Assessing english Language teachers’ pedagogical effectiveness using convolutional neural networks optimized by modified virus colony search algorithm

Effective teacher performance evaluation is important for enhancing the quality of educational systems. This study presents a novel approach that integrates deep learning and metaheuristics to assess the pedagogical quality of English as a foreign language (EFL) instruction in a classroom setting. A...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 15295 - 18
Main Author Zhang, Li
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2025
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Effective teacher performance evaluation is important for enhancing the quality of educational systems. This study presents a novel approach that integrates deep learning and metaheuristics to assess the pedagogical quality of English as a foreign language (EFL) instruction in a classroom setting. A comprehensive index framework is developed, comprising five primary dimensions: instructional design, instructional materials, teaching methods and approaches, teaching effectiveness, and classroom management. Each dimension is further divided into secondary indicators that capture specific aspects of teaching quality, including pronunciation, content coverage, lesson objectives, and student engagement. The proposed approach uses a convolutional neural network (CNN) architecture optimized by a modified virus colony search (VCS) algorithm to analyze audio and video recordings of classroom interactions. The results demonstrate that the VCS/CNN algorithm can accurately evaluate EFL instruction based on multiple criteria and indicators, outperforming existing methods in terms of accuracy, robustness, flexibility, and efficiency. This study contributes to the development of a reliable and efficient teacher evaluation framework that can provide timely feedback, identify teacher strengths and weaknesses, and inform areas for professional development. The proposed approach has the potential to improve the quality of EFL instruction and administration by enhancing teacher performance and student learning outcomes.
AbstractList Effective teacher performance evaluation is important for enhancing the quality of educational systems. This study presents a novel approach that integrates deep learning and metaheuristics to assess the pedagogical quality of English as a foreign language (EFL) instruction in a classroom setting. A comprehensive index framework is developed, comprising five primary dimensions: instructional design, instructional materials, teaching methods and approaches, teaching effectiveness, and classroom management. Each dimension is further divided into secondary indicators that capture specific aspects of teaching quality, including pronunciation, content coverage, lesson objectives, and student engagement. The proposed approach uses a convolutional neural network (CNN) architecture optimized by a modified virus colony search (VCS) algorithm to analyze audio and video recordings of classroom interactions. The results demonstrate that the VCS/CNN algorithm can accurately evaluate EFL instruction based on multiple criteria and indicators, outperforming existing methods in terms of accuracy, robustness, flexibility, and efficiency. This study contributes to the development of a reliable and efficient teacher evaluation framework that can provide timely feedback, identify teacher strengths and weaknesses, and inform areas for professional development. The proposed approach has the potential to improve the quality of EFL instruction and administration by enhancing teacher performance and student learning outcomes.
Abstract Effective teacher performance evaluation is important for enhancing the quality of educational systems. This study presents a novel approach that integrates deep learning and metaheuristics to assess the pedagogical quality of English as a foreign language (EFL) instruction in a classroom setting. A comprehensive index framework is developed, comprising five primary dimensions: instructional design, instructional materials, teaching methods and approaches, teaching effectiveness, and classroom management. Each dimension is further divided into secondary indicators that capture specific aspects of teaching quality, including pronunciation, content coverage, lesson objectives, and student engagement. The proposed approach uses a convolutional neural network (CNN) architecture optimized by a modified virus colony search (VCS) algorithm to analyze audio and video recordings of classroom interactions. The results demonstrate that the VCS/CNN algorithm can accurately evaluate EFL instruction based on multiple criteria and indicators, outperforming existing methods in terms of accuracy, robustness, flexibility, and efficiency. This study contributes to the development of a reliable and efficient teacher evaluation framework that can provide timely feedback, identify teacher strengths and weaknesses, and inform areas for professional development. The proposed approach has the potential to improve the quality of EFL instruction and administration by enhancing teacher performance and student learning outcomes.
Effective teacher performance evaluation is important for enhancing the quality of educational systems. This study presents a novel approach that integrates deep learning and metaheuristics to assess the pedagogical quality of English as a foreign language (EFL) instruction in a classroom setting. A comprehensive index framework is developed, comprising five primary dimensions: instructional design, instructional materials, teaching methods and approaches, teaching effectiveness, and classroom management. Each dimension is further divided into secondary indicators that capture specific aspects of teaching quality, including pronunciation, content coverage, lesson objectives, and student engagement. The proposed approach uses a convolutional neural network (CNN) architecture optimized by a modified virus colony search (VCS) algorithm to analyze audio and video recordings of classroom interactions. The results demonstrate that the VCS/CNN algorithm can accurately evaluate EFL instruction based on multiple criteria and indicators, outperforming existing methods in terms of accuracy, robustness, flexibility, and efficiency. This study contributes to the development of a reliable and efficient teacher evaluation framework that can provide timely feedback, identify teacher strengths and weaknesses, and inform areas for professional development. The proposed approach has the potential to improve the quality of EFL instruction and administration by enhancing teacher performance and student learning outcomes.Effective teacher performance evaluation is important for enhancing the quality of educational systems. This study presents a novel approach that integrates deep learning and metaheuristics to assess the pedagogical quality of English as a foreign language (EFL) instruction in a classroom setting. A comprehensive index framework is developed, comprising five primary dimensions: instructional design, instructional materials, teaching methods and approaches, teaching effectiveness, and classroom management. Each dimension is further divided into secondary indicators that capture specific aspects of teaching quality, including pronunciation, content coverage, lesson objectives, and student engagement. The proposed approach uses a convolutional neural network (CNN) architecture optimized by a modified virus colony search (VCS) algorithm to analyze audio and video recordings of classroom interactions. The results demonstrate that the VCS/CNN algorithm can accurately evaluate EFL instruction based on multiple criteria and indicators, outperforming existing methods in terms of accuracy, robustness, flexibility, and efficiency. This study contributes to the development of a reliable and efficient teacher evaluation framework that can provide timely feedback, identify teacher strengths and weaknesses, and inform areas for professional development. The proposed approach has the potential to improve the quality of EFL instruction and administration by enhancing teacher performance and student learning outcomes.
ArticleNumber 15295
Author Zhang, Li
Author_xml – sequence: 1
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
  email: 11416@sias.edu.cn
  organization: School of Foreign Languages, Sias University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40312557$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9u1DAQxi1UREvpC3BAPnIJ-G8SH6uKP5VW4gJny3HGWS-JvdjJou2Jx4DX40lwN6XixFxmNPp93xy-eY7OQgyA0EtK3lDC27dZUKnaijBZqZZwXqkn6IIRISvGGTv7Zz5HVznvSCnJlKDqGToXhFMmZXOBfl7nDDn7MGAIw-jzFm9MGBYzAJ7B2C2k_PvHL7yH3gxx8NaMGJwDO_sDhKLEy0lsYzjEcZl9DIUIsKRTm7_H9DXjuJ_95O-gx90RT7H3zpf54NOSi3KM4YgzmGS32IxDTH7eTi_QU2fGDFcP_RJ9ef_u883HavPpw-3N9aaygpK5Etwp0wnRW9oYwXrWlI2raUeB1Z2xVkjJLNC6bylrGmq6XtTONMxwZYli_BLdrr59NDu9T34y6aij8fq0iGnQJs3ejqDvfUgnW-paK5jjSlLGOutq1XQlByher1evfYrfFsiznny2MI4mQFyy5lQpUdOW1QV99YAu3QT94-G_yRSArYBNMecE7hGhRN9_gF4_QJfL-vQBWhURX0W5wGGApHdxSSWR_D_VH_i9t4E
Cites_doi 10.1109/ACCESS.2020.3045115
10.1155/2022/2999654
10.1155/2022/4395307
10.1017/9781009063647
10.1504/IJMMNO.2013.055204
10.1177/10283153241251924
10.1016/j.actpsy.2024.104217
10.15345/iojes.2015.02.007
10.1109/ACCESS.2019.2918753
10.1007/s10639-023-11917-z
10.1145/3626252.3630881
10.1016/j.knosys.2015.07.006
10.1016/j.eswa.2023.120621
10.1007/s00521-015-1870-7
10.3233/JIFS-169452
10.1007/978-94-017-8887-8_1
10.1007/s13384-023-00616-w
10.1016/j.advengsoft.2015.11.004
10.1007/s13369-021-05688-3
10.1155/2022/5283439
10.1155/2022/1846863
10.3233/JIFS-179761
10.1002/int.22535
10.1007/978-981-16-4258-6_193
10.3390/app10238494
10.1016/j.ins.2009.03.004
10.1109/TEVC.2008.919004
10.1007/s00500-023-08143-7
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1038/s41598-025-98033-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 18
ExternalDocumentID oai_doaj_org_article_2ce10b581f8c42f395122bcf697b025e
40312557
10_1038_s41598_025_98033_9
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7X8
PUEGO
ID FETCH-LOGICAL-c410t-43f9ab44dc17a42d2743ff61b1e26bacc4552ce16d812771abd46fa72a39c0923
IEDL.DBID AAJSJ
ISSN 2045-2322
IngestDate Wed Aug 27 00:59:09 EDT 2025
Fri Jul 11 18:22:32 EDT 2025
Mon Jul 21 05:31:05 EDT 2025
Sun Jul 06 05:06:32 EDT 2025
Fri May 02 01:12:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Classroom evaluation systems
Teacher performance evaluation
Evaluating english teachers
Amended virus colony search algorithm
Convolutional neural network
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-43f9ab44dc17a42d2743ff61b1e26bacc4552ce16d812771abd46fa72a39c0923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-025-98033-9
PMID 40312557
PQID 3199461826
PQPubID 23479
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_2ce10b581f8c42f395122bcf697b025e
proquest_miscellaneous_3199461826
pubmed_primary_40312557
crossref_primary_10_1038_s41598_025_98033_9
springer_journals_10_1038_s41598_025_98033_9
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Portfolio
References AM Mohamed (98033_CR4) 2024; 29
V Podgorelec (98033_CR18) 2020; 10
98033_CR17
B Abdollahzadeh (98033_CR22) 2021; 36
D Simon (98033_CR26) 2008; 12
98033_CR14
98033_CR15
MD Li (98033_CR20) 2016; 92
S Mirjalili (98033_CR33) 2015; 89
J Funk (98033_CR3) 2024; 51
98033_CR19
98033_CR8
98033_CR7
98033_CR6
98033_CR23
W Zhao (98033_CR34) 2019; 7
98033_CR24
98033_CR21
F Gao (98033_CR13) 2020; 38
S Mirjalili (98033_CR32) 2016; 27
SU Amin (98033_CR10) 2020; 9
98033_CR1
SK Maitlo (98033_CR5) 2024; 2
L Liu (98033_CR16) 2023; 27
Y Bai (98033_CR9) 2022; 2022
98033_CR29
98033_CR30
98033_CR31
E Rashedi (98033_CR27) 2009; 179
98033_CR12
98033_CR11
M Jain (98033_CR25) 2018; 34
DGB Amali (98033_CR28) 2021; 12
D Layek (98033_CR2) 2024; 245
References_xml – volume: 9
  start-page: 45
  year: 2020
  ident: 98033_CR10
  publication-title: Ieee Access.
  doi: 10.1109/ACCESS.2020.3045115
– ident: 98033_CR11
  doi: 10.1155/2022/2999654
– ident: 98033_CR17
  doi: 10.1155/2022/4395307
– ident: 98033_CR30
  doi: 10.1017/9781009063647
– ident: 98033_CR24
  doi: 10.1504/IJMMNO.2013.055204
– volume: 12
  start-page: 4151
  issue: 6
  year: 2021
  ident: 98033_CR28
  publication-title: Turkish J. Comput. Math. Educ.
– ident: 98033_CR7
  doi: 10.1177/10283153241251924
– volume: 245
  start-page: 104217
  year: 2024
  ident: 98033_CR2
  publication-title: Acta. Psychol.
  doi: 10.1016/j.actpsy.2024.104217
– ident: 98033_CR1
  doi: 10.15345/iojes.2015.02.007
– volume: 7
  start-page: 73182
  year: 2019
  ident: 98033_CR34
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2918753
– volume: 29
  start-page: 3195
  issue: 3
  year: 2024
  ident: 98033_CR4
  publication-title: Educ. Inform. Technol.
  doi: 10.1007/s10639-023-11917-z
– ident: 98033_CR8
  doi: 10.1145/3626252.3630881
– volume: 89
  start-page: 228
  year: 2015
  ident: 98033_CR33
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2015.07.006
– ident: 98033_CR15
  doi: 10.1016/j.eswa.2023.120621
– volume: 27
  start-page: 495
  issue: 2
  year: 2016
  ident: 98033_CR32
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1870-7
– volume: 2
  start-page: 27
  issue: 1
  year: 2024
  ident: 98033_CR5
  publication-title: J. Arts Linguistics Stud.
– ident: 98033_CR19
– volume: 34
  start-page: 1573
  issue: 3
  year: 2018
  ident: 98033_CR25
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-169452
– ident: 98033_CR29
  doi: 10.1007/978-94-017-8887-8_1
– ident: 98033_CR6
– volume: 51
  start-page: 631
  issue: 2
  year: 2024
  ident: 98033_CR3
  publication-title: Australian Educational Researcher
  doi: 10.1007/s13384-023-00616-w
– volume: 92
  start-page: 65
  year: 2016
  ident: 98033_CR20
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.11.004
– ident: 98033_CR21
  doi: 10.1007/s13369-021-05688-3
– ident: 98033_CR23
– volume: 2022
  start-page: 1
  year: 2022
  ident: 98033_CR9
  publication-title: Wirel. Commun. Mob. Comput.
– ident: 98033_CR12
  doi: 10.1155/2022/5283439
– ident: 98033_CR31
  doi: 10.1155/2022/1846863
– volume: 38
  start-page: 6833
  issue: 6
  year: 2020
  ident: 98033_CR13
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-179761
– volume: 36
  start-page: 5887
  issue: 10
  year: 2021
  ident: 98033_CR22
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.22535
– ident: 98033_CR14
  doi: 10.1007/978-981-16-4258-6_193
– volume: 10
  start-page: 8494
  issue: 23
  year: 2020
  ident: 98033_CR18
  publication-title: Appl. Sci.
  doi: 10.3390/app10238494
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 98033_CR27
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 12
  start-page: 702
  issue: 6
  year: 2008
  ident: 98033_CR26
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.919004
– volume: 27
  start-page: 8437
  issue: 12
  year: 2023
  ident: 98033_CR16
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-023-08143-7
SSID ssj0000529419
Score 2.4463751
Snippet Effective teacher performance evaluation is important for enhancing the quality of educational systems. This study presents a novel approach that integrates...
Abstract Effective teacher performance evaluation is important for enhancing the quality of educational systems. This study presents a novel approach that...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 15295
SubjectTerms 639/166
639/705
Algorithms
Amended virus colony search algorithm
Classroom evaluation systems
Convolutional neural network
Convolutional Neural Networks
Deep Learning
Evaluating english teachers
Humanities and Social Sciences
Humans
Language
multidisciplinary
Neural Networks, Computer
School Teachers
Science
Science (multidisciplinary)
Teacher performance evaluation
Teaching
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEF-kIHgR62eqlRW8aWiy2Wx2j7ZYiqgnC70t-1kf-JLykie8nvwz9N_zL-nMbl6pKHrxFAi7ZNiZnY_MzG8IednKGBqQg1LFIEusuyhtsG2pOm8i-qiyxebkDx_FySl_d9ae3Rj1hTVhGR44H9wBc6GubCvrKB1nsQGPgDHrolCdBXsdUPuCzbsRTGVUb6Z4reYumaqRByNYKuwmY0CHxAFm6hdLlAD7_-Rl_pYhTYbn-B65O3uM9E2mdJfcCv19cjvPkNw8IN9z2ha20pBbcun7-R8knTJc8_jz2w96Ebw5z3qO5iKOWc_RddqM5eezGMIKhLlMj1QkPtIBNMtycRk8tRu6HPwigutKvy5W65Ei7nW_ofnOUPPlfFgtps_Lh-T0-O2no5NyHrdQOl5XU8mbqIzl3Lu6M5x5iFebGEVt68CENc7xtkVuCA9OQdfVxnououmYaZSrwFF8RHb6oQ9PCGW-ClIgNqBlXLTeAO8i57azonKG-YK82h69vsioGjplwxupM6M0MEonRmlVkEPkzvVKRMROL0BO9Cwn-l9yUpAXW95quEGYFjF9GNajbhAeWWCcVZDHmenXn-Kg8yDo6gryeisFer7k418o3vsfFD8ldxiKa6qufEZ2ptU67IMHNNnnSdivAK0rBLw
  priority: 102
  providerName: Directory of Open Access Journals
Title Assessing english Language teachers’ pedagogical effectiveness using convolutional neural networks optimized by modified virus colony search algorithm
URI https://link.springer.com/article/10.1038/s41598-025-98033-9
https://www.ncbi.nlm.nih.gov/pubmed/40312557
https://www.proquest.com/docview/3199461826
https://doaj.org/article/2ce10b581f8c42f395122bcf697b025e
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA57QfBFvFsvQwTftNimadI-zg67LIMuoi7MW0iaZHbAaZdpRxif_Bn69_wlnlw6IC6CT4GQpKHn5ORLzjlfEHpVVtYUoAdpbU2VuriLVBlVpjXX0jqMWpUuOfn9BTu_pPNFuThAZMyF8UH7ntLSm-kxOuxtDxuNSwYjMEzl3h-rD9Gxo2oH3T6eTuef5vubFee7onkdM2Syorqh8x-7kCfrvwlh_uUd9ZvO2V10J6JFPA3zu4cOTHsf3QrvR-4eoB_BZQtdsQnpuPhdvH_EQ6Bq7n99_4mvjZbLYONwCOCINg5vfWcXeh5VEFo4iktf-ADxHndgVdarb0ZjtcPrTq8swFb8dbXZ9thxXrc7HNYLll-W3WY1XK0fosuz08-z8zQ-tZA2NM-GlBa2lopS3eRcUqLhrFpYy3KVG8KUbBpalqQxOdMACDjPpdKUWcmJLOomA5D4CB21XWueIEx0ZirmeAEVoazUsmqopVRxxbJGEp2g1-OvF9eBUUN4T3hRiSAoAYISXlCiTtCJk86-pWPD9hXdZimidgg3s0yVVW7hW8QWgBoJUY1lNVcwlknQy1G2AlaPc4nI1nTbXhSOGpm5M1aCHgeh7z9Fwd7BgYsn6M2oBSIu8P4fM376f82fodvEKaaPoXyOjobN1rwAnDOoCTrkCz6J6g3lyenFh49QO2Ozib87-A1lCgAk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQguiHeX8jASnCAicRwnOXCAhWpLtz21Um_Gju1lJTapNtmi5cTPgCs_jV_C2E5WQlRIHHqKFPklf-Px2DPzGeBZVliTohxEpTVF5OIuImVUFpW5ltbZqEXmkpMPj_jkhH04zU634OeQC-OD9j2lpVfTQ3TYqxY3GpcMRrGZwr0_VvaBlAdm_QWPae3r_XeI6XNK994fjydR_5JAVLEk7iKW2lIqxnSV5JJRjUex1FqeqMRQrmRVsSyjlUm4xv0uzxOpNONW5lSmZRWXjtwA1fwVtO25WzljPt7c4zhPGUvKPh8nTosLhvrHnuefBrjInv3LF-u3uL2bcKO3TcmbMBu3YMvUt-FqeK1yfQe-BwcxViUmJP-SaX_bSbpADN3--vaDnBktZ0GjkhAu0mtUsvKVXaB7L_BYwhFq-o8PR29JgzpsMf9qNFFrsmj03KKRTM7ny1VLHMN2vSYBEiI_z5rlvPu0uAsnlwLHPdium9rsAKE6NgV3LISKMp5pWVTMMqZyxeNKUj2CF8PUi7PA3yG83z0tRABKIFDCAyXKEbx16GxKOu5t_6NZzkQvi8KNLFZZkVjsi9oUbVRKVWV5mStsy4zg6YCtwLXqHDCyNs2qFakjYubuRDeC-wH0TVcMtSse7_IRvBykQPTqpP3HiB_8X_EncG1yfDgV0_2jg124Tp2Q-ujNh7DdLVfmEVpYnXrsRZzAx8teU78BanA3ZQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrUBcEG_S8jASnCA0cRwnOXBYKKt2WyokqNSbsWN7WYlNVptd0HLiZ8Af4IfxSxg_shKiQuLQU6TIL_kbj8eemc8IPc5LozOQg7gyuoxt3EUstczjqlDCWBu1zG1y8psTdnBKx2f52Rb62efCuKB9R2np1HQfHbbXwUZjk8EINFPa98eq53NlQjDlkV5_gaNa9-JwH3B9Qsjo9ftXB3F4TSCuaZosY5qZSkhKVZ0WghIFx7HMGJbKVBMmRV3TPCe1TpmCPa8oUiEVZUYURGRVnVSW4ABU_TbY9ykdoO3hcPxuvLnNsf4ymlYhKyfJynMG_MfO5x4IOM-q_csj6za60TV0NVioeOjn5Dra0s0NdMm_Wbm-ib57NzFUxdqnAOPjcOeJl54euvv17QeeayUmXq9iHzQS9Cpeuco23D2IPZSwtJru44LSO9yCJptNv2qF5RrPWjU1YCrjz9PFqsOWZ7tZYw8KFp8m7WK6_Di7hU4vBJDbaNC0jb6LMFGJLpnlIpSEslyJsqaGUllIltSCqAg97aeezz2LB3fe96zkHigOQHEHFK8i9NKisylpGbjdj3Yx4UEiuR1ZIvMyNdAXMRlYqoTI2rCqkNCWjtCjHlsOK9a6YUSj21XHM0vHzOy5LkJ3POibrijoWDjkFRF61ksBD0ql-8eId_6v-EN0-e3-iB8fnhztoivEyqgL4byHBsvFSt8HM2spHwQZx-jDRS-r3xSsOck
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+english+Language+teachers%E2%80%99+pedagogical+effectiveness+using+convolutional+neural+networks+optimized+by+modified+virus+colony+search+algorithm&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Li&rft.date=2025-05-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-98033-9&rft.externalDocID=10_1038_s41598_025_98033_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon