for candidate milk adulteration detection publication-title: J Sens. doi: 10.1155/2016/1807647 – volume: 100 start-page: 106 year: 2017 ident: 10.1016/j.sbsr.2021.100433_bb0220 article-title: Validation of a fast real-time PCR method to detect fraud and mislabeling in milk and dairy products publication-title: J. Dairy Sci. doi: 10.3168/jds.2016-11695 – volume: 102 start-page: 5962 year: 2019 ident: 10.1016/j.sbsr.2021.100433_bb0240 article-title: Detection of buffalo milk adulteration with cow milk by capillary electrophoresis analysis publication-title: J. Dairy Sci. doi: 10.3168/jds.2018-16194 – volume: 39 start-page: 873 year: 2004 ident: 10.1016/j.sbsr.2021.100433_bb0205 article-title: Application of immunological methods for the detection of species adulteration in dairy products publication-title: Int. J. Food Sci. Technol. doi: 10.1111/j.1365-2621.2004.00861.x – year: 2012 ident: 10.1016/j.sbsr.2021.100433_bb0045 article-title: Detection of adulterants in milk: a laboratory manual |
SSID | ssj0001766182 |
Score | 2.4282508 |
SecondaryResourceType | review_article |
Snippet | Milk adulteration is one of the major global concerns as milk is being consumed as a wholesome dairy product in every part of the world. The fraudulent... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100433 |
SubjectTerms | Adulterants Approaches Biosensors Detection Milk |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOXiTYpNM2sabLi6LoHhwYW8lT1hdurJb_795dJd60YvXkiblm4Fvpnz5BqFr6xQXwonMAmMZGCEzpYnJfKyZpwSbVyq6fb4U4wk8Tfm0N-oraMKSPXAC7laSSlpQRLMKwID09KJ18AwxjFZcx27dc16vmYp_V0rPO3FSFKUEMlLl0N2YSeKulVoFM1BKgkoAGPvBStG8v0dOPcIZ7aO9rlLE9-kLD9CWbQ7Rbs8_8Ai9Ps_mHzhaaFjPOS02to3SquYOD3tyciwbg9VssfI962KJA3MZvHYTt6s7fI_TFZZjNBk9vg3HWTciIdNA8jYDkecatABGS0KVK43zMRGcK-18I8BKa3MttWHCUGLAsKKyzHIlVUGI0Dk7QdvNorGnCHPqCDVOF1wWvqmkwjkAa8siF5URRA4QWUNU684_PIyxmNdrodh7HWCtA6x1gnWAbjbvfCb3jF9XPwTkNyuD83V84POh7vKh_isfBoiv41Z3RUQqDvxWs18OP_uPw8_RTtgyCQQv0Ha7_LKXvmhp1VXMz2-Ic-cG priority: 102 providerName: Directory of Open Access Journals |
Title | Milk adulterant detection: Conventional and biosensor based approaches: A review |
URI | https://dx.doi.org/10.1016/j.sbsr.2021.100433 https://doaj.org/article/a18ae4b1c3844d4a853cc6123d3285c0 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwELUQXOCwWmDRFpbKB24oamyPk5hbqUAVCITYrba3yJ-rLChFbfb_r-0k0F564BjLk4_xyM_jvHlG6MI6xYVwIrHAWAJGyERpYhI_1sxDgk0LFdU-H7PpDO7mfL6DJn0tTKBVdnN_O6fH2bprGXXeHL1V1egnpQRI4YOOxP9bQXabQRGL-ObXH_ssuUegeGZU6J8Eg652pqV5rdQqyIJSEvgCwNgGPkUZ_zWYWoOe26_oS7dmxOP2tQ7Rjq2P0MGakuAxenqoXl9wFNOwHn0abGwTSVb1FZ6sEcuxrA1W1WLls9fFEgcMM7jXFberKzzGbTHLNzS7vfk1mSbdYQmJBpI2CYg01aAFMJoTqlxunB8dwbnSzqcELLc21VIbJgwlBgzLCsssV1JlhAidshO0Wy9q-x1hTh2hxumMy8ynl1Q4B2BtnqWiMILIASK9i0rdKYmHAy1ey54y9rcMbi2DW8vWrQN0-W7z1upobO19HTz_3jNoYMeGxfJP2QVBKUkhLSiiWQFgQPqP1DqoyRhGC67TAeL9uJUbIeVvVW15-Okn7c7Qfrhq2YE_0G6z_GfP_YqlUUO0N75__n0_jBn_MAbof5826js |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ReqA9VLSAulDAh96qaONXEnODFWihgCoVpL1ZfqK0KIt2w__HdhJYLhy4Op48xiN_tvPNNwA_nddcCC8yxyjNmBUq0wbbLIw1DZDg8kontc_rYnrLLmZ8tgaTIRcm0ir7ub-b09Ns3beMe2-OH-p6_JcQzHAVgg6n_1vFB_gYVgNlrN9wPjt5OWgpAwSlolHRIIsWffJMx_Na6mXUBSU4EgYYpa8AKun4r-DUCvacbcKXftGIjrv3-gprrvkGn1ekBLfgz1V9_x8lNQ0X4KdF1rWJZdUcockKsxypxiJdz5dh-zpfoAhiFg3C4m55hI5Rl82yDbdnpzeTadZXS8gMw3mbMZHnhhnBKCkx0b60PgyP4FwbH_YEtHQuN8pYKizBlllaVI46rpUuMBYmpzuw3swb9x0QJx4T603BVRH2l0R4z5hzZZGLygqsRoAHF0nTS4nHihb3cuCM_ZPRrTK6VXZuHcGvZ5uHTkjjzd4n0fPPPaMIdmqYL-5kHwVS4Uo5prGhFWOWqfCRxkQ5GUtJxU0-Aj6Mm3wVU-FW9RsP332n3SFsTG-uLuXl-fXvPfgUr3RUwR-w3i4e3X5YvrT6IIXnE43Y6sI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Milk+adulterant+detection%3A+Conventional+and+biosensor+based+approaches%3A+A+review&rft.jtitle=Sensing+and+Bio-Sensing+Research&rft.au=Nagraik%2C+Rupak&rft.au=Sharma%2C+Avinash&rft.au=Kumar%2C+Deepak&rft.au=Chawla%2C+Prince&rft.date=2021-08-01&rft.pub=Elsevier+B.V&rft.issn=2214-1804&rft.eissn=2214-1804&rft.volume=33&rft_id=info:doi/10.1016%2Fj.sbsr.2021.100433&rft.externalDocID=S2214180421000386 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-1804&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-1804&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-1804&client=summon |