Characterisation of titanium oxide layers using Raman spectroscopy and optical profilometry: Influence of oxide properties
[Display omitted] This study evaluates the use of a combination of Raman spectroscopy and optical profilometry as a surface characterisation technique for the examination of oxide layers grown on titanium metal substrates. The titanium oxide layers with thickness of up to 8 µm, were obtained using a...
Saved in:
Published in | Results in physics Vol. 12; pp. 1574 - 1585 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
This study evaluates the use of a combination of Raman spectroscopy and optical profilometry as a surface characterisation technique for the examination of oxide layers grown on titanium metal substrates. The titanium oxide layers with thickness of up to 8 µm, were obtained using a low-pressure oxygen microwave plasma treatment of the titanium metal substrate. The effect of the microwave plasma processing conditions (input power, pressure and treatment time) on the Raman bandwidth, intensity and peak position was evaluated. Also, the effect of these processing conditions on the surface roughness parameters (Sa, Sdq, Ssk and Sku) of the oxide layers was investigated. Analysis of the peak positions of Eg and A1g modes indicated that the effects of input power and chamber pressure was to induce a shift towards the lower frequency with increasing input power and pressure (1–2 kPa). The intensity of the Raman bands was found to be dependent on the morphology and surface chemistry of the oxide layer. The intensity of Raman band (A1g), was found to be particularly influenced by the average surface roughness (Sa) and the crystallite size. Exponential and polynomial relations were found to correlate with these properties. A two-latent variable Partial Least Squares Regression model developed on Raman spectral data could predict surface roughness with a coefficient of determination (R2) of approx. 0.87 when applied to the testing of an independent set of titanium oxide test coatings. |
---|---|
AbstractList | This study evaluates the use of a combination of Raman spectroscopy and optical profilometry as a surface characterisation technique for the examination of oxide layers grown on titanium metal substrates. The titanium oxide layers with thickness of up to 8 µm, were obtained using a low-pressure oxygen microwave plasma treatment of the titanium metal substrate. The effect of the microwave plasma processing conditions (input power, pressure and treatment time) on the Raman bandwidth, intensity and peak position was evaluated. Also, the effect of these processing conditions on the surface roughness parameters (Sa, Sdq, Ssk and Sku) of the oxide layers was investigated. Analysis of the peak positions of Eg and A1g modes indicated that the effects of input power and chamber pressure was to induce a shift towards the lower frequency with increasing input power and pressure (1–2 kPa). The intensity of the Raman bands was found to be dependent on the morphology and surface chemistry of the oxide layer. The intensity of Raman band (A1g), was found to be particularly influenced by the average surface roughness (Sa) and the crystallite size. Exponential and polynomial relations were found to correlate with these properties. A two-latent variable Partial Least Squares Regression model developed on Raman spectral data could predict surface roughness with a coefficient of determination (R2) of approx. 0.87 when applied to the testing of an independent set of titanium oxide test coatings. Keywords: Titanium oxidation, Raman spectroscopy, Surface roughness parameters, Raman intensity, Microwave plasma, Raman mapping [Display omitted] This study evaluates the use of a combination of Raman spectroscopy and optical profilometry as a surface characterisation technique for the examination of oxide layers grown on titanium metal substrates. The titanium oxide layers with thickness of up to 8 µm, were obtained using a low-pressure oxygen microwave plasma treatment of the titanium metal substrate. The effect of the microwave plasma processing conditions (input power, pressure and treatment time) on the Raman bandwidth, intensity and peak position was evaluated. Also, the effect of these processing conditions on the surface roughness parameters (Sa, Sdq, Ssk and Sku) of the oxide layers was investigated. Analysis of the peak positions of Eg and A1g modes indicated that the effects of input power and chamber pressure was to induce a shift towards the lower frequency with increasing input power and pressure (1–2 kPa). The intensity of the Raman bands was found to be dependent on the morphology and surface chemistry of the oxide layer. The intensity of Raman band (A1g), was found to be particularly influenced by the average surface roughness (Sa) and the crystallite size. Exponential and polynomial relations were found to correlate with these properties. A two-latent variable Partial Least Squares Regression model developed on Raman spectral data could predict surface roughness with a coefficient of determination (R2) of approx. 0.87 when applied to the testing of an independent set of titanium oxide test coatings. |
Author | Dorrepaal, R. Dowling, D.P. Gowen, A. Ekoi, E.J. |
Author_xml | – sequence: 1 givenname: E.J. surname: Ekoi fullname: Ekoi, E.J. email: emmanuel.ekoi@ucdconnect.ie organization: University College Dublin, School of Mechanical and Materials Engineering, Belfield, Dublin 4, Ireland – sequence: 2 givenname: A. surname: Gowen fullname: Gowen, A. email: aoife.gowen@ucd.ie organization: University College Dublin, School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland – sequence: 3 givenname: R. surname: Dorrepaal fullname: Dorrepaal, R. email: ronan.dorrepaal@ucdconnect.ie organization: University College Dublin, School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland – sequence: 4 givenname: D.P. surname: Dowling fullname: Dowling, D.P. email: denis.dowling@ucd.ie organization: University College Dublin, School of Mechanical and Materials Engineering, Belfield, Dublin 4, Ireland |
BookMark | eNp9kc1qHDEQhIVxwI7tF8hJL7AT9fxpJuQSlvwsGAwmPoseqeVomZUGSRuyefposgmEHHxq0egrqqtes0sfPDH2BkQFAvq3-yo6v1S1gLESUImuvWDXdQ2waeQoL_95X7G7lPZCFKrtOoBr9nP7DSPqTNElzC54HizPLqN3xwMPP5whPuOJYuLH5Pwzf8QDep4W0jmGpMNy4ugND0t2Gme-xGDdHA6U4-kd33k7H8lrWlXPYuXDQjE7SrfslcU50d2fecOePn38uv2yuX_4vNt-uN_oFkTeNHq1OnRdO0E9WVljLcUgpbYGzTgZK2ACa_qukYMxw4DaAEjqRd-Kniw1N2x31jUB92qJ7oDxpAI69XsR4rPCYkjPpKCZBj21QGbs2nrAaQStzQBCQj-B7ovWcNbS5fgUySpdslpzyxHdrECotRK1V2slaq1ECVClkoLW_6F_rbwIvT9DVAL67iiqpN0aqHGxNFAucC_hvwCSI6rE |
CitedBy_id | crossref_primary_10_1039_D3CE01091K crossref_primary_10_2139_ssrn_4109929 crossref_primary_10_3390_molecules29215200 crossref_primary_10_1016_j_tsf_2025_140628 crossref_primary_10_1007_s11665_024_09492_6 crossref_primary_10_1002_smll_202405514 crossref_primary_10_1039_D2SD00223J crossref_primary_10_1155_2020_5769071 crossref_primary_10_3390_coatings14111362 crossref_primary_10_1177_00037028241267938 crossref_primary_10_3390_coatings13010175 crossref_primary_10_3390_app14083164 crossref_primary_10_1088_1755_1315_682_1_012073 crossref_primary_10_1088_2632_959X_acd131 crossref_primary_10_1016_j_solmat_2024_113175 crossref_primary_10_1021_acsnano_2c02971 crossref_primary_10_1021_acsphotonics_4c00329 crossref_primary_10_3390_catal14060377 crossref_primary_10_1002_masy_202100139 crossref_primary_10_1021_acs_jpcc_1c05781 crossref_primary_10_1016_j_mtcomm_2022_103337 crossref_primary_10_1016_j_matchemphys_2022_125803 crossref_primary_10_1016_j_mtcomm_2025_112292 crossref_primary_10_1016_j_jpcs_2024_111913 crossref_primary_10_1016_j_physb_2022_414059 crossref_primary_10_1016_j_jpowsour_2023_233211 crossref_primary_10_1002_open_202100157 crossref_primary_10_1016_j_surfcoat_2023_130288 crossref_primary_10_1021_acsami_9b16979 crossref_primary_10_1016_j_jallcom_2024_177141 crossref_primary_10_3390_app10155343 crossref_primary_10_1002_adhm_202402576 crossref_primary_10_1007_s12648_021_02123_z crossref_primary_10_1016_j_mcat_2022_112754 crossref_primary_10_1016_j_matdes_2022_110947 crossref_primary_10_1016_j_jwpe_2021_102279 crossref_primary_10_1021_acsaenm_4c00250 crossref_primary_10_1002_er_8667 crossref_primary_10_1016_j_optmat_2020_110651 crossref_primary_10_1039_C9JA00223E crossref_primary_10_1016_j_wear_2022_204588 crossref_primary_10_1016_j_electacta_2024_144309 crossref_primary_10_1016_j_nxmate_2023_100022 crossref_primary_10_1016_j_mseb_2020_114896 crossref_primary_10_1016_j_cplett_2021_139279 crossref_primary_10_1039_D4TB00992D crossref_primary_10_1021_acsaom_3c00158 crossref_primary_10_1021_acs_inorgchem_4c01379 crossref_primary_10_3390_ma16237399 crossref_primary_10_1088_2053_1591_ad2486 crossref_primary_10_1038_s41598_023_49516_0 crossref_primary_10_1016_j_apsusc_2024_160575 crossref_primary_10_1016_j_matpr_2023_01_143 crossref_primary_10_3390_ma13112649 crossref_primary_10_1016_j_apsusc_2021_150092 crossref_primary_10_1016_j_physb_2024_416823 crossref_primary_10_1016_j_susmat_2024_e01185 crossref_primary_10_1016_j_rechem_2023_100946 crossref_primary_10_1016_j_inoche_2024_113104 crossref_primary_10_3390_nano12061005 crossref_primary_10_1016_j_inoche_2024_112535 crossref_primary_10_1021_acsaem_3c00451 crossref_primary_10_3390_catal13010093 crossref_primary_10_1016_j_rsurfi_2024_100201 crossref_primary_10_1088_1361_648X_acf0b1 crossref_primary_10_1016_j_matchemphys_2020_124191 crossref_primary_10_3390_ma14226761 crossref_primary_10_35429_JSL_2021_25_8_16_24 crossref_primary_10_2139_ssrn_4022367 crossref_primary_10_3389_fchem_2020_00817 crossref_primary_10_1021_acsami_9b19494 crossref_primary_10_1016_j_cej_2024_157568 crossref_primary_10_1016_j_jpowsour_2023_233013 crossref_primary_10_1016_j_wear_2021_204184 crossref_primary_10_1088_2051_672X_abe213 crossref_primary_10_1007_s00339_023_07117_8 crossref_primary_10_1007_s10008_022_05237_4 crossref_primary_10_1016_j_apsusc_2019_144173 crossref_primary_10_1002_adfm_202110848 crossref_primary_10_1016_j_rinp_2023_106210 crossref_primary_10_1142_S2010324721500181 crossref_primary_10_3390_coatings10080707 crossref_primary_10_1016_j_ceramint_2022_03_319 crossref_primary_10_1016_j_jwpe_2025_107002 crossref_primary_10_1016_j_surfin_2020_100910 crossref_primary_10_1016_j_surfcoat_2024_131204 crossref_primary_10_1016_j_cej_2022_139645 crossref_primary_10_1021_acs_langmuir_3c02860 crossref_primary_10_1016_j_chemosphere_2023_140667 crossref_primary_10_1109_JSTQE_2022_3185735 crossref_primary_10_3390_nano13081403 crossref_primary_10_3390_en14237964 crossref_primary_10_1016_j_physb_2024_416208 crossref_primary_10_1021_acscatal_3c00655 crossref_primary_10_1016_j_rinp_2021_104060 crossref_primary_10_1038_s41598_022_09684_x crossref_primary_10_1021_acs_cgd_0c01299 crossref_primary_10_1016_j_jma_2022_10_021 crossref_primary_10_1007_s10853_020_04598_3 crossref_primary_10_1016_j_jssc_2023_124278 crossref_primary_10_1021_acs_langmuir_4c00028 crossref_primary_10_3390_min10110988 crossref_primary_10_1016_j_vacuum_2023_112345 crossref_primary_10_1007_s00339_021_04993_w crossref_primary_10_1016_j_optmat_2023_114081 crossref_primary_10_1007_s42235_019_0117_1 crossref_primary_10_1016_j_physb_2024_416058 crossref_primary_10_1038_s41598_024_61701_3 crossref_primary_10_1016_j_cattod_2024_115103 |
Cites_doi | 10.1021/j100166a025 10.1063/1.2061894 10.1002/jrs.1250260110 10.1016/S0039-6028(00)00420-9 10.1016/S0013-4686(99)00283-2 10.1063/1.104274 10.1016/0022-4596(70)90106-4 10.1039/C5TC02779A 10.1021/j150668a038 10.1002/adfm.201100301 10.1103/PhysRevB.79.245133 10.1016/S0022-3697(00)00229-8 10.1063/1.1656651 10.1103/PhysRevB.73.193202 10.1103/PhysRevLett.83.4357 10.3891/acta.chem.scand.12-0239 10.1103/PhysRevLett.78.1667 10.1002/adem.201300259 10.1063/1.2742914 10.1016/S0924-0136(02)00060-2 10.1016/0926-860X(92)85176-C 10.1039/c0jm03106b 10.1143/JJAP.31.L193 10.1016/j.physe.2015.09.013 10.1088/0034-4885/37/2/002 10.1016/j.mser.2004.11.001 10.1039/c3cp50927c 10.1063/1.2364123 10.1021/jp210720v 10.1107/S0021889878012844 10.1021/jp406948e 10.1021/acssuschemeng.8b02217 10.1103/PhysRev.56.978 10.1016/0039-6028(85)90239-0 10.1021/jp5020675 10.1126/science.275.5303.1102 10.1039/C5NR08380J 10.1002/cem.1349 10.1016/j.optmat.2008.12.030 10.1103/PhysRevB.75.045416 10.1016/0038-1098(81)90337-9 10.1021/jp301256h 10.1063/1.355808 10.1063/1.2722199 10.1016/j.biomaterials.2003.09.048 10.1016/S0169-4332(02)00447-6 10.1021/jp307573c 10.1016/j.apsusc.2007.03.047 10.1002/jbm.b.31605 10.1002/(SICI)1096-9918(199907)27:7<629::AID-SIA551>3.0.CO;2-0 10.1023/A:1003469427858 10.1002/jrs.1250221006 10.1016/j.matchemphys.2012.09.022 10.1016/S0925-9635(03)00179-1 10.1088/0034-4885/12/1/308 10.1016/j.biomaterials.2011.07.046 10.1016/S0040-6090(02)00814-3 10.1149/1.2425633 10.1038/238037a0 10.1103/PhysRev.154.522 10.1021/jp2122196 10.1016/0038-1098(86)90513-2 10.1002/(SICI)1097-4636(199704)35:1<49::AID-JBM6>3.0.CO;2-M 10.1103/PhysRevB.85.094305 10.1103/PhysRevB.77.104104 10.1016/j.triboint.2011.11.008 10.1002/jrs.1250070606 10.1016/0022-4596(82)90006-8 |
ContentType | Journal Article |
Copyright | 2019 |
Copyright_xml | – notice: 2019 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rinp.2019.01.054 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2211-3797 |
EndPage | 1585 |
ExternalDocumentID | oai_doaj_org_article_13b8cb41ed95428ab91ccd810716b1c6 10_1016_j_rinp_2019_01_054 S2211379718334661 |
GroupedDBID | --K 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M48 M~E NCXOZ O-L O9- OK1 RIG ROL SES SSZ XH2 AAFWJ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPKN AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c410t-3c45518554b12bf72a270877cfdad9bdf01b1fd65378dd88acd117e606406efe3 |
IEDL.DBID | IXB |
ISSN | 2211-3797 |
IngestDate | Wed Aug 27 01:30:46 EDT 2025 Tue Jul 01 02:27:29 EDT 2025 Thu Apr 24 23:12:43 EDT 2025 Wed May 17 01:59:53 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Microwave plasma Surface roughness parameters Raman spectroscopy Raman mapping Titanium oxidation Raman intensity |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-3c45518554b12bf72a270877cfdad9bdf01b1fd65378dd88acd117e606406efe3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211379718334661 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_13b8cb41ed95428ab91ccd810716b1c6 crossref_citationtrail_10_1016_j_rinp_2019_01_054 crossref_primary_10_1016_j_rinp_2019_01_054 elsevier_sciencedirect_doi_10_1016_j_rinp_2019_01_054 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2019 2019-03-00 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: March 2019 |
PublicationDecade | 2010 |
PublicationTitle | Results in physics |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Orii, Masumoto, Honda, Anada, Goto, Sasaki (b0155) 2010; 93B Tompsett, Bowmaker, Cooney, Metson, Rodgers, Seakins (b0060) 1995; 26 Diefenbeck, Mückley, Schrader, Schmidt, Zankovych, Bossert (b0145) 2011; 32 Sekiya, Ohta, Kamei, Hanakawa, Kurita (b0065) 2001; 62 Hardcastle, Wachs (b0005) 1991; 95 Hardcastle FD. Raman spectroscopy of Titania (TiO2) nanotubular water-splitting catalysts. vol. 65; 2011. Hanaor, Sorrell (b0020) 2014; 16 Milekhin, Sveshnikova, Duda, Yeryukov, Rodyakina, Gutakovskii (b0350) 2016; 75 Deo, Turek, Wachs, Machej, Haber, Das (b0030) 1992; 91 Lu, Bernasek, Schwartz (b0125) 2000; 458 Ma, Yang, Dai, Zhang, Lu, Ma (b0045) 2007; 253 Kneipp, Wang, Kneipp, Perelman, Itzkan, Dasari (b0340) 1997; 78 Arsov, Kormann, Plieth (b0050) 1991; 22 Kreibig, Genzel (b0325) 1985; 156 Langford, Wilson (b0195) 1978; 11 Tang, Neves, Fernandes (b0225) 2003; 12 Smith, Walsh, Clarke (b0250) 1998; 28 Colomban, Slodczyk (b0370) 2009; 31 Li, Kong, Kim, Kim, Kim, Heo (b0140) 2004; 25 Cho, Han, Ahn, Lee, Kim, Hwang (b0270) 2006; 73 Parker, Siegel (b0295) 1990; 57 Anderson, Tilley (b0265) 1970; 2 Bontempi, Carletti, De Angelis, Alessandri (b0360) 2016; 8 Sedlaček, Podgornik, Vižintin (b0315) 2012; 48 Macias, Alba, Marsal, Mihi (b0310) 2016; 4 Lan, Tang, Fultz (b0075) 2012; 85 Aita (b0080) 2007; 90 Fujishima, Honda (b0015) 1972; 238 Lukačević, Gupta, Jha, Kirin (b0040) 2012; 137 Liborio, Harrison (b0260) 2008; 77 Hayashi, Drawl, Messier (b0220) 1992; 31 Kofstad, Hauffe, Kjollesdal, Reilly, Wiswall (b0150) 1958; 12 Ohsaka, Izumi, Fujiki (b0055) 1978; 7 Qian, Yan, Fujita, Inoue, Chen (b0305) 2007; 90 Swamy, Muddle, Dai (b0085) 2006; 89 Xu, Bjerneld, Käll, Börjesson (b0335) 1999; 83 Balachandran, Eror (b0230) 1982; 42 Hildebrandt, Stockburger (b0320) 1984; 88 Xue, Ji, Mao, Mao, Wang, Wang (b0355) 2012; 116 Milekhin, Yeryukov, Sveshnikova, Duda, Kosolobov, Latyshev (b0345) 2012; 116 Mazza, Barborini, Piseri, Milani, Cattaneo, Li Bassi (b0100) 2007; 75 Leng, Huang, Yang, Chen, Sun, Wang (b0275) 2002; 420–421 Tian, Zhang, Zhang, Pan (b0110) 2012; 116 Schroen (b0215) 1968; 39 Zwilling, Aucouturier, Darque-Ceretti (b0160) 1999; 45 Porto, Fleury, Damen (b0035) 1967; 154 Gowen, Downey, Esquerre, O’Donnell (b0200) 2011; 25 Miles, Smith (b0210) 1963; 110 Cabrera, Mott (b0290) 1949; 12 Ekoi, Awais, Dowling (b0185) 2018 Lawless (b0205) 1974; 37 Etacheri, Seery, Hinder, Pillai (b0280) 2011; 21 Lombardi, Birke (b0365) 2014; 118 Liborio, Mallia, Harrison (b0255) 2009; 79 Campbell, Fauchet (b0245) 1986; 58 Zhang, Li, Feng, Chen, Li (b0115) 2005 Liu, Chu, Ding (b0010) 2004; 47 Li Bassi, Cattaneo, Russo, Bottani, Barborini, Mazza (b0105) 2005; 98 Richter, Wang, Ley (b0240) 1981; 39 Zhang, Harris, Wallenmeyer, Murowchick, Chen (b0090) 2013; 117 Jiang, Zhang, Jiang, Rong, Wang, Wu (b0095) 2012; 116 She, Zhou, Li, Wang, Huang, Wang (b0285) 2018; 6 Pérez del Pino, Serra, Morenza (b0130) 2002; 197–198 Yang, Huang, Hao, Zhang, Hou, Wang (b0235) 1994; 75 Aronsson, Lausmaa, Kasemo (b0170) 1997; 35 Ekoi, Stallard, Reid, Dowling (b0180) 2017 Kuciauskas, Freund, Gray, Winkler, Lewis (b0025) 2000 Zwilling, Darque-Ceretti, Boutry-Forveille, David, Perrin, Aucouturier (b0165) 1999; 27 Kakizaka, Sakamoto, Matsuura, Akatsuka (b0175) 2007; 10 Patterson (b0190) 1939; 56 Yan, Wu, Guan, Li, Li, Cao (b0070) 2013; 15 Gadelmawla, Koura, Maksoud, Elewa, Soliman (b0300) 2002; 123 Gemelli, Camargo (b0135) 2007; 12 Nie, Emory (b0330) 1997; 275 Langford (10.1016/j.rinp.2019.01.054_b0195) 1978; 11 Zhang (10.1016/j.rinp.2019.01.054_b0090) 2013; 117 Parker (10.1016/j.rinp.2019.01.054_b0295) 1990; 57 Zhang (10.1016/j.rinp.2019.01.054_b0115) 2005 Hanaor (10.1016/j.rinp.2019.01.054_b0020) 2014; 16 Ekoi (10.1016/j.rinp.2019.01.054_b0185) 2018 Nie (10.1016/j.rinp.2019.01.054_b0330) 1997; 275 Milekhin (10.1016/j.rinp.2019.01.054_b0345) 2012; 116 Colomban (10.1016/j.rinp.2019.01.054_b0370) 2009; 31 Fujishima (10.1016/j.rinp.2019.01.054_b0015) 1972; 238 Richter (10.1016/j.rinp.2019.01.054_b0240) 1981; 39 She (10.1016/j.rinp.2019.01.054_b0285) 2018; 6 Kofstad (10.1016/j.rinp.2019.01.054_b0150) 1958; 12 Aronsson (10.1016/j.rinp.2019.01.054_b0170) 1997; 35 Yan (10.1016/j.rinp.2019.01.054_b0070) 2013; 15 Etacheri (10.1016/j.rinp.2019.01.054_b0280) 2011; 21 Cabrera (10.1016/j.rinp.2019.01.054_b0290) 1949; 12 Lombardi (10.1016/j.rinp.2019.01.054_b0365) 2014; 118 Ohsaka (10.1016/j.rinp.2019.01.054_b0055) 1978; 7 Smith (10.1016/j.rinp.2019.01.054_b0250) 1998; 28 Li Bassi (10.1016/j.rinp.2019.01.054_b0105) 2005; 98 Lu (10.1016/j.rinp.2019.01.054_b0125) 2000; 458 Cho (10.1016/j.rinp.2019.01.054_b0270) 2006; 73 Hayashi (10.1016/j.rinp.2019.01.054_b0220) 1992; 31 Jiang (10.1016/j.rinp.2019.01.054_b0095) 2012; 116 Hardcastle (10.1016/j.rinp.2019.01.054_b0005) 1991; 95 Balachandran (10.1016/j.rinp.2019.01.054_b0230) 1982; 42 Liborio (10.1016/j.rinp.2019.01.054_b0260) 2008; 77 Gadelmawla (10.1016/j.rinp.2019.01.054_b0300) 2002; 123 Tian (10.1016/j.rinp.2019.01.054_b0110) 2012; 116 Porto (10.1016/j.rinp.2019.01.054_b0035) 1967; 154 Patterson (10.1016/j.rinp.2019.01.054_b0190) 1939; 56 Tang (10.1016/j.rinp.2019.01.054_b0225) 2003; 12 10.1016/j.rinp.2019.01.054_b0120 Xue (10.1016/j.rinp.2019.01.054_b0355) 2012; 116 Liu (10.1016/j.rinp.2019.01.054_b0010) 2004; 47 Bontempi (10.1016/j.rinp.2019.01.054_b0360) 2016; 8 Kakizaka (10.1016/j.rinp.2019.01.054_b0175) 2007; 10 Gowen (10.1016/j.rinp.2019.01.054_b0200) 2011; 25 Lawless (10.1016/j.rinp.2019.01.054_b0205) 1974; 37 Ekoi (10.1016/j.rinp.2019.01.054_b0180) 2017 Macias (10.1016/j.rinp.2019.01.054_b0310) 2016; 4 Aita (10.1016/j.rinp.2019.01.054_b0080) 2007; 90 Liborio (10.1016/j.rinp.2019.01.054_b0255) 2009; 79 Gemelli (10.1016/j.rinp.2019.01.054_b0135) 2007; 12 Anderson (10.1016/j.rinp.2019.01.054_b0265) 1970; 2 Pérez del Pino (10.1016/j.rinp.2019.01.054_b0130) 2002; 197–198 Miles (10.1016/j.rinp.2019.01.054_b0210) 1963; 110 Schroen (10.1016/j.rinp.2019.01.054_b0215) 1968; 39 Kuciauskas (10.1016/j.rinp.2019.01.054_b0025) 2000 Arsov (10.1016/j.rinp.2019.01.054_b0050) 1991; 22 Tompsett (10.1016/j.rinp.2019.01.054_b0060) 1995; 26 Lukačević (10.1016/j.rinp.2019.01.054_b0040) 2012; 137 Swamy (10.1016/j.rinp.2019.01.054_b0085) 2006; 89 Kreibig (10.1016/j.rinp.2019.01.054_b0325) 1985; 156 Mazza (10.1016/j.rinp.2019.01.054_b0100) 2007; 75 Lan (10.1016/j.rinp.2019.01.054_b0075) 2012; 85 Sedlaček (10.1016/j.rinp.2019.01.054_b0315) 2012; 48 Hildebrandt (10.1016/j.rinp.2019.01.054_b0320) 1984; 88 Sekiya (10.1016/j.rinp.2019.01.054_b0065) 2001; 62 Deo (10.1016/j.rinp.2019.01.054_b0030) 1992; 91 Campbell (10.1016/j.rinp.2019.01.054_b0245) 1986; 58 Qian (10.1016/j.rinp.2019.01.054_b0305) 2007; 90 Xu (10.1016/j.rinp.2019.01.054_b0335) 1999; 83 Milekhin (10.1016/j.rinp.2019.01.054_b0350) 2016; 75 Diefenbeck (10.1016/j.rinp.2019.01.054_b0145) 2011; 32 Ma (10.1016/j.rinp.2019.01.054_b0045) 2007; 253 Kneipp (10.1016/j.rinp.2019.01.054_b0340) 1997; 78 Leng (10.1016/j.rinp.2019.01.054_b0275) 2002; 420–421 Yang (10.1016/j.rinp.2019.01.054_b0235) 1994; 75 Li (10.1016/j.rinp.2019.01.054_b0140) 2004; 25 Orii (10.1016/j.rinp.2019.01.054_b0155) 2010; 93B Zwilling (10.1016/j.rinp.2019.01.054_b0165) 1999; 27 Zwilling (10.1016/j.rinp.2019.01.054_b0160) 1999; 45 |
References_xml | – volume: 253 start-page: 7497 year: 2007 end-page: 7500 ident: b0045 article-title: Raman study of phase transformation of TiO publication-title: Appl Surf Sci – volume: 45 start-page: 921 year: 1999 end-page: 929 ident: b0160 article-title: Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach publication-title: Electrochim Acta – year: 2000 ident: b0025 article-title: Electron transfer dynamics in nanocrystalline titanium dioxide solar cells sensitized with ruthenium or osmium polypyridyl complexes publication-title: J Phys Chem – volume: 110 start-page: 1240 year: 1963 ident: b0210 article-title: The formation of metal oxide films using gaseous and solid electrolytes publication-title: J Electrochem Soc – volume: 78 start-page: 1667 year: 1997 end-page: 1670 ident: b0340 article-title: Single molecule detection using surface-enhanced Raman scattering (SERS) publication-title: Phys Rev Lett – volume: 56 start-page: 978 year: 1939 end-page: 982 ident: b0190 article-title: The Scherrer formula for X-ray particle size determination publication-title: Phys Rev – volume: 6 start-page: 11939 year: 2018 end-page: 11948 ident: b0285 article-title: Nickel-Doped excess oxygen defect titanium dioxide for efficient selective photocatalytic oxidation of benzyl alcohol publication-title: ACS Sustain Chem Eng – volume: 25 start-page: 375 year: 2011 end-page: 381 ident: b0200 article-title: Preventing over-fitting in PLS calibration models of near-infrared (NIR) spectroscopy data using regression coefficients publication-title: J Chemom – volume: 4 start-page: 3970 year: 2016 end-page: 3975 ident: b0310 article-title: Surface roughness boosts the SERS performance of imprinted plasmonic architectures publication-title: J Mater Chem C – volume: 89 year: 2006 ident: b0085 article-title: Size-dependent modifications of the Raman spectrum of rutile TiO publication-title: Appl Phys Lett – volume: 95 start-page: 5031 year: 1991 end-page: 5041 ident: b0005 article-title: Determination of vanadium-oxygen bond distances and bond orders by Raman spectroscopy publication-title: J Phys Chem – volume: 98 year: 2005 ident: b0105 article-title: Raman spectroscopy characterization of Titania nanoparticles produced by flame pyrolysis: The influence of size and stoichiometry publication-title: J Appl Phys – volume: 116 start-page: 17164 year: 2012 end-page: 17168 ident: b0345 article-title: Raman scattering for probing semiconductor nanocrystal arrays with a low areal density publication-title: J Phys Chem C – volume: 26 start-page: 57 year: 1995 end-page: 62 ident: b0060 article-title: The Raman spectrum of brookite, TiO publication-title: J Raman Spectrosc – volume: 31 start-page: L193 year: 1992 end-page: L196 ident: b0220 article-title: Temperature dependence of nucleation density of chemical vapor deposition diamond publication-title: Jpn J Appl Phys – year: 2018 ident: b0185 article-title: Microwave plasmas as a processing tool for tailoring the surface properties of ceramic coatings publication-title: Recent Adv. Porous Ceram. – volume: 48 start-page: 102 year: 2012 end-page: 112 ident: b0315 article-title: Correlation between standard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces publication-title: Tribol Int – volume: 12 start-page: 239 year: 1958 end-page: 266 ident: b0150 article-title: Investigation on the oxidation mechanism of titanium publication-title: Acta Chem Scand – volume: 47 start-page: 49 year: 2004 end-page: 121 ident: b0010 article-title: Surface modification of titanium, titanium alloys, and related materials for biomedical applications publication-title: Mater Sci Eng R Rep – volume: 238 start-page: 37 year: 1972 end-page: 38 ident: b0015 article-title: Electrochemical photolysis of water at a semiconductor electrode publication-title: Nature – volume: 42 start-page: 276 year: 1982 end-page: 282 ident: b0230 article-title: Raman spectra of titanium dioxide publication-title: J Solid State Chem – volume: 79 year: 2009 ident: b0255 article-title: Electronic structure of the Ti publication-title: Phys Rev B – volume: 62 start-page: 717 year: 2001 end-page: 721 ident: b0065 article-title: Raman spectroscopy and phase transition of anatase TiO publication-title: J Phys Chem Solids – volume: 91 start-page: 27 year: 1992 end-page: 42 ident: b0030 article-title: Physical and chemical characterization of surface vanadium oxide supported on titania: influence of the titania phase (anatase, rutile, brookite and B) publication-title: Appl Catal A Gen – start-page: 325 year: 2017 ident: b0180 article-title: Tailoring oxide-layer formation on titanium substrates using microwave plasma treatments publication-title: Surf Coat Technol – volume: 35 start-page: 49 year: 1997 end-page: 73 ident: b0170 article-title: Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials publication-title: J Biomed Mater Res – volume: 90 year: 2007 ident: b0080 article-title: Raman scattering by thin film nanomosaic rutile TiO publication-title: Appl Phys Lett – reference: Hardcastle FD. Raman spectroscopy of Titania (TiO2) nanotubular water-splitting catalysts. vol. 65; 2011. – volume: 39 start-page: 2671 year: 1968 end-page: 2678 ident: b0215 article-title: Physics of preparation of Josephson barriers publication-title: J Appl Phys – volume: 75 start-page: 210 year: 2016 end-page: 222 ident: b0350 article-title: Surface-enhanced Raman spectroscopy of semiconductor nanostructures publication-title: Phys E Low-Dimensional Syst Nanostruct – volume: 10 start-page: 253 year: 2007 end-page: 259 ident: b0175 article-title: Titanium oxidation by microwave discharge oxygen plasma and relationship with plasma parameters publication-title: J Adv Oxid Technol – volume: 90 year: 2007 ident: b0305 article-title: Surface enhanced Raman scattering of nanoporous gold: smaller pore sizes stronger enhancements publication-title: Appl Phys Lett – volume: 7 start-page: 321 year: 1978 end-page: 324 ident: b0055 article-title: Raman spectrum of anatase, TiO publication-title: J Raman Spectrosc – volume: 154 start-page: 522 year: 1967 end-page: 526 ident: b0035 article-title: Raman spectra of TiO publication-title: Phys Rev – volume: 93B start-page: 476 year: 2010 end-page: 483 ident: b0155 article-title: Enhancement of octacalcium phosphate deposition on a titanium surface activated by electron cyclotron resonance plasma oxidation publication-title: J Biomed Mater Res Part B Appl Biomater – volume: 123 start-page: 133 year: 2002 end-page: 145 ident: b0300 article-title: Roughness parameters publication-title: J Mater Process Technol – volume: 12 start-page: 525 year: 2007 end-page: 531 ident: b0135 article-title: Oxidation kinetics of commercially pure titanium publication-title: Matéria – volume: 458 start-page: 80 year: 2000 end-page: 90 ident: b0125 article-title: Oxidation of a polycrystalline titanium surface by oxygen and water publication-title: Surf Sci – volume: 73 year: 2006 ident: b0270 article-title: First-principles study of point defects in rutile TiO publication-title: Phys Rev B – volume: 25 start-page: 2867 year: 2004 end-page: 2875 ident: b0140 article-title: Improved biological performance of Ti implants due to surface modification by micro-arc oxidation publication-title: Biomaterials – volume: 27 start-page: 629 year: 1999 end-page: 637 ident: b0165 article-title: Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy publication-title: Surf Interface Anal – volume: 16 start-page: 248 year: 2014 end-page: 254 ident: b0020 article-title: Sand supported mixed-phase TiO publication-title: Adv Eng Mater – volume: 11 start-page: 102 year: 1978 end-page: 113 ident: b0195 article-title: Scherrer after sixty years: a survey and some new results in the determination of crystallite size publication-title: J Appl Crystallogr – volume: 8 start-page: 3226 year: 2016 end-page: 3231 ident: b0360 article-title: Plasmon-free SERS detection of environmental CO publication-title: Nanoscale – volume: 39 start-page: 625 year: 1981 end-page: 629 ident: b0240 article-title: The one phonon Raman spectrum in microcrystalline silicon publication-title: Solid State Commun – volume: 275 start-page: 1102 year: 1997 end-page: 1106 ident: b0330 article-title: Probing single molecules and single nanoparticles by surface-enhanced raman scattering publication-title: Science – volume: 31 start-page: 1759 year: 2009 end-page: 1763 ident: b0370 article-title: Raman intensity: an important tool to study the structure and phase transitions of amorphous/crystalline materials publication-title: Opt Mater (Amst) – volume: 197–198 start-page: 887 year: 2002 end-page: 890 ident: b0130 article-title: Oxidation of titanium through Nd:YAG laser irradiation publication-title: Appl Surf Sci – year: 2005 ident: b0115 article-title: UV Raman spectroscopic study on TiO publication-title: J Phys Chem – volume: 116 start-page: 8792 year: 2012 end-page: 8797 ident: b0355 article-title: Raman investigation of nanosized TiO publication-title: J Phys Chem C – volume: 75 year: 2007 ident: b0100 article-title: Raman spectroscopy characterization of TiO publication-title: Phys Rev B – volume: 156 start-page: 678 year: 1985 end-page: 700 ident: b0325 article-title: Optical absorption of small metallic particles publication-title: Surf Sci – volume: 420–421 start-page: 408 year: 2002 end-page: 413 ident: b0275 article-title: Influence of oxygen pressure on the properties and biocompatibility of titanium oxide fabricated by metal plasma ion implantation and deposition publication-title: Thin Solid Films – volume: 12 start-page: 163 year: 1949 end-page: 184 ident: b0290 article-title: Theory of the oxidation of metals publication-title: Reports Prog Phys – volume: 37 start-page: 231 year: 1974 end-page: 316 ident: b0205 article-title: The oxidation of metals publication-title: Reports Prog Phys – volume: 28 start-page: 1021 year: 1998 end-page: 1033 ident: b0250 article-title: Electrodes based on Magnéli phase titanium oxides: the properties and applications of Ebonex® materials publication-title: J Appl Electrochem – volume: 116 start-page: 7515 year: 2012 end-page: 7519 ident: b0110 article-title: Raman spectroscopy: a new approach to measure the percentage of anatase TiO publication-title: J Phys Chem C – volume: 118 start-page: 11120 year: 2014 end-page: 11130 ident: b0365 article-title: Theory of surface-enhanced Raman scattering in semiconductors publication-title: J Phys Chem C – volume: 83 start-page: 4357 year: 1999 end-page: 4360 ident: b0335 article-title: Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering publication-title: Phys Rev Lett – volume: 58 start-page: 739 year: 1986 end-page: 741 ident: b0245 article-title: The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors publication-title: Solid State Commun – volume: 15 start-page: 10978 year: 2013 ident: b0070 article-title: Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO publication-title: Phys Chem Chem Phys – volume: 32 start-page: 8041 year: 2011 end-page: 8047 ident: b0145 article-title: The effect of plasma chemical oxidation of titanium alloy on bone-implant contact in rats publication-title: Biomaterials – volume: 116 start-page: 22619 year: 2012 end-page: 22624 ident: b0095 article-title: Characterization of oxygen vacancy associates within hydrogenated TiO publication-title: J Phys Chem C – volume: 77 year: 2008 ident: b0260 article-title: Thermodynamics of oxygen defective Magnéli phases in rutile: a first-principles study publication-title: Phys Rev B – volume: 21 start-page: 3744 year: 2011 end-page: 3752 ident: b0280 article-title: Oxygen rich Titania: a dopant free, high temperature stable, and visible-light active anatase photocatalyst publication-title: Adv Funct Mater – volume: 22 start-page: 573 year: 1991 end-page: 575 ident: b0050 article-title: Electrochemical synthesis and in situ Raman spectroscopy of thin films of titanium dioxide publication-title: J Raman Spectrosc – volume: 88 start-page: 5935 year: 1984 end-page: 5944 ident: b0320 article-title: Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver publication-title: J Phys Chem – volume: 75 start-page: 651 year: 1994 end-page: 653 ident: b0235 article-title: Study of the Raman peak shift and the linewidth of light-emitting porous silicon publication-title: J Appl Phys – volume: 57 start-page: 943 year: 1990 end-page: 945 ident: b0295 article-title: Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO publication-title: Appl Phys Lett – volume: 85 year: 2012 ident: b0075 article-title: Phonon anharmonicity of rutile TiO publication-title: Phys Rev B – volume: 117 start-page: 24015 year: 2013 end-page: 24022 ident: b0090 article-title: Asymmetric lattice vibrational characteristics of rutile TiO publication-title: J Phys Chem C – volume: 137 start-page: 282 year: 2012 end-page: 289 ident: b0040 article-title: Lattice dynamics and Raman spectrum of rutile TiO publication-title: Mater Chem Phys – volume: 2 start-page: 472 year: 1970 end-page: 482 ident: b0265 article-title: Crystallographic shear in oxygen-deficient rutile: an electron microscope study publication-title: J Solid State Chem – volume: 12 start-page: 1488 year: 2003 end-page: 1494 ident: b0225 article-title: Influence of nucleation density on film quality, growth rate and morphology of thick CVD diamond films publication-title: Diam Relat Mater – volume: 95 start-page: 5031 year: 1991 ident: 10.1016/j.rinp.2019.01.054_b0005 article-title: Determination of vanadium-oxygen bond distances and bond orders by Raman spectroscopy publication-title: J Phys Chem doi: 10.1021/j100166a025 – volume: 98 year: 2005 ident: 10.1016/j.rinp.2019.01.054_b0105 article-title: Raman spectroscopy characterization of Titania nanoparticles produced by flame pyrolysis: The influence of size and stoichiometry publication-title: J Appl Phys doi: 10.1063/1.2061894 – year: 2005 ident: 10.1016/j.rinp.2019.01.054_b0115 article-title: UV Raman spectroscopic study on TiO2. I. Phase Transformation at the Surface and in the Bulk publication-title: J Phys Chem – volume: 26 start-page: 57 year: 1995 ident: 10.1016/j.rinp.2019.01.054_b0060 article-title: The Raman spectrum of brookite, TiO2 (Pbca, Z = 8) publication-title: J Raman Spectrosc doi: 10.1002/jrs.1250260110 – volume: 458 start-page: 80 year: 2000 ident: 10.1016/j.rinp.2019.01.054_b0125 article-title: Oxidation of a polycrystalline titanium surface by oxygen and water publication-title: Surf Sci doi: 10.1016/S0039-6028(00)00420-9 – volume: 45 start-page: 921 year: 1999 ident: 10.1016/j.rinp.2019.01.054_b0160 article-title: Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach publication-title: Electrochim Acta doi: 10.1016/S0013-4686(99)00283-2 – volume: 57 start-page: 943 year: 1990 ident: 10.1016/j.rinp.2019.01.054_b0295 article-title: Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2 publication-title: Appl Phys Lett doi: 10.1063/1.104274 – volume: 2 start-page: 472 year: 1970 ident: 10.1016/j.rinp.2019.01.054_b0265 article-title: Crystallographic shear in oxygen-deficient rutile: an electron microscope study publication-title: J Solid State Chem doi: 10.1016/0022-4596(70)90106-4 – volume: 4 start-page: 3970 year: 2016 ident: 10.1016/j.rinp.2019.01.054_b0310 article-title: Surface roughness boosts the SERS performance of imprinted plasmonic architectures publication-title: J Mater Chem C doi: 10.1039/C5TC02779A – volume: 88 start-page: 5935 year: 1984 ident: 10.1016/j.rinp.2019.01.054_b0320 article-title: Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver publication-title: J Phys Chem doi: 10.1021/j150668a038 – volume: 21 start-page: 3744 year: 2011 ident: 10.1016/j.rinp.2019.01.054_b0280 article-title: Oxygen rich Titania: a dopant free, high temperature stable, and visible-light active anatase photocatalyst publication-title: Adv Funct Mater doi: 10.1002/adfm.201100301 – volume: 79 year: 2009 ident: 10.1016/j.rinp.2019.01.054_b0255 article-title: Electronic structure of the Ti4O7 Magnéli phase publication-title: Phys Rev B doi: 10.1103/PhysRevB.79.245133 – volume: 62 start-page: 717 year: 2001 ident: 10.1016/j.rinp.2019.01.054_b0065 article-title: Raman spectroscopy and phase transition of anatase TiO2 under high pressure publication-title: J Phys Chem Solids doi: 10.1016/S0022-3697(00)00229-8 – volume: 39 start-page: 2671 year: 1968 ident: 10.1016/j.rinp.2019.01.054_b0215 article-title: Physics of preparation of Josephson barriers publication-title: J Appl Phys doi: 10.1063/1.1656651 – volume: 73 year: 2006 ident: 10.1016/j.rinp.2019.01.054_b0270 article-title: First-principles study of point defects in rutile TiO2–x publication-title: Phys Rev B doi: 10.1103/PhysRevB.73.193202 – volume: 10 start-page: 253 year: 2007 ident: 10.1016/j.rinp.2019.01.054_b0175 article-title: Titanium oxidation by microwave discharge oxygen plasma and relationship with plasma parameters publication-title: J Adv Oxid Technol – volume: 83 start-page: 4357 year: 1999 ident: 10.1016/j.rinp.2019.01.054_b0335 article-title: Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.83.4357 – volume: 12 start-page: 239 year: 1958 ident: 10.1016/j.rinp.2019.01.054_b0150 article-title: Investigation on the oxidation mechanism of titanium publication-title: Acta Chem Scand doi: 10.3891/acta.chem.scand.12-0239 – start-page: 325 year: 2017 ident: 10.1016/j.rinp.2019.01.054_b0180 article-title: Tailoring oxide-layer formation on titanium substrates using microwave plasma treatments publication-title: Surf Coat Technol – volume: 78 start-page: 1667 year: 1997 ident: 10.1016/j.rinp.2019.01.054_b0340 article-title: Single molecule detection using surface-enhanced Raman scattering (SERS) publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.78.1667 – volume: 16 start-page: 248 year: 2014 ident: 10.1016/j.rinp.2019.01.054_b0020 article-title: Sand supported mixed-phase TiO2 photocatalysts for water decontamination applications publication-title: Adv Eng Mater doi: 10.1002/adem.201300259 – volume: 90 year: 2007 ident: 10.1016/j.rinp.2019.01.054_b0080 article-title: Raman scattering by thin film nanomosaic rutile TiO2 publication-title: Appl Phys Lett doi: 10.1063/1.2742914 – volume: 123 start-page: 133 year: 2002 ident: 10.1016/j.rinp.2019.01.054_b0300 article-title: Roughness parameters publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(02)00060-2 – volume: 91 start-page: 27 year: 1992 ident: 10.1016/j.rinp.2019.01.054_b0030 article-title: Physical and chemical characterization of surface vanadium oxide supported on titania: influence of the titania phase (anatase, rutile, brookite and B) publication-title: Appl Catal A Gen doi: 10.1016/0926-860X(92)85176-C – ident: 10.1016/j.rinp.2019.01.054_b0120 doi: 10.1039/c0jm03106b – volume: 31 start-page: L193 year: 1992 ident: 10.1016/j.rinp.2019.01.054_b0220 article-title: Temperature dependence of nucleation density of chemical vapor deposition diamond publication-title: Jpn J Appl Phys doi: 10.1143/JJAP.31.L193 – volume: 75 start-page: 210 year: 2016 ident: 10.1016/j.rinp.2019.01.054_b0350 article-title: Surface-enhanced Raman spectroscopy of semiconductor nanostructures publication-title: Phys E Low-Dimensional Syst Nanostruct doi: 10.1016/j.physe.2015.09.013 – volume: 37 start-page: 231 year: 1974 ident: 10.1016/j.rinp.2019.01.054_b0205 article-title: The oxidation of metals publication-title: Reports Prog Phys doi: 10.1088/0034-4885/37/2/002 – volume: 47 start-page: 49 year: 2004 ident: 10.1016/j.rinp.2019.01.054_b0010 article-title: Surface modification of titanium, titanium alloys, and related materials for biomedical applications publication-title: Mater Sci Eng R Rep doi: 10.1016/j.mser.2004.11.001 – volume: 15 start-page: 10978 year: 2013 ident: 10.1016/j.rinp.2019.01.054_b0070 article-title: Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile publication-title: Phys Chem Chem Phys doi: 10.1039/c3cp50927c – volume: 89 year: 2006 ident: 10.1016/j.rinp.2019.01.054_b0085 article-title: Size-dependent modifications of the Raman spectrum of rutile TiO2 publication-title: Appl Phys Lett doi: 10.1063/1.2364123 – volume: 116 start-page: 17164 year: 2012 ident: 10.1016/j.rinp.2019.01.054_b0345 article-title: Raman scattering for probing semiconductor nanocrystal arrays with a low areal density publication-title: J Phys Chem C doi: 10.1021/jp210720v – volume: 11 start-page: 102 year: 1978 ident: 10.1016/j.rinp.2019.01.054_b0195 article-title: Scherrer after sixty years: a survey and some new results in the determination of crystallite size publication-title: J Appl Crystallogr doi: 10.1107/S0021889878012844 – volume: 117 start-page: 24015 year: 2013 ident: 10.1016/j.rinp.2019.01.054_b0090 article-title: Asymmetric lattice vibrational characteristics of rutile TiO2 as revealed by laser power dependent Raman spectroscopy publication-title: J Phys Chem C doi: 10.1021/jp406948e – volume: 6 start-page: 11939 year: 2018 ident: 10.1016/j.rinp.2019.01.054_b0285 article-title: Nickel-Doped excess oxygen defect titanium dioxide for efficient selective photocatalytic oxidation of benzyl alcohol publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.8b02217 – volume: 56 start-page: 978 year: 1939 ident: 10.1016/j.rinp.2019.01.054_b0190 article-title: The Scherrer formula for X-ray particle size determination publication-title: Phys Rev doi: 10.1103/PhysRev.56.978 – volume: 156 start-page: 678 year: 1985 ident: 10.1016/j.rinp.2019.01.054_b0325 article-title: Optical absorption of small metallic particles publication-title: Surf Sci doi: 10.1016/0039-6028(85)90239-0 – volume: 118 start-page: 11120 year: 2014 ident: 10.1016/j.rinp.2019.01.054_b0365 article-title: Theory of surface-enhanced Raman scattering in semiconductors publication-title: J Phys Chem C doi: 10.1021/jp5020675 – year: 2000 ident: 10.1016/j.rinp.2019.01.054_b0025 article-title: Electron transfer dynamics in nanocrystalline titanium dioxide solar cells sensitized with ruthenium or osmium polypyridyl complexes publication-title: J Phys Chem – volume: 275 start-page: 1102 year: 1997 ident: 10.1016/j.rinp.2019.01.054_b0330 article-title: Probing single molecules and single nanoparticles by surface-enhanced raman scattering publication-title: Science doi: 10.1126/science.275.5303.1102 – volume: 8 start-page: 3226 year: 2016 ident: 10.1016/j.rinp.2019.01.054_b0360 article-title: Plasmon-free SERS detection of environmental CO2 on TiO2 surfaces publication-title: Nanoscale doi: 10.1039/C5NR08380J – volume: 25 start-page: 375 year: 2011 ident: 10.1016/j.rinp.2019.01.054_b0200 article-title: Preventing over-fitting in PLS calibration models of near-infrared (NIR) spectroscopy data using regression coefficients publication-title: J Chemom doi: 10.1002/cem.1349 – volume: 31 start-page: 1759 year: 2009 ident: 10.1016/j.rinp.2019.01.054_b0370 article-title: Raman intensity: an important tool to study the structure and phase transitions of amorphous/crystalline materials publication-title: Opt Mater (Amst) doi: 10.1016/j.optmat.2008.12.030 – volume: 75 year: 2007 ident: 10.1016/j.rinp.2019.01.054_b0100 article-title: Raman spectroscopy characterization of TiO2 rutile nanocrystals publication-title: Phys Rev B doi: 10.1103/PhysRevB.75.045416 – volume: 39 start-page: 625 year: 1981 ident: 10.1016/j.rinp.2019.01.054_b0240 article-title: The one phonon Raman spectrum in microcrystalline silicon publication-title: Solid State Commun doi: 10.1016/0038-1098(81)90337-9 – volume: 116 start-page: 7515 year: 2012 ident: 10.1016/j.rinp.2019.01.054_b0110 article-title: Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets publication-title: J Phys Chem C doi: 10.1021/jp301256h – volume: 75 start-page: 651 year: 1994 ident: 10.1016/j.rinp.2019.01.054_b0235 article-title: Study of the Raman peak shift and the linewidth of light-emitting porous silicon publication-title: J Appl Phys doi: 10.1063/1.355808 – volume: 90 year: 2007 ident: 10.1016/j.rinp.2019.01.054_b0305 article-title: Surface enhanced Raman scattering of nanoporous gold: smaller pore sizes stronger enhancements publication-title: Appl Phys Lett doi: 10.1063/1.2722199 – volume: 25 start-page: 2867 year: 2004 ident: 10.1016/j.rinp.2019.01.054_b0140 article-title: Improved biological performance of Ti implants due to surface modification by micro-arc oxidation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2003.09.048 – volume: 197–198 start-page: 887 year: 2002 ident: 10.1016/j.rinp.2019.01.054_b0130 article-title: Oxidation of titanium through Nd:YAG laser irradiation publication-title: Appl Surf Sci doi: 10.1016/S0169-4332(02)00447-6 – volume: 116 start-page: 22619 year: 2012 ident: 10.1016/j.rinp.2019.01.054_b0095 article-title: Characterization of oxygen vacancy associates within hydrogenated TiO2: a positron annihilation study publication-title: J Phys Chem C doi: 10.1021/jp307573c – volume: 253 start-page: 7497 year: 2007 ident: 10.1016/j.rinp.2019.01.054_b0045 article-title: Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2007.03.047 – volume: 93B start-page: 476 year: 2010 ident: 10.1016/j.rinp.2019.01.054_b0155 article-title: Enhancement of octacalcium phosphate deposition on a titanium surface activated by electron cyclotron resonance plasma oxidation publication-title: J Biomed Mater Res Part B Appl Biomater doi: 10.1002/jbm.b.31605 – volume: 27 start-page: 629 year: 1999 ident: 10.1016/j.rinp.2019.01.054_b0165 article-title: Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy publication-title: Surf Interface Anal doi: 10.1002/(SICI)1096-9918(199907)27:7<629::AID-SIA551>3.0.CO;2-0 – volume: 28 start-page: 1021 year: 1998 ident: 10.1016/j.rinp.2019.01.054_b0250 article-title: Electrodes based on Magnéli phase titanium oxides: the properties and applications of Ebonex® materials publication-title: J Appl Electrochem doi: 10.1023/A:1003469427858 – volume: 22 start-page: 573 year: 1991 ident: 10.1016/j.rinp.2019.01.054_b0050 article-title: Electrochemical synthesis and in situ Raman spectroscopy of thin films of titanium dioxide publication-title: J Raman Spectrosc doi: 10.1002/jrs.1250221006 – volume: 137 start-page: 282 year: 2012 ident: 10.1016/j.rinp.2019.01.054_b0040 article-title: Lattice dynamics and Raman spectrum of rutile TiO2: the role of soft phonon modes in pressure induced phase transition publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2012.09.022 – volume: 12 start-page: 1488 year: 2003 ident: 10.1016/j.rinp.2019.01.054_b0225 article-title: Influence of nucleation density on film quality, growth rate and morphology of thick CVD diamond films publication-title: Diam Relat Mater doi: 10.1016/S0925-9635(03)00179-1 – volume: 12 start-page: 163 year: 1949 ident: 10.1016/j.rinp.2019.01.054_b0290 article-title: Theory of the oxidation of metals publication-title: Reports Prog Phys doi: 10.1088/0034-4885/12/1/308 – volume: 32 start-page: 8041 year: 2011 ident: 10.1016/j.rinp.2019.01.054_b0145 article-title: The effect of plasma chemical oxidation of titanium alloy on bone-implant contact in rats publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.07.046 – volume: 420–421 start-page: 408 year: 2002 ident: 10.1016/j.rinp.2019.01.054_b0275 article-title: Influence of oxygen pressure on the properties and biocompatibility of titanium oxide fabricated by metal plasma ion implantation and deposition publication-title: Thin Solid Films doi: 10.1016/S0040-6090(02)00814-3 – volume: 110 start-page: 1240 year: 1963 ident: 10.1016/j.rinp.2019.01.054_b0210 article-title: The formation of metal oxide films using gaseous and solid electrolytes publication-title: J Electrochem Soc doi: 10.1149/1.2425633 – volume: 238 start-page: 37 year: 1972 ident: 10.1016/j.rinp.2019.01.054_b0015 article-title: Electrochemical photolysis of water at a semiconductor electrode publication-title: Nature doi: 10.1038/238037a0 – volume: 154 start-page: 522 year: 1967 ident: 10.1016/j.rinp.2019.01.054_b0035 article-title: Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2 publication-title: Phys Rev doi: 10.1103/PhysRev.154.522 – volume: 12 start-page: 525 year: 2007 ident: 10.1016/j.rinp.2019.01.054_b0135 article-title: Oxidation kinetics of commercially pure titanium publication-title: Matéria – volume: 116 start-page: 8792 year: 2012 ident: 10.1016/j.rinp.2019.01.054_b0355 article-title: Raman investigation of nanosized TiO2: effect of crystallite size and quantum confinement publication-title: J Phys Chem C doi: 10.1021/jp2122196 – volume: 58 start-page: 739 year: 1986 ident: 10.1016/j.rinp.2019.01.054_b0245 article-title: The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors publication-title: Solid State Commun doi: 10.1016/0038-1098(86)90513-2 – year: 2018 ident: 10.1016/j.rinp.2019.01.054_b0185 article-title: Microwave plasmas as a processing tool for tailoring the surface properties of ceramic coatings – volume: 35 start-page: 49 year: 1997 ident: 10.1016/j.rinp.2019.01.054_b0170 article-title: Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials publication-title: J Biomed Mater Res doi: 10.1002/(SICI)1097-4636(199704)35:1<49::AID-JBM6>3.0.CO;2-M – volume: 85 year: 2012 ident: 10.1016/j.rinp.2019.01.054_b0075 article-title: Phonon anharmonicity of rutile TiO2 studied by Raman spectrometry and molecular dynamics simulations publication-title: Phys Rev B doi: 10.1103/PhysRevB.85.094305 – volume: 77 year: 2008 ident: 10.1016/j.rinp.2019.01.054_b0260 article-title: Thermodynamics of oxygen defective Magnéli phases in rutile: a first-principles study publication-title: Phys Rev B doi: 10.1103/PhysRevB.77.104104 – volume: 48 start-page: 102 year: 2012 ident: 10.1016/j.rinp.2019.01.054_b0315 article-title: Correlation between standard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces publication-title: Tribol Int doi: 10.1016/j.triboint.2011.11.008 – volume: 7 start-page: 321 year: 1978 ident: 10.1016/j.rinp.2019.01.054_b0055 article-title: Raman spectrum of anatase, TiO2 publication-title: J Raman Spectrosc doi: 10.1002/jrs.1250070606 – volume: 42 start-page: 276 year: 1982 ident: 10.1016/j.rinp.2019.01.054_b0230 article-title: Raman spectra of titanium dioxide publication-title: J Solid State Chem doi: 10.1016/0022-4596(82)90006-8 |
SSID | ssj0001645511 |
Score | 2.4831324 |
Snippet | [Display omitted]
This study evaluates the use of a combination of Raman spectroscopy and optical profilometry as a surface characterisation technique for the... This study evaluates the use of a combination of Raman spectroscopy and optical profilometry as a surface characterisation technique for the examination of... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1574 |
SubjectTerms | Microwave plasma Raman intensity Raman mapping Raman spectroscopy Surface roughness parameters Titanium oxidation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vcvAmxSZN2sabiosKehAFbyFPWXHbZV1B_fVmku66XvTitbST8mXofJPOfIPQYV4ZITwrM6oEzZgmJhOuMBmvrRa55pwaaBS-uS0vH9j1I3-cG_UFNWFJHjgBd0wKXRvNiLOCB6qstCDG2DpkLaQMlqPYdoh5c8lUPF0pWaACkG1RCjp9lai6jplU3DUeNCBWSUTU7OTsR1SK4v1zwWku4PRX0UrHFPFpesM1tOCadbQUKzbN6wb6PP-WWo7o4tZj6BhrBm9D3L4PrMMvCgg1htr2J3ynhqrBsbMSFCzb0QdWjcXtKJ5m4zS8ux26yfjjBF9NZ5eA1WRsBMf2Y9Bf3UQP_Yv788usG6SQGUbySVYYQAMK0jSh2ldU0QqEAI23ygptfU408bbkRVVbW9fKWEIqV8JfvtJ5V2yhxaZt3DbCXuSFKIEUesp4XijCbfioKmIcC8mb6iEyBVKaTmUchl28yGk52bME8CWAL3MiA_g9dDR7ZpQ0Nn69-wz2Z3Yn6GPHC8FrZOc18i-v6SE-3V3ZUY1EIYKpwS-L7_zH4rtoGUymSrY9tDgZv7n9QG0m-iB68Rfjwvaf priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS-QwFA7qsuBlcX_hrO6Sw96WLk2apI0gorLiLrgHccBbyE8ZmWnHzgiOf715aasuiIc9tjSv8CXp-1763vcQ-p6XVsrAREa1pBkzxGbSFzbjlTMyN5xTC4XCZ3_F6Zj9ueSXa2hod9QDuHgxtIN-UuN2-vPuZnUQN_z-U65WO6lBe5LIJMHJ2Tp6Ez1TCRv1rKf76cxFsEgQIAajFNT7Sln2dTQvm_nHVyVJ_2cu65kbOtlC73r-iA-7CX-P1nz9Ab1NeZx28RHdHz8JMCfMcRMw1JHVk9sZbu4mzuOpBpqNIeP9Cp_rma5xqrcEXctmvsK6driZpzNu3LX0bmZ-2a728O-howlY7YzN4TC_BVXWT2h88uvi-DTr2ytklpF8mRUW0IA0NUOoCSXVtAR5QBucdtK4kBNDghO8KCvnqkpbR0jpBfz7Ez744jPaqJvabyMcZF5IAVQxUMbzQhPu4qdWE-tZDOn0CJEBSGV77XFogTFVQ5LZtQLwFYCvcqIi-CP043HMvFPeePXpI5ifxydBNTvdaNor1W9CRQpTWcOId5LHsEsbSax1VYyAiYirVIwQH2ZX9QSkIxbR1OSVl3_5z3E7aBOuupS2XbSxbG_918hxluZbWrgPgFX60g priority: 102 providerName: Scholars Portal |
Title | Characterisation of titanium oxide layers using Raman spectroscopy and optical profilometry: Influence of oxide properties |
URI | https://dx.doi.org/10.1016/j.rinp.2019.01.054 https://doaj.org/article/13b8cb41ed95428ab91ccd810716b1c6 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhodBL6ZNu2i465BbMWtbDVm_JkpAmJIe0oXsTegaXrG3cDTT99dXIdh6XHHox2EiyGQ2jmfE33yC0l5dWysBEVmhZZMwQm0lPbcYrZ2RuOC8sFAqfX4iTK3a64qsttJxqYQBWOdr-waYnaz0-WYzSXHR1vfhexNiFljIaV0qZSCEQZVUq4lsdPuRZBItOAcRdMD6DCWPtzADz6usGaCuJTOydnD05nxKN_6Nj6tHRc_wavRp9RnwwfNYbtOWbt-hFwm7a3-_Q3-UD6XKSM24Dhtqxpr5d4_ZP7Ty-0eBaY0C5X-NLvdYNTjWWwGXZdndYNw63Xcpr46GNd7v2m_7uK_42dTGBVYfFOkjg98DE-h5dHR_9WJ5kY0uFzDKSbzJqQRoATTOkMKEsdFECJaANTjtpXMiJIcEJTsvKuarS1hFSegH_-4QPnn5A203b-I8IB5lTKcA9DAXjOdWEu2heNbGexTBOzxCZBKnsyDcObS9u1AQs-6VA-AqEr3KiovBnaP9-TjewbTw7-hD2534kMGWnB21_rUZVUYSayhpGvJM8hlraSGKtq2LUS0TUTDFDfNpd9UTx4lL1My_f_c95n9BLuBtgbJ_R9qa_9V-iX7Mxc7RzcHb582ye8gLzpMbxes6qf0fx-ow |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQXxFMsTx-4oWjj-JGYG11R7ULbA7TS3iw_q1TdJEq3Usuvx-MkfVx64Op4nGg8Gs8433yD0Je8tFIGJrJCyyJjhthMemozXjkjc8N5YaFQ-PBILE_YzzVf76DFVAsDsMrR9w8-PXnrcWQ-anPe1fX8TxFzF1rK6FwpZQJSoEcxGiihf8NqvXd70SJYjAog8QKBDCTG4pkB59XXDfBWEpnoOzm7d0AlHv8759Sds2f_OXo2Bo34-_BdL9COb16ixwm8aS9eob-LW9blpGjcBgzFY019ucHtVe08PtcQW2OAuZ_i33qjG5yKLIHMsu2usW4cbrt0sY2HPt7txm_76294NbUxgVWHxTq4we-BivU1Otn_cbxYZmNPhcwykm8zakEbgE0zpDChLHRRAiegDU47aVzIiSHBCU7Lyrmq0tYRUnoBP_yED56-QbtN2_i3CAeZUykgPgwF4znVhLvoXzWxnsU8Ts8QmRSp7Eg4Dn0vztWELDtToHwFylc5UVH5M_T1RqYb6DYenL0H-3MzE6iy00Dbn6rRVhShprKGEe8kj7mWNpJY66qY9hIRTVPMEJ92V92zvLhU_cDL3_2n3Gf0ZHl8eKAOVke_3qOn8GTAtH1Au9v-0n-MQc7WfEpG_A9CsPo5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterisation+of+titanium+oxide+layers+using+Raman+spectroscopy+and+optical+profilometry%3A+Influence+of+oxide+properties&rft.jtitle=Results+in+physics&rft.au=Ekoi%2C+E.J.&rft.au=Gowen%2C+A.&rft.au=Dorrepaal%2C+R.&rft.au=Dowling%2C+D.P.&rft.date=2019-03-01&rft.pub=Elsevier+B.V&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=12&rft.spage=1574&rft.epage=1585&rft_id=info:doi/10.1016%2Fj.rinp.2019.01.054&rft.externalDocID=S2211379718334661 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon |