The optical bandgap of lithium niobate (LiNbO3) and its dependence with temperature
•This work investigates the optical bandgap Egap of congruent LiNbO3, as determined by optical transmission measurements.•Accordingly, the indirect Egap of LiNbO3 was found to comply withEgapINDT=3.96-0.311coth0.042kBT-1, rendering EgapIND300K=3.77±0.05 eV. Notwithstanding the great scientific−techn...
Saved in:
Published in | Results in physics Vol. 39; p. 105736 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2022
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2211-3797 2211-3797 |
DOI | 10.1016/j.rinp.2022.105736 |
Cover
Loading…
Abstract | •This work investigates the optical bandgap Egap of congruent LiNbO3, as determined by optical transmission measurements.•Accordingly, the indirect Egap of LiNbO3 was found to comply withEgapINDT=3.96-0.311coth0.042kBT-1, rendering EgapIND300K=3.77±0.05 eV.
Notwithstanding the great scientific−technological interest in lithium niobate (LiNbO3), its optical bandgap Egap has been subject of intense discussion. So far, the literature exhibits different Egap values spanning over about 2 eV and comprises a mixture of compositions, structures, and theoretical methods − not always clearly indicated or discussed. In view of that, this work presents a thorough investigation of the Egap (at room-temperature and in the ∼80–800 K temperature range) of the congruent ferroelectric LiNbO3 (Z-cut) single crystal. |
---|---|
AbstractList | •This work investigates the optical bandgap Egap of congruent LiNbO3, as determined by optical transmission measurements.•Accordingly, the indirect Egap of LiNbO3 was found to comply withEgapINDT=3.96-0.311coth0.042kBT-1, rendering EgapIND300K=3.77±0.05 eV.
Notwithstanding the great scientific−technological interest in lithium niobate (LiNbO3), its optical bandgap Egap has been subject of intense discussion. So far, the literature exhibits different Egap values spanning over about 2 eV and comprises a mixture of compositions, structures, and theoretical methods − not always clearly indicated or discussed. In view of that, this work presents a thorough investigation of the Egap (at room-temperature and in the ∼80–800 K temperature range) of the congruent ferroelectric LiNbO3 (Z-cut) single crystal. Notwithstanding the great scientific−technological interest in lithium niobate (LiNbO3), its optical bandgap Egap has been subject of intense discussion. So far, the literature exhibits different Egap values spanning over about 2 eV and comprises a mixture of compositions, structures, and theoretical methods − not always clearly indicated or discussed. In view of that, this work presents a thorough investigation of the Egap (at room-temperature and in the ∼80–800 K temperature range) of the congruent ferroelectric LiNbO3 (Z-cut) single crystal. |
ArticleNumber | 105736 |
Author | Zanatta, A.R. |
Author_xml | – sequence: 1 givenname: A.R. surname: Zanatta fullname: Zanatta, A.R. organization: Instituto de Física de São Carlos, USP, São Carlos 13560-970, SP, Brazil |
BookMark | eNp9kE1LAzEQhoMoqLV_wFOOemhNssl-gBcRv6DYg_UcZpPZNmW7WbJR8d-bWhHx0NMMM_O8MM8pOex8h4ScczbljOdX62lwXT8VTIg0UEWWH5ATITifZEVVHP7pj8l4GNaMJUoqxfkJeVmskPo-OgMtraGzS-ipb2jr4sq9bWjnfA0R6cXMPdfz7JKmE-riQC322FnsDNKPdEsjbnoMEN8CnpGjBtoBxz91RF7v7xa3j5PZ_OHp9mY2MZKzOJFKIGtUjrIWWQW25KIqVWkrYEUubaUYmlxJk-VpZRRXssqgsY3CjDei4NmIPO1yrYe17oPbQPjUHpz-Hviw1BDSZy1qWcgKDUOZs0ZKwWpTMqiUqJWxYE2RssQuywQ_DAGb3zzO9NayXuutZb21rHeWE1T-g4yLEJ3vYgDX7kevdygmQe8Ogx6M29q0LqCJ6QO3D_8CbWiY0A |
CitedBy_id | crossref_primary_10_1364_OE_538150 crossref_primary_10_1007_s13204_023_02889_0 crossref_primary_10_1016_j_optmat_2023_114365 crossref_primary_10_1364_OL_516486 crossref_primary_10_1016_j_optmat_2024_115571 crossref_primary_10_1016_j_ssi_2024_116487 crossref_primary_10_1021_acs_jpcc_4c02754 crossref_primary_10_1063_5_0152518 crossref_primary_10_1021_acsphotonics_4c01793 crossref_primary_10_1364_OE_505995 crossref_primary_10_1002_adsr_202400049 crossref_primary_10_1364_OME_541508 crossref_primary_10_1063_5_0228408 crossref_primary_10_1016_j_tca_2024_179702 crossref_primary_10_1002_pssa_202300972 crossref_primary_10_1038_s44310_024_00048_z crossref_primary_10_35848_1347_4065_ad60cf crossref_primary_10_1016_j_rinp_2023_106380 crossref_primary_10_1038_s41586_024_07369_1 crossref_primary_10_1088_1367_2630_ad6688 crossref_primary_10_1016_j_ceramint_2024_08_461 crossref_primary_10_3390_molecules29051011 crossref_primary_10_1364_OL_491528 crossref_primary_10_3390_nano14030317 crossref_primary_10_1002_est2_642 |
Cites_doi | 10.1002/pssc.200982473 10.1063/1.5055386 10.1007/BF00614817 10.1016/S0038-1098(03)00450-2 10.1063/1.104723 10.1016/0031-8914(67)90062-6 10.1063/1.346951 10.1007/s00339-003-2249-7 10.1038/s41598-019-47670-y 10.1063/1.1663089 10.1016/j.tsf.2012.06.072 10.1007/BF00324348 10.1016/j.tsf.2013.10.157 |
ContentType | Journal Article |
Copyright | 2022 The Author |
Copyright_xml | – notice: 2022 The Author |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rinp.2022.105736 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2211-3797 |
ExternalDocumentID | oai_doaj_org_article_4749ec0e460f4420bc80a952b5cdadc7 10_1016_j_rinp_2022_105736 S2211379722004107 |
GroupedDBID | --K 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M48 M~E NCXOZ O-L O9- OK1 RIG ROL SES SSZ XH2 AAFWJ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPKN AFPUW AIGII AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c410t-452e0f56e4b239ad8129858d9a0764d950ec654c36d81c515493afdf5e31f2713 |
IEDL.DBID | IXB |
ISSN | 2211-3797 |
IngestDate | Wed Aug 27 01:26:53 EDT 2025 Thu Apr 24 23:03:02 EDT 2025 Tue Jul 01 02:27:44 EDT 2025 Wed Jun 26 17:52:50 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium niobate (LiNbO3) Optical bandgap Optical spectroscopy Photonic devices |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-452e0f56e4b239ad8129858d9a0764d950ec654c36d81c515493afdf5e31f2713 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211379722004107 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4749ec0e460f4420bc80a952b5cdadc7 crossref_primary_10_1016_j_rinp_2022_105736 crossref_citationtrail_10_1016_j_rinp_2022_105736 elsevier_sciencedirect_doi_10_1016_j_rinp_2022_105736 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2022 2022-08-00 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationTitle | Results in physics |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Scott, Mailis, Sones, Eason (b0050) 2004; 79 Zanatta (b0060) 2019; 9 Cardona, Kremer (b0070) 2014; 571 Thierfelder, Sanna, Schindlmayr, Schmidt (b0040) 2010; 7 Redfield, Burke (b0045) 1974; 45 Satapathy, Mukherjee, Shaktawat, Gupta, Sathe (b0035) 2012; 520 Anikiev, Umarov, Scott (b0015) 2018; 8 Bhatt, Kar, Bartwal, Wadhawan (b0025) 2003; 127 Weis, Gaylord (b0005) 1985; 37 Schlarb, Klauer, Wesselmann, Betzler, Whiilecke (b0055) 1993; 56 Dhar, Mansingh (b0020) 1990; 68 Jiangou, Shipin, Dingquan, Xiu, Guanfeng (b0030) 1992; 4 O’Donnell, Chen (b0075) 1991; 58 Varshni (b0065) 1967; 34 Wu, Zhang, Fu, Xu, Ding, Yao (b0010) 2021; 24 O’Donnell (10.1016/j.rinp.2022.105736_b0075) 1991; 58 Dhar (10.1016/j.rinp.2022.105736_b0020) 1990; 68 Varshni (10.1016/j.rinp.2022.105736_b0065) 1967; 34 Schlarb (10.1016/j.rinp.2022.105736_b0055) 1993; 56 Cardona (10.1016/j.rinp.2022.105736_b0070) 2014; 571 Satapathy (10.1016/j.rinp.2022.105736_b0035) 2012; 520 Zanatta (10.1016/j.rinp.2022.105736_b0060) 2019; 9 Redfield (10.1016/j.rinp.2022.105736_b0045) 1974; 45 Thierfelder (10.1016/j.rinp.2022.105736_b0040) 2010; 7 Anikiev (10.1016/j.rinp.2022.105736_b0015) 2018; 8 Bhatt (10.1016/j.rinp.2022.105736_b0025) 2003; 127 Jiangou (10.1016/j.rinp.2022.105736_b0030) 1992; 4 Wu (10.1016/j.rinp.2022.105736_b0010) 2021; 24 Scott (10.1016/j.rinp.2022.105736_b0050) 2004; 79 Weis (10.1016/j.rinp.2022.105736_b0005) 1985; 37 |
References_xml | – volume: 520 start-page: 6510 year: 2012 end-page: 6514 ident: b0035 article-title: Blue shift of optical band-gap in LiNbO publication-title: Thin Solid Films – volume: 79 start-page: 691 year: 2004 end-page: 696 ident: b0050 article-title: A Raman study of single-crystal congruent lithium niobate following electric-field repoling publication-title: Appl Phys A – volume: 9 start-page: 11225 year: 2019 ident: b0060 article-title: Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination publication-title: Sci Rep – volume: 68 start-page: 5804 year: 1990 end-page: 5809 ident: b0020 article-title: Optical properties of reduced lithium niobate single crystals publication-title: J Appl Phys – volume: 7 start-page: 362 year: 2010 end-page: 365 ident: b0040 article-title: Do we know the band gap of lithium niobate? publication-title: Phys Phys Status Solidi (c) – volume: 56 start-page: 311 year: 1993 end-page: 315 ident: b0055 article-title: Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements publication-title: Appl Phys A – volume: 571 start-page: 680 year: 2014 end-page: 683 ident: b0070 article-title: Temperature dependence of the electronic gaps of semiconductors publication-title: Thin Solid Films – volume: 45 start-page: 4566 year: 1974 end-page: 4571 ident: b0045 article-title: Optical absorption edge of LiNbO publication-title: J Appl Phys – volume: 127 start-page: 457 year: 2003 end-page: 462 ident: b0025 article-title: The effect of Cr doping on optical and photoluminescence properties of LiNbO publication-title: Sol St Commun – volume: 58 start-page: 2924 year: 1991 end-page: 2926 ident: b0075 article-title: Temperature dependence of semiconductor band gaps publication-title: Appl Phys Lett – volume: 4 start-page: 2977 year: 1992 end-page: 2983 ident: b0030 article-title: Optical absorption properties of doped lithium niobate crystals publication-title: J Phys: Condens Matter – volume: 24 start-page: 104120 year: 2021 ident: b0010 article-title: Tuning the dielectric properties of LiNbO publication-title: Res Phys – volume: 37 start-page: 191 year: 1985 end-page: 203 ident: b0005 article-title: Lithium niobate: Summary of physical properties and crystal structure publication-title: Appl Phys A – volume: 8 year: 2018 ident: b0015 article-title: Processing and characterization of improved congruent LiNbO publication-title: AIP Adv – volume: 34 start-page: 149 year: 1967 end-page: 154 ident: b0065 article-title: Temperature dependence of the energy gap in semiconductors publication-title: Physica – volume: 7 start-page: 362 issue: 2 year: 2010 ident: 10.1016/j.rinp.2022.105736_b0040 article-title: Do we know the band gap of lithium niobate? publication-title: Phys Phys Status Solidi (c) doi: 10.1002/pssc.200982473 – volume: 8 year: 2018 ident: 10.1016/j.rinp.2022.105736_b0015 article-title: Processing and characterization of improved congruent LiNbO3 publication-title: AIP Adv doi: 10.1063/1.5055386 – volume: 37 start-page: 191 issue: 4 year: 1985 ident: 10.1016/j.rinp.2022.105736_b0005 article-title: Lithium niobate: Summary of physical properties and crystal structure publication-title: Appl Phys A doi: 10.1007/BF00614817 – volume: 127 start-page: 457 issue: 6 year: 2003 ident: 10.1016/j.rinp.2022.105736_b0025 article-title: The effect of Cr doping on optical and photoluminescence properties of LiNbO3 crystals publication-title: Sol St Commun doi: 10.1016/S0038-1098(03)00450-2 – volume: 58 start-page: 2924 issue: 25 year: 1991 ident: 10.1016/j.rinp.2022.105736_b0075 article-title: Temperature dependence of semiconductor band gaps publication-title: Appl Phys Lett doi: 10.1063/1.104723 – volume: 34 start-page: 149 issue: 1 year: 1967 ident: 10.1016/j.rinp.2022.105736_b0065 article-title: Temperature dependence of the energy gap in semiconductors publication-title: Physica doi: 10.1016/0031-8914(67)90062-6 – volume: 4 start-page: 2977 issue: 11 year: 1992 ident: 10.1016/j.rinp.2022.105736_b0030 article-title: Optical absorption properties of doped lithium niobate crystals publication-title: J Phys: Condens Matter – volume: 68 start-page: 5804 issue: 11 year: 1990 ident: 10.1016/j.rinp.2022.105736_b0020 article-title: Optical properties of reduced lithium niobate single crystals publication-title: J Appl Phys doi: 10.1063/1.346951 – volume: 79 start-page: 691 issue: 3 year: 2004 ident: 10.1016/j.rinp.2022.105736_b0050 article-title: A Raman study of single-crystal congruent lithium niobate following electric-field repoling publication-title: Appl Phys A doi: 10.1007/s00339-003-2249-7 – volume: 9 start-page: 11225 year: 2019 ident: 10.1016/j.rinp.2022.105736_b0060 article-title: Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination publication-title: Sci Rep doi: 10.1038/s41598-019-47670-y – volume: 45 start-page: 4566 issue: 10 year: 1974 ident: 10.1016/j.rinp.2022.105736_b0045 article-title: Optical absorption edge of LiNbO3 publication-title: J Appl Phys doi: 10.1063/1.1663089 – volume: 520 start-page: 6510 issue: 21 year: 2012 ident: 10.1016/j.rinp.2022.105736_b0035 article-title: Blue shift of optical band-gap in LiNbO3 thin films deposited by sol-gel technique publication-title: Thin Solid Films doi: 10.1016/j.tsf.2012.06.072 – volume: 24 start-page: 104120 year: 2021 ident: 10.1016/j.rinp.2022.105736_b0010 article-title: Tuning the dielectric properties of LiNbO3 based interdigitated electrode metastructure in the terahertz range publication-title: Res Phys – volume: 56 start-page: 311 issue: 4 year: 1993 ident: 10.1016/j.rinp.2022.105736_b0055 article-title: Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements publication-title: Appl Phys A doi: 10.1007/BF00324348 – volume: 571 start-page: 680 year: 2014 ident: 10.1016/j.rinp.2022.105736_b0070 article-title: Temperature dependence of the electronic gaps of semiconductors publication-title: Thin Solid Films doi: 10.1016/j.tsf.2013.10.157 |
SSID | ssj0001645511 |
Score | 2.378562 |
Snippet | •This work investigates the optical bandgap Egap of congruent LiNbO3, as determined by optical transmission measurements.•Accordingly, the indirect Egap of... Notwithstanding the great scientific−technological interest in lithium niobate (LiNbO3), its optical bandgap Egap has been subject of intense discussion. So... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 105736 |
SubjectTerms | Lithium niobate (LiNbO3) Optical bandgap Optical spectroscopy Photonic devices |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yELyInzi_yMGDIsUsTdLmqOIYIvOgg91KPrWi3di6_9-XtJs76cVbadMk_PLC-73w8nsIXTjjPTfWJZ47CgFKjyYK9lTCldJSUJ0THxNkh2IwYo9jPl4r9RVywhp54Aa4G5Yx6QxxTBDPGCXa5ERJTjWMoKyJ98jB560FU_F0RTCgAiHaojTo9GUya2_MNMlds7IKYpWUxjq3UZ_5xytF8f4157TmcPo7aLtlivi2meEu2nDVHtqMGZtmvo9eYIHxZBqPorFWlX1TUzzxGGj1e7n4wlUJO7V2-PKpHOrn9ApDE1zWc7wse2scDoewOIhTtcrKB2jUf3i9HyRthYTEsB6pE8apI54LxzRNpbLgrWXOcysVyQSzkhNnBGcmFfDJ8CDHlipvYV3SnqcQnx6iTjWp3BHCQKyAOlmmda6Y0EY6mQN0sN2lgUfbRb0lQoVp5cNDFYvPYpkn9lEEVIuAatGg2kXXq3-mjXjGr63vAvCrlkH4Or4Acyhacyj-Mocu4stlK1oO0XAD6Kr8ZfDj_xj8BG2FLpv8wFPUqWcLdwacpdbn0Ty_ATJc5hE priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELVgKyQuCFoQCxT50AMIBXkd24kPCNGqaFUVOLQr7S3yJwQt2WU3K9F_zzhxKJUQh97yYSfSG0_mjTV5g9AXZ7znxrrEc0chQRnQRIFPJVwpLQXVOfFNgey1GI7YjzEfr6Cu3VEEcPFmahf6SY3mk9Onxz_n4PBnf2u15mUVtCcpbdrWpmIVfYDIlAVHvYp0v9lzEQwIQsjBKA3qfZnM4n80bz_mn1jVSPq_ClmvwtDlJtqI_BFftAbfQiuu-ojWmjpOs_iEfoHZ8XTWbFBjrSp7q2Z46jGQ7bty-YCrEvy3dvjoZ3mtb9JjDENwWS9w1wzXOBy2ZnGQrIp6y9todPn997dhEvsmJIYNSJ0wTh3xXDimaSqVhRguc55bqUgmmJWcOCM4M6mAW4YHkbZUeQvWSgeeQta6g3rVtHK7CAPdAkJlmda5YkIb6WQO0MFHQBo4tH006BAqTBQVD70tJkVXPXZfBFSLgGrRotpHJy9zZq2kxrujvwbgX0YGOezmwnR-W0TvKljGpDPEMUE8Y5RokxMlOdWwDJU1WR_xzmxFZBYtY4BHle-8fO8_5-2j9XDWFgoeoF49X7rPQF5qfdisyGfzzum9 priority: 102 providerName: Scholars Portal |
Title | The optical bandgap of lithium niobate (LiNbO3) and its dependence with temperature |
URI | https://dx.doi.org/10.1016/j.rinp.2022.105736 https://doaj.org/article/4749ec0e460f4420bc80a952b5cdadc7 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iCF7EJ66PJQcPipTtpknaHFUU8Qk-cG8lT61od1nr_3eSpj4uHryUNp30MZNkZsLMNwjtWu0c08YmjlkCDsqQJBLmVMKkVIITVaQuBMhe87MHej5ioxl03OXC-LDKuPa3a3pYrWPLIHJzMKmqwR0B3yXLRU68oIchozyjRUjiGx1977NwCkaB97s8feI7xNyZNsxrWtUetpKQUPE2IDV_66cA4_9DTf1QPadLaDHajPiw_axlNGPrFTQfYjf1-yq6A1Hj8SRsSmMla_MkJ3jsMBjYz9XHG64rmLONxXuX1bW6yfYxkOCqecddAVxtsd-OxR6mKmIsr6GH05P747Mk1kpINPx7k1BGbOoYt1SRTEgDelsUrDBCpjmnRrDUas6ozjjc0swDs2XSGZBQNnQEPNV1NFuPa7uBMJhYYEQZqlQhKVdaWFEA62DiCw2npoeGHYdKHYHEfT2L17KLGHspPVdLz9Wy5WoPHXz1mbQwGn9SH3nGf1F6COzQMJ4-lXEMlDSnwurUUp46SkmqdJFKwYiCoSeNznuIdWIrf40oeFT1x8s3_9lvCy34qzY4cBvNNtMPuwMGS6P6aO7w4vbxoh8c_n4Yn3C8osUntdjpXw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVgguqOUhlqcPHEAo2qxjO_GRVlRbWJZDW2lvlp9tEGRX2_T_M-M4bbn00FtkexJnZuyZscbfEPIxuBiF86GIIjAIUGasMLCmCmGMVZLZpowpQXYp5-f8-0qsdsjReBcG0yrz3j_s6Wm3zi3TzM3ppm2npwxil6pWNUNBz_BG-R54AzXWbzhZHd4etEgOXgEGXkhQIEW-PDPkeW3bDnErGUslbxNU862BSjj-d-zUHdtzvE-eZqeRfh3mdUB2QveMPErJm-7qOTkFWdP1Jp1KU2s6f2E2dB0peNiX7fVf2rWwaPtAPy3apf1VfaYwhLb9FR0r4LpA8TyWIk5VBll-Qc6Pv50dzYtcLKFw8PN9wQULZRQycMsqZTwYbtWIxitT1pJ7JcrgpOCuktDlBCKzVSZ6EFE1iwxC1Zdkt1t34RWh4GOBF-W5tY3h0joVVAOsg5WvHDz6CZmNHNIuI4ljQYs_ekwZ-62Rqxq5qgeuTsiXG5rNgKNx7-hDZPzNSMTATg3r7YXOSqB5zVVwZeCyjJyz0rqmNEowC7pnvKsnRIxi0_-pFLyqvefjrx9I94E8np_9XOjFyfLHG_IEe4ZMwbdkt99eh3fgvfT2fdLOfzJ66Qw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+optical+bandgap+of+lithium+niobate+%28LiNbO3%29+and+its+dependence+with+temperature&rft.jtitle=Results+in+physics&rft.au=Zanatta%2C+A.R.&rft.date=2022-08-01&rft.pub=Elsevier+B.V&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=39&rft_id=info:doi/10.1016%2Fj.rinp.2022.105736&rft.externalDocID=S2211379722004107 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon |