Above-ground biomass estimation from LiDAR data using random forest algorithms
•The paper explores Random Forest models to estimate the biomass.•In the paper real data of Pinus Radiata species in a specific area of the Basque Country (Spain) were used.•The LiDAR data used to create the models are of low-density•The dataset used to create the models has a very small size.•Two m...
Saved in:
Published in | Journal of computational science Vol. 58; p. 101517 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The paper explores Random Forest models to estimate the biomass.•In the paper real data of Pinus Radiata species in a specific area of the Basque Country (Spain) were used.•The LiDAR data used to create the models are of low-density•The dataset used to create the models has a very small size.•Two models were obtained showing an R2 higher than 0.7 and a prediction between 16–18 % higher than those given by the Basque Government.
Random forest (RF) models were developed to estimate the biomass for the Pinus radiata species in a region of the Basque Autonomous Community where this species has high cover, using the National Forest Inventory, allometric equations and low-density discrete LiDAR data. This article explores the tuning for RF hyperparameters, obtaining two models with an R2 higher than 0.7 using 2-fold cross-validation. The models selected were applied in Orozko, a municipality with more than 5000 ha of this species, where the model predicts a biomass of 1.06–1.08 Mton, which is between 16–18 % higher than the biomass predicted by the Basque Government. |
---|---|
AbstractList | •The paper explores Random Forest models to estimate the biomass.•In the paper real data of Pinus Radiata species in a specific area of the Basque Country (Spain) were used.•The LiDAR data used to create the models are of low-density•The dataset used to create the models has a very small size.•Two models were obtained showing an R2 higher than 0.7 and a prediction between 16–18 % higher than those given by the Basque Government.
Random forest (RF) models were developed to estimate the biomass for the Pinus radiata species in a region of the Basque Autonomous Community where this species has high cover, using the National Forest Inventory, allometric equations and low-density discrete LiDAR data. This article explores the tuning for RF hyperparameters, obtaining two models with an R2 higher than 0.7 using 2-fold cross-validation. The models selected were applied in Orozko, a municipality with more than 5000 ha of this species, where the model predicts a biomass of 1.06–1.08 Mton, which is between 16–18 % higher than the biomass predicted by the Basque Government. |
ArticleNumber | 101517 |
Author | Boyano, Ana Bastarrika, Aitor Graña, Manuel Lopez-Guede, Jose Manuel Torre-Tojal, Leyre |
Author_xml | – sequence: 1 givenname: Leyre surname: Torre-Tojal fullname: Torre-Tojal, Leyre email: leyre.torre@ehu.es organization: Department of Mining and Metallurgical Engineering and Materials Science, Faculty of Engineering, University of the Basque Country (UPV/EHU), Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain – sequence: 2 givenname: Aitor surname: Bastarrika fullname: Bastarrika, Aitor organization: Department of Mining and Metallurgical Engineering and Materials Science, Faculty of Engineering, University of the Basque Country (UPV/EHU), Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain – sequence: 3 givenname: Ana surname: Boyano fullname: Boyano, Ana organization: Mechanical Engineering Department, Faculty of Engineering of Vitoria-Gasteiz, University of the Basque Country, UPV/EHU, Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain – sequence: 4 givenname: Jose Manuel surname: Lopez-Guede fullname: Lopez-Guede, Jose Manuel organization: Department of Systems Engineering and Automatic Control, Faculty of Engineering, University of the Basque Country (UPV/EHU), Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain – sequence: 5 givenname: Manuel surname: Graña fullname: Graña, Manuel organization: Department of Computer Science and Artificial Intelligence, Faculty of Computer Science, University of the Basque Country (UPV/EHU), Paseo Manuel De Lardizabal, 1, 20018 Donostia-San Sebastian, Spain |
BookMark | eNp9kM9KAzEQxoNUsNa-gKe8wNbM7jbJgpdStQpFQfQc0vypWbqJJGnBt3fXigcPncsMH_Mb5vsu0cgHbxC6BjIDAvSmnbVBpVlJShiEObAzNAbOWMHmAKO_mVQXaJpSS_qqOG-gGqPnxSYcTLGNYe813rjQyZSwSdl1MrvgsY2hw2t3t3jFWmaJ98n5LY7S6163IfarWO62Ibr80aUrdG7lLpnpb5-g94f7t-VjsX5ZPS0X60LVQHJRk5IyCv0TlitK6oqw2s4bQolpiGooKA20rkprDdEgbW2MpEoxbTnjUlbVBPHjXRVDStFYoVz-eThH6XYCiBiiEa0YohFDNOIYTY-W_9DP2JuNX6eh2yNkelMHZ6JIyhmvjHbRqCx0cKfwb5Dcfyw |
CitedBy_id | crossref_primary_10_1016_j_ecolind_2024_111564 crossref_primary_10_3390_rs15112919 crossref_primary_10_1016_j_jag_2024_103966 crossref_primary_10_3390_f15061055 crossref_primary_10_1080_22797254_2024_2344569 crossref_primary_10_3390_atmos13081233 crossref_primary_10_3390_rs15112915 crossref_primary_10_3390_f15030548 crossref_primary_10_3390_rs15143543 crossref_primary_10_3390_rs16010148 crossref_primary_10_1109_JSTARS_2023_3313251 crossref_primary_10_1016_j_scitotenv_2025_178763 crossref_primary_10_3390_rs14225870 crossref_primary_10_3389_fpls_2023_1258521 crossref_primary_10_1007_s12155_024_10747_2 crossref_primary_10_3390_f13071108 crossref_primary_10_3390_f14071493 crossref_primary_10_1109_ACCESS_2023_3264266 crossref_primary_10_3389_fpls_2023_1139232 crossref_primary_10_1016_j_rsase_2024_101277 crossref_primary_10_3389_fenrg_2023_1252882 crossref_primary_10_1016_j_ecolind_2022_109694 crossref_primary_10_3390_rs15071853 crossref_primary_10_1016_j_pce_2024_103688 crossref_primary_10_3390_rs16234497 crossref_primary_10_1038_s41598_025_90906_3 crossref_primary_10_3390_f15010136 crossref_primary_10_3390_land11101656 crossref_primary_10_1016_j_tfp_2024_100763 crossref_primary_10_3390_f14010065 crossref_primary_10_3390_rs14122842 crossref_primary_10_3390_rs14164083 crossref_primary_10_3390_rs16244688 crossref_primary_10_1155_2022_7754179 crossref_primary_10_1109_JSTARS_2025_3539395 crossref_primary_10_3389_ffgc_2024_1456882 crossref_primary_10_1016_j_rser_2025_115559 crossref_primary_10_1016_j_heliyon_2022_e11382 crossref_primary_10_1016_j_ecoinf_2024_102712 crossref_primary_10_3389_fenvs_2025_1519297 crossref_primary_10_3390_rs14184666 crossref_primary_10_1016_j_rsase_2022_100882 crossref_primary_10_3390_land13101689 crossref_primary_10_3390_rs14020279 crossref_primary_10_1016_j_jocs_2024_102230 crossref_primary_10_3390_f15122106 crossref_primary_10_1016_j_egyr_2023_07_025 crossref_primary_10_1016_j_jag_2023_103252 crossref_primary_10_1016_j_scitotenv_2023_168726 crossref_primary_10_1088_1402_4896_ad3515 crossref_primary_10_1029_2023JG007864 crossref_primary_10_1016_j_autcon_2022_104714 crossref_primary_10_1021_acs_analchem_2c02289 crossref_primary_10_3390_rs16020324 |
Cites_doi | 10.1016/0034-4257(95)00224-3 10.1016/j.rse.2010.06.004 10.1016/j.rse.2012.07.006 10.1016/j.isprsjprs.2014.11.007 10.3390/f10090819 10.1093/bioinformatics/bty373 10.1016/j.isprsjprs.2018.02.002 10.1007/s40010-017-0435-9 10.1016/j.rse.2005.04.001 10.5589/m13-011 10.1016/j.rse.2004.03.009 10.1016/j.rse.2012.01.025 10.1016/j.neucom.2020.07.061 10.1016/j.rse.2008.03.004 10.1016/j.rse.2017.09.027 10.1016/j.rse.2017.09.007 10.1016/S0924-2716(99)00015-5 10.1016/j.rse.2004.01.006 10.1080/01431160903474970 10.1016/j.rse.2016.08.018 10.1080/17583004.2017.1357402 10.14358/PERS.78.7.679 10.1016/j.ecolind.2017.09.034 10.3390/f12050550 10.1016/S0034-4257(01)00290-5 10.1016/j.rse.2009.12.018 10.1016/j.foreco.2004.12.001 10.1016/j.rse.2017.11.010 10.1016/j.ecolind.2017.02.045 10.1016/0304-3800(95)00152-2 10.1016/j.rse.2018.04.015 10.5589/m03-022 10.1016/S0378-1127(97)00019-4 10.1016/j.rse.2017.09.011 10.1016/j.rse.2017.12.020 10.1016/j.compag.2020.105815 10.1023/A:1010933404324 10.5424/fs/2013223-04143 10.1093/forestry/cps002 |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.jocs.2021.101517 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Business |
EISSN | 1877-7511 |
ExternalDocumentID | 10_1016_j_jocs_2021_101517 S1877750321001800 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE P-8 P-9 P2P PC. Q38 RIG ROL SDF SES SPC SPCBC SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c410t-4026761388f8c6043074f59060e90c961cd16432ffe0d1af4eea6cc7df878aa33 |
IEDL.DBID | .~1 |
ISSN | 1877-7503 |
IngestDate | Tue Jul 01 03:46:10 EDT 2025 Thu Apr 24 23:11:49 EDT 2025 Fri Feb 23 02:40:19 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Regression Random forest Biomass LiDAR |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-4026761388f8c6043074f59060e90c961cd16432ffe0d1af4eea6cc7df878aa33 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877750321001800 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jocs_2021_101517 crossref_primary_10_1016_j_jocs_2021_101517 elsevier_sciencedirect_doi_10_1016_j_jocs_2021_101517 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of computational science |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Eamus, Burrows, McGuinness (bib0160) 2000 Næsset, Gobakken (bib0185) 2005; 96 Gobakken, Næsset, Nelson, Bollandsås, Gregoire, Ståhl, Holm, Ørka, Astrup (bib0190) 2012; 123 Breiman (bib0220) 2001; 45 Intergovernmental Panel of Climate Change (bib0005) 2001 Eitel, Höfle, Vierling, Abellán, Asner, Deems, Vierling (bib0065) 2016; 186 Biau (bib0210) 2012; 13 Nilsson (bib0170) 1996; 56 Næsset (bib0180) 2004; 91 Nandy, Singh, Ghosh, Watham, Kushwaha, Kumar, Dadhwal (bib0205) 2017; 8 Matasci, Hermosilla, Wulder, White, Coops, Hobart, Zald (bib0075) 2018; 209 Zianis, Seura (bib0150) 2005 Anderson (bib0115) 2018; 84 Hong, Xiaoling, Yu (bib0230) 2016 Goldbergs, Levick, Lawes, Edwards (bib0195) 2018; 205 Næsset (bib0175) 2002; 80 Maltamo, Eerikainen, Pitkanen, Hyyppa, Vehmas (bib0275) 2004; 90 Shi, Wang, Skidmore, Heurich (bib0030) 2018; 137 Ahmed, Franklin, Wulder, White (bib0100) 2015; 101 Gleason, Im (bib0300) 2012; 78 Næsset, Gobakken (bib0280) 2008; 112 Johansen, Phinn, Witte (bib0020) 2010; 114 Walpole, Myers, Myers, Ye (bib0245) 2012 Chen, Hay, St-Onge (bib0290) 2012; 15 Kenney, Keeping (bib0250) 1962 Luo (bib0305) 2019; 83 Shao, Shao, Gallion, Saunders, Frankenberger, Songlin (bib0035) 2018; 204 Yang, Shami (bib0240) 2020; 415 Ene, Gobakken, Andersen, Næsset, Cook, Morton, Babcock, Nelson (bib0050) 2018; 204 (bib0140) 1990 Xu, Wang, Xu, Luan, Xu (bib0265) 2021; 12 Lohani, Ghosh (bib0125) 2017; 87 Condés, Riaño (bib0285) 2005; 19 Montero, Ruiz-Peinado, Muñoz (bib0010) 2005 Teixeira da Costa (bib0080) 2021; 491 Canga, Dieguez-Aranda, Afif-Khouri, Camara-Obregon (bib0015) 2013; 22 Ter-Mikaelian, Korzukhin (bib0155) 1997; 97 Torre-Tojal, A.Bastarrika, Barrett, Espeso, Lopez-Guede, Graña (bib0200) 2019; 10 Næsset (bib0025) 2002; 80 Vaglio Laurin, Puletti, Chen, Corona, Papale, Valentini (bib0040) 2016; 52 Dalla Corte (bib0110) 2020; 179 Nie, Wang, Zeng, Xi, Li (bib0055) 2017; 78 Nelson (bib0270) 2013; 39 Nembrini, König, Wright (bib0235) 2018; 34 Magnussen, Nord-Larsen, Riis-Nielsen (bib0045) 2018; 211 Rykiel (bib0255) 1996; 90 Reutebuch, McGaughey, Andersen, Carson (bib0070) 2003; 29 Næsset (bib0085) 2011; 32 González-Ferreiro, Aranda, Miranda (bib0095) 2012; 85 Baltsavias (bib0120) 1999; 54 Probst, Boulesteix (bib0260) 2018; 18 Pedregosa, Varoquaux, Gramfort, Michel, Thirion (bib0225) 2011; 12 Hall, Burke, Box, Kaufmann, Stoker (bib0090) 2005; 208 Dubayah, Drake (bib0130) 2000; 98 Bravo, Del Río, Pando, San Martín, Montero, Ordoñez (bib0145) 2002 Powell, Cohen, Healey, Kennedy, Moisen, Pierce, Ohmann (bib0295) 2010; 114 Dubayah, Blair, Goetz, Fatoyinbo, Hansen, Healey, Hofton, Hurtt, Kellner, Luthcke (bib0135) 2020; 1 Gleason, Im (bib0105) 2012; 125 Breiman, Friedman, Olshen, Stone (bib0215) 1984 Zhao, Suarez, Garcia, Hu, Wang, Londo (bib0060) 2018; 204 (bib0165) 2004 Baltsavias (10.1016/j.jocs.2021.101517_bib0120) 1999; 54 Rykiel (10.1016/j.jocs.2021.101517_bib0255) 1996; 90 Johansen (10.1016/j.jocs.2021.101517_bib0020) 2010; 114 Nie (10.1016/j.jocs.2021.101517_bib0055) 2017; 78 Næsset (10.1016/j.jocs.2021.101517_bib0085) 2011; 32 (10.1016/j.jocs.2021.101517_bib0165) 2004 Torre-Tojal (10.1016/j.jocs.2021.101517_bib0200) 2019; 10 Magnussen (10.1016/j.jocs.2021.101517_bib0045) 2018; 211 Vaglio Laurin (10.1016/j.jocs.2021.101517_bib0040) 2016; 52 Dubayah (10.1016/j.jocs.2021.101517_bib0130) 2000; 98 Nilsson (10.1016/j.jocs.2021.101517_bib0170) 1996; 56 Gobakken (10.1016/j.jocs.2021.101517_bib0190) 2012; 123 Biau (10.1016/j.jocs.2021.101517_bib0210) 2012; 13 Intergovernmental Panel of Climate Change (10.1016/j.jocs.2021.101517_bib0005) 2001 Dubayah (10.1016/j.jocs.2021.101517_bib0135) 2020; 1 Luo (10.1016/j.jocs.2021.101517_bib0305) 2019; 83 Yang (10.1016/j.jocs.2021.101517_bib0240) 2020; 415 Chen (10.1016/j.jocs.2021.101517_bib0290) 2012; 15 Matasci (10.1016/j.jocs.2021.101517_bib0075) 2018; 209 Zianis (10.1016/j.jocs.2021.101517_bib0150) 2005 Breiman (10.1016/j.jocs.2021.101517_bib0220) 2001; 45 Montero (10.1016/j.jocs.2021.101517_bib0010) 2005 Zhao (10.1016/j.jocs.2021.101517_bib0060) 2018; 204 Næsset (10.1016/j.jocs.2021.101517_bib0025) 2002; 80 Anderson (10.1016/j.jocs.2021.101517_bib0115) 2018; 84 Walpole (10.1016/j.jocs.2021.101517_bib0245) 2012 Kenney (10.1016/j.jocs.2021.101517_bib0250) 1962 Ene (10.1016/j.jocs.2021.101517_bib0050) 2018; 204 Powell (10.1016/j.jocs.2021.101517_bib0295) 2010; 114 Hong (10.1016/j.jocs.2021.101517_bib0230) 2016 Hall (10.1016/j.jocs.2021.101517_bib0090) 2005; 208 Eitel (10.1016/j.jocs.2021.101517_bib0065) 2016; 186 Gleason (10.1016/j.jocs.2021.101517_bib0105) 2012; 125 Condés (10.1016/j.jocs.2021.101517_bib0285) 2005; 19 (10.1016/j.jocs.2021.101517_bib0140) 1990 Xu (10.1016/j.jocs.2021.101517_bib0265) 2021; 12 Næsset (10.1016/j.jocs.2021.101517_bib0180) 2004; 91 Dalla Corte (10.1016/j.jocs.2021.101517_bib0110) 2020; 179 Maltamo (10.1016/j.jocs.2021.101517_bib0275) 2004; 90 Shi (10.1016/j.jocs.2021.101517_bib0030) 2018; 137 González-Ferreiro (10.1016/j.jocs.2021.101517_bib0095) 2012; 85 Lohani (10.1016/j.jocs.2021.101517_bib0125) 2017; 87 Næsset (10.1016/j.jocs.2021.101517_bib0280) 2008; 112 Bravo (10.1016/j.jocs.2021.101517_bib0145) 2002 Eamus (10.1016/j.jocs.2021.101517_bib0160) 2000 Ahmed (10.1016/j.jocs.2021.101517_bib0100) 2015; 101 Ter-Mikaelian (10.1016/j.jocs.2021.101517_bib0155) 1997; 97 Reutebuch (10.1016/j.jocs.2021.101517_bib0070) 2003; 29 Næsset (10.1016/j.jocs.2021.101517_bib0175) 2002; 80 Nelson (10.1016/j.jocs.2021.101517_bib0270) 2013; 39 Goldbergs (10.1016/j.jocs.2021.101517_bib0195) 2018; 205 Shao (10.1016/j.jocs.2021.101517_bib0035) 2018; 204 Pedregosa (10.1016/j.jocs.2021.101517_bib0225) 2011; 12 Nembrini (10.1016/j.jocs.2021.101517_bib0235) 2018; 34 Canga (10.1016/j.jocs.2021.101517_bib0015) 2013; 22 Probst (10.1016/j.jocs.2021.101517_bib0260) 2018; 18 Teixeira da Costa (10.1016/j.jocs.2021.101517_bib0080) 2021; 491 Næsset (10.1016/j.jocs.2021.101517_bib0185) 2005; 96 Nandy (10.1016/j.jocs.2021.101517_bib0205) 2017; 8 Gleason (10.1016/j.jocs.2021.101517_bib0300) 2012; 78 Breiman (10.1016/j.jocs.2021.101517_bib0215) 1984 |
References_xml | – volume: 204 start-page: 741 year: 2018 end-page: 755 ident: bib0050 article-title: Large-area hybrid estimation of aboveground biomass in interior alaska using airborne laser scanning data publication-title: Remote Sens. Environ. – volume: 54 start-page: 199 year: 1999 end-page: 214 ident: bib0120 article-title: Airborne laser scanning: basic relations and formulas publication-title: J. Photogramm. Remote. Sens. – volume: 39 start-page: S6 year: 2013 end-page: S17 ident: bib0270 article-title: How did we get here? An early history of forestry lidar1 publication-title: Can. J. Remote. Sens. – volume: 29 start-page: 527 year: 2003 end-page: 535 ident: bib0070 article-title: Accuracy of a high-resolution lidar terrain model under a conifer forest canopy publication-title: Can. J. Remote. Sens. – volume: 13 start-page: 1063 year: 2012 end-page: 1095 ident: bib0210 article-title: Analysis of a random forests model publication-title: J. Mach. Learn. Res. – volume: 32 start-page: 473 year: 2011 ident: bib0085 article-title: Estimating above-ground biomass in young forests with airborne laser scanning publication-title: Int. J. Remote – volume: 90 start-page: 319 year: 2004 end-page: 330 ident: bib0275 article-title: Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions publication-title: Remote Sens. Environ. – year: 2004 ident: bib0165 article-title: Ecuaciones de cubicación para el Pino radiata en el País Vasco – volume: 208 start-page: 189 year: 2005 end-page: 209 ident: bib0090 article-title: Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests publication-title: For. Ecol. Manage. – volume: 97 start-page: 1 year: 1997 end-page: 24 ident: bib0155 article-title: Biomass equations for sixty-five North American tree species publication-title: For. Ecol. Manage. – volume: 491 start-page: 119 year: 2021 end-page: 155 ident: bib0080 article-title: Beyond trees: mapping total aboveground biomass density in the Brazilian savanna using high-density UAV-lidar data publication-title: For. Ecol. Manage. – volume: 91 start-page: 243 year: 2004 end-page: 255 ident: bib0180 article-title: Effects of different flying altitudes on biophysical stand properties estimated from canopy height and density measured with a small-footprint airborne scanning laser publication-title: Remote Sens. Environ. – volume: 137 start-page: 163 year: 2018 end-page: 174 ident: bib0030 article-title: Important LiDAR metrics for discriminating forest tree species in Central Europe publication-title: J. Photogramm. Remote Sens. – volume: 209 start-page: 90 year: 2018 end-page: 106 ident: bib0075 article-title: Large-area mapping of canadian boreal forest cover, height,biomass and other structural attributes using landsat composites and lidar plots publication-title: Remote Sens. Environ. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0220 article-title: Random forest publication-title: Mach. Learn. – year: 2005 ident: bib0150 article-title: Biomass and Stem Volume Equations for Tree Species in Europe – volume: 114 start-page: 2679 year: 2010 end-page: 2691 ident: bib0020 article-title: Mapping of riparian zone attributes using discrete return LiDAR, QuickBird and SPOT-5 imagery: assessing accuracy and costs publication-title: Remote Sens. Environ. – volume: 18 start-page: 1 year: 2018 end-page: 18 ident: bib0260 article-title: To tune or not to tune the number of trees in Random Forest publication-title: J. Mach. Learn. Res. – volume: 204 start-page: 883 year: 2018 end-page: 897 ident: bib0060 article-title: Utility of multitemporal lidar for forest and carbon monitoring: tree growth, biomass dynamics, and carbon flux publication-title: Remote Sens. Environ. – volume: 98 start-page: 44 year: 2000 end-page: 46 ident: bib0130 article-title: Lidar remote sensing for forestry publication-title: J. For. – volume: 123 start-page: 443 year: 2012 end-page: 456 ident: bib0190 article-title: Estimating biomass in Hedmark County, Norway using National Forest inventory field plots and airborne laser scanning publication-title: Remote Sens. Environ. – volume: 22 start-page: 408 year: 2013 end-page: 415 ident: bib0015 article-title: Above-ground biomass equations for Pinus Radiata d.dOn in Asturias publication-title: Forest Systems (INIA) – year: 2005 ident: bib0010 article-title: Producción de biomasa y fijación de CO2 por los bosques españoles – year: 1990 ident: bib0140 article-title: I.C.O.N.A. Segundo Inventario Forestal Nacional. Explicaciones y Métodos, Spain, 1986–1995, Madrid – volume: 96 start-page: 453 year: 2005 end-page: 465 ident: bib0185 article-title: Estimating forest growth using canopy metrics derived from airborne laser scanner data publication-title: Remote Sens. Environ. – year: 2012 ident: bib0245 article-title: Probabilidad y Estadística Para Ingeniería y Ciencias – volume: 114 start-page: 1053 year: 2010 end-page: 1068 ident: bib0295 article-title: Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches publication-title: Remote Sens. Environ. – volume: 85 year: 2012 ident: bib0095 article-title: Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities publication-title: Forestry – volume: 101 start-page: 89 year: 2015 end-page: 101 ident: bib0100 article-title: Characterizing stand-level forest canopy cover and height using landsat time series, samples of airborne lidar, and the random forest algorithm publication-title: Isprs J. Photogramm. Remote. Sens. – volume: 211 start-page: 146 year: 2018 end-page: 153 ident: bib0045 article-title: Lidar supported estimators of wood volume and aboveground biomass from the Danish National Forest Inventory (2012–2016) publication-title: Remote Sens. Environ. – start-page: 59 year: 1962 end-page: 60 ident: bib0250 article-title: “Root Mean Square.” §4.15 in Mathematics of Statistics, Pt. 1 – volume: 52 start-page: 371 year: 2016 end-page: 379 ident: bib0040 article-title: Above ground biomass and tree species richness estimation with airborne Lidar in tropical Ghana forests publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 87 start-page: 567 year: 2017 end-page: 579 ident: bib0125 article-title: Airborne LiDAR technology: a review of data collection and processing systems publication-title: Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. – volume: 15 start-page: 28 year: 2012 end-page: 37 ident: bib0290 article-title: GEOBIA framework to estimate forest parameters from lidar transects, Quickbird imagery and machine learning: a case study in Quebec, Canada publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 80 start-page: 88 year: 2002 end-page: 99 ident: bib0175 article-title: Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data publication-title: Remote Sens. Environ. – start-page: 219 year: 2016 end-page: 224 ident: bib0230 article-title: Variable selection using mean decrease accuracy and mean decrease Gini based on random Forest publication-title: 7th IEEE International Conference on Software Engineering and Service Science (ICSESS) – volume: 1 year: 2020 ident: bib0135 article-title: The Global Ecosystem Dynamics Investigation: High-Resolution Laser Ranging of the Earth’s Forests and Topography publication-title: Sci. Remote Sens. – year: 2002 ident: bib0145 article-title: El diseño de las parcelas del inventario forestal nacional y la estimación de variables dasométricas – volume: 56 start-page: 1 year: 1996 end-page: 7 ident: bib0170 article-title: Estimation of tree heights and stand volume using an airborne lidar system publication-title: Remote Sens. Environ. – volume: 125 start-page: 80 year: 2012 end-page: 91 ident: bib0105 article-title: Forest biomass estimation from airborne LiDAR data using machine learning approaches publication-title: Remote Sens. Environ. – volume: 19 start-page: 63 year: 2005 end-page: 70 ident: bib0285 article-title: El uso del escáner láser aerotransportado para la estimación de la biomasa foliar del pinus sylvestris L. En Canencia (madrid) publication-title: Cuadernos De La Sociedad Española De Ciencias Forestales. – volume: 83 start-page: 101922 year: 2019 ident: bib0305 article-title: Estimating Forest aboveground biomass using small-footprint full-waveform airborne LiDAR data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 415 start-page: 295 year: 2020 end-page: 316 ident: bib0240 article-title: On hyperparameter optimization of machine learning algorithms: theory and practice publication-title: Neurocomputing – volume: 90 start-page: 229 year: 1996 end-page: 244 ident: bib0255 article-title: Testing ecological models: the meaning of validation publication-title: Ecol Model – year: 2000 ident: bib0160 article-title: Review of Allometric Relationships for Estimating Woody Biomass for Queensland, the Northern Territory and Western Australia – volume: 80 start-page: 88 year: 2002 end-page: 99 ident: bib0025 article-title: Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data publication-title: Remote Sens. Environ. – year: 2001 ident: bib0005 article-title: Climate Change 2001; Syntesis Report – volume: 12 start-page: 550 year: 2021 ident: bib0265 article-title: LiDAR applications to estimate forest biomass at IndividualTree scale: opportunities, challenges and future perspectives publication-title: Forests – volume: 78 start-page: 679 year: 2012 end-page: 692 ident: bib0300 article-title: A fusion approach for tree crown delineation from LiDAR data publication-title: Photogramm. Eng. Remote Sensing – volume: 78 start-page: 221 year: 2017 end-page: 228 ident: bib0055 article-title: Above-ground biomass estimation using airborne discrete-return and full-waveform LiDAR data in a coniferous forest publication-title: Ecol. Indic. – volume: 8 year: 2017 ident: bib0205 article-title: Neural network-based modelling for forest biomass assessment publication-title: Carbon Manag. – volume: 84 start-page: 793 year: 2018 end-page: 802 ident: bib0115 article-title: Estimating vegetation biomass and cover across large plots in shrub and grass dominated drylands using terrestrial LiDAR and machine learning publication-title: Ecol. Indic. – volume: 186 start-page: 372 year: 2016 end-page: 392 ident: bib0065 article-title: Beyond 3-d: the new spectrum of lidar applications for earth and ecological sciences publication-title: Remote Sens. Environ. – volume: 10 start-page: 819 year: 2019 ident: bib0200 article-title: Prediction of aboveground biomass from low-density LiDAR data: validation over P. Radiata data from a region north of Spain publication-title: Forests – volume: 34 start-page: 3711 year: 2018 end-page: 3718 ident: bib0235 article-title: The revival of the Gini importance? publication-title: Bioinformatics – volume: 179 start-page: 105815 year: 2020 ident: bib0110 article-title: Forest inventory with high-density UAV-Lidar: machine learning approaches for predicting individual tree attributes publication-title: Comput. Electron. Agric. – volume: 205 start-page: 141 year: 2018 end-page: 150 ident: bib0195 article-title: Hierarchical integration of individual tree and area-based approaches for savanna biomass uncertainty estimation from airborne lidar publication-title: Remote Sens. Environ. – volume: 112 start-page: 3079 year: 2008 end-page: 3090 ident: bib0280 article-title: Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser publication-title: Remote Sens. Environ. – volume: 204 start-page: 872 year: 2018 end-page: 882 ident: bib0035 article-title: Improving Lidar-based aboveground biomass estimation of temperate hardwood forests with varying site productivity publication-title: Remote Sens. Environ. – year: 1984 ident: bib0215 article-title: Classification and Regression Trees – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib0225 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 18 start-page: 1 year: 2018 ident: 10.1016/j.jocs.2021.101517_bib0260 article-title: To tune or not to tune the number of trees in Random Forest publication-title: J. Mach. Learn. Res. – volume: 56 start-page: 1 year: 1996 ident: 10.1016/j.jocs.2021.101517_bib0170 article-title: Estimation of tree heights and stand volume using an airborne lidar system publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(95)00224-3 – volume: 114 start-page: 2679 issue: 11 year: 2010 ident: 10.1016/j.jocs.2021.101517_bib0020 article-title: Mapping of riparian zone attributes using discrete return LiDAR, QuickBird and SPOT-5 imagery: assessing accuracy and costs publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.06.004 – volume: 125 start-page: 80 year: 2012 ident: 10.1016/j.jocs.2021.101517_bib0105 article-title: Forest biomass estimation from airborne LiDAR data using machine learning approaches publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.07.006 – volume: 101 start-page: 89 year: 2015 ident: 10.1016/j.jocs.2021.101517_bib0100 article-title: Characterizing stand-level forest canopy cover and height using landsat time series, samples of airborne lidar, and the random forest algorithm publication-title: Isprs J. Photogramm. Remote. Sens. doi: 10.1016/j.isprsjprs.2014.11.007 – volume: 15 start-page: 28 year: 2012 ident: 10.1016/j.jocs.2021.101517_bib0290 article-title: GEOBIA framework to estimate forest parameters from lidar transects, Quickbird imagery and machine learning: a case study in Quebec, Canada publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 83 start-page: 101922 year: 2019 ident: 10.1016/j.jocs.2021.101517_bib0305 article-title: Estimating Forest aboveground biomass using small-footprint full-waveform airborne LiDAR data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 491 start-page: 119 year: 2021 ident: 10.1016/j.jocs.2021.101517_bib0080 article-title: Beyond trees: mapping total aboveground biomass density in the Brazilian savanna using high-density UAV-lidar data publication-title: For. Ecol. Manage. – volume: 10 start-page: 819 issue: 9 year: 2019 ident: 10.1016/j.jocs.2021.101517_bib0200 article-title: Prediction of aboveground biomass from low-density LiDAR data: validation over P. Radiata data from a region north of Spain publication-title: Forests doi: 10.3390/f10090819 – year: 2005 ident: 10.1016/j.jocs.2021.101517_bib0150 – volume: 34 start-page: 3711 issue: 21 year: 2018 ident: 10.1016/j.jocs.2021.101517_bib0235 article-title: The revival of the Gini importance? publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty373 – year: 1984 ident: 10.1016/j.jocs.2021.101517_bib0215 – volume: 137 start-page: 163 year: 2018 ident: 10.1016/j.jocs.2021.101517_bib0030 article-title: Important LiDAR metrics for discriminating forest tree species in Central Europe publication-title: J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.02.002 – volume: 87 start-page: 567 year: 2017 ident: 10.1016/j.jocs.2021.101517_bib0125 article-title: Airborne LiDAR technology: a review of data collection and processing systems publication-title: Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. doi: 10.1007/s40010-017-0435-9 – volume: 96 start-page: 453 year: 2005 ident: 10.1016/j.jocs.2021.101517_bib0185 article-title: Estimating forest growth using canopy metrics derived from airborne laser scanner data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.04.001 – volume: 39 start-page: S6 issue: sup1 year: 2013 ident: 10.1016/j.jocs.2021.101517_bib0270 article-title: How did we get here? An early history of forestry lidar1 publication-title: Can. J. Remote. Sens. doi: 10.5589/m13-011 – volume: 91 start-page: 243 year: 2004 ident: 10.1016/j.jocs.2021.101517_bib0180 article-title: Effects of different flying altitudes on biophysical stand properties estimated from canopy height and density measured with a small-footprint airborne scanning laser publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.03.009 – volume: 123 start-page: 443 issue: 0 year: 2012 ident: 10.1016/j.jocs.2021.101517_bib0190 article-title: Estimating biomass in Hedmark County, Norway using National Forest inventory field plots and airborne laser scanning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.01.025 – volume: 415 start-page: 295 issue: 20 year: 2020 ident: 10.1016/j.jocs.2021.101517_bib0240 article-title: On hyperparameter optimization of machine learning algorithms: theory and practice publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.061 – volume: 112 start-page: 3079 issue: 6 year: 2008 ident: 10.1016/j.jocs.2021.101517_bib0280 article-title: Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.03.004 – volume: 204 start-page: 741 year: 2018 ident: 10.1016/j.jocs.2021.101517_bib0050 article-title: Large-area hybrid estimation of aboveground biomass in interior alaska using airborne laser scanning data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.09.027 – year: 2000 ident: 10.1016/j.jocs.2021.101517_bib0160 – volume: 204 start-page: 883 year: 2018 ident: 10.1016/j.jocs.2021.101517_bib0060 article-title: Utility of multitemporal lidar for forest and carbon monitoring: tree growth, biomass dynamics, and carbon flux publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.09.007 – year: 2005 ident: 10.1016/j.jocs.2021.101517_bib0010 – volume: 54 start-page: 199 year: 1999 ident: 10.1016/j.jocs.2021.101517_bib0120 article-title: Airborne laser scanning: basic relations and formulas publication-title: J. Photogramm. Remote. Sens. doi: 10.1016/S0924-2716(99)00015-5 – volume: 90 start-page: 319 year: 2004 ident: 10.1016/j.jocs.2021.101517_bib0275 article-title: Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.01.006 – volume: 32 start-page: 473 issue: 2 year: 2011 ident: 10.1016/j.jocs.2021.101517_bib0085 article-title: Estimating above-ground biomass in young forests with airborne laser scanning publication-title: Int. J. Remote doi: 10.1080/01431160903474970 – volume: 186 start-page: 372 year: 2016 ident: 10.1016/j.jocs.2021.101517_bib0065 article-title: Beyond 3-d: the new spectrum of lidar applications for earth and ecological sciences publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.08.018 – volume: 98 start-page: 44 issue: 6 year: 2000 ident: 10.1016/j.jocs.2021.101517_bib0130 article-title: Lidar remote sensing for forestry publication-title: J. For. – volume: 8 issue: 4 year: 2017 ident: 10.1016/j.jocs.2021.101517_bib0205 article-title: Neural network-based modelling for forest biomass assessment publication-title: Carbon Manag. doi: 10.1080/17583004.2017.1357402 – volume: 78 start-page: 679 year: 2012 ident: 10.1016/j.jocs.2021.101517_bib0300 article-title: A fusion approach for tree crown delineation from LiDAR data publication-title: Photogramm. Eng. Remote Sensing doi: 10.14358/PERS.78.7.679 – year: 2002 ident: 10.1016/j.jocs.2021.101517_bib0145 – volume: 19 start-page: 63 year: 2005 ident: 10.1016/j.jocs.2021.101517_bib0285 article-title: El uso del escáner láser aerotransportado para la estimación de la biomasa foliar del pinus sylvestris L. En Canencia (madrid) publication-title: Cuadernos De La Sociedad Española De Ciencias Forestales. – volume: 84 start-page: 793 year: 2018 ident: 10.1016/j.jocs.2021.101517_bib0115 article-title: Estimating vegetation biomass and cover across large plots in shrub and grass dominated drylands using terrestrial LiDAR and machine learning publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2017.09.034 – volume: 12 start-page: 550 year: 2021 ident: 10.1016/j.jocs.2021.101517_bib0265 article-title: LiDAR applications to estimate forest biomass at IndividualTree scale: opportunities, challenges and future perspectives publication-title: Forests doi: 10.3390/f12050550 – volume: 80 start-page: 88 year: 2002 ident: 10.1016/j.jocs.2021.101517_bib0025 article-title: Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00290-5 – volume: 13 start-page: 1063 year: 2012 ident: 10.1016/j.jocs.2021.101517_bib0210 article-title: Analysis of a random forests model publication-title: J. Mach. Learn. Res. – volume: 114 start-page: 1053 year: 2010 ident: 10.1016/j.jocs.2021.101517_bib0295 article-title: Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.12.018 – volume: 208 start-page: 189 issue: 1–3 year: 2005 ident: 10.1016/j.jocs.2021.101517_bib0090 article-title: Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2004.12.001 – year: 2004 ident: 10.1016/j.jocs.2021.101517_bib0165 – volume: 205 start-page: 141 year: 2018 ident: 10.1016/j.jocs.2021.101517_bib0195 article-title: Hierarchical integration of individual tree and area-based approaches for savanna biomass uncertainty estimation from airborne lidar publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.11.010 – volume: 78 start-page: 221 year: 2017 ident: 10.1016/j.jocs.2021.101517_bib0055 article-title: Above-ground biomass estimation using airborne discrete-return and full-waveform LiDAR data in a coniferous forest publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2017.02.045 – volume: 90 start-page: 229 year: 1996 ident: 10.1016/j.jocs.2021.101517_bib0255 article-title: Testing ecological models: the meaning of validation publication-title: Ecol Model doi: 10.1016/0304-3800(95)00152-2 – year: 2012 ident: 10.1016/j.jocs.2021.101517_bib0245 – volume: 211 start-page: 146 year: 2018 ident: 10.1016/j.jocs.2021.101517_bib0045 article-title: Lidar supported estimators of wood volume and aboveground biomass from the Danish National Forest Inventory (2012–2016) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.04.015 – volume: 29 start-page: 527 issue: 5 year: 2003 ident: 10.1016/j.jocs.2021.101517_bib0070 article-title: Accuracy of a high-resolution lidar terrain model under a conifer forest canopy publication-title: Can. J. Remote. Sens. doi: 10.5589/m03-022 – volume: 97 start-page: 1 issue: 1 year: 1997 ident: 10.1016/j.jocs.2021.101517_bib0155 article-title: Biomass equations for sixty-five North American tree species publication-title: For. Ecol. Manage. doi: 10.1016/S0378-1127(97)00019-4 – volume: 80 start-page: 88 year: 2002 ident: 10.1016/j.jocs.2021.101517_bib0175 article-title: Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00290-5 – volume: 204 start-page: 872 year: 2018 ident: 10.1016/j.jocs.2021.101517_bib0035 article-title: Improving Lidar-based aboveground biomass estimation of temperate hardwood forests with varying site productivity publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.09.011 – start-page: 59 year: 1962 ident: 10.1016/j.jocs.2021.101517_bib0250 – volume: 1 year: 2020 ident: 10.1016/j.jocs.2021.101517_bib0135 article-title: The Global Ecosystem Dynamics Investigation: High-Resolution Laser Ranging of the Earth’s Forests and Topography publication-title: Sci. Remote Sens. – start-page: 219 year: 2016 ident: 10.1016/j.jocs.2021.101517_bib0230 article-title: Variable selection using mean decrease accuracy and mean decrease Gini based on random Forest publication-title: 7th IEEE International Conference on Software Engineering and Service Science (ICSESS) – volume: 209 start-page: 90 year: 2018 ident: 10.1016/j.jocs.2021.101517_bib0075 article-title: Large-area mapping of canadian boreal forest cover, height,biomass and other structural attributes using landsat composites and lidar plots publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.12.020 – volume: 179 start-page: 105815 year: 2020 ident: 10.1016/j.jocs.2021.101517_bib0110 article-title: Forest inventory with high-density UAV-Lidar: machine learning approaches for predicting individual tree attributes publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105815 – volume: 52 start-page: 371 year: 2016 ident: 10.1016/j.jocs.2021.101517_bib0040 article-title: Above ground biomass and tree species richness estimation with airborne Lidar in tropical Ghana forests publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 1990 ident: 10.1016/j.jocs.2021.101517_bib0140 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.jocs.2021.101517_bib0225 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – year: 2001 ident: 10.1016/j.jocs.2021.101517_bib0005 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.jocs.2021.101517_bib0220 article-title: Random forest publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 22 start-page: 408 issue: 3 year: 2013 ident: 10.1016/j.jocs.2021.101517_bib0015 article-title: Above-ground biomass equations for Pinus Radiata d.dOn in Asturias publication-title: Forest Systems (INIA) doi: 10.5424/fs/2013223-04143 – volume: 85 issue: 2 year: 2012 ident: 10.1016/j.jocs.2021.101517_bib0095 article-title: Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities publication-title: Forestry doi: 10.1093/forestry/cps002 |
SSID | ssj0000388913 |
Score | 2.4886982 |
Snippet | •The paper explores Random Forest models to estimate the biomass.•In the paper real data of Pinus Radiata species in a specific area of the Basque Country... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 101517 |
SubjectTerms | Biomass LiDAR Random forest Regression |
Title | Above-ground biomass estimation from LiDAR data using random forest algorithms |
URI | https://dx.doi.org/10.1016/j.jocs.2021.101517 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KgngRWxXf7MGDIrHZZHeTPQa11FcPasFb2OxDW2ortnr0t7uTbIqC9OB12AlhMjuPMN83CB1xFlmlrQxcO6EDqgUNioSKwDDGlBRKUg5A4bse7_bp9RN7aqDzGgsDY5U-9lcxvYzWXtL21my_DQbtBwJUdiwEEAqwUEHfTmkCXn72Reb_WYDtRJRbkuF8AAoeO1ONeQ0nCli7IwICVu4t-yM__cg5nXW05otFnFXv00QNM26hlXpWvYWa_mZO8bGnjz7ZQL2smHyaAOAaY40BXu_qYwxkGhVKEQOiBN8OLrJ7DPOhGB73jF3O0k7ualh3FMvR8-R9MHt5nW6ifufy8bwb-K0JgaIknEFDyBOXpNPUpooDpVdCLRMhD40IleBEadcixZG1JtREWmqM5Eol2qZJKmUcb6Gl8WRsthEmsAMiKVhsuaY2DqWKIqIVEUJGysl2EKltlStPKQ6bLUZ5PTs2zMG-Odg3r-y7g07nOm8VocbC06z-BPkvt8hdxF-gt_tPvT20GgG-oRzL3kdLs_cPc-CqjllxWLrVIVrOrm66vW8uvNTU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSyQxEC5Ewd2L-FhZd1fNQcFFeqeTSdKdwx4GH4w6zsFV8NabycMd0RlxRsWLf2r_oKnutCiIB8FrkTTh61CPUN9XAGtSMG-s10koJ2zCreJJL-MqcUIIo5XRXCJR-LAr2yd8_1ScTsD_mguDbZXR91c-vfTW0dKIaDau-v3GH4pSdiJFEgqqUKWxs_LA3d-Fum30e287_OR1xnZ3jrfaSRwtkBhO0zFWTTIU8M0897mRqHuVcS9UKlOnUqMkNTbUEU3mvUst1Z47p6UxmfV5lmuNr6DB70_x4C5wbMKvB_r0sIPyKqocy4wHTPCEkaxT9ZWdDw3KhDOKBlEOSnslID4LcruzMBOzU9KqAJiDCTeYh-m6OX4e5qIrGJGNqFf9cwG6rd7w1iXIDxlYgnz-kJATVO-oaJEEKSyk099uHRFsSCX4uTMSgqQN9pA0h6VEX5wNr_vjf5ejL3DyIVguwuRgOHBfgVAcOpH1RNNLy30z1YYxag1VSjMTbEtAa6wKEzXMcZTGRVE3q50XiG-B-BYVvkuw-bTnqlLweHO1qH9B8eIeFiHEvLHv2zv3rcKn9vFhp-jsdQ--w2eG5IqyJ_wHTI6vb9xySHnGvZXyihH4-9F3-hFlqw-L |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Above-ground+biomass+estimation+from+LiDAR+data+using+random+forest+algorithms&rft.jtitle=Journal+of+computational+science&rft.au=Torre-Tojal%2C+Leyre&rft.au=Bastarrika%2C+Aitor&rft.au=Boyano%2C+Ana&rft.au=Lopez-Guede%2C+Jose+Manuel&rft.date=2022-02-01&rft.issn=1877-7503&rft.volume=58&rft.spage=101517&rft_id=info:doi/10.1016%2Fj.jocs.2021.101517&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jocs_2021_101517 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon |