Above-ground biomass estimation from LiDAR data using random forest algorithms

•The paper explores Random Forest models to estimate the biomass.•In the paper real data of Pinus Radiata species in a specific area of the Basque Country (Spain) were used.•The LiDAR data used to create the models are of low-density•The dataset used to create the models has a very small size.•Two m...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational science Vol. 58; p. 101517
Main Authors Torre-Tojal, Leyre, Bastarrika, Aitor, Boyano, Ana, Lopez-Guede, Jose Manuel, Graña, Manuel
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The paper explores Random Forest models to estimate the biomass.•In the paper real data of Pinus Radiata species in a specific area of the Basque Country (Spain) were used.•The LiDAR data used to create the models are of low-density•The dataset used to create the models has a very small size.•Two models were obtained showing an R2 higher than 0.7 and a prediction between 16–18 % higher than those given by the Basque Government. Random forest (RF) models were developed to estimate the biomass for the Pinus radiata species in a region of the Basque Autonomous Community where this species has high cover, using the National Forest Inventory, allometric equations and low-density discrete LiDAR data. This article explores the tuning for RF hyperparameters, obtaining two models with an R2 higher than 0.7 using 2-fold cross-validation. The models selected were applied in Orozko, a municipality with more than 5000 ha of this species, where the model predicts a biomass of 1.06–1.08 Mton, which is between 16–18 % higher than the biomass predicted by the Basque Government.
AbstractList •The paper explores Random Forest models to estimate the biomass.•In the paper real data of Pinus Radiata species in a specific area of the Basque Country (Spain) were used.•The LiDAR data used to create the models are of low-density•The dataset used to create the models has a very small size.•Two models were obtained showing an R2 higher than 0.7 and a prediction between 16–18 % higher than those given by the Basque Government. Random forest (RF) models were developed to estimate the biomass for the Pinus radiata species in a region of the Basque Autonomous Community where this species has high cover, using the National Forest Inventory, allometric equations and low-density discrete LiDAR data. This article explores the tuning for RF hyperparameters, obtaining two models with an R2 higher than 0.7 using 2-fold cross-validation. The models selected were applied in Orozko, a municipality with more than 5000 ha of this species, where the model predicts a biomass of 1.06–1.08 Mton, which is between 16–18 % higher than the biomass predicted by the Basque Government.
ArticleNumber 101517
Author Boyano, Ana
Bastarrika, Aitor
Graña, Manuel
Lopez-Guede, Jose Manuel
Torre-Tojal, Leyre
Author_xml – sequence: 1
  givenname: Leyre
  surname: Torre-Tojal
  fullname: Torre-Tojal, Leyre
  email: leyre.torre@ehu.es
  organization: Department of Mining and Metallurgical Engineering and Materials Science, Faculty of Engineering, University of the Basque Country (UPV/EHU), Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain
– sequence: 2
  givenname: Aitor
  surname: Bastarrika
  fullname: Bastarrika, Aitor
  organization: Department of Mining and Metallurgical Engineering and Materials Science, Faculty of Engineering, University of the Basque Country (UPV/EHU), Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain
– sequence: 3
  givenname: Ana
  surname: Boyano
  fullname: Boyano, Ana
  organization: Mechanical Engineering Department, Faculty of Engineering of Vitoria-Gasteiz, University of the Basque Country, UPV/EHU, Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain
– sequence: 4
  givenname: Jose Manuel
  surname: Lopez-Guede
  fullname: Lopez-Guede, Jose Manuel
  organization: Department of Systems Engineering and Automatic Control, Faculty of Engineering, University of the Basque Country (UPV/EHU), Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain
– sequence: 5
  givenname: Manuel
  surname: Graña
  fullname: Graña, Manuel
  organization: Department of Computer Science and Artificial Intelligence, Faculty of Computer Science, University of the Basque Country (UPV/EHU), Paseo Manuel De Lardizabal, 1, 20018 Donostia-San Sebastian, Spain
BookMark eNp9kM9KAzEQxoNUsNa-gKe8wNbM7jbJgpdStQpFQfQc0vypWbqJJGnBt3fXigcPncsMH_Mb5vsu0cgHbxC6BjIDAvSmnbVBpVlJShiEObAzNAbOWMHmAKO_mVQXaJpSS_qqOG-gGqPnxSYcTLGNYe813rjQyZSwSdl1MrvgsY2hw2t3t3jFWmaJ98n5LY7S6163IfarWO62Ibr80aUrdG7lLpnpb5-g94f7t-VjsX5ZPS0X60LVQHJRk5IyCv0TlitK6oqw2s4bQolpiGooKA20rkprDdEgbW2MpEoxbTnjUlbVBPHjXRVDStFYoVz-eThH6XYCiBiiEa0YohFDNOIYTY-W_9DP2JuNX6eh2yNkelMHZ6JIyhmvjHbRqCx0cKfwb5Dcfyw
CitedBy_id crossref_primary_10_1016_j_ecolind_2024_111564
crossref_primary_10_3390_rs15112919
crossref_primary_10_1016_j_jag_2024_103966
crossref_primary_10_3390_f15061055
crossref_primary_10_1080_22797254_2024_2344569
crossref_primary_10_3390_atmos13081233
crossref_primary_10_3390_rs15112915
crossref_primary_10_3390_f15030548
crossref_primary_10_3390_rs15143543
crossref_primary_10_3390_rs16010148
crossref_primary_10_1109_JSTARS_2023_3313251
crossref_primary_10_1016_j_scitotenv_2025_178763
crossref_primary_10_3390_rs14225870
crossref_primary_10_3389_fpls_2023_1258521
crossref_primary_10_1007_s12155_024_10747_2
crossref_primary_10_3390_f13071108
crossref_primary_10_3390_f14071493
crossref_primary_10_1109_ACCESS_2023_3264266
crossref_primary_10_3389_fpls_2023_1139232
crossref_primary_10_1016_j_rsase_2024_101277
crossref_primary_10_3389_fenrg_2023_1252882
crossref_primary_10_1016_j_ecolind_2022_109694
crossref_primary_10_3390_rs15071853
crossref_primary_10_1016_j_pce_2024_103688
crossref_primary_10_3390_rs16234497
crossref_primary_10_1038_s41598_025_90906_3
crossref_primary_10_3390_f15010136
crossref_primary_10_3390_land11101656
crossref_primary_10_1016_j_tfp_2024_100763
crossref_primary_10_3390_f14010065
crossref_primary_10_3390_rs14122842
crossref_primary_10_3390_rs14164083
crossref_primary_10_3390_rs16244688
crossref_primary_10_1155_2022_7754179
crossref_primary_10_1109_JSTARS_2025_3539395
crossref_primary_10_3389_ffgc_2024_1456882
crossref_primary_10_1016_j_rser_2025_115559
crossref_primary_10_1016_j_heliyon_2022_e11382
crossref_primary_10_1016_j_ecoinf_2024_102712
crossref_primary_10_3389_fenvs_2025_1519297
crossref_primary_10_3390_rs14184666
crossref_primary_10_1016_j_rsase_2022_100882
crossref_primary_10_3390_land13101689
crossref_primary_10_3390_rs14020279
crossref_primary_10_1016_j_jocs_2024_102230
crossref_primary_10_3390_f15122106
crossref_primary_10_1016_j_egyr_2023_07_025
crossref_primary_10_1016_j_jag_2023_103252
crossref_primary_10_1016_j_scitotenv_2023_168726
crossref_primary_10_1088_1402_4896_ad3515
crossref_primary_10_1029_2023JG007864
crossref_primary_10_1016_j_autcon_2022_104714
crossref_primary_10_1021_acs_analchem_2c02289
crossref_primary_10_3390_rs16020324
Cites_doi 10.1016/0034-4257(95)00224-3
10.1016/j.rse.2010.06.004
10.1016/j.rse.2012.07.006
10.1016/j.isprsjprs.2014.11.007
10.3390/f10090819
10.1093/bioinformatics/bty373
10.1016/j.isprsjprs.2018.02.002
10.1007/s40010-017-0435-9
10.1016/j.rse.2005.04.001
10.5589/m13-011
10.1016/j.rse.2004.03.009
10.1016/j.rse.2012.01.025
10.1016/j.neucom.2020.07.061
10.1016/j.rse.2008.03.004
10.1016/j.rse.2017.09.027
10.1016/j.rse.2017.09.007
10.1016/S0924-2716(99)00015-5
10.1016/j.rse.2004.01.006
10.1080/01431160903474970
10.1016/j.rse.2016.08.018
10.1080/17583004.2017.1357402
10.14358/PERS.78.7.679
10.1016/j.ecolind.2017.09.034
10.3390/f12050550
10.1016/S0034-4257(01)00290-5
10.1016/j.rse.2009.12.018
10.1016/j.foreco.2004.12.001
10.1016/j.rse.2017.11.010
10.1016/j.ecolind.2017.02.045
10.1016/0304-3800(95)00152-2
10.1016/j.rse.2018.04.015
10.5589/m03-022
10.1016/S0378-1127(97)00019-4
10.1016/j.rse.2017.09.011
10.1016/j.rse.2017.12.020
10.1016/j.compag.2020.105815
10.1023/A:1010933404324
10.5424/fs/2013223-04143
10.1093/forestry/cps002
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jocs.2021.101517
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Business
EISSN 1877-7511
ExternalDocumentID 10_1016_j_jocs_2021_101517
S1877750321001800
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
P2P
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c410t-4026761388f8c6043074f59060e90c961cd16432ffe0d1af4eea6cc7df878aa33
IEDL.DBID .~1
ISSN 1877-7503
IngestDate Tue Jul 01 03:46:10 EDT 2025
Thu Apr 24 23:11:49 EDT 2025
Fri Feb 23 02:40:19 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Regression
Random forest
Biomass
LiDAR
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-4026761388f8c6043074f59060e90c961cd16432ffe0d1af4eea6cc7df878aa33
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877750321001800
ParticipantIDs crossref_citationtrail_10_1016_j_jocs_2021_101517
crossref_primary_10_1016_j_jocs_2021_101517
elsevier_sciencedirect_doi_10_1016_j_jocs_2021_101517
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle Journal of computational science
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Eamus, Burrows, McGuinness (bib0160) 2000
Næsset, Gobakken (bib0185) 2005; 96
Gobakken, Næsset, Nelson, Bollandsås, Gregoire, Ståhl, Holm, Ørka, Astrup (bib0190) 2012; 123
Breiman (bib0220) 2001; 45
Intergovernmental Panel of Climate Change (bib0005) 2001
Eitel, Höfle, Vierling, Abellán, Asner, Deems, Vierling (bib0065) 2016; 186
Biau (bib0210) 2012; 13
Nilsson (bib0170) 1996; 56
Næsset (bib0180) 2004; 91
Nandy, Singh, Ghosh, Watham, Kushwaha, Kumar, Dadhwal (bib0205) 2017; 8
Matasci, Hermosilla, Wulder, White, Coops, Hobart, Zald (bib0075) 2018; 209
Zianis, Seura (bib0150) 2005
Anderson (bib0115) 2018; 84
Hong, Xiaoling, Yu (bib0230) 2016
Goldbergs, Levick, Lawes, Edwards (bib0195) 2018; 205
Næsset (bib0175) 2002; 80
Maltamo, Eerikainen, Pitkanen, Hyyppa, Vehmas (bib0275) 2004; 90
Shi, Wang, Skidmore, Heurich (bib0030) 2018; 137
Ahmed, Franklin, Wulder, White (bib0100) 2015; 101
Gleason, Im (bib0300) 2012; 78
Næsset, Gobakken (bib0280) 2008; 112
Johansen, Phinn, Witte (bib0020) 2010; 114
Walpole, Myers, Myers, Ye (bib0245) 2012
Chen, Hay, St-Onge (bib0290) 2012; 15
Kenney, Keeping (bib0250) 1962
Luo (bib0305) 2019; 83
Shao, Shao, Gallion, Saunders, Frankenberger, Songlin (bib0035) 2018; 204
Yang, Shami (bib0240) 2020; 415
Ene, Gobakken, Andersen, Næsset, Cook, Morton, Babcock, Nelson (bib0050) 2018; 204
(bib0140) 1990
Xu, Wang, Xu, Luan, Xu (bib0265) 2021; 12
Lohani, Ghosh (bib0125) 2017; 87
Condés, Riaño (bib0285) 2005; 19
Montero, Ruiz-Peinado, Muñoz (bib0010) 2005
Teixeira da Costa (bib0080) 2021; 491
Canga, Dieguez-Aranda, Afif-Khouri, Camara-Obregon (bib0015) 2013; 22
Ter-Mikaelian, Korzukhin (bib0155) 1997; 97
Torre-Tojal, A.Bastarrika, Barrett, Espeso, Lopez-Guede, Graña (bib0200) 2019; 10
Næsset (bib0025) 2002; 80
Vaglio Laurin, Puletti, Chen, Corona, Papale, Valentini (bib0040) 2016; 52
Dalla Corte (bib0110) 2020; 179
Nie, Wang, Zeng, Xi, Li (bib0055) 2017; 78
Nelson (bib0270) 2013; 39
Nembrini, König, Wright (bib0235) 2018; 34
Magnussen, Nord-Larsen, Riis-Nielsen (bib0045) 2018; 211
Rykiel (bib0255) 1996; 90
Reutebuch, McGaughey, Andersen, Carson (bib0070) 2003; 29
Næsset (bib0085) 2011; 32
González-Ferreiro, Aranda, Miranda (bib0095) 2012; 85
Baltsavias (bib0120) 1999; 54
Probst, Boulesteix (bib0260) 2018; 18
Pedregosa, Varoquaux, Gramfort, Michel, Thirion (bib0225) 2011; 12
Hall, Burke, Box, Kaufmann, Stoker (bib0090) 2005; 208
Dubayah, Drake (bib0130) 2000; 98
Bravo, Del Río, Pando, San Martín, Montero, Ordoñez (bib0145) 2002
Powell, Cohen, Healey, Kennedy, Moisen, Pierce, Ohmann (bib0295) 2010; 114
Dubayah, Blair, Goetz, Fatoyinbo, Hansen, Healey, Hofton, Hurtt, Kellner, Luthcke (bib0135) 2020; 1
Gleason, Im (bib0105) 2012; 125
Breiman, Friedman, Olshen, Stone (bib0215) 1984
Zhao, Suarez, Garcia, Hu, Wang, Londo (bib0060) 2018; 204
(bib0165) 2004
Baltsavias (10.1016/j.jocs.2021.101517_bib0120) 1999; 54
Rykiel (10.1016/j.jocs.2021.101517_bib0255) 1996; 90
Johansen (10.1016/j.jocs.2021.101517_bib0020) 2010; 114
Nie (10.1016/j.jocs.2021.101517_bib0055) 2017; 78
Næsset (10.1016/j.jocs.2021.101517_bib0085) 2011; 32
(10.1016/j.jocs.2021.101517_bib0165) 2004
Torre-Tojal (10.1016/j.jocs.2021.101517_bib0200) 2019; 10
Magnussen (10.1016/j.jocs.2021.101517_bib0045) 2018; 211
Vaglio Laurin (10.1016/j.jocs.2021.101517_bib0040) 2016; 52
Dubayah (10.1016/j.jocs.2021.101517_bib0130) 2000; 98
Nilsson (10.1016/j.jocs.2021.101517_bib0170) 1996; 56
Gobakken (10.1016/j.jocs.2021.101517_bib0190) 2012; 123
Biau (10.1016/j.jocs.2021.101517_bib0210) 2012; 13
Intergovernmental Panel of Climate Change (10.1016/j.jocs.2021.101517_bib0005) 2001
Dubayah (10.1016/j.jocs.2021.101517_bib0135) 2020; 1
Luo (10.1016/j.jocs.2021.101517_bib0305) 2019; 83
Yang (10.1016/j.jocs.2021.101517_bib0240) 2020; 415
Chen (10.1016/j.jocs.2021.101517_bib0290) 2012; 15
Matasci (10.1016/j.jocs.2021.101517_bib0075) 2018; 209
Zianis (10.1016/j.jocs.2021.101517_bib0150) 2005
Breiman (10.1016/j.jocs.2021.101517_bib0220) 2001; 45
Montero (10.1016/j.jocs.2021.101517_bib0010) 2005
Zhao (10.1016/j.jocs.2021.101517_bib0060) 2018; 204
Næsset (10.1016/j.jocs.2021.101517_bib0025) 2002; 80
Anderson (10.1016/j.jocs.2021.101517_bib0115) 2018; 84
Walpole (10.1016/j.jocs.2021.101517_bib0245) 2012
Kenney (10.1016/j.jocs.2021.101517_bib0250) 1962
Ene (10.1016/j.jocs.2021.101517_bib0050) 2018; 204
Powell (10.1016/j.jocs.2021.101517_bib0295) 2010; 114
Hong (10.1016/j.jocs.2021.101517_bib0230) 2016
Hall (10.1016/j.jocs.2021.101517_bib0090) 2005; 208
Eitel (10.1016/j.jocs.2021.101517_bib0065) 2016; 186
Gleason (10.1016/j.jocs.2021.101517_bib0105) 2012; 125
Condés (10.1016/j.jocs.2021.101517_bib0285) 2005; 19
(10.1016/j.jocs.2021.101517_bib0140) 1990
Xu (10.1016/j.jocs.2021.101517_bib0265) 2021; 12
Næsset (10.1016/j.jocs.2021.101517_bib0180) 2004; 91
Dalla Corte (10.1016/j.jocs.2021.101517_bib0110) 2020; 179
Maltamo (10.1016/j.jocs.2021.101517_bib0275) 2004; 90
Shi (10.1016/j.jocs.2021.101517_bib0030) 2018; 137
González-Ferreiro (10.1016/j.jocs.2021.101517_bib0095) 2012; 85
Lohani (10.1016/j.jocs.2021.101517_bib0125) 2017; 87
Næsset (10.1016/j.jocs.2021.101517_bib0280) 2008; 112
Bravo (10.1016/j.jocs.2021.101517_bib0145) 2002
Eamus (10.1016/j.jocs.2021.101517_bib0160) 2000
Ahmed (10.1016/j.jocs.2021.101517_bib0100) 2015; 101
Ter-Mikaelian (10.1016/j.jocs.2021.101517_bib0155) 1997; 97
Reutebuch (10.1016/j.jocs.2021.101517_bib0070) 2003; 29
Næsset (10.1016/j.jocs.2021.101517_bib0175) 2002; 80
Nelson (10.1016/j.jocs.2021.101517_bib0270) 2013; 39
Goldbergs (10.1016/j.jocs.2021.101517_bib0195) 2018; 205
Shao (10.1016/j.jocs.2021.101517_bib0035) 2018; 204
Pedregosa (10.1016/j.jocs.2021.101517_bib0225) 2011; 12
Nembrini (10.1016/j.jocs.2021.101517_bib0235) 2018; 34
Canga (10.1016/j.jocs.2021.101517_bib0015) 2013; 22
Probst (10.1016/j.jocs.2021.101517_bib0260) 2018; 18
Teixeira da Costa (10.1016/j.jocs.2021.101517_bib0080) 2021; 491
Næsset (10.1016/j.jocs.2021.101517_bib0185) 2005; 96
Nandy (10.1016/j.jocs.2021.101517_bib0205) 2017; 8
Gleason (10.1016/j.jocs.2021.101517_bib0300) 2012; 78
Breiman (10.1016/j.jocs.2021.101517_bib0215) 1984
References_xml – volume: 204
  start-page: 741
  year: 2018
  end-page: 755
  ident: bib0050
  article-title: Large-area hybrid estimation of aboveground biomass in interior alaska using airborne laser scanning data
  publication-title: Remote Sens. Environ.
– volume: 54
  start-page: 199
  year: 1999
  end-page: 214
  ident: bib0120
  article-title: Airborne laser scanning: basic relations and formulas
  publication-title: J. Photogramm. Remote. Sens.
– volume: 39
  start-page: S6
  year: 2013
  end-page: S17
  ident: bib0270
  article-title: How did we get here? An early history of forestry lidar1
  publication-title: Can. J. Remote. Sens.
– volume: 29
  start-page: 527
  year: 2003
  end-page: 535
  ident: bib0070
  article-title: Accuracy of a high-resolution lidar terrain model under a conifer forest canopy
  publication-title: Can. J. Remote. Sens.
– volume: 13
  start-page: 1063
  year: 2012
  end-page: 1095
  ident: bib0210
  article-title: Analysis of a random forests model
  publication-title: J. Mach. Learn. Res.
– volume: 32
  start-page: 473
  year: 2011
  ident: bib0085
  article-title: Estimating above-ground biomass in young forests with airborne laser scanning
  publication-title: Int. J. Remote
– volume: 90
  start-page: 319
  year: 2004
  end-page: 330
  ident: bib0275
  article-title: Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions
  publication-title: Remote Sens. Environ.
– year: 2004
  ident: bib0165
  article-title: Ecuaciones de cubicación para el Pino radiata en el País Vasco
– volume: 208
  start-page: 189
  year: 2005
  end-page: 209
  ident: bib0090
  article-title: Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests
  publication-title: For. Ecol. Manage.
– volume: 97
  start-page: 1
  year: 1997
  end-page: 24
  ident: bib0155
  article-title: Biomass equations for sixty-five North American tree species
  publication-title: For. Ecol. Manage.
– volume: 491
  start-page: 119
  year: 2021
  end-page: 155
  ident: bib0080
  article-title: Beyond trees: mapping total aboveground biomass density in the Brazilian savanna using high-density UAV-lidar data
  publication-title: For. Ecol. Manage.
– volume: 91
  start-page: 243
  year: 2004
  end-page: 255
  ident: bib0180
  article-title: Effects of different flying altitudes on biophysical stand properties estimated from canopy height and density measured with a small-footprint airborne scanning laser
  publication-title: Remote Sens. Environ.
– volume: 137
  start-page: 163
  year: 2018
  end-page: 174
  ident: bib0030
  article-title: Important LiDAR metrics for discriminating forest tree species in Central Europe
  publication-title: J. Photogramm. Remote Sens.
– volume: 209
  start-page: 90
  year: 2018
  end-page: 106
  ident: bib0075
  article-title: Large-area mapping of canadian boreal forest cover, height,biomass and other structural attributes using landsat composites and lidar plots
  publication-title: Remote Sens. Environ.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0220
  article-title: Random forest
  publication-title: Mach. Learn.
– year: 2005
  ident: bib0150
  article-title: Biomass and Stem Volume Equations for Tree Species in Europe
– volume: 114
  start-page: 2679
  year: 2010
  end-page: 2691
  ident: bib0020
  article-title: Mapping of riparian zone attributes using discrete return LiDAR, QuickBird and SPOT-5 imagery: assessing accuracy and costs
  publication-title: Remote Sens. Environ.
– volume: 18
  start-page: 1
  year: 2018
  end-page: 18
  ident: bib0260
  article-title: To tune or not to tune the number of trees in Random Forest
  publication-title: J. Mach. Learn. Res.
– volume: 204
  start-page: 883
  year: 2018
  end-page: 897
  ident: bib0060
  article-title: Utility of multitemporal lidar for forest and carbon monitoring: tree growth, biomass dynamics, and carbon flux
  publication-title: Remote Sens. Environ.
– volume: 98
  start-page: 44
  year: 2000
  end-page: 46
  ident: bib0130
  article-title: Lidar remote sensing for forestry
  publication-title: J. For.
– volume: 123
  start-page: 443
  year: 2012
  end-page: 456
  ident: bib0190
  article-title: Estimating biomass in Hedmark County, Norway using National Forest inventory field plots and airborne laser scanning
  publication-title: Remote Sens. Environ.
– volume: 22
  start-page: 408
  year: 2013
  end-page: 415
  ident: bib0015
  article-title: Above-ground biomass equations for Pinus Radiata d.dOn in Asturias
  publication-title: Forest Systems (INIA)
– year: 2005
  ident: bib0010
  article-title: Producción de biomasa y fijación de CO2 por los bosques españoles
– year: 1990
  ident: bib0140
  article-title: I.C.O.N.A. Segundo Inventario Forestal Nacional. Explicaciones y Métodos, Spain, 1986–1995, Madrid
– volume: 96
  start-page: 453
  year: 2005
  end-page: 465
  ident: bib0185
  article-title: Estimating forest growth using canopy metrics derived from airborne laser scanner data
  publication-title: Remote Sens. Environ.
– year: 2012
  ident: bib0245
  article-title: Probabilidad y Estadística Para Ingeniería y Ciencias
– volume: 114
  start-page: 1053
  year: 2010
  end-page: 1068
  ident: bib0295
  article-title: Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches
  publication-title: Remote Sens. Environ.
– volume: 85
  year: 2012
  ident: bib0095
  article-title: Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities
  publication-title: Forestry
– volume: 101
  start-page: 89
  year: 2015
  end-page: 101
  ident: bib0100
  article-title: Characterizing stand-level forest canopy cover and height using landsat time series, samples of airborne lidar, and the random forest algorithm
  publication-title: Isprs J. Photogramm. Remote. Sens.
– volume: 211
  start-page: 146
  year: 2018
  end-page: 153
  ident: bib0045
  article-title: Lidar supported estimators of wood volume and aboveground biomass from the Danish National Forest Inventory (2012–2016)
  publication-title: Remote Sens. Environ.
– start-page: 59
  year: 1962
  end-page: 60
  ident: bib0250
  article-title: “Root Mean Square.” §4.15 in Mathematics of Statistics, Pt. 1
– volume: 52
  start-page: 371
  year: 2016
  end-page: 379
  ident: bib0040
  article-title: Above ground biomass and tree species richness estimation with airborne Lidar in tropical Ghana forests
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 87
  start-page: 567
  year: 2017
  end-page: 579
  ident: bib0125
  article-title: Airborne LiDAR technology: a review of data collection and processing systems
  publication-title: Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci.
– volume: 15
  start-page: 28
  year: 2012
  end-page: 37
  ident: bib0290
  article-title: GEOBIA framework to estimate forest parameters from lidar transects, Quickbird imagery and machine learning: a case study in Quebec, Canada
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 80
  start-page: 88
  year: 2002
  end-page: 99
  ident: bib0175
  article-title: Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data
  publication-title: Remote Sens. Environ.
– start-page: 219
  year: 2016
  end-page: 224
  ident: bib0230
  article-title: Variable selection using mean decrease accuracy and mean decrease Gini based on random Forest
  publication-title: 7th IEEE International Conference on Software Engineering and Service Science (ICSESS)
– volume: 1
  year: 2020
  ident: bib0135
  article-title: The Global Ecosystem Dynamics Investigation: High-Resolution Laser Ranging of the Earth’s Forests and Topography
  publication-title: Sci. Remote Sens.
– year: 2002
  ident: bib0145
  article-title: El diseño de las parcelas del inventario forestal nacional y la estimación de variables dasométricas
– volume: 56
  start-page: 1
  year: 1996
  end-page: 7
  ident: bib0170
  article-title: Estimation of tree heights and stand volume using an airborne lidar system
  publication-title: Remote Sens. Environ.
– volume: 125
  start-page: 80
  year: 2012
  end-page: 91
  ident: bib0105
  article-title: Forest biomass estimation from airborne LiDAR data using machine learning approaches
  publication-title: Remote Sens. Environ.
– volume: 19
  start-page: 63
  year: 2005
  end-page: 70
  ident: bib0285
  article-title: El uso del escáner láser aerotransportado para la estimación de la biomasa foliar del pinus sylvestris L. En Canencia (madrid)
  publication-title: Cuadernos De La Sociedad Española De Ciencias Forestales.
– volume: 83
  start-page: 101922
  year: 2019
  ident: bib0305
  article-title: Estimating Forest aboveground biomass using small-footprint full-waveform airborne LiDAR data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 415
  start-page: 295
  year: 2020
  end-page: 316
  ident: bib0240
  article-title: On hyperparameter optimization of machine learning algorithms: theory and practice
  publication-title: Neurocomputing
– volume: 90
  start-page: 229
  year: 1996
  end-page: 244
  ident: bib0255
  article-title: Testing ecological models: the meaning of validation
  publication-title: Ecol Model
– year: 2000
  ident: bib0160
  article-title: Review of Allometric Relationships for Estimating Woody Biomass for Queensland, the Northern Territory and Western Australia
– volume: 80
  start-page: 88
  year: 2002
  end-page: 99
  ident: bib0025
  article-title: Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data
  publication-title: Remote Sens. Environ.
– year: 2001
  ident: bib0005
  article-title: Climate Change 2001; Syntesis Report
– volume: 12
  start-page: 550
  year: 2021
  ident: bib0265
  article-title: LiDAR applications to estimate forest biomass at IndividualTree scale: opportunities, challenges and future perspectives
  publication-title: Forests
– volume: 78
  start-page: 679
  year: 2012
  end-page: 692
  ident: bib0300
  article-title: A fusion approach for tree crown delineation from LiDAR data
  publication-title: Photogramm. Eng. Remote Sensing
– volume: 78
  start-page: 221
  year: 2017
  end-page: 228
  ident: bib0055
  article-title: Above-ground biomass estimation using airborne discrete-return and full-waveform LiDAR data in a coniferous forest
  publication-title: Ecol. Indic.
– volume: 8
  year: 2017
  ident: bib0205
  article-title: Neural network-based modelling for forest biomass assessment
  publication-title: Carbon Manag.
– volume: 84
  start-page: 793
  year: 2018
  end-page: 802
  ident: bib0115
  article-title: Estimating vegetation biomass and cover across large plots in shrub and grass dominated drylands using terrestrial LiDAR and machine learning
  publication-title: Ecol. Indic.
– volume: 186
  start-page: 372
  year: 2016
  end-page: 392
  ident: bib0065
  article-title: Beyond 3-d: the new spectrum of lidar applications for earth and ecological sciences
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 819
  year: 2019
  ident: bib0200
  article-title: Prediction of aboveground biomass from low-density LiDAR data: validation over P. Radiata data from a region north of Spain
  publication-title: Forests
– volume: 34
  start-page: 3711
  year: 2018
  end-page: 3718
  ident: bib0235
  article-title: The revival of the Gini importance?
  publication-title: Bioinformatics
– volume: 179
  start-page: 105815
  year: 2020
  ident: bib0110
  article-title: Forest inventory with high-density UAV-Lidar: machine learning approaches for predicting individual tree attributes
  publication-title: Comput. Electron. Agric.
– volume: 205
  start-page: 141
  year: 2018
  end-page: 150
  ident: bib0195
  article-title: Hierarchical integration of individual tree and area-based approaches for savanna biomass uncertainty estimation from airborne lidar
  publication-title: Remote Sens. Environ.
– volume: 112
  start-page: 3079
  year: 2008
  end-page: 3090
  ident: bib0280
  article-title: Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser
  publication-title: Remote Sens. Environ.
– volume: 204
  start-page: 872
  year: 2018
  end-page: 882
  ident: bib0035
  article-title: Improving Lidar-based aboveground biomass estimation of temperate hardwood forests with varying site productivity
  publication-title: Remote Sens. Environ.
– year: 1984
  ident: bib0215
  article-title: Classification and Regression Trees
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib0225
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.jocs.2021.101517_bib0260
  article-title: To tune or not to tune the number of trees in Random Forest
  publication-title: J. Mach. Learn. Res.
– volume: 56
  start-page: 1
  year: 1996
  ident: 10.1016/j.jocs.2021.101517_bib0170
  article-title: Estimation of tree heights and stand volume using an airborne lidar system
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(95)00224-3
– volume: 114
  start-page: 2679
  issue: 11
  year: 2010
  ident: 10.1016/j.jocs.2021.101517_bib0020
  article-title: Mapping of riparian zone attributes using discrete return LiDAR, QuickBird and SPOT-5 imagery: assessing accuracy and costs
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.06.004
– volume: 125
  start-page: 80
  year: 2012
  ident: 10.1016/j.jocs.2021.101517_bib0105
  article-title: Forest biomass estimation from airborne LiDAR data using machine learning approaches
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.07.006
– volume: 101
  start-page: 89
  year: 2015
  ident: 10.1016/j.jocs.2021.101517_bib0100
  article-title: Characterizing stand-level forest canopy cover and height using landsat time series, samples of airborne lidar, and the random forest algorithm
  publication-title: Isprs J. Photogramm. Remote. Sens.
  doi: 10.1016/j.isprsjprs.2014.11.007
– volume: 15
  start-page: 28
  year: 2012
  ident: 10.1016/j.jocs.2021.101517_bib0290
  article-title: GEOBIA framework to estimate forest parameters from lidar transects, Quickbird imagery and machine learning: a case study in Quebec, Canada
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 83
  start-page: 101922
  year: 2019
  ident: 10.1016/j.jocs.2021.101517_bib0305
  article-title: Estimating Forest aboveground biomass using small-footprint full-waveform airborne LiDAR data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 491
  start-page: 119
  year: 2021
  ident: 10.1016/j.jocs.2021.101517_bib0080
  article-title: Beyond trees: mapping total aboveground biomass density in the Brazilian savanna using high-density UAV-lidar data
  publication-title: For. Ecol. Manage.
– volume: 10
  start-page: 819
  issue: 9
  year: 2019
  ident: 10.1016/j.jocs.2021.101517_bib0200
  article-title: Prediction of aboveground biomass from low-density LiDAR data: validation over P. Radiata data from a region north of Spain
  publication-title: Forests
  doi: 10.3390/f10090819
– year: 2005
  ident: 10.1016/j.jocs.2021.101517_bib0150
– volume: 34
  start-page: 3711
  issue: 21
  year: 2018
  ident: 10.1016/j.jocs.2021.101517_bib0235
  article-title: The revival of the Gini importance?
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty373
– year: 1984
  ident: 10.1016/j.jocs.2021.101517_bib0215
– volume: 137
  start-page: 163
  year: 2018
  ident: 10.1016/j.jocs.2021.101517_bib0030
  article-title: Important LiDAR metrics for discriminating forest tree species in Central Europe
  publication-title: J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.02.002
– volume: 87
  start-page: 567
  year: 2017
  ident: 10.1016/j.jocs.2021.101517_bib0125
  article-title: Airborne LiDAR technology: a review of data collection and processing systems
  publication-title: Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci.
  doi: 10.1007/s40010-017-0435-9
– volume: 96
  start-page: 453
  year: 2005
  ident: 10.1016/j.jocs.2021.101517_bib0185
  article-title: Estimating forest growth using canopy metrics derived from airborne laser scanner data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.04.001
– volume: 39
  start-page: S6
  issue: sup1
  year: 2013
  ident: 10.1016/j.jocs.2021.101517_bib0270
  article-title: How did we get here? An early history of forestry lidar1
  publication-title: Can. J. Remote. Sens.
  doi: 10.5589/m13-011
– volume: 91
  start-page: 243
  year: 2004
  ident: 10.1016/j.jocs.2021.101517_bib0180
  article-title: Effects of different flying altitudes on biophysical stand properties estimated from canopy height and density measured with a small-footprint airborne scanning laser
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.03.009
– volume: 123
  start-page: 443
  issue: 0
  year: 2012
  ident: 10.1016/j.jocs.2021.101517_bib0190
  article-title: Estimating biomass in Hedmark County, Norway using National Forest inventory field plots and airborne laser scanning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.01.025
– volume: 415
  start-page: 295
  issue: 20
  year: 2020
  ident: 10.1016/j.jocs.2021.101517_bib0240
  article-title: On hyperparameter optimization of machine learning algorithms: theory and practice
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.061
– volume: 112
  start-page: 3079
  issue: 6
  year: 2008
  ident: 10.1016/j.jocs.2021.101517_bib0280
  article-title: Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.03.004
– volume: 204
  start-page: 741
  year: 2018
  ident: 10.1016/j.jocs.2021.101517_bib0050
  article-title: Large-area hybrid estimation of aboveground biomass in interior alaska using airborne laser scanning data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.09.027
– year: 2000
  ident: 10.1016/j.jocs.2021.101517_bib0160
– volume: 204
  start-page: 883
  year: 2018
  ident: 10.1016/j.jocs.2021.101517_bib0060
  article-title: Utility of multitemporal lidar for forest and carbon monitoring: tree growth, biomass dynamics, and carbon flux
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.09.007
– year: 2005
  ident: 10.1016/j.jocs.2021.101517_bib0010
– volume: 54
  start-page: 199
  year: 1999
  ident: 10.1016/j.jocs.2021.101517_bib0120
  article-title: Airborne laser scanning: basic relations and formulas
  publication-title: J. Photogramm. Remote. Sens.
  doi: 10.1016/S0924-2716(99)00015-5
– volume: 90
  start-page: 319
  year: 2004
  ident: 10.1016/j.jocs.2021.101517_bib0275
  article-title: Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.01.006
– volume: 32
  start-page: 473
  issue: 2
  year: 2011
  ident: 10.1016/j.jocs.2021.101517_bib0085
  article-title: Estimating above-ground biomass in young forests with airborne laser scanning
  publication-title: Int. J. Remote
  doi: 10.1080/01431160903474970
– volume: 186
  start-page: 372
  year: 2016
  ident: 10.1016/j.jocs.2021.101517_bib0065
  article-title: Beyond 3-d: the new spectrum of lidar applications for earth and ecological sciences
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.08.018
– volume: 98
  start-page: 44
  issue: 6
  year: 2000
  ident: 10.1016/j.jocs.2021.101517_bib0130
  article-title: Lidar remote sensing for forestry
  publication-title: J. For.
– volume: 8
  issue: 4
  year: 2017
  ident: 10.1016/j.jocs.2021.101517_bib0205
  article-title: Neural network-based modelling for forest biomass assessment
  publication-title: Carbon Manag.
  doi: 10.1080/17583004.2017.1357402
– volume: 78
  start-page: 679
  year: 2012
  ident: 10.1016/j.jocs.2021.101517_bib0300
  article-title: A fusion approach for tree crown delineation from LiDAR data
  publication-title: Photogramm. Eng. Remote Sensing
  doi: 10.14358/PERS.78.7.679
– year: 2002
  ident: 10.1016/j.jocs.2021.101517_bib0145
– volume: 19
  start-page: 63
  year: 2005
  ident: 10.1016/j.jocs.2021.101517_bib0285
  article-title: El uso del escáner láser aerotransportado para la estimación de la biomasa foliar del pinus sylvestris L. En Canencia (madrid)
  publication-title: Cuadernos De La Sociedad Española De Ciencias Forestales.
– volume: 84
  start-page: 793
  year: 2018
  ident: 10.1016/j.jocs.2021.101517_bib0115
  article-title: Estimating vegetation biomass and cover across large plots in shrub and grass dominated drylands using terrestrial LiDAR and machine learning
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2017.09.034
– volume: 12
  start-page: 550
  year: 2021
  ident: 10.1016/j.jocs.2021.101517_bib0265
  article-title: LiDAR applications to estimate forest biomass at IndividualTree scale: opportunities, challenges and future perspectives
  publication-title: Forests
  doi: 10.3390/f12050550
– volume: 80
  start-page: 88
  year: 2002
  ident: 10.1016/j.jocs.2021.101517_bib0025
  article-title: Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00290-5
– volume: 13
  start-page: 1063
  year: 2012
  ident: 10.1016/j.jocs.2021.101517_bib0210
  article-title: Analysis of a random forests model
  publication-title: J. Mach. Learn. Res.
– volume: 114
  start-page: 1053
  year: 2010
  ident: 10.1016/j.jocs.2021.101517_bib0295
  article-title: Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.12.018
– volume: 208
  start-page: 189
  issue: 1–3
  year: 2005
  ident: 10.1016/j.jocs.2021.101517_bib0090
  article-title: Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2004.12.001
– year: 2004
  ident: 10.1016/j.jocs.2021.101517_bib0165
– volume: 205
  start-page: 141
  year: 2018
  ident: 10.1016/j.jocs.2021.101517_bib0195
  article-title: Hierarchical integration of individual tree and area-based approaches for savanna biomass uncertainty estimation from airborne lidar
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.11.010
– volume: 78
  start-page: 221
  year: 2017
  ident: 10.1016/j.jocs.2021.101517_bib0055
  article-title: Above-ground biomass estimation using airborne discrete-return and full-waveform LiDAR data in a coniferous forest
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2017.02.045
– volume: 90
  start-page: 229
  year: 1996
  ident: 10.1016/j.jocs.2021.101517_bib0255
  article-title: Testing ecological models: the meaning of validation
  publication-title: Ecol Model
  doi: 10.1016/0304-3800(95)00152-2
– year: 2012
  ident: 10.1016/j.jocs.2021.101517_bib0245
– volume: 211
  start-page: 146
  year: 2018
  ident: 10.1016/j.jocs.2021.101517_bib0045
  article-title: Lidar supported estimators of wood volume and aboveground biomass from the Danish National Forest Inventory (2012–2016)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.015
– volume: 29
  start-page: 527
  issue: 5
  year: 2003
  ident: 10.1016/j.jocs.2021.101517_bib0070
  article-title: Accuracy of a high-resolution lidar terrain model under a conifer forest canopy
  publication-title: Can. J. Remote. Sens.
  doi: 10.5589/m03-022
– volume: 97
  start-page: 1
  issue: 1
  year: 1997
  ident: 10.1016/j.jocs.2021.101517_bib0155
  article-title: Biomass equations for sixty-five North American tree species
  publication-title: For. Ecol. Manage.
  doi: 10.1016/S0378-1127(97)00019-4
– volume: 80
  start-page: 88
  year: 2002
  ident: 10.1016/j.jocs.2021.101517_bib0175
  article-title: Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00290-5
– volume: 204
  start-page: 872
  year: 2018
  ident: 10.1016/j.jocs.2021.101517_bib0035
  article-title: Improving Lidar-based aboveground biomass estimation of temperate hardwood forests with varying site productivity
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.09.011
– start-page: 59
  year: 1962
  ident: 10.1016/j.jocs.2021.101517_bib0250
– volume: 1
  year: 2020
  ident: 10.1016/j.jocs.2021.101517_bib0135
  article-title: The Global Ecosystem Dynamics Investigation: High-Resolution Laser Ranging of the Earth’s Forests and Topography
  publication-title: Sci. Remote Sens.
– start-page: 219
  year: 2016
  ident: 10.1016/j.jocs.2021.101517_bib0230
  article-title: Variable selection using mean decrease accuracy and mean decrease Gini based on random Forest
  publication-title: 7th IEEE International Conference on Software Engineering and Service Science (ICSESS)
– volume: 209
  start-page: 90
  year: 2018
  ident: 10.1016/j.jocs.2021.101517_bib0075
  article-title: Large-area mapping of canadian boreal forest cover, height,biomass and other structural attributes using landsat composites and lidar plots
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.12.020
– volume: 179
  start-page: 105815
  year: 2020
  ident: 10.1016/j.jocs.2021.101517_bib0110
  article-title: Forest inventory with high-density UAV-Lidar: machine learning approaches for predicting individual tree attributes
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105815
– volume: 52
  start-page: 371
  year: 2016
  ident: 10.1016/j.jocs.2021.101517_bib0040
  article-title: Above ground biomass and tree species richness estimation with airborne Lidar in tropical Ghana forests
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 1990
  ident: 10.1016/j.jocs.2021.101517_bib0140
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.jocs.2021.101517_bib0225
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– year: 2001
  ident: 10.1016/j.jocs.2021.101517_bib0005
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.jocs.2021.101517_bib0220
  article-title: Random forest
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 22
  start-page: 408
  issue: 3
  year: 2013
  ident: 10.1016/j.jocs.2021.101517_bib0015
  article-title: Above-ground biomass equations for Pinus Radiata d.dOn in Asturias
  publication-title: Forest Systems (INIA)
  doi: 10.5424/fs/2013223-04143
– volume: 85
  issue: 2
  year: 2012
  ident: 10.1016/j.jocs.2021.101517_bib0095
  article-title: Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities
  publication-title: Forestry
  doi: 10.1093/forestry/cps002
SSID ssj0000388913
Score 2.4886982
Snippet •The paper explores Random Forest models to estimate the biomass.•In the paper real data of Pinus Radiata species in a specific area of the Basque Country...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101517
SubjectTerms Biomass
LiDAR
Random forest
Regression
Title Above-ground biomass estimation from LiDAR data using random forest algorithms
URI https://dx.doi.org/10.1016/j.jocs.2021.101517
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KgngRWxXf7MGDIrHZZHeTPQa11FcPasFb2OxDW2ortnr0t7uTbIqC9OB12AlhMjuPMN83CB1xFlmlrQxcO6EDqgUNioSKwDDGlBRKUg5A4bse7_bp9RN7aqDzGgsDY5U-9lcxvYzWXtL21my_DQbtBwJUdiwEEAqwUEHfTmkCXn72Reb_WYDtRJRbkuF8AAoeO1ONeQ0nCli7IwICVu4t-yM__cg5nXW05otFnFXv00QNM26hlXpWvYWa_mZO8bGnjz7ZQL2smHyaAOAaY40BXu_qYwxkGhVKEQOiBN8OLrJ7DPOhGB73jF3O0k7ualh3FMvR8-R9MHt5nW6ifufy8bwb-K0JgaIknEFDyBOXpNPUpooDpVdCLRMhD40IleBEadcixZG1JtREWmqM5Eol2qZJKmUcb6Gl8WRsthEmsAMiKVhsuaY2DqWKIqIVEUJGysl2EKltlStPKQ6bLUZ5PTs2zMG-Odg3r-y7g07nOm8VocbC06z-BPkvt8hdxF-gt_tPvT20GgG-oRzL3kdLs_cPc-CqjllxWLrVIVrOrm66vW8uvNTU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSyQxEC5Ewd2L-FhZd1fNQcFFeqeTSdKdwx4GH4w6zsFV8NabycMd0RlxRsWLf2r_oKnutCiIB8FrkTTh61CPUN9XAGtSMG-s10koJ2zCreJJL-MqcUIIo5XRXCJR-LAr2yd8_1ScTsD_mguDbZXR91c-vfTW0dKIaDau-v3GH4pSdiJFEgqqUKWxs_LA3d-Fum30e287_OR1xnZ3jrfaSRwtkBhO0zFWTTIU8M0897mRqHuVcS9UKlOnUqMkNTbUEU3mvUst1Z47p6UxmfV5lmuNr6DB70_x4C5wbMKvB_r0sIPyKqocy4wHTPCEkaxT9ZWdDw3KhDOKBlEOSnslID4LcruzMBOzU9KqAJiDCTeYh-m6OX4e5qIrGJGNqFf9cwG6rd7w1iXIDxlYgnz-kJATVO-oaJEEKSyk099uHRFsSCX4uTMSgqQN9pA0h6VEX5wNr_vjf5ejL3DyIVguwuRgOHBfgVAcOpH1RNNLy30z1YYxag1VSjMTbEtAa6wKEzXMcZTGRVE3q50XiG-B-BYVvkuw-bTnqlLweHO1qH9B8eIeFiHEvLHv2zv3rcKn9vFhp-jsdQ--w2eG5IqyJ_wHTI6vb9xySHnGvZXyihH4-9F3-hFlqw-L
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Above-ground+biomass+estimation+from+LiDAR+data+using+random+forest+algorithms&rft.jtitle=Journal+of+computational+science&rft.au=Torre-Tojal%2C+Leyre&rft.au=Bastarrika%2C+Aitor&rft.au=Boyano%2C+Ana&rft.au=Lopez-Guede%2C+Jose+Manuel&rft.date=2022-02-01&rft.issn=1877-7503&rft.volume=58&rft.spage=101517&rft_id=info:doi/10.1016%2Fj.jocs.2021.101517&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jocs_2021_101517
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon