The optical bandgap of lithium niobate (LiNbO3) and its dependence with temperature

•This work investigates the optical bandgap Egap of congruent LiNbO3, as determined by optical transmission measurements.•Accordingly, the indirect Egap of LiNbO3 was found to comply withEgapINDT=3.96-0.311coth0.042kBT-1, rendering EgapIND300K=3.77±0.05 eV. Notwithstanding the great scientific−techn...

Full description

Saved in:
Bibliographic Details
Published inResults in physics Vol. 39; p. 105736
Main Author Zanatta, A.R.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2022
Elsevier
Subjects
Online AccessGet full text
ISSN2211-3797
2211-3797
DOI10.1016/j.rinp.2022.105736

Cover

Loading…
Abstract •This work investigates the optical bandgap Egap of congruent LiNbO3, as determined by optical transmission measurements.•Accordingly, the indirect Egap of LiNbO3 was found to comply withEgapINDT=3.96-0.311coth0.042kBT-1, rendering EgapIND300K=3.77±0.05 eV. Notwithstanding the great scientific−technological interest in lithium niobate (LiNbO3), its optical bandgap Egap has been subject of intense discussion. So far, the literature exhibits different Egap values spanning over about 2 eV and comprises a mixture of compositions, structures, and theoretical methods − not always clearly indicated or discussed. In view of that, this work presents a thorough investigation of the Egap (at room-temperature and in the ∼80–800 K temperature range) of the congruent ferroelectric LiNbO3 (Z-cut) single crystal.
AbstractList •This work investigates the optical bandgap Egap of congruent LiNbO3, as determined by optical transmission measurements.•Accordingly, the indirect Egap of LiNbO3 was found to comply withEgapINDT=3.96-0.311coth0.042kBT-1, rendering EgapIND300K=3.77±0.05 eV. Notwithstanding the great scientific−technological interest in lithium niobate (LiNbO3), its optical bandgap Egap has been subject of intense discussion. So far, the literature exhibits different Egap values spanning over about 2 eV and comprises a mixture of compositions, structures, and theoretical methods − not always clearly indicated or discussed. In view of that, this work presents a thorough investigation of the Egap (at room-temperature and in the ∼80–800 K temperature range) of the congruent ferroelectric LiNbO3 (Z-cut) single crystal.
Notwithstanding the great scientific−technological interest in lithium niobate (LiNbO3), its optical bandgap Egap has been subject of intense discussion. So far, the literature exhibits different Egap values spanning over about 2 eV and comprises a mixture of compositions, structures, and theoretical methods − not always clearly indicated or discussed. In view of that, this work presents a thorough investigation of the Egap (at room-temperature and in the ∼80–800 K temperature range) of the congruent ferroelectric LiNbO3 (Z-cut) single crystal.
ArticleNumber 105736
Author Zanatta, A.R.
Author_xml – sequence: 1
  givenname: A.R.
  surname: Zanatta
  fullname: Zanatta, A.R.
  organization: Instituto de Física de São Carlos, USP, São Carlos 13560-970, SP, Brazil
BookMark eNp9kE1LAzEQhoMoqLV_wFOOemhNssl-gBcRv6DYg_UcZpPZNmW7WbJR8d-bWhHx0NMMM_O8MM8pOex8h4ScczbljOdX62lwXT8VTIg0UEWWH5ATITifZEVVHP7pj8l4GNaMJUoqxfkJeVmskPo-OgMtraGzS-ipb2jr4sq9bWjnfA0R6cXMPdfz7JKmE-riQC322FnsDNKPdEsjbnoMEN8CnpGjBtoBxz91RF7v7xa3j5PZ_OHp9mY2MZKzOJFKIGtUjrIWWQW25KIqVWkrYEUubaUYmlxJk-VpZRRXssqgsY3CjDei4NmIPO1yrYe17oPbQPjUHpz-Hviw1BDSZy1qWcgKDUOZs0ZKwWpTMqiUqJWxYE2RssQuywQ_DAGb3zzO9NayXuutZb21rHeWE1T-g4yLEJ3vYgDX7kevdygmQe8Ogx6M29q0LqCJ6QO3D_8CbWiY0A
CitedBy_id crossref_primary_10_1364_OE_538150
crossref_primary_10_1007_s13204_023_02889_0
crossref_primary_10_1016_j_optmat_2023_114365
crossref_primary_10_1364_OL_516486
crossref_primary_10_1016_j_optmat_2024_115571
crossref_primary_10_1016_j_ssi_2024_116487
crossref_primary_10_1021_acs_jpcc_4c02754
crossref_primary_10_1063_5_0152518
crossref_primary_10_1021_acsphotonics_4c01793
crossref_primary_10_1364_OE_505995
crossref_primary_10_1002_adsr_202400049
crossref_primary_10_1364_OME_541508
crossref_primary_10_1063_5_0228408
crossref_primary_10_1016_j_tca_2024_179702
crossref_primary_10_1002_pssa_202300972
crossref_primary_10_1038_s44310_024_00048_z
crossref_primary_10_35848_1347_4065_ad60cf
crossref_primary_10_1016_j_rinp_2023_106380
crossref_primary_10_1038_s41586_024_07369_1
crossref_primary_10_1088_1367_2630_ad6688
crossref_primary_10_1016_j_ceramint_2024_08_461
crossref_primary_10_3390_molecules29051011
crossref_primary_10_1364_OL_491528
crossref_primary_10_3390_nano14030317
crossref_primary_10_1002_est2_642
Cites_doi 10.1002/pssc.200982473
10.1063/1.5055386
10.1007/BF00614817
10.1016/S0038-1098(03)00450-2
10.1063/1.104723
10.1016/0031-8914(67)90062-6
10.1063/1.346951
10.1007/s00339-003-2249-7
10.1038/s41598-019-47670-y
10.1063/1.1663089
10.1016/j.tsf.2012.06.072
10.1007/BF00324348
10.1016/j.tsf.2013.10.157
ContentType Journal Article
Copyright 2022 The Author
Copyright_xml – notice: 2022 The Author
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rinp.2022.105736
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2211-3797
ExternalDocumentID oai_doaj_org_article_4749ec0e460f4420bc80a952b5cdadc7
10_1016_j_rinp_2022_105736
S2211379722004107
GroupedDBID --K
0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
SES
SSZ
XH2
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c410t-452e0f56e4b239ad8129858d9a0764d950ec654c36d81c515493afdf5e31f2713
IEDL.DBID IXB
ISSN 2211-3797
IngestDate Wed Aug 27 01:26:53 EDT 2025
Thu Apr 24 23:03:02 EDT 2025
Tue Jul 01 02:27:44 EDT 2025
Wed Jun 26 17:52:50 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Lithium niobate (LiNbO3)
Optical bandgap
Optical spectroscopy
Photonic devices
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-452e0f56e4b239ad8129858d9a0764d950ec654c36d81c515493afdf5e31f2713
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211379722004107
ParticipantIDs doaj_primary_oai_doaj_org_article_4749ec0e460f4420bc80a952b5cdadc7
crossref_primary_10_1016_j_rinp_2022_105736
crossref_citationtrail_10_1016_j_rinp_2022_105736
elsevier_sciencedirect_doi_10_1016_j_rinp_2022_105736
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle Results in physics
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Scott, Mailis, Sones, Eason (b0050) 2004; 79
Zanatta (b0060) 2019; 9
Cardona, Kremer (b0070) 2014; 571
Thierfelder, Sanna, Schindlmayr, Schmidt (b0040) 2010; 7
Redfield, Burke (b0045) 1974; 45
Satapathy, Mukherjee, Shaktawat, Gupta, Sathe (b0035) 2012; 520
Anikiev, Umarov, Scott (b0015) 2018; 8
Bhatt, Kar, Bartwal, Wadhawan (b0025) 2003; 127
Weis, Gaylord (b0005) 1985; 37
Schlarb, Klauer, Wesselmann, Betzler, Whiilecke (b0055) 1993; 56
Dhar, Mansingh (b0020) 1990; 68
Jiangou, Shipin, Dingquan, Xiu, Guanfeng (b0030) 1992; 4
O’Donnell, Chen (b0075) 1991; 58
Varshni (b0065) 1967; 34
Wu, Zhang, Fu, Xu, Ding, Yao (b0010) 2021; 24
O’Donnell (10.1016/j.rinp.2022.105736_b0075) 1991; 58
Dhar (10.1016/j.rinp.2022.105736_b0020) 1990; 68
Varshni (10.1016/j.rinp.2022.105736_b0065) 1967; 34
Schlarb (10.1016/j.rinp.2022.105736_b0055) 1993; 56
Cardona (10.1016/j.rinp.2022.105736_b0070) 2014; 571
Satapathy (10.1016/j.rinp.2022.105736_b0035) 2012; 520
Zanatta (10.1016/j.rinp.2022.105736_b0060) 2019; 9
Redfield (10.1016/j.rinp.2022.105736_b0045) 1974; 45
Thierfelder (10.1016/j.rinp.2022.105736_b0040) 2010; 7
Anikiev (10.1016/j.rinp.2022.105736_b0015) 2018; 8
Bhatt (10.1016/j.rinp.2022.105736_b0025) 2003; 127
Jiangou (10.1016/j.rinp.2022.105736_b0030) 1992; 4
Wu (10.1016/j.rinp.2022.105736_b0010) 2021; 24
Scott (10.1016/j.rinp.2022.105736_b0050) 2004; 79
Weis (10.1016/j.rinp.2022.105736_b0005) 1985; 37
References_xml – volume: 520
  start-page: 6510
  year: 2012
  end-page: 6514
  ident: b0035
  article-title: Blue shift of optical band-gap in LiNbO
  publication-title: Thin Solid Films
– volume: 79
  start-page: 691
  year: 2004
  end-page: 696
  ident: b0050
  article-title: A Raman study of single-crystal congruent lithium niobate following electric-field repoling
  publication-title: Appl Phys A
– volume: 9
  start-page: 11225
  year: 2019
  ident: b0060
  article-title: Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination
  publication-title: Sci Rep
– volume: 68
  start-page: 5804
  year: 1990
  end-page: 5809
  ident: b0020
  article-title: Optical properties of reduced lithium niobate single crystals
  publication-title: J Appl Phys
– volume: 7
  start-page: 362
  year: 2010
  end-page: 365
  ident: b0040
  article-title: Do we know the band gap of lithium niobate?
  publication-title: Phys Phys Status Solidi (c)
– volume: 56
  start-page: 311
  year: 1993
  end-page: 315
  ident: b0055
  article-title: Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements
  publication-title: Appl Phys A
– volume: 571
  start-page: 680
  year: 2014
  end-page: 683
  ident: b0070
  article-title: Temperature dependence of the electronic gaps of semiconductors
  publication-title: Thin Solid Films
– volume: 45
  start-page: 4566
  year: 1974
  end-page: 4571
  ident: b0045
  article-title: Optical absorption edge of LiNbO
  publication-title: J Appl Phys
– volume: 127
  start-page: 457
  year: 2003
  end-page: 462
  ident: b0025
  article-title: The effect of Cr doping on optical and photoluminescence properties of LiNbO
  publication-title: Sol St Commun
– volume: 58
  start-page: 2924
  year: 1991
  end-page: 2926
  ident: b0075
  article-title: Temperature dependence of semiconductor band gaps
  publication-title: Appl Phys Lett
– volume: 4
  start-page: 2977
  year: 1992
  end-page: 2983
  ident: b0030
  article-title: Optical absorption properties of doped lithium niobate crystals
  publication-title: J Phys: Condens Matter
– volume: 24
  start-page: 104120
  year: 2021
  ident: b0010
  article-title: Tuning the dielectric properties of LiNbO
  publication-title: Res Phys
– volume: 37
  start-page: 191
  year: 1985
  end-page: 203
  ident: b0005
  article-title: Lithium niobate: Summary of physical properties and crystal structure
  publication-title: Appl Phys A
– volume: 8
  year: 2018
  ident: b0015
  article-title: Processing and characterization of improved congruent LiNbO
  publication-title: AIP Adv
– volume: 34
  start-page: 149
  year: 1967
  end-page: 154
  ident: b0065
  article-title: Temperature dependence of the energy gap in semiconductors
  publication-title: Physica
– volume: 7
  start-page: 362
  issue: 2
  year: 2010
  ident: 10.1016/j.rinp.2022.105736_b0040
  article-title: Do we know the band gap of lithium niobate?
  publication-title: Phys Phys Status Solidi (c)
  doi: 10.1002/pssc.200982473
– volume: 8
  year: 2018
  ident: 10.1016/j.rinp.2022.105736_b0015
  article-title: Processing and characterization of improved congruent LiNbO3
  publication-title: AIP Adv
  doi: 10.1063/1.5055386
– volume: 37
  start-page: 191
  issue: 4
  year: 1985
  ident: 10.1016/j.rinp.2022.105736_b0005
  article-title: Lithium niobate: Summary of physical properties and crystal structure
  publication-title: Appl Phys A
  doi: 10.1007/BF00614817
– volume: 127
  start-page: 457
  issue: 6
  year: 2003
  ident: 10.1016/j.rinp.2022.105736_b0025
  article-title: The effect of Cr doping on optical and photoluminescence properties of LiNbO3 crystals
  publication-title: Sol St Commun
  doi: 10.1016/S0038-1098(03)00450-2
– volume: 58
  start-page: 2924
  issue: 25
  year: 1991
  ident: 10.1016/j.rinp.2022.105736_b0075
  article-title: Temperature dependence of semiconductor band gaps
  publication-title: Appl Phys Lett
  doi: 10.1063/1.104723
– volume: 34
  start-page: 149
  issue: 1
  year: 1967
  ident: 10.1016/j.rinp.2022.105736_b0065
  article-title: Temperature dependence of the energy gap in semiconductors
  publication-title: Physica
  doi: 10.1016/0031-8914(67)90062-6
– volume: 4
  start-page: 2977
  issue: 11
  year: 1992
  ident: 10.1016/j.rinp.2022.105736_b0030
  article-title: Optical absorption properties of doped lithium niobate crystals
  publication-title: J Phys: Condens Matter
– volume: 68
  start-page: 5804
  issue: 11
  year: 1990
  ident: 10.1016/j.rinp.2022.105736_b0020
  article-title: Optical properties of reduced lithium niobate single crystals
  publication-title: J Appl Phys
  doi: 10.1063/1.346951
– volume: 79
  start-page: 691
  issue: 3
  year: 2004
  ident: 10.1016/j.rinp.2022.105736_b0050
  article-title: A Raman study of single-crystal congruent lithium niobate following electric-field repoling
  publication-title: Appl Phys A
  doi: 10.1007/s00339-003-2249-7
– volume: 9
  start-page: 11225
  year: 2019
  ident: 10.1016/j.rinp.2022.105736_b0060
  article-title: Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-47670-y
– volume: 45
  start-page: 4566
  issue: 10
  year: 1974
  ident: 10.1016/j.rinp.2022.105736_b0045
  article-title: Optical absorption edge of LiNbO3
  publication-title: J Appl Phys
  doi: 10.1063/1.1663089
– volume: 520
  start-page: 6510
  issue: 21
  year: 2012
  ident: 10.1016/j.rinp.2022.105736_b0035
  article-title: Blue shift of optical band-gap in LiNbO3 thin films deposited by sol-gel technique
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2012.06.072
– volume: 24
  start-page: 104120
  year: 2021
  ident: 10.1016/j.rinp.2022.105736_b0010
  article-title: Tuning the dielectric properties of LiNbO3 based interdigitated electrode metastructure in the terahertz range
  publication-title: Res Phys
– volume: 56
  start-page: 311
  issue: 4
  year: 1993
  ident: 10.1016/j.rinp.2022.105736_b0055
  article-title: Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements
  publication-title: Appl Phys A
  doi: 10.1007/BF00324348
– volume: 571
  start-page: 680
  year: 2014
  ident: 10.1016/j.rinp.2022.105736_b0070
  article-title: Temperature dependence of the electronic gaps of semiconductors
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2013.10.157
SSID ssj0001645511
Score 2.378562
Snippet •This work investigates the optical bandgap Egap of congruent LiNbO3, as determined by optical transmission measurements.•Accordingly, the indirect Egap of...
Notwithstanding the great scientific−technological interest in lithium niobate (LiNbO3), its optical bandgap Egap has been subject of intense discussion. So...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 105736
SubjectTerms Lithium niobate (LiNbO3)
Optical bandgap
Optical spectroscopy
Photonic devices
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yELyInzi_yMGDIsUsTdLmqOIYIvOgg91KPrWi3di6_9-XtJs76cVbadMk_PLC-73w8nsIXTjjPTfWJZ47CgFKjyYK9lTCldJSUJ0THxNkh2IwYo9jPl4r9RVywhp54Aa4G5Yx6QxxTBDPGCXa5ERJTjWMoKyJ98jB560FU_F0RTCgAiHaojTo9GUya2_MNMlds7IKYpWUxjq3UZ_5xytF8f4157TmcPo7aLtlivi2meEu2nDVHtqMGZtmvo9eYIHxZBqPorFWlX1TUzzxGGj1e7n4wlUJO7V2-PKpHOrn9ApDE1zWc7wse2scDoewOIhTtcrKB2jUf3i9HyRthYTEsB6pE8apI54LxzRNpbLgrWXOcysVyQSzkhNnBGcmFfDJ8CDHlipvYV3SnqcQnx6iTjWp3BHCQKyAOlmmda6Y0EY6mQN0sN2lgUfbRb0lQoVp5cNDFYvPYpkn9lEEVIuAatGg2kXXq3-mjXjGr63vAvCrlkH4Or4Acyhacyj-Mocu4stlK1oO0XAD6Kr8ZfDj_xj8BG2FLpv8wFPUqWcLdwacpdbn0Ty_ATJc5hE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELVgKyQuCFoQCxT50AMIBXkd24kPCNGqaFUVOLQr7S3yJwQt2WU3K9F_zzhxKJUQh97yYSfSG0_mjTV5g9AXZ7znxrrEc0chQRnQRIFPJVwpLQXVOfFNgey1GI7YjzEfr6Cu3VEEcPFmahf6SY3mk9Onxz_n4PBnf2u15mUVtCcpbdrWpmIVfYDIlAVHvYp0v9lzEQwIQsjBKA3qfZnM4n80bz_mn1jVSPq_ClmvwtDlJtqI_BFftAbfQiuu-ojWmjpOs_iEfoHZ8XTWbFBjrSp7q2Z46jGQ7bty-YCrEvy3dvjoZ3mtb9JjDENwWS9w1wzXOBy2ZnGQrIp6y9todPn997dhEvsmJIYNSJ0wTh3xXDimaSqVhRguc55bqUgmmJWcOCM4M6mAW4YHkbZUeQvWSgeeQta6g3rVtHK7CAPdAkJlmda5YkIb6WQO0MFHQBo4tH006BAqTBQVD70tJkVXPXZfBFSLgGrRotpHJy9zZq2kxrujvwbgX0YGOezmwnR-W0TvKljGpDPEMUE8Y5RokxMlOdWwDJU1WR_xzmxFZBYtY4BHle-8fO8_5-2j9XDWFgoeoF49X7rPQF5qfdisyGfzzum9
  priority: 102
  providerName: Scholars Portal
Title The optical bandgap of lithium niobate (LiNbO3) and its dependence with temperature
URI https://dx.doi.org/10.1016/j.rinp.2022.105736
https://doaj.org/article/4749ec0e460f4420bc80a952b5cdadc7
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iCF7EJ66PJQcPipTtpknaHFUU8Qk-cG8lT61od1nr_3eSpj4uHryUNp30MZNkZsLMNwjtWu0c08YmjlkCDsqQJBLmVMKkVIITVaQuBMhe87MHej5ioxl03OXC-LDKuPa3a3pYrWPLIHJzMKmqwR0B3yXLRU68oIchozyjRUjiGx1977NwCkaB97s8feI7xNyZNsxrWtUetpKQUPE2IDV_66cA4_9DTf1QPadLaDHajPiw_axlNGPrFTQfYjf1-yq6A1Hj8SRsSmMla_MkJ3jsMBjYz9XHG64rmLONxXuX1bW6yfYxkOCqecddAVxtsd-OxR6mKmIsr6GH05P747Mk1kpINPx7k1BGbOoYt1SRTEgDelsUrDBCpjmnRrDUas6ozjjc0swDs2XSGZBQNnQEPNV1NFuPa7uBMJhYYEQZqlQhKVdaWFEA62DiCw2npoeGHYdKHYHEfT2L17KLGHspPVdLz9Wy5WoPHXz1mbQwGn9SH3nGf1F6COzQMJ4-lXEMlDSnwurUUp46SkmqdJFKwYiCoSeNznuIdWIrf40oeFT1x8s3_9lvCy34qzY4cBvNNtMPuwMGS6P6aO7w4vbxoh8c_n4Yn3C8osUntdjpXw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVgguqOUhlqcPHEAo2qxjO_GRVlRbWJZDW2lvlp9tEGRX2_T_M-M4bbn00FtkexJnZuyZscbfEPIxuBiF86GIIjAIUGasMLCmCmGMVZLZpowpQXYp5-f8-0qsdsjReBcG0yrz3j_s6Wm3zi3TzM3ppm2npwxil6pWNUNBz_BG-R54AzXWbzhZHd4etEgOXgEGXkhQIEW-PDPkeW3bDnErGUslbxNU862BSjj-d-zUHdtzvE-eZqeRfh3mdUB2QveMPErJm-7qOTkFWdP1Jp1KU2s6f2E2dB0peNiX7fVf2rWwaPtAPy3apf1VfaYwhLb9FR0r4LpA8TyWIk5VBll-Qc6Pv50dzYtcLKFw8PN9wQULZRQycMsqZTwYbtWIxitT1pJ7JcrgpOCuktDlBCKzVSZ6EFE1iwxC1Zdkt1t34RWh4GOBF-W5tY3h0joVVAOsg5WvHDz6CZmNHNIuI4ljQYs_ekwZ-62Rqxq5qgeuTsiXG5rNgKNx7-hDZPzNSMTATg3r7YXOSqB5zVVwZeCyjJyz0rqmNEowC7pnvKsnRIxi0_-pFLyqvefjrx9I94E8np_9XOjFyfLHG_IEe4ZMwbdkt99eh3fgvfT2fdLOfzJ66Qw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+optical+bandgap+of+lithium+niobate+%28LiNbO3%29+and+its+dependence+with+temperature&rft.jtitle=Results+in+physics&rft.au=Zanatta%2C+A.R.&rft.date=2022-08-01&rft.pub=Elsevier+B.V&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=39&rft_id=info:doi/10.1016%2Fj.rinp.2022.105736&rft.externalDocID=S2211379722004107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon