Milk adulterant detection: Conventional and biosensor based approaches: A review

Milk adulteration is one of the major global concerns as milk is being consumed as a wholesome dairy product in every part of the world. The fraudulent practice of milk adulteration is on the rise, which is making people apprehensive about the purity and quality of milk. The adulterants such as wate...

Full description

Saved in:
Bibliographic Details
Published inSensing and Bio-Sensing Research Vol. 33; p. 100433
Main Authors Nagraik, Rupak, Sharma, Avinash, Kumar, Deepak, Chawla, Prince, Kumar, Avvaru Praveen
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Milk adulteration is one of the major global concerns as milk is being consumed as a wholesome dairy product in every part of the world. The fraudulent practice of milk adulteration is on the rise, which is making people apprehensive about the purity and quality of milk. The adulterants such as water, vegetable and animal fat, extraneous proteins and chemical components viz. melamine, urea, formalin, detergents, ammonium sulphate, boric acid, caustic soda, benzoic acid, salicylic acid, hydrogen peroxide and sugars deliberately mixed in milk can be an be harmful to the health of consumers. This necessitates the availability of procedures and technologies that could curb this ill practice of milk adulteration. Over the years, various methods have been developed for the detection of milk adulterants. The chromatographic methods such as HPLC and GC, coupled with mass spectrometry have been used for selective identification as well as detection of different milk adulterants. Immunological techniques such as ELISA and various DNA based procedures like PCR have also been used for the specific detection of some common milk adulterants. Spectroscopic methods, namely FTIR and NIR in association with chemometrics have raised the bar of adulterant detection systems. The equipments such as electronic nose and electronic tongue are some of the fancy procedures used in milk and other food adulterants detection. The biosensors are the detection systems that can be used for rapid and real time detection of milk adulterants. This review brings insight into the biosensor application in milk adulterant detection and also tries to explore the potential of biosensors in identifying some common milk adulterants. •The detection of milk adulterants becomes very important in terms of maintaining good human health.•The testing of some milk adulterants is comparatively simple and rapid, but there are some which requires costly equipment set up and cumbersome operational procedures.•Biosensors used for milk adulterant detection ensures real time and specific detection.•This review brings insights into traditional and biosensor applications to detect some common milk adulterants.
AbstractList Milk adulteration is one of the major global concerns as milk is being consumed as a wholesome dairy product in every part of the world. The fraudulent practice of milk adulteration is on the rise, which is making people apprehensive about the purity and quality of milk. The adulterants such as water, vegetable and animal fat, extraneous proteins and chemical components viz. melamine, urea, formalin, detergents, ammonium sulphate, boric acid, caustic soda, benzoic acid, salicylic acid, hydrogen peroxide and sugars deliberately mixed in milk can be an be harmful to the health of consumers. This necessitates the availability of procedures and technologies that could curb this ill practice of milk adulteration. Over the years, various methods have been developed for the detection of milk adulterants. The chromatographic methods such as HPLC and GC, coupled with mass spectrometry have been used for selective identification as well as detection of different milk adulterants. Immunological techniques such as ELISA and various DNA based procedures like PCR have also been used for the specific detection of some common milk adulterants. Spectroscopic methods, namely FTIR and NIR in association with chemometrics have raised the bar of adulterant detection systems. The equipments such as electronic nose and electronic tongue are some of the fancy procedures used in milk and other food adulterants detection. The biosensors are the detection systems that can be used for rapid and real time detection of milk adulterants. This review brings insight into the biosensor application in milk adulterant detection and also tries to explore the potential of biosensors in identifying some common milk adulterants.
Milk adulteration is one of the major global concerns as milk is being consumed as a wholesome dairy product in every part of the world. The fraudulent practice of milk adulteration is on the rise, which is making people apprehensive about the purity and quality of milk. The adulterants such as water, vegetable and animal fat, extraneous proteins and chemical components viz. melamine, urea, formalin, detergents, ammonium sulphate, boric acid, caustic soda, benzoic acid, salicylic acid, hydrogen peroxide and sugars deliberately mixed in milk can be an be harmful to the health of consumers. This necessitates the availability of procedures and technologies that could curb this ill practice of milk adulteration. Over the years, various methods have been developed for the detection of milk adulterants. The chromatographic methods such as HPLC and GC, coupled with mass spectrometry have been used for selective identification as well as detection of different milk adulterants. Immunological techniques such as ELISA and various DNA based procedures like PCR have also been used for the specific detection of some common milk adulterants. Spectroscopic methods, namely FTIR and NIR in association with chemometrics have raised the bar of adulterant detection systems. The equipments such as electronic nose and electronic tongue are some of the fancy procedures used in milk and other food adulterants detection. The biosensors are the detection systems that can be used for rapid and real time detection of milk adulterants. This review brings insight into the biosensor application in milk adulterant detection and also tries to explore the potential of biosensors in identifying some common milk adulterants. •The detection of milk adulterants becomes very important in terms of maintaining good human health.•The testing of some milk adulterants is comparatively simple and rapid, but there are some which requires costly equipment set up and cumbersome operational procedures.•Biosensors used for milk adulterant detection ensures real time and specific detection.•This review brings insights into traditional and biosensor applications to detect some common milk adulterants.
ArticleNumber 100433
Author Chawla, Prince
Sharma, Avinash
Nagraik, Rupak
Kumar, Deepak
Kumar, Avvaru Praveen
Author_xml – sequence: 1
  givenname: Rupak
  surname: Nagraik
  fullname: Nagraik, Rupak
  email: rupak.nagraik@gmail.com
  organization: Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229, India
– sequence: 2
  givenname: Avinash
  surname: Sharma
  fullname: Sharma, Avinash
  organization: Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229, India
– sequence: 3
  givenname: Deepak
  surname: Kumar
  fullname: Kumar, Deepak
  organization: Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
– sequence: 4
  givenname: Prince
  surname: Chawla
  fullname: Chawla, Prince
  organization: Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Jalandhar, India
– sequence: 5
  givenname: Avvaru Praveen
  surname: Kumar
  fullname: Kumar, Avvaru Praveen
  email: drkumar.kr@gmail.com
  organization: Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, PO Box 1888, Adama, Ethiopia
BookMark eNp9kMFO3DAQQC0EEpTyA5z8A7v12E42WfWCVoUigeBQztZkPKHepvbKTqn69012K1Rx4DSjkd6T5n0QxzFFFuIS1BIU1J-2y9KVvNRKw3RQ1pgjcaY12AU0yh7_t5-Ki1K2SilY1TU0-kw83ofhh0T_axg5Yxyl55FpDCmu5SbFF47zjoPE6GUXUuFYUpYdFvYSd7uckL5zWcsrmfkl8O-P4qTHofDFv3kunq6_fNt8Xdw93Nxuru4WZEGNC9sqRZZaa_QKdNevfM9EbVV11FdNZVbMipC8ab0Gb72pGzZcddjVAC0pcy5uD16fcOt2OfzE_MclDG5_SPnZYR4DDewQGmTbAZnGWm9x0hPVoI03uqn2Ln1wUU6lZO5ffaDcnNht3ZzYzYndIfEENW8gCiPOtcaMYXgf_XxAeQo0RcuuUOBI7EOe4k8fhPfwv-b8mU0
CitedBy_id crossref_primary_10_1016_j_gltp_2021_08_015
crossref_primary_10_1016_j_foodcont_2025_111247
crossref_primary_10_1109_LSENS_2023_3247426
crossref_primary_10_1016_j_fbio_2022_101695
crossref_primary_10_1093_fqsafe_fyae039
crossref_primary_10_1016_j_foohum_2024_100339
crossref_primary_10_1016_j_idairyj_2022_105470
crossref_primary_10_3390_foods14040693
crossref_primary_10_1016_j_matlet_2021_131606
crossref_primary_10_3390_biomimetics6040072
crossref_primary_10_3390_foods12152855
crossref_primary_10_4236_fns_2023_141001
crossref_primary_10_1002_fsn3_3732
crossref_primary_10_1109_TIM_2022_3147313
crossref_primary_10_3390_s24175688
crossref_primary_10_1002_cem_3395
crossref_primary_10_1007_s00604_022_05302_9
crossref_primary_10_1002_efd2_116
crossref_primary_10_1016_j_foodchem_2023_135965
crossref_primary_10_1088_1742_6596_2426_1_012040
crossref_primary_10_1021_acsanm_4c02263
crossref_primary_10_1016_j_foodchem_2025_143093
crossref_primary_10_1016_j_idairyj_2024_105922
crossref_primary_10_1590_fst_67022
crossref_primary_10_1007_s12161_022_02427_8
crossref_primary_10_1021_acsomega_2c01033
crossref_primary_10_1002_slct_202302027
crossref_primary_10_1016_j_tifs_2022_06_001
crossref_primary_10_1016_j_microc_2023_108990
crossref_primary_10_1109_TNANO_2021_3123175
crossref_primary_10_3390_app13179821
crossref_primary_10_1080_19440049_2024_2358518
crossref_primary_10_1111_1750_3841_16143
crossref_primary_10_48084_etasr_7091
crossref_primary_10_1039_D3LC00730H
crossref_primary_10_1039_D4AY01919A
crossref_primary_10_1080_07388551_2023_2175196
crossref_primary_10_28979_jarnas_1569065
crossref_primary_10_1021_acsabm_4c00846
crossref_primary_10_1080_01468030_2024_2442289
crossref_primary_10_1155_2021_4250122
crossref_primary_10_1016_j_foodcont_2024_110624
crossref_primary_10_1016_j_matlet_2021_131240
crossref_primary_10_1016_j_trac_2024_118012
crossref_primary_10_1039_D1AY01339D
crossref_primary_10_1016_j_jfca_2024_106382
crossref_primary_10_21603_1019_8946_2023_5_6
Cites_doi 10.1016/j.snb.2012.12.089
10.1016/j.talanta.2007.02.007
10.3168/jds.2012-6417
10.3329/ralf.v4i2.33721
10.3168/jds.2011-5235
10.1039/C4RA13080D
10.1080/13102818.2005.10817216
10.1016/j.tibtech.2004.10.003
10.1186/s40550-016-0045-3
10.14202/vetworld.2018.830-833
10.1016/j.foodcont.2018.04.046
10.1080/00032719.2011.633192
10.1007/s13369-012-0411-2
10.1016/j.foodcont.2018.08.006
10.1080/13547500802645905
10.1080/10408398.2013.798257
10.1080/10942912.2017.1289542
10.1255/jnirs.1077
10.1007/s13594-011-0008-7
10.1016/j.foodchem.2018.08.021
10.1109/JSEN.2015.2494624
10.1007/s12161-014-9873-z
10.1016/j.snb.2008.09.025
10.3168/jds.2014-8247
10.1016/j.foodchem.2013.05.106
10.1166/jnn.2011.4248
10.1080/87559129.2014.994818
10.1080/10826068.2016.1172235
10.4103/0976-9668.136174
10.1093/jaoac/89.3.849
10.1080/19440040903289720
10.1016/j.tifs.2015.07.007
10.1007/s00216-010-4599-2
10.1111/j.1365-2567.2012.03616.x
10.1016/S0165-9936(01)00136-4
10.1016/j.foodchem.2015.10.016
10.1016/j.foodchem.2016.11.034
10.1016/j.jpba.2017.09.025
10.1016/j.foodchem.2013.08.064
10.3168/jds.S0022-0302(05)72993-3
10.1016/j.snb.2016.09.100
10.1016/j.bios.2004.05.018
10.1016/j.bios.2010.03.018
10.1111/1541-4337.12181
10.1002/rcm.1460
10.5307/JBE.2014.39.4.357
10.1016/j.snb.2009.04.022
10.1007/s13594-011-0052-3
10.1016/j.bios.2010.07.113
10.1016/j.foodchem.2012.02.154
10.1007/s13197-019-03807-5
10.1111/1471-0307.12274
10.1007/s42535-019-00078-5
10.1111/j.1365-2621.2009.02087.x
10.1016/j.matpr.2020.12.233
10.1021/ac990776m
10.1016/j.foodres.2014.03.001
10.1016/j.talanta.2010.07.035
10.1007/s12043-002-0049-9
10.1016/j.foodchem.2016.09.037
10.1080/09540100120055701
10.1021/jf404924x
10.3168/jds.2011-4926
10.1016/j.fbio.2013.04.005
10.1631/jzus.B1100389
10.1126/science.322.5906.1310
10.1016/j.foodchem.2010.10.045
10.1016/j.foodchem.2016.11.109
10.1111/j.1757-837X.2009.00018.x
10.1080/19440049.2019.1591643
10.3168/jds.2015-9919
10.1631/jzus.2005.B1101
10.3390/s18103227
10.1155/2016/1807647
10.3168/jds.2016-11695
10.3168/jds.2018-16194
10.1111/j.1365-2621.2004.00861.x
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.sbsr.2021.100433
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-1804
ExternalDocumentID oai_doaj_org_article_a18ae4b1c3844d4a853cc6123d3285c0
10_1016_j_sbsr_2021_100433
S2214180421000386
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
IXB
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c410t-4900c4c9432712bf7dfecc955bcf58537ee0cacd39d21d4d368e3e5bab6119c03
IEDL.DBID IXB
ISSN 2214-1804
IngestDate Wed Aug 27 01:31:20 EDT 2025
Thu Apr 24 23:11:45 EDT 2025
Tue Jul 01 02:09:55 EDT 2025
Tue Jul 25 21:01:24 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Approaches
Adulterants
Detection
Biosensors
Milk
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-4900c4c9432712bf7dfecc955bcf58537ee0cacd39d21d4d368e3e5bab6119c03
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2214180421000386
ParticipantIDs doaj_primary_oai_doaj_org_article_a18ae4b1c3844d4a853cc6123d3285c0
crossref_primary_10_1016_j_sbsr_2021_100433
crossref_citationtrail_10_1016_j_sbsr_2021_100433
elsevier_sciencedirect_doi_10_1016_j_sbsr_2021_100433
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle Sensing and Bio-Sensing Research
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Mishra, Mishra, Bhand (bb0380) 2010; 26
Haasnoot, Marchesini, Koopal (bb0415) 2006; 89
Nagraik, Kaushal, Gupta, Kumar (bb0345) 2020; 33
Zavar, Heydari, Rounaghi (bb0395) 2013; 38
Amari, El Bari, Bouchikhi (bb0295) 2009; 102
Filazi, Sireli, Ekici, Can, Karagoz (bb0105) 2012; 95
Khan, Krishna, Majumder, Gupta (bb0075) 2015; 8
Yang, Huang, Zhang, Thomas, Pei (bb0015) 2009; 1
Kamal, Karoui (bb0135) 2015; 46
Handford, Campbell, Elliott (bb0065) 2016; 15
Naik, Mishra, Danielsson, Bhand (bb0385) 2015; 3
Mabood, Jabeen, Ahmed, Hussain, Al Mashaykhi, Al Rubaiey, Farooq, Boqué, Ali, Hussain, Al-Harrasi (bb0155) 2017; 221
Karunathilaka, Yakes, He, Brückner, Mossoba (bb0160) 2018; 92
Mascini, Tombelli (bb0305) 2008; 13
Liu, Todd, Zhang, Shi, Liu (bb0035) 2012; 13
Sharma, Rajput, Barui (bb0045) 2012
Tripathy, Ghole, Deep, Vanjari, Singh (bb0095) 2017; 217
Lawley, Walker (bb0040) 2013; 138
Wang, Haughey, Sun, Eremin, Li, Liu, Xu, Shen, Lei (bb0200) 2011; 399
Sakamoto, Suzuki, Saito, Shimizu, Kobayashi, Nagashima, Moriyasu, Fukaya, Saito (bb0170) 2018; 148
Kaneko, Horii, Akitomi, Kato, Shiratori, Waga (bb0365) 2018; 18
Renny, Daniel, Krastanov, Zachariah, Elizabeth (bb0370) 2005; 19
Ambrose, Cho (bb0120) 2014; 39
Lowe, Davis, Collyer, Higson, Newman, Turner, Marks (bb0310) 2007; 41
Ezhilan, Gumpu, Ramachandra, Nesakumar, Babu, Krishnan, Rayappan (bb0390) 2017; 238
Rahman, Habib, Ali, Islam, Rashid (bb0085) 2017; 4
Ntakatsane, Liu, Zhou (bb0055) 2013; 96
Lopez-Calleja, Gonzalez, Fajardo, Martin, Hernandez, Garcia, Martin (bb0210) 2005; 88
Di Domenico, Di Giuseppe, Rodríguez, Cammà (bb0220) 2017; 100
Yang, Liu, Kexin (bb0235) 2013; 2
Haasnoot, Verheijen (bb0410) 2001; 13
Li, Xu, Sun (bb0190) 2015; 5
Yildiz, Unluturk (bb0270) 2009; 44
Zhang, Zhang, Ni, Xue, Gu, Huang (bb0260) 2014; 145
Rodrigues, Givisiez, Queiroga, Azevedo, Gebreyes, Oliveira (bb0215) 2012; 95
Bunaciu, Aboul-Enein, Hoang (bb0140) 2016; 196
Guan, Liu, Ye, Yang (bb0265) 2005; 6
Hurley, Elyse, Coleman, Williams (bb0205) 2004; 39
Chávez, Jauregui, Palomares, Macías, Jiménez, Salinas (bb0185) 2012; 92
Retama, Cabarcos, Mecerreyes, Lopez-Ruiz (bb0330) 2004; 20
Das, Reardon (bb0340) 2012; 45
Herrero-Martínez, Simó-Alfonso, Ramis-Ramos, Gelfi, Righetti (bb0250) 2000; 21
Chilbule, Singh, Mann, Arora, Sharma, Rao (bb0110) 2019; 56
Qureshi, Niazi, Kallempudi, Gurbuz (bb0325) 2010; 25
Wu, Li, Chua, Li (bb0355) 2013; 178
Kruså, Torre, Marina (bb0090) 2000; 72
Aquino, Silva, Freitas, Felicio, Cruz, Conte-Junior (bb0060) 2014; 62
Jha, Jaiswal, Grewal, Gupta, Bhardwaj (bb0080) 2016; 56
Shan, Shi, Zhu, Xue (bb0405) 2007; 72
Poonia, Jha, Sharma, Singh, Rai, Sharma (bb0005) 2017; 70
Jalili, Murshid (bb0070) 2017; 1
Cheng, Su, Yao, Han, Wang, Zhao (bb0350) 2016; 11
Jirankalgikar, De (bb0275) 2014; 5
Chen, Chang, Chung, Lee, Ling (bb0280) 2004; 18
Jawaid, Talpur, Sherazi, Nizamani, Khaskheli (bb0150) 2013; 141
Agharkar, Mane (bb0175) 2021
Hazra, Sharma, Sharma, Arora (bb0230) 2018; 20
Trivedi, Lakshminarayana, Kothari, Patel, Kapse, Makhija, Patel, Panchal (bb0375) 2009; 140
Trimboli, Costanzo, Lopreiato, Ceniti, Morittu, Spina, Britti (bb0240) 2019; 102
Dias, Peres, Veloso, Reis, Vilas-Boas, Machado (bb0300) 2009; 136
Tittlemier (bb0125) 2010; 27
Ewida, El-Magiud (bb0225) 2018; 11
Cattaneo, Holroyd (bb0145) 2013; 21
Durante, Becari, Lima, Peres (bb0425) 2015; 16
Nascimento, Santos, Pereira-Filho, Rocha (bb0130) 2017; 221
Xin, Stone (bb0010) 2008; 322
Singh, Gandhi (bb0025) 2015; 31
Jablonski, Moore, Harnly (bb0100) 2014; 62
Patel (bb0315) 2002; 21
Mohanan, Panicker, Iype, Laila, Domini, Bindu (bb0290) 2002; 59
Hu, Shi, Shi, Zou, Arslan, Zhang, Huang, Li, Xu (bb0180) 2019; 272
Brandt, Hoheisel (bb0320) 2004; 22
Calvano, De Ceglie, D’Accolti, Zambonin (bb0285) 2012; 134
Akyilmaz, Oyman, Cınar, Odabas (bb0400) 2017; 20
Guo, Wang, Zhang, Li, Shang, Sun, Yang, Ma, Hu (bb0360) 2018
Tao, Zhang, Feng, Shi, Liu (bb0195) 2016; 99
Pizzano, Nicolai, Manzo, Addeo (bb0255) 2011; 91
Scano, Murgia, Pirisi, Caboni (bb0115) 2014; 97
Guo, Zhong, Wu, Fu, Chen, Zheng, Lin (bb0165) 2010; 82
Pesic, Barac, Vrvic, Ristic, Macej, Stanojevic (bb0245) 2011; 125
Palomera, Balaguera, Arya, Hernández, Tomar, Ramírez-Vick, Singh (bb0335) 2011; 11
Azad, Ahmed (bb0030) 2016; 3
Kendall, Kuznesof, Dean, Chan, Clark, Home, Stolz, Zhong, Liu, Brereton, Frewer (bb0020) 2019; 95
Hussain, Sun, Pu (bb0050) 2019; 36
Sakti, Chabibah, Ayu, Padaga, Aulanni’am (bb0420) 2016
Kruså (10.1016/j.sbsr.2021.100433_bb0090) 2000; 72
Tittlemier (10.1016/j.sbsr.2021.100433_bb0125) 2010; 27
Liu (10.1016/j.sbsr.2021.100433_bb0035) 2012; 13
Sharma (10.1016/j.sbsr.2021.100433_bb0045) 2012
Lawley (10.1016/j.sbsr.2021.100433_bb0040) 2013; 138
Poonia (10.1016/j.sbsr.2021.100433_bb0005) 2017; 70
Guo (10.1016/j.sbsr.2021.100433_bb0165) 2010; 82
Qureshi (10.1016/j.sbsr.2021.100433_bb0325) 2010; 25
Rahman (10.1016/j.sbsr.2021.100433_bb0085) 2017; 4
Kendall (10.1016/j.sbsr.2021.100433_bb0020) 2019; 95
Azad (10.1016/j.sbsr.2021.100433_bb0030) 2016; 3
Ambrose (10.1016/j.sbsr.2021.100433_bb0120) 2014; 39
Lopez-Calleja (10.1016/j.sbsr.2021.100433_bb0210) 2005; 88
Zhang (10.1016/j.sbsr.2021.100433_bb0260) 2014; 145
Zavar (10.1016/j.sbsr.2021.100433_bb0395) 2013; 38
Aquino (10.1016/j.sbsr.2021.100433_bb0060) 2014; 62
Jablonski (10.1016/j.sbsr.2021.100433_bb0100) 2014; 62
Bunaciu (10.1016/j.sbsr.2021.100433_bb0140) 2016; 196
Khan (10.1016/j.sbsr.2021.100433_bb0075) 2015; 8
Dias (10.1016/j.sbsr.2021.100433_bb0300) 2009; 136
Karunathilaka (10.1016/j.sbsr.2021.100433_bb0160) 2018; 92
Guo (10.1016/j.sbsr.2021.100433_bb0360) 2018
Kaneko (10.1016/j.sbsr.2021.100433_bb0365) 2018; 18
Pizzano (10.1016/j.sbsr.2021.100433_bb0255) 2011; 91
Jha (10.1016/j.sbsr.2021.100433_bb0080) 2016; 56
Sakti (10.1016/j.sbsr.2021.100433_bb0420) 2016
Wang (10.1016/j.sbsr.2021.100433_bb0200) 2011; 399
Amari (10.1016/j.sbsr.2021.100433_bb0295) 2009; 102
Yang (10.1016/j.sbsr.2021.100433_bb0235) 2013; 2
Mishra (10.1016/j.sbsr.2021.100433_bb0380) 2010; 26
Chávez (10.1016/j.sbsr.2021.100433_bb0185) 2012; 92
Calvano (10.1016/j.sbsr.2021.100433_bb0285) 2012; 134
Das (10.1016/j.sbsr.2021.100433_bb0340) 2012; 45
Cattaneo (10.1016/j.sbsr.2021.100433_bb0145) 2013; 21
Di Domenico (10.1016/j.sbsr.2021.100433_bb0220) 2017; 100
Brandt (10.1016/j.sbsr.2021.100433_bb0320) 2004; 22
Jalili (10.1016/j.sbsr.2021.100433_bb0070) 2017; 1
Tripathy (10.1016/j.sbsr.2021.100433_bb0095) 2017; 217
Nascimento (10.1016/j.sbsr.2021.100433_bb0130) 2017; 221
Sakamoto (10.1016/j.sbsr.2021.100433_bb0170) 2018; 148
Durante (10.1016/j.sbsr.2021.100433_bb0425) 2015; 16
Palomera (10.1016/j.sbsr.2021.100433_bb0335) 2011; 11
Renny (10.1016/j.sbsr.2021.100433_bb0370) 2005; 19
Li (10.1016/j.sbsr.2021.100433_bb0190) 2015; 5
Handford (10.1016/j.sbsr.2021.100433_bb0065) 2016; 15
Trimboli (10.1016/j.sbsr.2021.100433_bb0240) 2019; 102
Rodrigues (10.1016/j.sbsr.2021.100433_bb0215) 2012; 95
Haasnoot (10.1016/j.sbsr.2021.100433_bb0415) 2006; 89
Mascini (10.1016/j.sbsr.2021.100433_bb0305) 2008; 13
Nagraik (10.1016/j.sbsr.2021.100433_bb0345) 2020; 33
Yang (10.1016/j.sbsr.2021.100433_bb0015) 2009; 1
Hurley (10.1016/j.sbsr.2021.100433_bb0205) 2004; 39
Mabood (10.1016/j.sbsr.2021.100433_bb0155) 2017; 221
Cheng (10.1016/j.sbsr.2021.100433_bb0350) 2016; 11
Hu (10.1016/j.sbsr.2021.100433_bb0180) 2019; 272
Jirankalgikar (10.1016/j.sbsr.2021.100433_bb0275) 2014; 5
Jawaid (10.1016/j.sbsr.2021.100433_bb0150) 2013; 141
Guan (10.1016/j.sbsr.2021.100433_bb0265) 2005; 6
Wu (10.1016/j.sbsr.2021.100433_bb0355) 2013; 178
Tao (10.1016/j.sbsr.2021.100433_bb0195) 2016; 99
Herrero-Martínez (10.1016/j.sbsr.2021.100433_bb0250) 2000; 21
Hazra (10.1016/j.sbsr.2021.100433_bb0230) 2018; 20
Xin (10.1016/j.sbsr.2021.100433_bb0010) 2008; 322
Naik (10.1016/j.sbsr.2021.100433_bb0385) 2015; 3
Pesic (10.1016/j.sbsr.2021.100433_bb0245) 2011; 125
Shan (10.1016/j.sbsr.2021.100433_bb0405) 2007; 72
Scano (10.1016/j.sbsr.2021.100433_bb0115) 2014; 97
Retama (10.1016/j.sbsr.2021.100433_bb0330) 2004; 20
Haasnoot (10.1016/j.sbsr.2021.100433_bb0410) 2001; 13
Patel (10.1016/j.sbsr.2021.100433_bb0315) 2002; 21
Yildiz (10.1016/j.sbsr.2021.100433_bb0270) 2009; 44
Ntakatsane (10.1016/j.sbsr.2021.100433_bb0055) 2013; 96
Kamal (10.1016/j.sbsr.2021.100433_bb0135) 2015; 46
Agharkar (10.1016/j.sbsr.2021.100433_bb0175) 2021
Chen (10.1016/j.sbsr.2021.100433_bb0280) 2004; 18
Trivedi (10.1016/j.sbsr.2021.100433_bb0375) 2009; 140
Singh (10.1016/j.sbsr.2021.100433_bb0025) 2015; 31
Hussain (10.1016/j.sbsr.2021.100433_bb0050) 2019; 36
Ewida (10.1016/j.sbsr.2021.100433_bb0225) 2018; 11
Mohanan (10.1016/j.sbsr.2021.100433_bb0290) 2002; 59
Chilbule (10.1016/j.sbsr.2021.100433_bb0110) 2019; 56
Akyilmaz (10.1016/j.sbsr.2021.100433_bb0400) 2017; 20
Ezhilan (10.1016/j.sbsr.2021.100433_bb0390) 2017; 238
Lowe (10.1016/j.sbsr.2021.100433_bb0310) 2007; 41
Filazi (10.1016/j.sbsr.2021.100433_bb0105) 2012; 95
References_xml – year: 2016
  ident: bb0420
  article-title: Development of QCM biosensor with specific cow milk protein antibody for candidate milk adulteration detection
  publication-title: J Sens.
– volume: 70
  start-page: 23
  year: 2017
  end-page: 42
  ident: bb0005
  article-title: Detection of adulteration in milk: a review
  publication-title: Int. J. Dairy Technol.
– volume: 62
  start-page: 5198
  year: 2014
  end-page: 5206
  ident: bb0100
  article-title: Nontargeted detection of adulteration of skim milk powder with foreign proteins using UHPLC–UV
  publication-title: J. Agric. Food Chem.
– volume: 16
  start-page: 861
  year: 2015
  end-page: 865
  ident: bb0425
  article-title: Electrical impedance sensor for real-time detection of bovine milk adulteration
  publication-title: IEEE Sensors J.
– start-page: 413
  year: 2018
  ident: bb0360
  article-title: Development of a dual-channel LSPR biosensing system for detection of melamine using AuNPs-based aptamer
  publication-title: Frontier Research and Innovation in Optoelectronics Technology and Industry: Proceedings of the 11th International Symposium on Photonics and Optoelectronics (SOPO 2018)
– volume: 100
  start-page: 106
  year: 2017
  end-page: 112
  ident: bb0220
  article-title: Validation of a fast real-time PCR method to detect fraud and mislabeling in milk and dairy products
  publication-title: J. Dairy Sci.
– volume: 399
  start-page: 2275
  year: 2011
  end-page: 2284
  ident: bb0200
  article-title: Development of a fluorescence polarization immunoassay for the detection of melamine in milk and milk powder
  publication-title: Anal. Bioanal. Chem.
– volume: 1
  start-page: 111
  year: 2009
  end-page: 116
  ident: bb0015
  article-title: Milk adulteration with melamine in China: crisis and response
  publication-title: Qual. Assur. Saf. Crop. Foods
– volume: 6
  start-page: 1101
  year: 2005
  ident: bb0265
  article-title: Use of fluorometry for determination of skim milk powder adulteration in fresh milk
  publication-title: J. Zhejiang Univ. Sci B
– volume: 20
  start-page: 86
  year: 2017
  end-page: 93
  ident: bb0400
  article-title: A new polyaniline–catalase–glutaraldehyde-modified biosensor for hydrogen peroxide detection
  publication-title: Prep. Biochem. Biotechnol.
– volume: 13
  start-page: 525
  year: 2012
  end-page: 532
  ident: bb0035
  article-title: Recent developments in the detection of melamine
  publication-title: J Zhejiang Univ. Sci. B
– volume: 21
  start-page: 633
  year: 2000
  end-page: 640
  ident: bb0250
  article-title: Determination of cow's milk and ripening time in nonbovine cheese by capillary electrophoresis of the ethanol-water protein fraction
  publication-title: Electro. Int. J.
– volume: 39
  start-page: 873
  year: 2004
  end-page: 878
  ident: bb0205
  article-title: Application of immunological methods for the detection of species adulteration in dairy products
  publication-title: Int. J. Food Sci. Technol.
– volume: 95
  start-page: 602
  year: 2012
  end-page: 608
  ident: bb0105
  article-title: Determination of melamine in milk and dairy products by high performance liquid chromatography
  publication-title: J. Dairy Sci.
– volume: 92
  start-page: 137
  year: 2018
  end-page: 146
  ident: bb0160
  article-title: First use of handheld Raman spectroscopic devices and on-board chemometric analysis for the detection of milk powder adulteration
  publication-title: Food. Contam.
– volume: 178
  start-page: 541
  year: 2013
  end-page: 546
  ident: bb0355
  article-title: Rapid detection of melamine based on immunoassay using portable surface plasmon resonance biosensor
  publication-title: Sensors Actuators B Chem.
– volume: 221
  start-page: 1232
  year: 2017
  end-page: 1244
  ident: bb0130
  article-title: Recent advances on determination of milk adulterants
  publication-title: Food Chem.
– volume: 20
  start-page: S69
  year: 2018
  end-page: S75
  ident: bb0230
  article-title: A species specific simplex polymerase chain reaction-based approach for detection of goat tallow in heat clarified milk fat (ghee)
  publication-title: Int. J. Food Prop.
– volume: 13
  start-page: 637
  year: 2008
  end-page: 657
  ident: bb0305
  article-title: Biosensors for biomarkers in medical diagnostics
  publication-title: Biomarkers
– volume: 322
  start-page: 1310
  year: 2008
  end-page: 1311
  ident: bb0010
  article-title: Chinese probe unmasks high-tech adulteration with melamine
  publication-title: Science
– volume: 4
  start-page: 99
  year: 2017
  end-page: 106
  ident: bb0085
  article-title: Physico-chemical analysis and detection of adulteration in raw milk collected from Goals of different places of Sadarupazila in Mymensingh district
  publication-title: Res. Agric. Livest. Fish.
– volume: 102
  start-page: 5962
  year: 2019
  end-page: 5970
  ident: bb0240
  article-title: Detection of buffalo milk adulteration with cow milk by capillary electrophoresis analysis
  publication-title: J. Dairy Sci.
– volume: 13
  start-page: 131
  year: 2001
  end-page: 134
  ident: bb0410
  article-title: A direct (non-competitive) immunoassay for gentamicin residues with an optical biosensor
  publication-title: Food Agric. Immunol.
– volume: 96
  start-page: 2130
  year: 2013
  end-page: 2136
  ident: bb0055
  article-title: Rapid detection of milk fat adulteration with vegetable oil by fluorescence spectroscopy
  publication-title: J. Dairy Sci.
– volume: 97
  start-page: 6057
  year: 2014
  end-page: 6066
  ident: bb0115
  article-title: A gas chromatography–mass spectrometry-based metabolomic approach for the characterization of goat milk compared with cow milk
  publication-title: J. Dairy Sci.
– volume: 21
  start-page: 96
  year: 2002
  end-page: 115
  ident: bb0315
  article-title: (Bio) sensors for measurement of analytes implicated in food safety: a review
  publication-title: TrAC-Trends. Anal. Chem.
– volume: 38
  start-page: 29
  year: 2013
  end-page: 36
  ident: bb0395
  article-title: Electrochemical determination of salicylic acid at a new biosensor based on polypyrrole-banana tissue composite
  publication-title: Arab. J. Sci. Eng.
– volume: 125
  start-page: 1443
  year: 2011
  end-page: 1449
  ident: bb0245
  article-title: Qualitative and quantitative analysis of bovine milk adulteration in caprine and ovine milks using native-PAGE
  publication-title: Food Chem.
– volume: 5
  start-page: 1125
  year: 2015
  end-page: 1147
  ident: bb0190
  article-title: Chemical sensors and biosensors for the detection of melamine
  publication-title: RSC Adv.
– volume: 72
  start-page: 1767
  year: 2007
  end-page: 1772
  ident: bb0405
  article-title: Inhibitive detection of benzoic acid using a novel phenols biosensor based on polyaniline–polyacrylonitrile composite matrix
  publication-title: Talanta
– volume: 89
  start-page: 849
  year: 2006
  end-page: 855
  ident: bb0415
  article-title: Spreeta-based biosensor immunoassays to detect fraudulent adulteration in milk and milk powder
  publication-title: J. AOAC Int.
– volume: 272
  start-page: 58
  year: 2019
  end-page: 65
  ident: bb0180
  article-title: Use of a smartphone for visual detection of melamine in milk based on Au@ Carbon quantum dots nanocomposites
  publication-title: Food Chem.
– volume: 5
  start-page: 317
  year: 2014
  ident: bb0275
  article-title: Detection of tallow adulteration in cow ghee by derivative spectrophotometry
  publication-title: J. Nat. Sci. Biol. Med.
– volume: 11
  start-page: 830
  year: 2018
  ident: bb0225
  article-title: Species adulteration in raw milk samples using polymerase chain reaction-restriction fragment length polymorphism
  publication-title: Vet. World.
– volume: 25
  start-page: 2318
  year: 2010
  end-page: 2323
  ident: bb0325
  article-title: Label-free capacitive biosensor for sensitive detection of multiple biomarkers using gold interdigitated capacitor arrays
  publication-title: Biosens. Bioelectron.
– volume: 31
  start-page: 236
  year: 2015
  end-page: 261
  ident: bb0025
  article-title: Milk preservatives and adulterants: processing, regulatory and safety issues
  publication-title: Food Rev. Int.
– year: 2021
  ident: bb0175
  article-title: Utilization of gold nanoparticles to detect formalin adulteration in milk
  publication-title: Mater. Today Proc.
– volume: 92
  start-page: 121
  year: 2012
  end-page: 132
  ident: bb0185
  article-title: A highly sensitive sandwich ELISA for the determination of glycomacropeptide to detect liquid whey in raw milk
  publication-title: Dairy Sci. Technol.
– volume: 44
  start-page: 2577
  year: 2009
  end-page: 2582
  ident: bb0270
  article-title: Differential scanning calorimetry as a tool to detect antibiotic residues in ultra high temperature whole milk
  publication-title: Int. J. Food Sci. Technol.
– volume: 27
  start-page: 129
  year: 2010
  end-page: 145
  ident: bb0125
  article-title: Methods for the analysis of melamine and related compounds in foods: a review
  publication-title: Food Addit. Contam.
– volume: 59
  start-page: 525
  year: 2002
  end-page: 529
  ident: bb0290
  article-title: A new ultrasonic method to detect chemical additives in branded milk
  publication-title: Pramana
– volume: 19
  start-page: 198
  year: 2005
  end-page: 201
  ident: bb0370
  article-title: Enzyme based sensor for detection of urea in milk
  publication-title: Biotechnol. Biotechnol. Equip.
– volume: 99
  start-page: 1773
  year: 2016
  end-page: 1779
  ident: bb0195
  article-title: Development of a colloidal gold immunochromatographic strip assay for simple and fast detection of human α-lactalbumin in genetically modified cow milk
  publication-title: J. Dairy Sci.
– volume: 2
  start-page: 61
  year: 2013
  end-page: 67
  ident: bb0235
  article-title: Detection of adulterated milk using two-dimensional correlation spectroscopy combined with multi-way partial least squares
  publication-title: Food Biosci.
– volume: 148
  start-page: 136
  year: 2018
  end-page: 141
  ident: bb0170
  article-title: Structural characterization of dimethyldithiodenafil and dimethylthiocarbodenafil, analogs of sildenafil
  publication-title: J. Pharm. Biomed. Anal.
– volume: 56
  start-page: 1662
  year: 2016
  end-page: 1684
  ident: bb0080
  article-title: Detection of adulterants and contaminants in liquid foods - a review
  publication-title: Crit. Rev. Food Sci. Nutr.
– volume: 145
  start-page: 342
  year: 2014
  end-page: 348
  ident: bb0260
  article-title: Rapid identification of adulterated cow milk by non-linear pattern recognition methods based on near infrared spectroscopy
  publication-title: Food Chem.
– volume: 21
  start-page: 341
  year: 2013
  end-page: 349
  ident: bb0145
  article-title: The use of near infrared spectroscopy for determination of adulteration and contamination in milk and milk powder: updating knowledge
  publication-title: J. Near Infrared Spectrosc.
– volume: 138
  start-page: 1
  year: 2013
  end-page: 11
  ident: bb0040
  article-title: Intestinal colonization resistance
  publication-title: Immunology
– volume: 1
  start-page: 1
  year: 2017
  end-page: 4
  ident: bb0070
  article-title: A review paper on melamine in milk and dairy products
  publication-title: J. Dairy Vet.
– volume: 88
  start-page: 3115
  year: 2005
  end-page: 3120
  ident: bb0210
  article-title: Application of polymerase chain reaction to detect adulteration of sheep’s milk with goats’ milk
  publication-title: J. Dairy Sci.
– volume: 18
  start-page: 3227
  year: 2018
  ident: bb0365
  article-title: An aptamer-based biosensor for direct, label-free detection of melamine in raw milk
  publication-title: Sensors
– volume: 95
  start-page: 2749
  year: 2012
  end-page: 2752
  ident: bb0215
  article-title: Milk adulteration: detection of bovine milk in bulk goat milk produced by smallholders in northeastern Brazil by a duplex PCR assay
  publication-title: J. Dairy Sci.
– volume: 11
  start-page: 6683
  year: 2011
  end-page: 6689
  ident: bb0335
  article-title: Zinc oxide nanorods modified indium tin oxide surface for amperometric urea biosensor
  publication-title: J. Nanosci. Nanotechnol.
– volume: 217
  start-page: 756
  year: 2017
  end-page: 765
  ident: bb0095
  article-title: A comprehensive approach for milk adulteration detection using inherent bio-physical properties as ‘Universal Markers’: towards a miniaturized adulteration detection platform
  publication-title: Food Chem.
– volume: 62
  start-page: 233
  year: 2014
  end-page: 237
  ident: bb0060
  article-title: Identifying cheese whey an adulterant in milk: limited contribution of a sensometric approach
  publication-title: Food Res. Int.
– volume: 39
  start-page: 357
  year: 2014
  end-page: 365
  ident: bb0120
  article-title: A review of technologies for detection and measurement of adulterants in cereals and cereal products
  publication-title: J. Biosyst. Eng.
– volume: 46
  start-page: 27
  year: 2015
  end-page: 48
  ident: bb0135
  article-title: Analytical methods coupled with chemometric tools for determining the authenticity and detecting the adulteration of dairy products: a review
  publication-title: Trends Food Sci. Technol.
– volume: 91
  start-page: 77
  year: 2011
  end-page: 95
  ident: bb0255
  article-title: Authentication of dairy products by immunochemical methods: a review
  publication-title: Dairy Sci. Technol.
– volume: 45
  start-page: 251
  year: 2012
  end-page: 261
  ident: bb0340
  article-title: Fiber-optic biosensor for the detection of atrazine: characterization and continuous measurements
  publication-title: Anal. Lett.
– volume: 8
  start-page: 93
  year: 2015
  end-page: 102
  ident: bb0075
  article-title: Detection of urea adulteration in milk using near-infrared Raman spectroscopy
  publication-title: Food Anal. Methods
– volume: 22
  start-page: 617
  year: 2004
  end-page: 622
  ident: bb0320
  article-title: Peptide nucleic acids on microarrays and other biosensors
  publication-title: Trends Biotechnol.
– volume: 140
  start-page: 260
  year: 2009
  end-page: 266
  ident: bb0375
  article-title: Potentiometric biosensor for urea determination in milk
  publication-title: Sensors Actuators B Chem.
– volume: 3
  start-page: 12
  year: 2015
  end-page: 17
  ident: bb0385
  article-title: Android integrated urea biosensor for public health awareness
  publication-title: Sens. Biosens. Res.
– volume: 33
  start-page: 21
  year: 2020
  end-page: 25
  ident: bb0345
  article-title: PCR based genetic marker for the detection of
  publication-title: Vegetos
– volume: 141
  start-page: 3066
  year: 2013
  end-page: 3071
  ident: bb0150
  article-title: Rapid detection of melamine adulteration in dairy milk by SB-ATR–Fourier Transform Infrared Spectroscopy
  publication-title: Food Chem.
– volume: 36
  start-page: 851
  year: 2019
  end-page: 862
  ident: bb0050
  article-title: SERS detection of urea and ammonium sulfate adulterants in milk with coffee ring effect
  publication-title: Food. Addit. Contam. Part A
– volume: 196
  start-page: 877
  year: 2016
  end-page: 884
  ident: bb0140
  article-title: Vibrational spectroscopy used in milk products analysis: a review
  publication-title: Food Chem.
– volume: 221
  start-page: 746
  year: 2017
  end-page: 750
  ident: bb0155
  article-title: Development of new NIR-spectroscopy method combined with multivariate analysis for detection of adulteration in camel milk with goat milk
  publication-title: Food Chem.
– volume: 82
  start-page: 1654
  year: 2010
  end-page: 1658
  ident: bb0165
  article-title: Visual detection of melamine in milk products by label-free gold nanoparticles
  publication-title: Talanta
– volume: 41
  start-page: 18
  year: 2007
  ident: bb0310
  article-title: Handbook of biosensors and biochips
  publication-title: Development
– volume: 3
  start-page: 22
  year: 2016
  ident: bb0030
  article-title: Common milk adulteration and their detection techniques
  publication-title: Int. J. Food. Contam.
– volume: 18
  start-page: 1167
  year: 2004
  end-page: 1171
  ident: bb0280
  article-title: Quantification of cow milk adulteration in goat milk using high-performance liquid chromatography with electrospray ionization mass spectrometry
  publication-title: Rapid Commun. Mass Spectrom.
– volume: 56
  start-page: 3170
  year: 2019
  end-page: 3176
  ident: bb0110
  article-title: Development and validation of an analytical method for determination of bronopol and kathon preservative in milk
  publication-title: J. Food Sci. Technol.
– volume: 95
  start-page: 339
  year: 2019
  end-page: 351
  ident: bb0020
  article-title: Chinese consumer's attitudes, perceptions and behavioural responses towards food fraud
  publication-title: Food Control
– volume: 26
  start-page: 1560
  year: 2010
  end-page: 1564
  ident: bb0380
  article-title: Flow injection analysis biosensor for urea analysis in adulterated milk using enzyme thermistor
  publication-title: Biosens. Bioelectron.
– volume: 72
  start-page: 1814
  year: 2000
  end-page: 1818
  ident: bb0090
  article-title: A reversed-phase high-performance liquid chromatographic method for the determination of soya bean proteins in bovine milks
  publication-title: Anal. Chem.
– volume: 102
  start-page: 33
  year: 2009
  ident: bb0295
  article-title: Conception and development of a portable electronic nose system for classification of raw milk using principal component analysis approach
  publication-title: Sens. Transducers
– volume: 238
  start-page: 1283
  year: 2017
  end-page: 1292
  ident: bb0390
  article-title: Design and development of electrochemical biosensor for the simultaneous detection of melamine and urea in adulterated milk samples
  publication-title: Sensors Actuators B Chem.
– volume: 11
  year: 2016
  ident: bb0350
  article-title: Highly sensitive detection of melamine using a one-step sample treatment combined with a portable Ag nanostructure array SERS sensor
  publication-title: PLoS One
– volume: 15
  start-page: 130
  year: 2016
  end-page: 142
  ident: bb0065
  article-title: Impacts of milk fraud on food safety and nutrition with special emphasis on developing countries
  publication-title: Compr. Rev. Food Sci. Food Saf.
– year: 2012
  ident: bb0045
  article-title: Detection of adulterants in milk: a laboratory manual
  publication-title: Karnal-132001, Haryana, India
– volume: 20
  start-page: 1111
  year: 2004
  end-page: 1117
  ident: bb0330
  article-title: Design of an amperometric biosensor using polypyrrole-microgel composites containing glucose oxidase
  publication-title: Biosens. Bioelectron.
– volume: 136
  start-page: 209
  year: 2009
  end-page: 217
  ident: bb0300
  article-title: An electronic tongue taste evaluation: identification of goat milk adulteration with bovine milk
  publication-title: Sensors Actuators B Chem.
– volume: 134
  start-page: 1192
  year: 2012
  end-page: 1198
  ident: bb0285
  article-title: MALDI-TOF mass spectrometry detection of extra-virgin olive oil adulteration with hazelnut oil by analysis of phospholipids using an ionic liquid as matrix and extraction solvent
  publication-title: Food Chem.
– volume: 178
  start-page: 541
  year: 2013
  ident: 10.1016/j.sbsr.2021.100433_bb0355
  article-title: Rapid detection of melamine based on immunoassay using portable surface plasmon resonance biosensor
  publication-title: Sensors Actuators B Chem.
  doi: 10.1016/j.snb.2012.12.089
– volume: 72
  start-page: 1767
  year: 2007
  ident: 10.1016/j.sbsr.2021.100433_bb0405
  article-title: Inhibitive detection of benzoic acid using a novel phenols biosensor based on polyaniline–polyacrylonitrile composite matrix
  publication-title: Talanta
  doi: 10.1016/j.talanta.2007.02.007
– volume: 96
  start-page: 2130
  year: 2013
  ident: 10.1016/j.sbsr.2021.100433_bb0055
  article-title: Rapid detection of milk fat adulteration with vegetable oil by fluorescence spectroscopy
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2012-6417
– volume: 4
  start-page: 99
  year: 2017
  ident: 10.1016/j.sbsr.2021.100433_bb0085
  article-title: Physico-chemical analysis and detection of adulteration in raw milk collected from Goals of different places of Sadarupazila in Mymensingh district
  publication-title: Res. Agric. Livest. Fish.
  doi: 10.3329/ralf.v4i2.33721
– volume: 95
  start-page: 2749
  year: 2012
  ident: 10.1016/j.sbsr.2021.100433_bb0215
  article-title: Milk adulteration: detection of bovine milk in bulk goat milk produced by smallholders in northeastern Brazil by a duplex PCR assay
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2011-5235
– volume: 5
  start-page: 1125
  year: 2015
  ident: 10.1016/j.sbsr.2021.100433_bb0190
  article-title: Chemical sensors and biosensors for the detection of melamine
  publication-title: RSC Adv.
  doi: 10.1039/C4RA13080D
– volume: 41
  start-page: 18
  year: 2007
  ident: 10.1016/j.sbsr.2021.100433_bb0310
  article-title: Handbook of biosensors and biochips
  publication-title: Development
– volume: 19
  start-page: 198
  year: 2005
  ident: 10.1016/j.sbsr.2021.100433_bb0370
  article-title: Enzyme based sensor for detection of urea in milk
  publication-title: Biotechnol. Biotechnol. Equip.
  doi: 10.1080/13102818.2005.10817216
– volume: 22
  start-page: 617
  year: 2004
  ident: 10.1016/j.sbsr.2021.100433_bb0320
  article-title: Peptide nucleic acids on microarrays and other biosensors
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2004.10.003
– volume: 3
  start-page: 22
  year: 2016
  ident: 10.1016/j.sbsr.2021.100433_bb0030
  article-title: Common milk adulteration and their detection techniques
  publication-title: Int. J. Food. Contam.
  doi: 10.1186/s40550-016-0045-3
– volume: 11
  start-page: 830
  year: 2018
  ident: 10.1016/j.sbsr.2021.100433_bb0225
  article-title: Species adulteration in raw milk samples using polymerase chain reaction-restriction fragment length polymorphism
  publication-title: Vet. World.
  doi: 10.14202/vetworld.2018.830-833
– volume: 92
  start-page: 137
  year: 2018
  ident: 10.1016/j.sbsr.2021.100433_bb0160
  article-title: First use of handheld Raman spectroscopic devices and on-board chemometric analysis for the detection of milk powder adulteration
  publication-title: Food. Contam.
  doi: 10.1016/j.foodcont.2018.04.046
– volume: 45
  start-page: 251
  year: 2012
  ident: 10.1016/j.sbsr.2021.100433_bb0340
  article-title: Fiber-optic biosensor for the detection of atrazine: characterization and continuous measurements
  publication-title: Anal. Lett.
  doi: 10.1080/00032719.2011.633192
– volume: 38
  start-page: 29
  year: 2013
  ident: 10.1016/j.sbsr.2021.100433_bb0395
  article-title: Electrochemical determination of salicylic acid at a new biosensor based on polypyrrole-banana tissue composite
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-012-0411-2
– volume: 95
  start-page: 339
  year: 2019
  ident: 10.1016/j.sbsr.2021.100433_bb0020
  article-title: Chinese consumer's attitudes, perceptions and behavioural responses towards food fraud
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2018.08.006
– volume: 13
  start-page: 637
  year: 2008
  ident: 10.1016/j.sbsr.2021.100433_bb0305
  article-title: Biosensors for biomarkers in medical diagnostics
  publication-title: Biomarkers
  doi: 10.1080/13547500802645905
– volume: 1
  start-page: 1
  year: 2017
  ident: 10.1016/j.sbsr.2021.100433_bb0070
  article-title: A review paper on melamine in milk and dairy products
  publication-title: J. Dairy Vet.
– volume: 56
  start-page: 1662
  year: 2016
  ident: 10.1016/j.sbsr.2021.100433_bb0080
  article-title: Detection of adulterants and contaminants in liquid foods - a review
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2013.798257
– volume: 20
  start-page: S69
  year: 2018
  ident: 10.1016/j.sbsr.2021.100433_bb0230
  article-title: A species specific simplex polymerase chain reaction-based approach for detection of goat tallow in heat clarified milk fat (ghee)
  publication-title: Int. J. Food Prop.
  doi: 10.1080/10942912.2017.1289542
– volume: 21
  start-page: 341
  year: 2013
  ident: 10.1016/j.sbsr.2021.100433_bb0145
  article-title: The use of near infrared spectroscopy for determination of adulteration and contamination in milk and milk powder: updating knowledge
  publication-title: J. Near Infrared Spectrosc.
  doi: 10.1255/jnirs.1077
– volume: 91
  start-page: 77
  year: 2011
  ident: 10.1016/j.sbsr.2021.100433_bb0255
  article-title: Authentication of dairy products by immunochemical methods: a review
  publication-title: Dairy Sci. Technol.
  doi: 10.1007/s13594-011-0008-7
– volume: 272
  start-page: 58
  year: 2019
  ident: 10.1016/j.sbsr.2021.100433_bb0180
  article-title: Use of a smartphone for visual detection of melamine in milk based on Au@ Carbon quantum dots nanocomposites
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2018.08.021
– volume: 16
  start-page: 861
  year: 2015
  ident: 10.1016/j.sbsr.2021.100433_bb0425
  article-title: Electrical impedance sensor for real-time detection of bovine milk adulteration
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2015.2494624
– volume: 8
  start-page: 93
  year: 2015
  ident: 10.1016/j.sbsr.2021.100433_bb0075
  article-title: Detection of urea adulteration in milk using near-infrared Raman spectroscopy
  publication-title: Food Anal. Methods
  doi: 10.1007/s12161-014-9873-z
– volume: 136
  start-page: 209
  year: 2009
  ident: 10.1016/j.sbsr.2021.100433_bb0300
  article-title: An electronic tongue taste evaluation: identification of goat milk adulteration with bovine milk
  publication-title: Sensors Actuators B Chem.
  doi: 10.1016/j.snb.2008.09.025
– volume: 97
  start-page: 6057
  year: 2014
  ident: 10.1016/j.sbsr.2021.100433_bb0115
  article-title: A gas chromatography–mass spectrometry-based metabolomic approach for the characterization of goat milk compared with cow milk
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2014-8247
– volume: 141
  start-page: 3066
  year: 2013
  ident: 10.1016/j.sbsr.2021.100433_bb0150
  article-title: Rapid detection of melamine adulteration in dairy milk by SB-ATR–Fourier Transform Infrared Spectroscopy
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2013.05.106
– volume: 11
  start-page: 6683
  year: 2011
  ident: 10.1016/j.sbsr.2021.100433_bb0335
  article-title: Zinc oxide nanorods modified indium tin oxide surface for amperometric urea biosensor
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2011.4248
– volume: 31
  start-page: 236
  year: 2015
  ident: 10.1016/j.sbsr.2021.100433_bb0025
  article-title: Milk preservatives and adulterants: processing, regulatory and safety issues
  publication-title: Food Rev. Int.
  doi: 10.1080/87559129.2014.994818
– volume: 20
  start-page: 86
  year: 2017
  ident: 10.1016/j.sbsr.2021.100433_bb0400
  article-title: A new polyaniline–catalase–glutaraldehyde-modified biosensor for hydrogen peroxide detection
  publication-title: Prep. Biochem. Biotechnol.
  doi: 10.1080/10826068.2016.1172235
– volume: 5
  start-page: 317
  year: 2014
  ident: 10.1016/j.sbsr.2021.100433_bb0275
  article-title: Detection of tallow adulteration in cow ghee by derivative spectrophotometry
  publication-title: J. Nat. Sci. Biol. Med.
  doi: 10.4103/0976-9668.136174
– volume: 89
  start-page: 849
  year: 2006
  ident: 10.1016/j.sbsr.2021.100433_bb0415
  article-title: Spreeta-based biosensor immunoassays to detect fraudulent adulteration in milk and milk powder
  publication-title: J. AOAC Int.
  doi: 10.1093/jaoac/89.3.849
– volume: 27
  start-page: 129
  year: 2010
  ident: 10.1016/j.sbsr.2021.100433_bb0125
  article-title: Methods for the analysis of melamine and related compounds in foods: a review
  publication-title: Food Addit. Contam.
  doi: 10.1080/19440040903289720
– volume: 46
  start-page: 27
  year: 2015
  ident: 10.1016/j.sbsr.2021.100433_bb0135
  article-title: Analytical methods coupled with chemometric tools for determining the authenticity and detecting the adulteration of dairy products: a review
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2015.07.007
– volume: 399
  start-page: 2275
  year: 2011
  ident: 10.1016/j.sbsr.2021.100433_bb0200
  article-title: Development of a fluorescence polarization immunoassay for the detection of melamine in milk and milk powder
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-010-4599-2
– volume: 138
  start-page: 1
  year: 2013
  ident: 10.1016/j.sbsr.2021.100433_bb0040
  article-title: Intestinal colonization resistance
  publication-title: Immunology
  doi: 10.1111/j.1365-2567.2012.03616.x
– volume: 21
  start-page: 96
  year: 2002
  ident: 10.1016/j.sbsr.2021.100433_bb0315
  article-title: (Bio) sensors for measurement of analytes implicated in food safety: a review
  publication-title: TrAC-Trends. Anal. Chem.
  doi: 10.1016/S0165-9936(01)00136-4
– volume: 196
  start-page: 877
  year: 2016
  ident: 10.1016/j.sbsr.2021.100433_bb0140
  article-title: Vibrational spectroscopy used in milk products analysis: a review
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2015.10.016
– volume: 221
  start-page: 1232
  year: 2017
  ident: 10.1016/j.sbsr.2021.100433_bb0130
  article-title: Recent advances on determination of milk adulterants
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2016.11.034
– volume: 148
  start-page: 136
  year: 2018
  ident: 10.1016/j.sbsr.2021.100433_bb0170
  article-title: Structural characterization of dimethyldithiodenafil and dimethylthiocarbodenafil, analogs of sildenafil
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2017.09.025
– volume: 145
  start-page: 342
  year: 2014
  ident: 10.1016/j.sbsr.2021.100433_bb0260
  article-title: Rapid identification of adulterated cow milk by non-linear pattern recognition methods based on near infrared spectroscopy
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2013.08.064
– volume: 11
  year: 2016
  ident: 10.1016/j.sbsr.2021.100433_bb0350
  article-title: Highly sensitive detection of melamine using a one-step sample treatment combined with a portable Ag nanostructure array SERS sensor
  publication-title: PLoS One
– volume: 88
  start-page: 3115
  year: 2005
  ident: 10.1016/j.sbsr.2021.100433_bb0210
  article-title: Application of polymerase chain reaction to detect adulteration of sheep’s milk with goats’ milk
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(05)72993-3
– volume: 238
  start-page: 1283
  year: 2017
  ident: 10.1016/j.sbsr.2021.100433_bb0390
  article-title: Design and development of electrochemical biosensor for the simultaneous detection of melamine and urea in adulterated milk samples
  publication-title: Sensors Actuators B Chem.
  doi: 10.1016/j.snb.2016.09.100
– volume: 20
  start-page: 1111
  year: 2004
  ident: 10.1016/j.sbsr.2021.100433_bb0330
  article-title: Design of an amperometric biosensor using polypyrrole-microgel composites containing glucose oxidase
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2004.05.018
– volume: 25
  start-page: 2318
  year: 2010
  ident: 10.1016/j.sbsr.2021.100433_bb0325
  article-title: Label-free capacitive biosensor for sensitive detection of multiple biomarkers using gold interdigitated capacitor arrays
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2010.03.018
– volume: 15
  start-page: 130
  year: 2016
  ident: 10.1016/j.sbsr.2021.100433_bb0065
  article-title: Impacts of milk fraud on food safety and nutrition with special emphasis on developing countries
  publication-title: Compr. Rev. Food Sci. Food Saf.
  doi: 10.1111/1541-4337.12181
– volume: 18
  start-page: 1167
  year: 2004
  ident: 10.1016/j.sbsr.2021.100433_bb0280
  article-title: Quantification of cow milk adulteration in goat milk using high-performance liquid chromatography with electrospray ionization mass spectrometry
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.1460
– volume: 39
  start-page: 357
  year: 2014
  ident: 10.1016/j.sbsr.2021.100433_bb0120
  article-title: A review of technologies for detection and measurement of adulterants in cereals and cereal products
  publication-title: J. Biosyst. Eng.
  doi: 10.5307/JBE.2014.39.4.357
– volume: 140
  start-page: 260
  year: 2009
  ident: 10.1016/j.sbsr.2021.100433_bb0375
  article-title: Potentiometric biosensor for urea determination in milk
  publication-title: Sensors Actuators B Chem.
  doi: 10.1016/j.snb.2009.04.022
– volume: 92
  start-page: 121
  year: 2012
  ident: 10.1016/j.sbsr.2021.100433_bb0185
  article-title: A highly sensitive sandwich ELISA for the determination of glycomacropeptide to detect liquid whey in raw milk
  publication-title: Dairy Sci. Technol.
  doi: 10.1007/s13594-011-0052-3
– volume: 26
  start-page: 1560
  year: 2010
  ident: 10.1016/j.sbsr.2021.100433_bb0380
  article-title: Flow injection analysis biosensor for urea analysis in adulterated milk using enzyme thermistor
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2010.07.113
– volume: 134
  start-page: 1192
  year: 2012
  ident: 10.1016/j.sbsr.2021.100433_bb0285
  article-title: MALDI-TOF mass spectrometry detection of extra-virgin olive oil adulteration with hazelnut oil by analysis of phospholipids using an ionic liquid as matrix and extraction solvent
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2012.02.154
– volume: 56
  start-page: 3170
  year: 2019
  ident: 10.1016/j.sbsr.2021.100433_bb0110
  article-title: Development and validation of an analytical method for determination of bronopol and kathon preservative in milk
  publication-title: J. Food Sci. Technol.
  doi: 10.1007/s13197-019-03807-5
– volume: 70
  start-page: 23
  year: 2017
  ident: 10.1016/j.sbsr.2021.100433_bb0005
  article-title: Detection of adulteration in milk: a review
  publication-title: Int. J. Dairy Technol.
  doi: 10.1111/1471-0307.12274
– volume: 21
  start-page: 633
  year: 2000
  ident: 10.1016/j.sbsr.2021.100433_bb0250
  article-title: Determination of cow's milk and ripening time in nonbovine cheese by capillary electrophoresis of the ethanol-water protein fraction
  publication-title: Electro. Int. J.
– volume: 33
  start-page: 21
  year: 2020
  ident: 10.1016/j.sbsr.2021.100433_bb0345
  article-title: PCR based genetic marker for the detection of Leptospira interrogans causing leptospirosis
  publication-title: Vegetos
  doi: 10.1007/s42535-019-00078-5
– volume: 44
  start-page: 2577
  year: 2009
  ident: 10.1016/j.sbsr.2021.100433_bb0270
  article-title: Differential scanning calorimetry as a tool to detect antibiotic residues in ultra high temperature whole milk
  publication-title: Int. J. Food Sci. Technol.
  doi: 10.1111/j.1365-2621.2009.02087.x
– year: 2021
  ident: 10.1016/j.sbsr.2021.100433_bb0175
  article-title: Utilization of gold nanoparticles to detect formalin adulteration in milk
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.12.233
– volume: 72
  start-page: 1814
  year: 2000
  ident: 10.1016/j.sbsr.2021.100433_bb0090
  article-title: A reversed-phase high-performance liquid chromatographic method for the determination of soya bean proteins in bovine milks
  publication-title: Anal. Chem.
  doi: 10.1021/ac990776m
– volume: 62
  start-page: 233
  year: 2014
  ident: 10.1016/j.sbsr.2021.100433_bb0060
  article-title: Identifying cheese whey an adulterant in milk: limited contribution of a sensometric approach
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2014.03.001
– volume: 82
  start-page: 1654
  year: 2010
  ident: 10.1016/j.sbsr.2021.100433_bb0165
  article-title: Visual detection of melamine in milk products by label-free gold nanoparticles
  publication-title: Talanta
  doi: 10.1016/j.talanta.2010.07.035
– volume: 59
  start-page: 525
  year: 2002
  ident: 10.1016/j.sbsr.2021.100433_bb0290
  article-title: A new ultrasonic method to detect chemical additives in branded milk
  publication-title: Pramana
  doi: 10.1007/s12043-002-0049-9
– volume: 3
  start-page: 12
  year: 2015
  ident: 10.1016/j.sbsr.2021.100433_bb0385
  article-title: Android integrated urea biosensor for public health awareness
  publication-title: Sens. Biosens. Res.
– volume: 217
  start-page: 756
  year: 2017
  ident: 10.1016/j.sbsr.2021.100433_bb0095
  article-title: A comprehensive approach for milk adulteration detection using inherent bio-physical properties as ‘Universal Markers’: towards a miniaturized adulteration detection platform
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2016.09.037
– volume: 102
  start-page: 33
  year: 2009
  ident: 10.1016/j.sbsr.2021.100433_bb0295
  article-title: Conception and development of a portable electronic nose system for classification of raw milk using principal component analysis approach
  publication-title: Sens. Transducers
– volume: 13
  start-page: 131
  year: 2001
  ident: 10.1016/j.sbsr.2021.100433_bb0410
  article-title: A direct (non-competitive) immunoassay for gentamicin residues with an optical biosensor
  publication-title: Food Agric. Immunol.
  doi: 10.1080/09540100120055701
– volume: 62
  start-page: 5198
  year: 2014
  ident: 10.1016/j.sbsr.2021.100433_bb0100
  article-title: Nontargeted detection of adulteration of skim milk powder with foreign proteins using UHPLC–UV
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf404924x
– volume: 95
  start-page: 602
  year: 2012
  ident: 10.1016/j.sbsr.2021.100433_bb0105
  article-title: Determination of melamine in milk and dairy products by high performance liquid chromatography
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2011-4926
– volume: 2
  start-page: 61
  year: 2013
  ident: 10.1016/j.sbsr.2021.100433_bb0235
  article-title: Detection of adulterated milk using two-dimensional correlation spectroscopy combined with multi-way partial least squares
  publication-title: Food Biosci.
  doi: 10.1016/j.fbio.2013.04.005
– volume: 13
  start-page: 525
  year: 2012
  ident: 10.1016/j.sbsr.2021.100433_bb0035
  article-title: Recent developments in the detection of melamine
  publication-title: J Zhejiang Univ. Sci. B
  doi: 10.1631/jzus.B1100389
– volume: 322
  start-page: 1310
  year: 2008
  ident: 10.1016/j.sbsr.2021.100433_bb0010
  article-title: Chinese probe unmasks high-tech adulteration with melamine
  publication-title: Science
  doi: 10.1126/science.322.5906.1310
– start-page: 413
  year: 2018
  ident: 10.1016/j.sbsr.2021.100433_bb0360
  article-title: Development of a dual-channel LSPR biosensing system for detection of melamine using AuNPs-based aptamer
– volume: 125
  start-page: 1443
  year: 2011
  ident: 10.1016/j.sbsr.2021.100433_bb0245
  article-title: Qualitative and quantitative analysis of bovine milk adulteration in caprine and ovine milks using native-PAGE
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2010.10.045
– volume: 221
  start-page: 746
  year: 2017
  ident: 10.1016/j.sbsr.2021.100433_bb0155
  article-title: Development of new NIR-spectroscopy method combined with multivariate analysis for detection of adulteration in camel milk with goat milk
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2016.11.109
– volume: 1
  start-page: 111
  year: 2009
  ident: 10.1016/j.sbsr.2021.100433_bb0015
  article-title: Milk adulteration with melamine in China: crisis and response
  publication-title: Qual. Assur. Saf. Crop. Foods
  doi: 10.1111/j.1757-837X.2009.00018.x
– volume: 36
  start-page: 851
  year: 2019
  ident: 10.1016/j.sbsr.2021.100433_bb0050
  article-title: SERS detection of urea and ammonium sulfate adulterants in milk with coffee ring effect
  publication-title: Food. Addit. Contam. Part A
  doi: 10.1080/19440049.2019.1591643
– volume: 99
  start-page: 1773
  year: 2016
  ident: 10.1016/j.sbsr.2021.100433_bb0195
  article-title: Development of a colloidal gold immunochromatographic strip assay for simple and fast detection of human α-lactalbumin in genetically modified cow milk
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2015-9919
– volume: 6
  start-page: 1101
  year: 2005
  ident: 10.1016/j.sbsr.2021.100433_bb0265
  article-title: Use of fluorometry for determination of skim milk powder adulteration in fresh milk
  publication-title: J. Zhejiang Univ. Sci B
  doi: 10.1631/jzus.2005.B1101
– volume: 18
  start-page: 3227
  year: 2018
  ident: 10.1016/j.sbsr.2021.100433_bb0365
  article-title: An aptamer-based biosensor for direct, label-free detection of melamine in raw milk
  publication-title: Sensors
  doi: 10.3390/s18103227
– year: 2016
  ident: 10.1016/j.sbsr.2021.100433_bb0420
  article-title: Development of QCM biosensor with specific cow milk protein antibody for candidate milk adulteration detection
  publication-title: J Sens.
  doi: 10.1155/2016/1807647
– volume: 100
  start-page: 106
  year: 2017
  ident: 10.1016/j.sbsr.2021.100433_bb0220
  article-title: Validation of a fast real-time PCR method to detect fraud and mislabeling in milk and dairy products
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2016-11695
– volume: 102
  start-page: 5962
  year: 2019
  ident: 10.1016/j.sbsr.2021.100433_bb0240
  article-title: Detection of buffalo milk adulteration with cow milk by capillary electrophoresis analysis
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2018-16194
– volume: 39
  start-page: 873
  year: 2004
  ident: 10.1016/j.sbsr.2021.100433_bb0205
  article-title: Application of immunological methods for the detection of species adulteration in dairy products
  publication-title: Int. J. Food Sci. Technol.
  doi: 10.1111/j.1365-2621.2004.00861.x
– year: 2012
  ident: 10.1016/j.sbsr.2021.100433_bb0045
  article-title: Detection of adulterants in milk: a laboratory manual
SSID ssj0001766182
Score 2.4282508
SecondaryResourceType review_article
Snippet Milk adulteration is one of the major global concerns as milk is being consumed as a wholesome dairy product in every part of the world. The fraudulent...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100433
SubjectTerms Adulterants
Approaches
Biosensors
Detection
Milk
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOXiTYpNM2sabLi6LoHhwYW8lT1hdurJb_795dJd60YvXkiblm4Fvpnz5BqFr6xQXwonMAmMZGCEzpYnJfKyZpwSbVyq6fb4U4wk8Tfm0N-oraMKSPXAC7laSSlpQRLMKwID09KJ18AwxjFZcx27dc16vmYp_V0rPO3FSFKUEMlLl0N2YSeKulVoFM1BKgkoAGPvBStG8v0dOPcIZ7aO9rlLE9-kLD9CWbQ7Rbs8_8Ai9Ps_mHzhaaFjPOS02to3SquYOD3tyciwbg9VssfI962KJA3MZvHYTt6s7fI_TFZZjNBk9vg3HWTciIdNA8jYDkecatABGS0KVK43zMRGcK-18I8BKa3MttWHCUGLAsKKyzHIlVUGI0Dk7QdvNorGnCHPqCDVOF1wWvqmkwjkAa8siF5URRA4QWUNU684_PIyxmNdrodh7HWCtA6x1gnWAbjbvfCb3jF9XPwTkNyuD83V84POh7vKh_isfBoiv41Z3RUQqDvxWs18OP_uPw8_RTtgyCQQv0Ha7_LKXvmhp1VXMz2-Ic-cG
  priority: 102
  providerName: Directory of Open Access Journals
Title Milk adulterant detection: Conventional and biosensor based approaches: A review
URI https://dx.doi.org/10.1016/j.sbsr.2021.100433
https://doaj.org/article/a18ae4b1c3844d4a853cc6123d3285c0
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwELUQXOCwWmDRFpbKB24oamyPk5hbqUAVCITYrba3yJ-rLChFbfb_r-0k0F564BjLk4_xyM_jvHlG6MI6xYVwIrHAWAJGyERpYhI_1sxDgk0LFdU-H7PpDO7mfL6DJn0tTKBVdnN_O6fH2bprGXXeHL1V1egnpQRI4YOOxP9bQXabQRGL-ObXH_ssuUegeGZU6J8Eg652pqV5rdQqyIJSEvgCwNgGPkUZ_zWYWoOe26_oS7dmxOP2tQ7Rjq2P0MGakuAxenqoXl9wFNOwHn0abGwTSVb1FZ6sEcuxrA1W1WLls9fFEgcMM7jXFberKzzGbTHLNzS7vfk1mSbdYQmJBpI2CYg01aAFMJoTqlxunB8dwbnSzqcELLc21VIbJgwlBgzLCsssV1JlhAidshO0Wy9q-x1hTh2hxumMy8ynl1Q4B2BtnqWiMILIASK9i0rdKYmHAy1ey54y9rcMbi2DW8vWrQN0-W7z1upobO19HTz_3jNoYMeGxfJP2QVBKUkhLSiiWQFgQPqP1DqoyRhGC67TAeL9uJUbIeVvVW15-Okn7c7Qfrhq2YE_0G6z_GfP_YqlUUO0N75__n0_jBn_MAbof5826js
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ReqA9VLSAulDAh96qaONXEnODFWihgCoVpL1ZfqK0KIt2w__HdhJYLhy4Op48xiN_tvPNNwA_nddcCC8yxyjNmBUq0wbbLIw1DZDg8kontc_rYnrLLmZ8tgaTIRcm0ir7ub-b09Ns3beMe2-OH-p6_JcQzHAVgg6n_1vFB_gYVgNlrN9wPjt5OWgpAwSlolHRIIsWffJMx_Na6mXUBSU4EgYYpa8AKun4r-DUCvacbcKXftGIjrv3-gprrvkGn1ekBLfgz1V9_x8lNQ0X4KdF1rWJZdUcockKsxypxiJdz5dh-zpfoAhiFg3C4m55hI5Rl82yDbdnpzeTadZXS8gMw3mbMZHnhhnBKCkx0b60PgyP4FwbH_YEtHQuN8pYKizBlllaVI46rpUuMBYmpzuw3swb9x0QJx4T603BVRH2l0R4z5hzZZGLygqsRoAHF0nTS4nHihb3cuCM_ZPRrTK6VXZuHcGvZ5uHTkjjzd4n0fPPPaMIdmqYL-5kHwVS4Uo5prGhFWOWqfCRxkQ5GUtJxU0-Aj6Mm3wVU-FW9RsP332n3SFsTG-uLuXl-fXvPfgUr3RUwR-w3i4e3X5YvrT6IIXnE43Y6sI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Milk+adulterant+detection%3A+Conventional+and+biosensor+based+approaches%3A+A+review&rft.jtitle=Sensing+and+Bio-Sensing+Research&rft.au=Nagraik%2C+Rupak&rft.au=Sharma%2C+Avinash&rft.au=Kumar%2C+Deepak&rft.au=Chawla%2C+Prince&rft.date=2021-08-01&rft.pub=Elsevier+B.V&rft.issn=2214-1804&rft.eissn=2214-1804&rft.volume=33&rft_id=info:doi/10.1016%2Fj.sbsr.2021.100433&rft.externalDocID=S2214180421000386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-1804&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-1804&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-1804&client=summon