Experimental research and artificial neural network prediction of free piston expander-linear generator

For the purpose of better matching the performance of the organic Rankine cycle (ORC) system concerning the vehicle engine waste heat recovery, this paper studies the output performance of free piston expander-linear generator (FPE-LG). A test bench of FPE-LG is established for small scale ORC syste...

Full description

Saved in:
Bibliographic Details
Published inEnergy reports Vol. 8; pp. 1966 - 1978
Main Authors Peng, Baoying, Tong, Liang, Yan, Dong, Huo, Weiwei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For the purpose of better matching the performance of the organic Rankine cycle (ORC) system concerning the vehicle engine waste heat recovery, this paper studies the output performance of free piston expander-linear generator (FPE-LG). A test bench of FPE-LG is established for small scale ORC system, and timing and displacement control strategy is proposed. Furthermore, the impact of the intake pressure and the torque on motion characteristics and output performance of FPE-LG are analyzed. According to evaluating different learning rates, number of hidden artificial neural networks and training functions, a prediction model of FPE-LG based on artificial neural network is established. Genetic algorithm is used to optimize the key operating parameters, to maximize the power output of FPE-LG. In consideration of the mean square error and determination coefficient, the artificial neural network model is verified and tested by experimental data. Finally, combining genetic algorithm with artificial neural network model, the maximum power output of FPE-LG is optimized and its performance is predicted. The results show that the maximum value of electric current, voltage and power output are 2.8 A, 14.75 V and 28.5 W, respectively. Based on artificial neural network, this method can provide useful guidance for performance prediction and coordinated optimization, with advantages of minimum deviation and high precision. •A test bench of free piston expander-linear generator is established.•Effect of key factors on output performance is researched.•A prediction model based on artificial neural network is established.
AbstractList For the purpose of better matching the performance of the organic Rankine cycle (ORC) system concerning the vehicle engine waste heat recovery, this paper studies the output performance of free piston expander-linear generator (FPE-LG). A test bench of FPE-LG is established for small scale ORC system, and timing and displacement control strategy is proposed. Furthermore, the impact of the intake pressure and the torque on motion characteristics and output performance of FPE-LG are analyzed. According to evaluating different learning rates, number of hidden artificial neural networks and training functions, a prediction model of FPE-LG based on artificial neural network is established. Genetic algorithm is used to optimize the key operating parameters, to maximize the power output of FPE-LG. In consideration of the mean square error and determination coefficient, the artificial neural network model is verified and tested by experimental data. Finally, combining genetic algorithm with artificial neural network model, the maximum power output of FPE-LG is optimized and its performance is predicted. The results show that the maximum value of electric current, voltage and power output are 2.8 A, 14.75 V and 28.5 W, respectively. Based on artificial neural network, this method can provide useful guidance for performance prediction and coordinated optimization, with advantages of minimum deviation and high precision.
For the purpose of better matching the performance of the organic Rankine cycle (ORC) system concerning the vehicle engine waste heat recovery, this paper studies the output performance of free piston expander-linear generator (FPE-LG). A test bench of FPE-LG is established for small scale ORC system, and timing and displacement control strategy is proposed. Furthermore, the impact of the intake pressure and the torque on motion characteristics and output performance of FPE-LG are analyzed. According to evaluating different learning rates, number of hidden artificial neural networks and training functions, a prediction model of FPE-LG based on artificial neural network is established. Genetic algorithm is used to optimize the key operating parameters, to maximize the power output of FPE-LG. In consideration of the mean square error and determination coefficient, the artificial neural network model is verified and tested by experimental data. Finally, combining genetic algorithm with artificial neural network model, the maximum power output of FPE-LG is optimized and its performance is predicted. The results show that the maximum value of electric current, voltage and power output are 2.8 A, 14.75 V and 28.5 W, respectively. Based on artificial neural network, this method can provide useful guidance for performance prediction and coordinated optimization, with advantages of minimum deviation and high precision. •A test bench of free piston expander-linear generator is established.•Effect of key factors on output performance is researched.•A prediction model based on artificial neural network is established.
Author Yan, Dong
Tong, Liang
Huo, Weiwei
Peng, Baoying
Author_xml – sequence: 1
  givenname: Baoying
  surname: Peng
  fullname: Peng, Baoying
  organization: School of Electrical and Mechanical Engineering, Beijing Information Science and Technology University, Beijing, 100192, China
– sequence: 2
  givenname: Liang
  surname: Tong
  fullname: Tong, Liang
  email: tongliang@bistu.edu.cn
  organization: School of Electrical and Mechanical Engineering, Beijing Information Science and Technology University, Beijing, 100192, China
– sequence: 3
  givenname: Dong
  surname: Yan
  fullname: Yan, Dong
  organization: Key Laboratory of Enhanced Heat Transfer and Energy Conservation of MOE, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
– sequence: 4
  givenname: Weiwei
  surname: Huo
  fullname: Huo, Weiwei
  organization: School of Electrical and Mechanical Engineering, Beijing Information Science and Technology University, Beijing, 100192, China
BookMark eNp9kM1q3TAQRkVJoWmaF-jKL2BXknV1begmhPxBIJt0LaTR6Fa3rmTGapO8feTcEEoXWc1o4HziO5_ZUcoJGfsqeCe40N_2He6eqJNcyo6LjkvxgR3LfiNbNajt0T_7J3a6LHvOuRglV7o_ZruLxxkp_sZU7NQQLmgJfjY2-cZSiSFCrPeEf-hllIdMv5qZ0EcoMacmhyYQYjPHpdQnPs4VRWqnmGpSs8OEZEumL-xjsNOCp6_zhP24vLg_v25v765uzs9uW1CCl1apXvRiEL734xBABnA-aL_xEsTWSm1H8FwE5VBbrkexcRJGjVun3CA9h_6E3RxyfbZ7M9dmlp5MttG8HDLtzNoLJjTgt5pvxrGXHpVTahxscLr-4hxaP4iaJQ9ZQHlZCMNbnuBmNW_2ZjVvVvOGC1PNV2j4D4JY7OqqkI3T--j3A4pV0N-IZBaImKDKJoRSG8T38GduzqP8
CitedBy_id crossref_primary_10_3390_axioms11080410
crossref_primary_10_3390_mca29040067
crossref_primary_10_1016_j_est_2024_114241
crossref_primary_10_1016_j_applthermaleng_2024_122501
crossref_primary_10_1016_j_applthermaleng_2023_120120
crossref_primary_10_3390_machines11090848
crossref_primary_10_1016_j_energy_2022_125857
crossref_primary_10_1016_j_bspc_2024_107259
crossref_primary_10_1016_j_est_2023_108735
Cites_doi 10.1016/j.apenergy.2017.09.024
10.1016/j.enconman.2015.06.085
10.1016/j.enconman.2018.02.062
10.3390/en9040300
10.1016/j.egyr.2021.02.066
10.1016/j.energy.2019.02.124
10.1016/j.apenergy.2009.07.005
10.1016/j.apenergy.2009.06.035
10.1016/j.energy.2019.03.099
10.1016/j.applthermaleng.2018.05.018
10.1016/j.energy.2018.07.171
10.1016/j.energy.2018.12.158
10.1016/j.applthermaleng.2016.06.047
10.1016/j.apenergy.2017.03.032
10.1016/j.energy.2016.03.082
10.1016/j.energy.2011.03.041
10.1016/j.geothermics.2018.06.001
10.1016/j.apenergy.2013.08.003
10.1016/j.enconman.2021.113949
10.1016/j.applthermaleng.2019.114013
10.1016/j.enconman.2019.05.053
10.1016/j.enconman.2013.08.045
10.3390/en9040279
10.1016/j.energy.2019.02.063
10.1016/j.applthermaleng.2007.03.015
10.1016/j.apenergy.2009.06.026
10.1016/j.applthermaleng.2014.05.094
10.1016/j.applthermaleng.2018.01.001
10.1016/j.apenergy.2017.08.127
10.1016/j.applthermaleng.2019.02.035
10.1016/j.applthermaleng.2014.05.069
10.1016/j.ijheatmasstransfer.2016.06.081
10.1016/j.applthermaleng.2018.07.050
10.1016/j.enconman.2021.114252
10.1016/j.energy.2018.12.196
10.1016/j.apenergy.2018.01.020
10.1016/j.applthermaleng.2019.02.121
10.1155/2019/9783246
10.1016/j.apenergy.2012.12.030
10.1016/j.applthermaleng.2007.04.009
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.egyr.2022.01.021
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2352-4847
EndPage 1978
ExternalDocumentID oai_doaj_org_article_cd76059932de4b4498afb67a2bbead81
10_1016_j_egyr_2022_01_021
S235248472200021X
GroupedDBID 0R~
4.4
457
5VS
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
KQ8
M41
M~E
O9-
OK1
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c410t-44313181d3d98fc2fcbdf6d5d2c17a26a9cd01f4be6a06915b2c96e7b4b82d0c3
IEDL.DBID DOA
ISSN 2352-4847
IngestDate Wed Aug 27 01:28:38 EDT 2025
Thu Aug 14 00:16:45 EDT 2025
Thu Apr 24 22:57:57 EDT 2025
Sat Aug 30 17:16:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Motion characteristic
Output performance
Artificial neural network
Organic Rankine cycle
Free piston expander-linear generator
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-44313181d3d98fc2fcbdf6d5d2c17a26a9cd01f4be6a06915b2c96e7b4b82d0c3
OpenAccessLink https://doaj.org/article/cd76059932de4b4498afb67a2bbead81
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_cd76059932de4b4498afb67a2bbead81
crossref_primary_10_1016_j_egyr_2022_01_021
crossref_citationtrail_10_1016_j_egyr_2022_01_021
elsevier_sciencedirect_doi_10_1016_j_egyr_2022_01_021
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Energy reports
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Burugupally, Weiss (b2) 2019; 170
Wang, Chen, Jia, Roskilly (b25) 2017; 195
Yang, Zhang, Hou, Tian, Xu (b35) 2019; 175
Peng, Tong, Guo, Huo (b20) 2021; 7
Yang, Zhang, Xu, Zhao, Hou, Liu (b36) 2018; 132
Antonelli, Baccioli, Francesconi, Desideri, Martorano (b1) 2014; 113
Xu, Zhang, Yang, Tong, Yang, Yan, Wang, Ren, Wu (b31) 2021; 234
Yang, Cho, Zhang, Zhang (b33) 2017; 205
Jia, Mikalsen, Smallbone, Roskilly (b10) 2018; 140
Quoilin, Lemort, Lebrun (b22) 2010; 87
Hou, Zhang, Xu, Yu, Zhao, Tian, Yang, Zhao (b8) 2018; 212
Song, Wei, Shi, Danish, Ma (b23) 2015; 75
Xu, Tong, Zhang, Hou, Yang, Yu, Yang, Liu, Tian, Zhao (b29) 2018; 161
Yuan, Liu, Han, He (b39) 2019; 173
Li, Zhang, Yang, Song, Chang, Yu, Wang, Yao (b13) 2016; 9
Wang, Zhang, Fan, Ouyang, Zhao, Mu (b26) 2011; 36
Mikalsen, Roskilly (b18) 2008; 28
Yang, Cho, Zhang, Zhang, Wu (b34) 2018; 164
Yu, Xu, Zhang, Liu, Hua (b38) 2019; 2019
Galindo, Dolz, Royo-Pascual, Haller, Melis (b5) 2016; 9
Mikalsen, Roskilly (b19) 2010; 87
Linnemann, Priebe, Herres, Wolff, Vrabec (b14) 2019; 195
Mendoza, Navarro-Esbrí, Bruno, Lemort, Coronas (b16) 2014; 70
Li, Zhang, Tian, Hou, Xu, Zhao, Wu (b12) 2019; 152
Garg, Karthik, Kumar, Kumar (b7) 2016; 109
Mikalsen, Roskilly (b17) 2007; 27
Sun, Liu, Duan (b24) 2018; 75
Xiao, Li, Huang (b27) 2010; 87
Yu, Li, Lu, Huang, Roskilly (b37) 2019; 170
Hou, Zhang, Yu, Liu, Yang, Xu, Tian, Li (b9) 2017; 208
Xu, Xue, Wang, Ai (b30) 2019; 160
Burugupally, Weiss, Depcik (b3) 2019; 151
Preetham, Weiss (b21) 2016; 106
Galindo, Ruiz, Dolz, Royo-Pascual, Haller, Nicolas, Glavatskaya (b6) 2015; 103
Zheng, Zhao, Wang, Tan (b40) 2013; 112
Champagne, Weiss (b4) 2013; 76
Kanno, Shikazono (b11) 2016; 102
Luo, Wang, Liang, Qi, Wen, Yang, Chen, Wang, Chen (b15) 2019; 174
Xu, Tong, Zhang, Hou, Yang, Yu, Li, Zhao, Li, Zhang (b28) 2018; 142
Yan, Yang, Yang, Zhang, Guo, Li, Wu (b32) 2021; 240
Quoilin (10.1016/j.egyr.2022.01.021_b22) 2010; 87
Xu (10.1016/j.egyr.2022.01.021_b28) 2018; 142
Champagne (10.1016/j.egyr.2022.01.021_b4) 2013; 76
Garg (10.1016/j.egyr.2022.01.021_b7) 2016; 109
Yu (10.1016/j.egyr.2022.01.021_b38) 2019; 2019
Antonelli (10.1016/j.egyr.2022.01.021_b1) 2014; 113
Li (10.1016/j.egyr.2022.01.021_b13) 2016; 9
Xu (10.1016/j.egyr.2022.01.021_b30) 2019; 160
Mikalsen (10.1016/j.egyr.2022.01.021_b17) 2007; 27
Mikalsen (10.1016/j.egyr.2022.01.021_b18) 2008; 28
Kanno (10.1016/j.egyr.2022.01.021_b11) 2016; 102
Peng (10.1016/j.egyr.2022.01.021_b20) 2021; 7
Jia (10.1016/j.egyr.2022.01.021_b10) 2018; 140
Zheng (10.1016/j.egyr.2022.01.021_b40) 2013; 112
Hou (10.1016/j.egyr.2022.01.021_b9) 2017; 208
Mendoza (10.1016/j.egyr.2022.01.021_b16) 2014; 70
Xiao (10.1016/j.egyr.2022.01.021_b27) 2010; 87
Galindo (10.1016/j.egyr.2022.01.021_b6) 2015; 103
Mikalsen (10.1016/j.egyr.2022.01.021_b19) 2010; 87
Burugupally (10.1016/j.egyr.2022.01.021_b2) 2019; 170
Yang (10.1016/j.egyr.2022.01.021_b34) 2018; 164
Yang (10.1016/j.egyr.2022.01.021_b36) 2018; 132
Preetham (10.1016/j.egyr.2022.01.021_b21) 2016; 106
Yuan (10.1016/j.egyr.2022.01.021_b39) 2019; 173
Yan (10.1016/j.egyr.2022.01.021_b32) 2021; 240
Xu (10.1016/j.egyr.2022.01.021_b31) 2021; 234
Yang (10.1016/j.egyr.2022.01.021_b35) 2019; 175
Linnemann (10.1016/j.egyr.2022.01.021_b14) 2019; 195
Galindo (10.1016/j.egyr.2022.01.021_b5) 2016; 9
Li (10.1016/j.egyr.2022.01.021_b12) 2019; 152
Song (10.1016/j.egyr.2022.01.021_b23) 2015; 75
Xu (10.1016/j.egyr.2022.01.021_b29) 2018; 161
Yang (10.1016/j.egyr.2022.01.021_b33) 2017; 205
Wang (10.1016/j.egyr.2022.01.021_b26) 2011; 36
Burugupally (10.1016/j.egyr.2022.01.021_b3) 2019; 151
Wang (10.1016/j.egyr.2022.01.021_b25) 2017; 195
Hou (10.1016/j.egyr.2022.01.021_b8) 2018; 212
Yu (10.1016/j.egyr.2022.01.021_b37) 2019; 170
Sun (10.1016/j.egyr.2022.01.021_b24) 2018; 75
Luo (10.1016/j.egyr.2022.01.021_b15) 2019; 174
References_xml – volume: 160
  year: 2019
  ident: b30
  article-title: Performance characteristics of compressed air-driven free-piston linear generator (FPLG) system-a simulation study
  publication-title: Appl. Therm. Eng.
– volume: 2019
  year: 2019
  ident: b38
  article-title: Two-stroke thermodynamic cycle optimization of a single-cylinder free-piston engine generator
  publication-title: Adv. Mater. Sci. Eng.
– volume: 164
  start-page: 15
  year: 2018
  end-page: 26
  ident: b34
  article-title: Artificial neural network (ANN) based prediction and optimization of an organic Rankine cycle (ORC) for diesel engine waste heat recovery
  publication-title: Energy Convers. Manage.
– volume: 102
  start-page: 1004
  year: 2016
  end-page: 1011
  ident: b11
  article-title: Experimental study on two-phase adiabatic expansion in a reciprocating expander with intake and exhaust processes
  publication-title: Int. J. Heat Mass Transfer
– volume: 75
  start-page: 54
  year: 2015
  end-page: 64
  ident: b23
  article-title: A review of scroll expanders for organic Rankine cycle systems
  publication-title: Appl. Therm. Eng.
– volume: 75
  start-page: 249
  year: 2018
  end-page: 258
  ident: b24
  article-title: Effects of evaporator pinch point temperature difference on thermo-economic performance of geothermal organic Rankine cycle systems
  publication-title: Geothermics
– volume: 103
  start-page: 519
  year: 2015
  end-page: 532
  ident: b6
  article-title: Experimental and thermodynamic analysis of a bottoming organic Rankine cycle (ORC) of gasoline engine using swash-plate expander
  publication-title: Energy Convers. Manage.
– volume: 106
  start-page: 535
  year: 2016
  end-page: 545
  ident: b21
  article-title: Investigations of a new free piston expander engine cycle
  publication-title: Energy
– volume: 28
  start-page: 589
  year: 2008
  end-page: 600
  ident: b18
  article-title: The design and simulation of a two-stroke free piston compression ignition engine for electrical power generation
  publication-title: Appl. Therm. Eng.
– volume: 76
  start-page: 883
  year: 2013
  end-page: 892
  ident: b4
  article-title: Performance analysis of a miniature free piston expander for waste heat energy harvesting
  publication-title: Energy Convers. Manage.
– volume: 142
  start-page: 555
  year: 2018
  end-page: 565
  ident: b28
  article-title: Experimental investigation of a free piston expander-linear generator with different valve timings
  publication-title: Appl. Therm. Eng.
– volume: 87
  start-page: 1281
  year: 2010
  end-page: 1287
  ident: b19
  article-title: The control of a free-piston engine generator. Part 2: Engine dynamics and piston motion control
  publication-title: Appl. Energy
– volume: 173
  start-page: 626
  year: 2019
  end-page: 636
  ident: b39
  article-title: An investigation of mixture formation characteristics of a free-piston gasoline engine with direct-injection
  publication-title: Energy
– volume: 240
  year: 2021
  ident: b32
  article-title: Identifying the key system parameters of the organic Rankine cycle using the principal component analysis based on an experimental database
  publication-title: Energy Convers. Manage.
– volume: 109
  start-page: 878
  year: 2016
  end-page: 888
  ident: b7
  article-title: Development of a generic tool to design scroll expanders for ORC applications
  publication-title: Appl. Therm. Eng.
– volume: 70
  start-page: 630
  year: 2014
  end-page: 640
  ident: b16
  article-title: Characterization and modelling of a scroll expander with air and ammonia as working fluid
  publication-title: Appl. Therm. Eng.
– volume: 174
  start-page: 122
  year: 2019
  end-page: 137
  ident: b15
  article-title: Improved correlations for working fluid properties prediction and their application in performance evaluation of sub-critical organic Rankine cycle
  publication-title: Energy
– volume: 27
  start-page: 2339
  year: 2007
  end-page: 2352
  ident: b17
  article-title: A review of free-piston engine history and applications
  publication-title: Appl. Therm. Eng.
– volume: 113
  start-page: 742
  year: 2014
  end-page: 750
  ident: b1
  article-title: Operating maps of a rotary engine used as an expander for micro-generation with various working fluids
  publication-title: Appl. Energy
– volume: 36
  start-page: 3406
  year: 2011
  end-page: 3418
  ident: b26
  article-title: Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery
  publication-title: Energy
– volume: 195
  start-page: 1402
  year: 2019
  end-page: 1414
  ident: b14
  article-title: Design and test of a multi-coil helical evaporator for a high temperature organic Rankine cycle plant driven by biogas waste heat
  publication-title: Energy Convers. Manage.
– volume: 208
  start-page: 1297
  year: 2017
  end-page: 1307
  ident: b9
  article-title: Free piston expander-linear generator used for organic Rankine cycle waste heat recovery system
  publication-title: Appl. Energy
– volume: 87
  start-page: 1260
  year: 2010
  end-page: 1268
  ident: b22
  article-title: Experimental study and modelling of an organic Rankine cycle using scroll expander
  publication-title: Appl. Energy
– volume: 112
  start-page: 1265
  year: 2013
  end-page: 1274
  ident: b40
  article-title: Experimental verification of a rolling-piston expander that applied for low-temperature organic Rankine cycle
  publication-title: Appl. Energy
– volume: 9
  start-page: 279
  year: 2016
  ident: b5
  article-title: Modeling and experimental validation of a volumetric expander suitable for waste heat recovery from an automotive internal combustion engine using an organic rankine cycle with ethanol
  publication-title: Energies
– volume: 140
  start-page: 217
  year: 2018
  end-page: 224
  ident: b10
  article-title: A study and comparison of frictional losses in free-piston engine and crankshaft engines
  publication-title: Appl. Therm. Eng.
– volume: 161
  start-page: 776
  year: 2018
  end-page: 791
  ident: b29
  article-title: Experimental and simulation study of a free piston expander–linear generator for small-scale organic Rankine cycle
  publication-title: Energy
– volume: 151
  start-page: 431
  year: 2019
  end-page: 438
  ident: b3
  article-title: The effect of working fluid properties on the performance of a miniature free piston expander for waste heat harvesting
  publication-title: Appl. Therm. Eng.
– volume: 152
  start-page: 751
  year: 2019
  end-page: 761
  ident: b12
  article-title: Performance analysis of a single-piston free piston expander-linear generator with intake timing control strategy based on piston displacement
  publication-title: Appl. Therm. Eng.
– volume: 170
  start-page: 611
  year: 2019
  end-page: 618
  ident: b2
  article-title: Design and performance of a miniature free piston expander
  publication-title: Energy
– volume: 195
  start-page: 93
  year: 2017
  end-page: 99
  ident: b25
  article-title: Experimental study of the operating characteristics of an air-driven free-piston linear expander
  publication-title: Appl. Energy
– volume: 170
  start-page: 1098
  year: 2019
  end-page: 1112
  ident: b37
  article-title: Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery
  publication-title: Energy
– volume: 205
  start-page: 1100
  year: 2017
  end-page: 1118
  ident: b33
  article-title: Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery
  publication-title: Appl. Energy
– volume: 175
  start-page: 630
  year: 2019
  end-page: 644
  ident: b35
  article-title: Experimental study and artificial neural network based prediction of a free piston expander–linear generator for small scale organic Rankine cycle
  publication-title: Energy
– volume: 234
  year: 2021
  ident: b31
  article-title: Experimental study on small power generation energy storage device based on pneumatic motor and compressed air
  publication-title: Energy Convers. Manage.
– volume: 7
  start-page: 1349
  year: 2021
  end-page: 1359
  ident: b20
  article-title: Experimental research and performance analysis of a free piston expander–linear generator coupled with a driving motor
  publication-title: Energy Rep.
– volume: 87
  start-page: 1288
  year: 2010
  end-page: 1294
  ident: b27
  article-title: Motion characteristic of a free piston linear engine
  publication-title: Appl. Energy
– volume: 212
  start-page: 1252
  year: 2018
  end-page: 1261
  ident: b8
  article-title: External load resistance effect on the free piston expander-linear generator for organic Rankine cycle waste heat recovery system
  publication-title: Appl. Energy
– volume: 132
  start-page: 605
  year: 2018
  end-page: 612
  ident: b36
  article-title: Experimental study and performance analysis of a hydraulic diaphragm metering pump used in organic Rankine cycle system
  publication-title: Appl. Therm. Eng.
– volume: 9
  start-page: 300
  year: 2016
  ident: b13
  article-title: Preliminary development of a free piston expander-linear generator for small-scale organic Rankine cycle (ORC) waste heat recovery system
  publication-title: Energies
– volume: 208
  start-page: 1297
  year: 2017
  ident: 10.1016/j.egyr.2022.01.021_b9
  article-title: Free piston expander-linear generator used for organic Rankine cycle waste heat recovery system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.09.024
– volume: 103
  start-page: 519
  year: 2015
  ident: 10.1016/j.egyr.2022.01.021_b6
  article-title: Experimental and thermodynamic analysis of a bottoming organic Rankine cycle (ORC) of gasoline engine using swash-plate expander
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2015.06.085
– volume: 164
  start-page: 15
  year: 2018
  ident: 10.1016/j.egyr.2022.01.021_b34
  article-title: Artificial neural network (ANN) based prediction and optimization of an organic Rankine cycle (ORC) for diesel engine waste heat recovery
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.02.062
– volume: 9
  start-page: 300
  issue: 4
  year: 2016
  ident: 10.1016/j.egyr.2022.01.021_b13
  article-title: Preliminary development of a free piston expander-linear generator for small-scale organic Rankine cycle (ORC) waste heat recovery system
  publication-title: Energies
  doi: 10.3390/en9040300
– volume: 7
  start-page: 1349
  year: 2021
  ident: 10.1016/j.egyr.2022.01.021_b20
  article-title: Experimental research and performance analysis of a free piston expander–linear generator coupled with a driving motor
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.02.066
– volume: 174
  start-page: 122
  year: 2019
  ident: 10.1016/j.egyr.2022.01.021_b15
  article-title: Improved correlations for working fluid properties prediction and their application in performance evaluation of sub-critical organic Rankine cycle
  publication-title: Energy
  doi: 10.1016/j.energy.2019.02.124
– volume: 87
  start-page: 1288
  issue: 4
  year: 2010
  ident: 10.1016/j.egyr.2022.01.021_b27
  article-title: Motion characteristic of a free piston linear engine
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.07.005
– volume: 87
  start-page: 1281
  issue: 4
  year: 2010
  ident: 10.1016/j.egyr.2022.01.021_b19
  article-title: The control of a free-piston engine generator. Part 2: Engine dynamics and piston motion control
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.06.035
– volume: 175
  start-page: 630
  year: 2019
  ident: 10.1016/j.egyr.2022.01.021_b35
  article-title: Experimental study and artificial neural network based prediction of a free piston expander–linear generator for small scale organic Rankine cycle
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.099
– volume: 140
  start-page: 217
  year: 2018
  ident: 10.1016/j.egyr.2022.01.021_b10
  article-title: A study and comparison of frictional losses in free-piston engine and crankshaft engines
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.05.018
– volume: 161
  start-page: 776
  year: 2018
  ident: 10.1016/j.egyr.2022.01.021_b29
  article-title: Experimental and simulation study of a free piston expander–linear generator for small-scale organic Rankine cycle
  publication-title: Energy
  doi: 10.1016/j.energy.2018.07.171
– volume: 170
  start-page: 611
  year: 2019
  ident: 10.1016/j.egyr.2022.01.021_b2
  article-title: Design and performance of a miniature free piston expander
  publication-title: Energy
  doi: 10.1016/j.energy.2018.12.158
– volume: 109
  start-page: 878
  year: 2016
  ident: 10.1016/j.egyr.2022.01.021_b7
  article-title: Development of a generic tool to design scroll expanders for ORC applications
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.06.047
– volume: 195
  start-page: 93
  year: 2017
  ident: 10.1016/j.egyr.2022.01.021_b25
  article-title: Experimental study of the operating characteristics of an air-driven free-piston linear expander
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.03.032
– volume: 106
  start-page: 535
  year: 2016
  ident: 10.1016/j.egyr.2022.01.021_b21
  article-title: Investigations of a new free piston expander engine cycle
  publication-title: Energy
  doi: 10.1016/j.energy.2016.03.082
– volume: 36
  start-page: 3406
  issue: 5
  year: 2011
  ident: 10.1016/j.egyr.2022.01.021_b26
  article-title: Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery
  publication-title: Energy
  doi: 10.1016/j.energy.2011.03.041
– volume: 75
  start-page: 249
  year: 2018
  ident: 10.1016/j.egyr.2022.01.021_b24
  article-title: Effects of evaporator pinch point temperature difference on thermo-economic performance of geothermal organic Rankine cycle systems
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2018.06.001
– volume: 113
  start-page: 742
  year: 2014
  ident: 10.1016/j.egyr.2022.01.021_b1
  article-title: Operating maps of a rotary engine used as an expander for micro-generation with various working fluids
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.08.003
– volume: 234
  year: 2021
  ident: 10.1016/j.egyr.2022.01.021_b31
  article-title: Experimental study on small power generation energy storage device based on pneumatic motor and compressed air
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2021.113949
– volume: 160
  year: 2019
  ident: 10.1016/j.egyr.2022.01.021_b30
  article-title: Performance characteristics of compressed air-driven free-piston linear generator (FPLG) system-a simulation study
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114013
– volume: 195
  start-page: 1402
  year: 2019
  ident: 10.1016/j.egyr.2022.01.021_b14
  article-title: Design and test of a multi-coil helical evaporator for a high temperature organic Rankine cycle plant driven by biogas waste heat
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2019.05.053
– volume: 76
  start-page: 883
  year: 2013
  ident: 10.1016/j.egyr.2022.01.021_b4
  article-title: Performance analysis of a miniature free piston expander for waste heat energy harvesting
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2013.08.045
– volume: 9
  start-page: 279
  issue: 4
  year: 2016
  ident: 10.1016/j.egyr.2022.01.021_b5
  article-title: Modeling and experimental validation of a volumetric expander suitable for waste heat recovery from an automotive internal combustion engine using an organic rankine cycle with ethanol
  publication-title: Energies
  doi: 10.3390/en9040279
– volume: 173
  start-page: 626
  year: 2019
  ident: 10.1016/j.egyr.2022.01.021_b39
  article-title: An investigation of mixture formation characteristics of a free-piston gasoline engine with direct-injection
  publication-title: Energy
  doi: 10.1016/j.energy.2019.02.063
– volume: 27
  start-page: 2339
  issue: 14–15
  year: 2007
  ident: 10.1016/j.egyr.2022.01.021_b17
  article-title: A review of free-piston engine history and applications
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2007.03.015
– volume: 87
  start-page: 1260
  issue: 4
  year: 2010
  ident: 10.1016/j.egyr.2022.01.021_b22
  article-title: Experimental study and modelling of an organic Rankine cycle using scroll expander
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.06.026
– volume: 75
  start-page: 54
  year: 2015
  ident: 10.1016/j.egyr.2022.01.021_b23
  article-title: A review of scroll expanders for organic Rankine cycle systems
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.05.094
– volume: 132
  start-page: 605
  year: 2018
  ident: 10.1016/j.egyr.2022.01.021_b36
  article-title: Experimental study and performance analysis of a hydraulic diaphragm metering pump used in organic Rankine cycle system
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.01.001
– volume: 205
  start-page: 1100
  year: 2017
  ident: 10.1016/j.egyr.2022.01.021_b33
  article-title: Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.08.127
– volume: 151
  start-page: 431
  year: 2019
  ident: 10.1016/j.egyr.2022.01.021_b3
  article-title: The effect of working fluid properties on the performance of a miniature free piston expander for waste heat harvesting
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.02.035
– volume: 70
  start-page: 630
  issue: 1
  year: 2014
  ident: 10.1016/j.egyr.2022.01.021_b16
  article-title: Characterization and modelling of a scroll expander with air and ammonia as working fluid
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.05.069
– volume: 102
  start-page: 1004
  year: 2016
  ident: 10.1016/j.egyr.2022.01.021_b11
  article-title: Experimental study on two-phase adiabatic expansion in a reciprocating expander with intake and exhaust processes
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2016.06.081
– volume: 142
  start-page: 555
  year: 2018
  ident: 10.1016/j.egyr.2022.01.021_b28
  article-title: Experimental investigation of a free piston expander-linear generator with different valve timings
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.07.050
– volume: 240
  year: 2021
  ident: 10.1016/j.egyr.2022.01.021_b32
  article-title: Identifying the key system parameters of the organic Rankine cycle using the principal component analysis based on an experimental database
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2021.114252
– volume: 170
  start-page: 1098
  year: 2019
  ident: 10.1016/j.egyr.2022.01.021_b37
  article-title: Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery
  publication-title: Energy
  doi: 10.1016/j.energy.2018.12.196
– volume: 212
  start-page: 1252
  year: 2018
  ident: 10.1016/j.egyr.2022.01.021_b8
  article-title: External load resistance effect on the free piston expander-linear generator for organic Rankine cycle waste heat recovery system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.01.020
– volume: 152
  start-page: 751
  year: 2019
  ident: 10.1016/j.egyr.2022.01.021_b12
  article-title: Performance analysis of a single-piston free piston expander-linear generator with intake timing control strategy based on piston displacement
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.02.121
– volume: 2019
  year: 2019
  ident: 10.1016/j.egyr.2022.01.021_b38
  article-title: Two-stroke thermodynamic cycle optimization of a single-cylinder free-piston engine generator
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2019/9783246
– volume: 112
  start-page: 1265
  year: 2013
  ident: 10.1016/j.egyr.2022.01.021_b40
  article-title: Experimental verification of a rolling-piston expander that applied for low-temperature organic Rankine cycle
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.12.030
– volume: 28
  start-page: 589
  issue: 5
  year: 2008
  ident: 10.1016/j.egyr.2022.01.021_b18
  article-title: The design and simulation of a two-stroke free piston compression ignition engine for electrical power generation
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2007.04.009
SSID ssj0001920463
Score 2.281505
Snippet For the purpose of better matching the performance of the organic Rankine cycle (ORC) system concerning the vehicle engine waste heat recovery, this paper...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1966
SubjectTerms Artificial neural network
Free piston expander-linear generator
Motion characteristic
Organic Rankine cycle
Output performance
Title Experimental research and artificial neural network prediction of free piston expander-linear generator
URI https://dx.doi.org/10.1016/j.egyr.2022.01.021
https://doaj.org/article/cd76059932de4b4498afb67a2bbead81
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iyYsoKs5f5OBNgk2aZO1RZWN48ORgt5Cf0yFdGRP0vzcv6Ua9zIunQmmT9stL3_foe99D6JZrKZ1khvhQeMKZi1uqLj2puaeOBimLkBJkX-Rkyp9nYtZr9QU5YVkeOAN3b91QgoZIyZznhvO60sHIoWbGRBBS0TWLPq8XTC0ybwEprNRZTjDC4ze4q5jJyV1-_g1ioIxlzU76yysl8f6ec-o5nPEROuyYIn7IT3iM9nxzguajniI_7pR63rBuHIZXyXIQGEQq0yGleON2BX9jYAXwMuCw8h63oCjQYP_VpuoWAmRTr_A8iVDHMPwUTcej16cJ6XolEMtpsSY8EoG4PakrXV0Fy4I1LkgnHLM0giV1bV1BAzde6kLWVBhma-mHhpuKucKWZ2i_WTb-HGGhIVCsKsdCpHMyUkoRJBc2GBPDLaMHiG6wUrYTEod-Fh9qkzG2UICvAnxVQVXEd4Dutve0WUZj59WPsATbK0ECO52IhqE6w1B_GcYAic0Cqo5NZJYQh3rfMfnFf0x-iQ5gyFy0eIX216tPfx3Zy9rcJEP9AXA-7iA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+research+and+artificial+neural+network+prediction+of+free+piston+expander-linear+generator&rft.jtitle=Energy+reports&rft.au=Peng%2C+Baoying&rft.au=Tong%2C+Liang&rft.au=Yan%2C+Dong&rft.au=Huo%2C+Weiwei&rft.date=2022-11-01&rft.pub=Elsevier+Ltd&rft.issn=2352-4847&rft.eissn=2352-4847&rft.volume=8&rft.spage=1966&rft.epage=1978&rft_id=info:doi/10.1016%2Fj.egyr.2022.01.021&rft.externalDocID=S235248472200021X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4847&client=summon