Advances in metal(loid) oxyanion removal by zerovalent iron: Kinetics, pathways, and mechanisms

Metal(loid) oxyanions in groundwater, surface water, and wastewater can have harmful effects on human or ecological health due to their high toxicity, mobility, and lack of degradation. In recent years, the removal of metal(loid) oxyanions using zerovalent iron (ZVI) has been the subject of many stu...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 280; p. 130766
Main Authors Wang, Xiao, Zhang, Yue, Wang, Zhiwei, Xu, Chunhua, Tratnyek, Paul G.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal(loid) oxyanions in groundwater, surface water, and wastewater can have harmful effects on human or ecological health due to their high toxicity, mobility, and lack of degradation. In recent years, the removal of metal(loid) oxyanions using zerovalent iron (ZVI) has been the subject of many studies, but the full scope of this literature has not been systematically reviewed. The main elements that form metal(loid) oxyanions under environmental conditions are Cr(VI), As(V and III), Sb(V and III), Tc(VII), Re(VII), Mo(VI), V(V), etc. The removal mechanisms of metal(loid) oxyanions by ZVI may involve redox reactions, adsorption, precipitation, and coprecipitation, usually with one of these mechanisms being the main reaction pathway and the other playing auxiliary roles. However, the removal mechanisms are coupled to the reactions involved in corrosion of Fe(0) and reaction conditions. The layer of iron oxyhydroxides that forms on ZVI during corrosion mediates the sequestration of metal(loid) oxyanions. This review summarizes most of the currently available data on mechanisms and performance (e.g., kinetics) of removal of the most widely studies metal(loid) oxyanion contaminants (Cr, As, Sb) by different types of ZVI typically used in wastewater treatment, as well as ZVI that has been sulfidated or combination with catalytic bimetals. [Display omitted] •The removal of Cr, As, Sb, Tc, Re, Mo, V and Se by ZVI was reviewed.•A periodic table was introduced to show the elements that form oxyanions.•Full range ZVI applications to removal of metal(loid) oxyanions were covered.•The mechanisms, kinetics of metal(loid) oxyanions remediated by ZVI were organized.
AbstractList Metal(loid) oxyanions in groundwater, surface water, and wastewater can have harmful effects on human or ecological health due to their high toxicity, mobility, and lack of degradation. In recent years, the removal of metal(loid) oxyanions using zerovalent iron (ZVI) has been the subject of many studies, but the full scope of this literature has not been systematically reviewed. The main elements that form metal(loid) oxyanions under environmental conditions are Cr(VI), As(V and III), Sb(V and III), Tc(VII), Re(VII), Mo(VI), V(V), etc. The removal mechanisms of metal(loid) oxyanions by ZVI may involve redox reactions, adsorption, precipitation, and coprecipitation, usually with one of these mechanisms being the main reaction pathway and the other playing auxiliary roles. However, the removal mechanisms are coupled to the reactions involved in corrosion of Fe(0) and reaction conditions. The layer of iron oxyhydroxides that forms on ZVI during corrosion mediates the sequestration of metal(loid) oxyanions. This review summarizes most of the currently available data on mechanisms and performance (e.g., kinetics) of removal of the most widely studies metal(loid) oxyanion contaminants (Cr, As, Sb) by different types of ZVI typically used in wastewater treatment, as well as ZVI that has been sulfidated or combination with catalytic bimetals.
Metal(loid) oxyanions in groundwater, surface water, and wastewater can have harmful effects on human or ecological health due to their high toxicity, mobility, and lack of degradation. In recent years, the removal of metal(loid) oxyanions using zerovalent iron (ZVI) has been the subject of many studies, but the full scope of this literature has not been systematically reviewed. The main elements that form metal(loid) oxyanions under environmental conditions are Cr(VI), As(V and III), Sb(V and III), Tc(VII), Re(VII), Mo(VI), V(V), etc. The removal mechanisms of metal(loid) oxyanions by ZVI may involve redox reactions, adsorption, precipitation, and coprecipitation, usually with one of these mechanisms being the main reaction pathway and the other playing auxiliary roles. However, the removal mechanisms are coupled to the reactions involved in corrosion of Fe(0) and reaction conditions. The layer of iron oxyhydroxides that forms on ZVI during corrosion mediates the sequestration of metal(loid) oxyanions. This review summarizes most of the currently available data on mechanisms and performance (e.g., kinetics) of removal of the most widely studies metal(loid) oxyanion contaminants (Cr, As, Sb) by different types of ZVI typically used in wastewater treatment, as well as ZVI that has been sulfidated or combination with catalytic bimetals.Metal(loid) oxyanions in groundwater, surface water, and wastewater can have harmful effects on human or ecological health due to their high toxicity, mobility, and lack of degradation. In recent years, the removal of metal(loid) oxyanions using zerovalent iron (ZVI) has been the subject of many studies, but the full scope of this literature has not been systematically reviewed. The main elements that form metal(loid) oxyanions under environmental conditions are Cr(VI), As(V and III), Sb(V and III), Tc(VII), Re(VII), Mo(VI), V(V), etc. The removal mechanisms of metal(loid) oxyanions by ZVI may involve redox reactions, adsorption, precipitation, and coprecipitation, usually with one of these mechanisms being the main reaction pathway and the other playing auxiliary roles. However, the removal mechanisms are coupled to the reactions involved in corrosion of Fe(0) and reaction conditions. The layer of iron oxyhydroxides that forms on ZVI during corrosion mediates the sequestration of metal(loid) oxyanions. This review summarizes most of the currently available data on mechanisms and performance (e.g., kinetics) of removal of the most widely studies metal(loid) oxyanion contaminants (Cr, As, Sb) by different types of ZVI typically used in wastewater treatment, as well as ZVI that has been sulfidated or combination with catalytic bimetals.
Metal(loid) oxyanions in groundwater, surface water, and wastewater can have harmful effects on human or ecological health due to their high toxicity, mobility, and lack of degradation. In recent years, the removal of metal(loid) oxyanions using zerovalent iron (ZVI) has been the subject of many studies, but the full scope of this literature has not been systematically reviewed. The main elements that form metal(loid) oxyanions under environmental conditions are Cr(VI), As(V and III), Sb(V and III), Tc(VII), Re(VII), Mo(VI), V(V), etc. The removal mechanisms of metal(loid) oxyanions by ZVI may involve redox reactions, adsorption, precipitation, and coprecipitation, usually with one of these mechanisms being the main reaction pathway and the other playing auxiliary roles. However, the removal mechanisms are coupled to the reactions involved in corrosion of Fe(0) and reaction conditions. The layer of iron oxyhydroxides that forms on ZVI during corrosion mediates the sequestration of metal(loid) oxyanions. This review summarizes most of the currently available data on mechanisms and performance (e.g., kinetics) of removal of the most widely studies metal(loid) oxyanion contaminants (Cr, As, Sb) by different types of ZVI typically used in wastewater treatment, as well as ZVI that has been sulfidated or combination with catalytic bimetals. [Display omitted] •The removal of Cr, As, Sb, Tc, Re, Mo, V and Se by ZVI was reviewed.•A periodic table was introduced to show the elements that form oxyanions.•Full range ZVI applications to removal of metal(loid) oxyanions were covered.•The mechanisms, kinetics of metal(loid) oxyanions remediated by ZVI were organized.
ArticleNumber 130766
Author Xu, Chunhua
Tratnyek, Paul G.
Zhang, Yue
Wang, Xiao
Wang, Zhiwei
Author_xml – sequence: 1
  givenname: Xiao
  surname: Wang
  fullname: Wang, Xiao
  organization: Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
– sequence: 2
  givenname: Yue
  surname: Zhang
  fullname: Zhang, Yue
  organization: Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
– sequence: 3
  givenname: Zhiwei
  orcidid: 0000-0003-4588-8472
  surname: Wang
  fullname: Wang, Zhiwei
  organization: Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
– sequence: 4
  givenname: Chunhua
  orcidid: 0000-0001-5453-0339
  surname: Xu
  fullname: Xu, Chunhua
  email: xuchunhua@sdu.edu.cn
  organization: Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
– sequence: 5
  givenname: Paul G.
  surname: Tratnyek
  fullname: Tratnyek, Paul G.
  email: tratnyek@ohsu.edu
  organization: OHSU-PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34162087$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1uGyEUhVGUKnHSvkJEdqnUcWFggMmmiqz-qZG6adeIMBcZawYcwG7dpy-W0yjqyizgLr5zrjjnAp2GGACha0rmlFDxfjW3S5hiXi8hwbwlLZ1TRqQQJ2hGlewb2vbqFM0I4V0jOtado4ucV4RUcdefoXPGqWiJkjOk74atCRYy9gFPUMx4M0Y_vMXx984EHwNOddPWjPhhh_9A2o8QCvYphlv8zQco3uZ3eG3K8pfZ1cmEoRrZZVXnKb9Gr5wZM7x5ei_Rz08ffyy-NPffP39d3N03llNSGmaoNPtLGOg6B8p2biDKSpCMOmr7Hjgf6gHmlBHMtcTKXgmnhHGsfvES3Rx81yk-biAXPflsYRxNgLjJuu0kZ7JVRByBcq6k4rSv6NUTunmYYNDr5CeTdvpffhXoD4BNMecE7hmhRO-70iv9oiu970ofuqraD_9prS-m1MxLMn48ymFxcICa7NZD0tl6qG0OPoEteoj-CJe_Fdq4dg
CitedBy_id crossref_primary_10_1038_s41545_022_00175_0
crossref_primary_10_1038_s44221_023_00098_1
crossref_primary_10_1021_acs_est_1c07731
crossref_primary_10_1016_j_jhazmat_2024_135274
crossref_primary_10_1016_j_jwpe_2025_107165
crossref_primary_10_3390_w15081481
crossref_primary_10_1016_j_chemosphere_2024_142395
crossref_primary_10_1021_acs_est_3c08367
crossref_primary_10_1016_j_envpol_2022_119205
crossref_primary_10_1016_j_jece_2021_106553
crossref_primary_10_1007_s11356_022_22609_5
crossref_primary_10_1016_j_jece_2022_109004
crossref_primary_10_1016_j_jhazmat_2023_131313
crossref_primary_10_1016_j_chemosphere_2021_132699
crossref_primary_10_1038_s41598_021_91475_x
crossref_primary_10_1002_slct_202302529
crossref_primary_10_1016_j_chemosphere_2021_132913
crossref_primary_10_1016_j_ccr_2024_215759
crossref_primary_10_1016_j_cej_2024_149954
crossref_primary_10_1016_j_jhazmat_2022_129833
crossref_primary_10_1016_j_jenvman_2024_121761
crossref_primary_10_1016_j_jhazmat_2024_135066
crossref_primary_10_1016_j_jece_2023_111412
crossref_primary_10_1016_j_chemosphere_2024_141391
crossref_primary_10_1016_j_chemosphere_2023_140485
crossref_primary_10_1016_j_biortech_2023_129745
crossref_primary_10_1016_j_seppur_2025_132503
crossref_primary_10_1007_s44246_023_00044_6
crossref_primary_10_1016_j_chemosphere_2022_137436
crossref_primary_10_1016_j_jece_2022_107214
crossref_primary_10_1016_j_chemosphere_2022_136128
crossref_primary_10_1016_j_chemosphere_2023_137979
crossref_primary_10_1016_j_envadv_2021_100099
crossref_primary_10_1016_j_jece_2022_108841
crossref_primary_10_1016_j_seppur_2024_128494
crossref_primary_10_1021_acs_est_3c08635
crossref_primary_10_1016_j_envpol_2023_121866
crossref_primary_10_1016_j_gsf_2022_101494
crossref_primary_10_1016_j_seppur_2023_125487
crossref_primary_10_1016_j_jenvman_2024_120187
crossref_primary_10_1016_j_jhazmat_2021_127013
crossref_primary_10_1016_j_carbpol_2021_118789
crossref_primary_10_1016_j_psep_2023_08_023
Cites_doi 10.1016/j.jnucmat.2012.06.004
10.1021/es00173a018
10.1016/S0012-8252(02)00089-2
10.1039/C9RA08595E
10.1016/j.ecoenv.2018.07.082
10.1016/j.jenvman.2017.04.038
10.1021/cm950418+
10.1016/j.jes.2018.01.018
10.1071/EN04014
10.1016/j.ijbiomac.2019.12.168
10.1016/j.chemosphere.2011.10.003
10.1007/s00254-005-0106-z
10.1039/C8RA08512A
10.1039/C6CP01013J
10.1149/1.2781106
10.1021/acssuschemeng.7b02787
10.1021/ie50373a031
10.1016/j.desal.2011.07.046
10.1016/j.carbpol.2016.03.035
10.1007/s11270-014-1945-6
10.1016/j.cej.2019.02.058
10.1016/j.envpol.2019.04.116
10.1016/j.cattod.2016.05.043
10.1016/j.cej.2014.02.096
10.1016/S0016-7037(97)00165-8
10.1016/j.jtice.2016.05.049
10.1007/s11356-018-3985-8
10.1111/j.1365-2389.1987.tb02138.x
10.1016/j.jhazmat.2010.12.125
10.1007/s11270-013-1799-3
10.1016/j.chemosphere.2004.10.055
10.1016/j.scitotenv.2018.09.003
10.1007/s11356-011-0442-3
10.2134/jeq2000.00472425002900050008x
10.1061/(ASCE)EE.1943-7870.0001346
10.1021/es001607i
10.1016/j.jhazmat.2020.122623
10.1007/s40242-018-8104-3
10.1021/es950618m
10.1016/j.jhazmat.2019.121822
10.1016/j.cej.2017.02.039
10.1016/j.jhazmat.2011.11.090
10.2136/sssaj1989.03615995005300040007x
10.1016/j.watres.2016.06.009
10.1089/ees.2000.17.29
10.1016/j.jhazmat.2017.10.036
10.1021/es503438e
10.1021/es800649p
10.1021/es00050a007
10.1021/es048991u
10.2136/sssaj1996.03615995006000010020x
10.1016/j.wasman.2015.07.006
10.1126/science.278.5340.1106
10.1016/j.chemosphere.2015.07.039
10.1021/es026208x
10.1021/es00008a008
10.1016/S0043-1354(02)00483-9
10.1016/j.scitotenv.2017.03.282
10.1021/es60106a010
10.1021/es1000616
10.1016/S0169-7722(00)00122-4
10.1021/acs.est.0c00710
10.1021/es9602556
10.1021/es950653t
10.1007/s11270-013-1845-1
10.1016/S0043-1354(01)00168-3
10.1016/j.cej.2019.122115
10.1039/C9EM00592G
10.1016/j.watres.2018.02.030
10.1016/j.jhazmat.2013.07.046
10.1016/j.watres.2010.09.025
10.1021/jp9051837
10.1021/acs.est.7b02695
10.1021/acs.est.9b00511
10.1016/j.jhazmat.2005.08.026
10.1016/j.jconhyd.2019.103541
10.1177/0263617417693626
10.1016/j.jece.2017.07.051
10.1016/j.cej.2019.122999
10.1016/S0010-938X(97)00141-8
10.1021/es901627e
10.1016/j.jhazmat.2010.10.113
10.1016/j.scitotenv.2005.02.032
10.1016/j.cej.2019.122124
10.1016/j.jtice.2014.10.006
10.1016/j.biortech.2011.04.040
10.1016/j.jhazmat.2014.01.009
10.1021/acs.est.7b06502
10.1021/ie00073a033
10.1016/j.apm.2011.04.040
10.1016/S0039-6028(98)00940-6
10.1016/j.jclepro.2018.01.231
10.1016/j.jhazmat.2016.09.024
10.1089/ees.2012.0160
10.1007/s11270-011-0812-y
10.1021/es9911420
10.3390/molecules25010047
10.1021/la990902h
10.1021/es400362w
10.1007/s11051-016-3582-z
10.1016/j.jhazmat.2020.122057
10.1007/s11051-009-9764-1
10.2320/matertrans.M2011375
10.1007/s11356-017-1143-3
10.1016/j.gca.2004.02.015
10.1007/s10311-017-0605-7
10.1061/(ASCE)HZ.2153-5515.0000317
10.1016/j.chemosphere.2009.10.007
10.1016/j.micromeso.2017.04.022
10.5006/1.3277579
10.1021/acs.est.6b00128
10.1016/j.jhazmat.2019.03.080
10.1016/j.seppur.2016.11.075
10.1016/j.jes.2017.11.003
10.1016/j.chemosphere.2011.04.024
10.1021/es00071a010
10.1016/j.cej.2018.08.047
10.1016/j.microc.2014.03.010
10.1021/acsearthspacechem.8b00015
10.1016/0016-7037(93)90567-G
10.1016/j.envpol.2018.04.099
10.1016/j.jclepro.2017.10.302
10.1021/acs.est.9b04956
10.1007/s10570-018-1932-y
10.2320/matertrans.M-MRA2008827
10.1016/j.desal.2008.05.036
10.1021/acs.est.6b06117
10.1080/10643389109388408
10.1016/j.chemosphere.2008.07.050
10.1021/acs.est.6b01897
10.1016/j.watres.2015.02.034
10.1016/j.jenvman.2016.12.063
10.1016/S0927-7757(99)00404-5
10.2136/sssaj1987.03615995005100050009x
10.1016/j.jhazmat.2018.10.008
10.1016/j.watres.2012.05.015
10.1016/0304-3894(95)00016-N
10.1016/j.jhazmat.2019.120836
10.1016/j.apcatb.2019.118364
10.1097/00010694-198708000-00008
10.1016/j.pce.2010.03.020
10.1016/j.apgeochem.2008.02.001
10.1021/es034237h
10.1016/j.carbon.2015.12.013
10.1016/j.watres.2018.01.038
10.1021/acs.est.8b01317
10.1021/es0616534
10.1016/j.chemosphere.2006.03.075
10.1016/j.envint.2019.05.001
10.1016/j.chemosphere.2013.01.097
10.1016/j.jhazmat.2005.01.030
10.1039/c1em10239g
10.1016/j.jcis.2017.07.024
10.1021/es010768z
10.1021/es9600901
10.1016/j.jtice.2018.06.033
10.1002/jctb.5606
10.1016/S0378-4274(02)00080-2
10.1016/j.seppur.2016.03.055
10.1016/j.scitotenv.2018.07.034
10.1021/es010227+
10.1016/j.watres.2007.02.037
10.1016/j.chemosphere.2014.05.088
10.1016/j.wasman.2019.05.017
10.1016/j.jes.2019.12.003
10.1021/cr00094a002
10.1016/j.cej.2017.10.025
10.1021/es5003956
10.2343/geochemj.17.223
10.1016/j.cej.2017.10.182
10.1016/j.cej.2015.04.095
10.1021/acs.est.5b05360
10.1016/j.jhazmat.2009.08.031
10.2166/wst.2013.067
10.1016/j.watres.2016.10.030
10.1016/j.jenvman.2019.01.045
10.1016/j.jhazmat.2013.07.072
10.1016/j.apsusc.2004.02.035
10.1016/j.gsd.2017.12.007
10.2166/wst.2018.258
10.1016/j.watres.2015.10.045
10.1016/j.jhazmat.2017.09.036
10.1016/j.jhazmat.2012.12.037
10.1524/ract.91.4.211.19968
10.1016/S0883-2927(99)00010-4
10.1016/j.seppur.2010.10.006
10.1016/j.jhazmat.2009.02.143
10.1016/j.jece.2016.07.023
10.1016/j.cej.2013.12.049
10.1016/j.apcatb.2008.03.016
10.1016/j.cej.2019.121928
10.1016/j.jhazmat.2019.04.056
10.2166/wst.2017.321
10.1016/j.watres.2005.02.012
10.1007/s11270-014-2293-2
10.1016/0016-7037(90)90369-V
10.2475/ajs.289.2.180
10.1016/j.jhazmat.2013.12.001
10.1016/j.watres.2019.05.037
10.1016/j.chemosphere.2011.09.005
10.2166/ws.2019.069
10.1021/es505584r
10.1021/acs.est.7b04177
10.1039/C6RA08886D
10.1021/es304829z
10.1016/j.jhazmat.2016.01.032
10.1016/j.colsurfa.2008.10.033
10.1016/j.cclet.2019.06.004
10.1016/j.hydromet.2008.12.009
10.1007/s00128-014-1442-z
10.1016/j.jwpe.2017.07.001
10.1016/j.cej.2018.07.113
10.1016/j.jes.2019.05.023
10.1016/j.jece.2015.12.019
10.1016/j.cej.2018.01.033
10.1021/es702579w
10.1016/j.scitotenv.2009.01.043
10.1080/09593330903186240
10.1016/j.jhazmat.2019.04.030
10.1016/j.chemosphere.2006.06.034
10.2166/wst.2011.454
10.1016/j.chemosphere.2019.01.183
10.1016/S0016-7037(97)00077-X
10.1016/j.cej.2018.03.187
10.1016/j.gca.2003.10.018
10.1016/j.watres.2011.10.002
10.1007/s11270-019-4166-1
10.1021/es104343p
10.1016/j.jhazmat.2020.122392
10.1016/S0043-1354(96)00240-0
10.1021/es061157f
10.1016/j.apcatb.2011.02.014
10.1006/jcis.2000.6960
10.1039/C8DT01799A
10.2166/wst.2017.512
10.1016/j.seppur.2016.10.047
10.1007/s11051-008-9558-x
10.1007/s002540000178
10.1016/j.cej.2019.123295
10.1016/j.cej.2019.122120
10.1016/0043-1354(72)90052-8
10.1021/jp208600n
10.1061/(ASCE)EE.1943-7870.0000169
10.1016/j.watres.2016.05.031
10.1016/j.jhazmat.2015.05.008
10.1016/j.watres.2013.09.006
10.1002/app.11596
10.1016/j.psep.2016.03.007
10.1016/j.molliq.2017.08.004
10.1021/acsomega.6b00382
10.1021/am200016v
10.1016/S0012-8252(01)00070-8
10.1021/acs.est.6b03184
10.1021/ie400702k
10.1016/j.envpol.2008.05.022
10.1016/j.chemosphere.2008.03.060
10.1016/j.chemosphere.2019.125235
10.1016/j.jhazmat.2009.09.035
10.3390/ma12060927
10.2166/ws.2016.120
10.1016/j.cej.2015.02.079
10.1021/es0206846
10.1016/j.watres.2010.02.037
10.1007/s11356-020-08163-y
10.1016/j.jhazmat.2014.04.012
10.1016/j.chemosphere.2008.12.019
10.1021/es990376g
10.1016/j.eti.2017.11.006
10.1016/j.watres.2013.07.011
10.1016/j.ejsobi.2007.03.011
10.1016/j.cej.2018.07.170
10.1016/j.watres.2004.12.022
10.1002/jctb.5209
10.1021/es071573f
10.1016/j.jhazmat.2015.04.038
10.1021/es802394p
10.1021/es00061a012
10.1016/j.jhazmat.2006.06.060
10.1021/ie030715l
10.1039/C7EN00240H
10.1016/j.cej.2009.01.029
10.1016/j.watres.2009.03.005
10.1016/j.jhazmat.2019.03.125
10.1021/es960844b
10.1016/j.gca.2006.10.025
10.1016/j.scitotenv.2020.139629
10.1016/j.seppur.2016.10.058
10.1016/j.cej.2020.125168
10.1016/j.seppur.2015.07.056
10.1016/j.jhazmat.2009.04.062
10.1016/j.jconhyd.2010.07.011
10.1021/es011250y
10.1021/es0016710
10.1016/j.cej.2015.12.022
10.1016/j.cherd.2019.09.020
10.1016/j.chemosphere.2016.12.106
10.1016/j.watres.2006.04.006
10.1039/C6RA18965B
10.1007/s11051-007-9225-7
10.1016/j.chemosphere.2014.04.047
10.1016/j.watres.2004.04.003
10.1016/j.jclepro.2018.10.180
10.1021/es980086k
10.1016/j.watres.2017.05.043
10.1016/j.jhazmat.2014.05.025
10.1080/10584587.2011.575629
10.1021/es960665u
10.1061/(ASCE)0733-9372(2006)132:11(1459)
10.1016/j.jtice.2018.01.032
10.1016/j.jhazmat.2019.03.091
10.1021/acs.est.7b02278
10.1021/es803526g
10.1166/sam.2013.1637
10.1007/s11051-017-3814-x
10.1016/j.jconhyd.2015.03.004
10.1016/j.jhazmat.2017.02.045
10.1016/j.chemosphere.2006.03.018
10.1021/acs.est.7b02635
10.1016/j.watres.2016.05.019
10.1016/j.jhazmat.2020.124057
10.1016/j.desal.2020.114540
10.1016/j.cej.2012.02.063
10.1016/j.advwatres.2012.02.005
10.1016/j.jenvman.2017.03.085
10.1021/es501607s
10.1016/0956-9618(96)00148-8
10.1016/j.jes.2014.10.017
10.1007/s11434-012-5425-3
10.1007/s11270-008-9668-1
10.1016/j.jcis.2016.03.011
10.2134/jeq2005.0248
10.1016/j.cej.2018.11.146
10.1021/j100841a018
10.1007/s12665-019-8538-z
10.1016/j.apcatb.2015.03.025
10.1016/j.memsci.2020.118259
10.1016/j.watres.2005.06.020
10.1016/j.chemosphere.2016.01.035
10.1007/s11270-008-9790-0
10.1016/j.chemosphere.2020.126702
10.1080/09593330802131602
10.1039/C8TA03066A
10.1016/j.watres.2013.07.020
10.1016/j.jhazmat.2019.121761
10.1016/j.cattod.2008.09.038
10.1021/es9607897
10.1016/j.jhazmat.2009.02.168
10.1039/C6RA24036D
10.1016/j.cej.2014.05.111
10.1016/j.seppur.2020.117161
10.1007/s10967-014-3062-9
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.chemosphere.2021.130766
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
ExternalDocumentID 34162087
10_1016_j_chemosphere_2021_130766
S0045653521012376
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c410t-3a17a3a176ae55fe8c5fd08c7e731f1c99e44dddde3f8a63f20c7986f86af3653
IEDL.DBID .~1
ISSN 0045-6535
1879-1298
IngestDate Thu Jul 10 21:56:21 EDT 2025
Fri Jul 11 11:35:08 EDT 2025
Mon Jul 21 05:49:45 EDT 2025
Thu Apr 24 22:53:14 EDT 2025
Tue Jul 01 02:34:37 EDT 2025
Fri Feb 23 02:45:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Reduction
Adsorption
Zerovalent iron
Metal(loid) oxyanion
Coprecipitation
Sequestration
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-3a17a3a176ae55fe8c5fd08c7e731f1c99e44dddde3f8a63f20c7986f86af3653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5453-0339
0000-0003-4588-8472
PMID 34162087
PQID 2544878419
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2574372806
proquest_miscellaneous_2544878419
pubmed_primary_34162087
crossref_primary_10_1016_j_chemosphere_2021_130766
crossref_citationtrail_10_1016_j_chemosphere_2021_130766
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2021_130766
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
2021-Oct
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wu, He, Guo, Zhou (bib325) 2010; 76
Noubactep (bib214) 2009; 168
Wu, Peng, Yan, Shao, Feng, Zhang (bib322) 2018; 6
Xiong, Gao, Zhou, Zhang (bib328) 2016; 18
Wu, Lo, Lin (bib320) 2000; 166
Wang, Luo, Zhang, Wu, Zhang, Chen (bib307) 2014; 268
Abass, Ma, Kong, Wang, Mpinda (bib1) 2016; 102
Jiao, Tan, Lin, Yang (bib109) 2020; 25
Awuah, Morris, Owusu, Sundell, Lindstrom (bib7) 2009; 248
Morgada, Levy, Salomone, Farias, Lopez, Litter (bib200) 2009; 143
Ponder, Darab, Mallouk (bib235) 2000; 34
Cartledge (bib23) 1960; 64
Hug, Leupin (bib102) 2003; 37
Zhu, Ma, Liu, Deng (bib366) 2018; 174
Wang, Jin, Li, Zhang, Gao (bib310) 2006; 65
Triszcz, Port, Garcia Einschlag (bib298) 2009; 150
Brookins (bib20) 1983; 17
Filella, Belzile, Chen (bib73) 2002; 57
Liang, Yang, Guan, Li, Xu, Wu, Huang, Zhang (bib155) 2013; 47
Elwakeel, Atia, Donia (bib58) 2009; 97
Kang, Ma, Bardelli, Chen, Liu, Zheng, Wu, Charlet (bib114) 2013; 248
Zhang, Wu, Chao, Shi, Li, Hu, Yang (bib351) 2019; 227
Zhang, Wu, Tang, Xing, Peng, Li, Liu, Luo, Zou, Min, Luo (bib354) 2018; 335
Zhou, Li, Ma, Zhao, Deng, Pi, Tang, Yang (bib360) 2020; 395
Balistrieri, Chao (bib8) 1987; 51
Peng, Xi, Zhao, Shi, Meng, Mao, Jiang, Ma, Tan, Liu, Gong (bib229) 2017; 51
Wang, Morin, Ona-Nguema, Juillot, Guyot, Calas, Brown (bib312) 2010; 44
Liu, Liu, Zhang (bib162) 2014; 33
Wu, Tu, Liu, Zhang, Chu, Lu, Lin, Dang (bib321) 2017; 4
Xu, Wang, Weng, Bai, Jiao, Kaegi, Lowry (bib334) 2019; 53
Miehr, Tratnyek, Bandstra, Scherer, Alowitz, Bylaska (bib195) 2004; 38
Katsoyiannis, Voegelin, Zouboulis, Hug (bib116) 2015; 297
Plagentz, Ebert, Dahmke (bib233) 2006; 49
Liu, Li, Cui, Yang, Fang (bib164) 2020; 395
Qu, Zeng, Chu, Wang, Liang, Qiang (bib247) 2019; 26
Yin, Li, Wu, Chen, Jiang, Li, Gu, Liang, Liu (bib343) 2017; 332
Roh, Lee, Elless, Cho (bib259) 2000; 35
Shi, Fan, Johnson, Tratnyek, Nurmi, Wu, Williams (bib275) 2015; 181
Doyle, Kendelewicz, Bostick, Brown (bib49) 2004; 68
Guo, Yang, Dong, Guan, Ren, Lv, Jin (bib89) 2016; 88
Zhou, Wang, Sun, Chen, Wu, Na (bib363) 2014; 225
Mak, Lo, Liu (bib183) 2011; 45
Qin, Cao, Wang, Zhang, Lyu (bib245) 2019; 33
Zhu, Jia, Wu, Wang (bib367) 2009; 172
Sasaki, Nakano, Wilopo, Miura, Hirajima (bib262) 2009; 347
Tratnyek, Scherer, Johnson, Matheson (bib297) 2003
Li, Mu, Shang, Mao, Cao, Ai, Zhang (bib140) 2020; 263
Zeng, Qi, Shi, Pichler, Wang, Wang, Sui (bib347) 2020; 382
Lv, Zhang, Fu, Cao, Zhang, Ma, Jiang (bib181) 2017; 506
Zhang, Amrhein, Frankenberger (bib355) 2005; 350
He, Gong, Fan, Tratnyek, Lowry (bib92) 2020; 22
Shan, Chen, Yang, Jia, Guan, Zhang, Pan (bib268) 2018; 133
Dong, He, Zeng, Tang, Zhang, Xie, Zeng, Zhao, Wu (bib44) 2016; 471
Wang, Le, Wang, Liu, Ma, Li (bib311) 2016; 66
Verbinnen, Block, Van Caneghem, Vandecasteele (bib304) 2015; 45
Kumari, Goswami, Kumar, Mazumder, Kataki, Shim (bib126) 2018; 7
Liu, Liu, Ho, Liu, Jing, Cheng (bib175) 2018; 144
Xu, Zhu, Wang, Lin, Chen (bib333) 2014; 225
Tanboonchuy, Grisdanurak, Liao (bib289) 2012; 205
Zhou, Dai, Zhou, Zhao, Zhang (bib364) 2015; 226
Bhowmick, Chakraborty, Mondal, Van Renterghem, Van den Berghe, Roman Ross, Chatterjee, Iglesias (bib14) 2014; 243
Chmielewska, Tylus, Drabik, Majzlan, Kravcak, Williams, Caplovicova, Caplovic (bib25) 2017; 248
Hao, Liu, Wang, Li (bib91) 2018; 8
Guo, Wu, He, Meng, Jin, Qiu, Zhang (bib88) 2014; 276
Wu, Liu, Jiang, Zhao, Li (bib323) 2014; 37
Xu, Zhao (bib337) 2007; 41
Ji, Zhu, Duan, Liu, Zhao (bib107) 2019; 30
Huang, Liu, Qin, Liu, Zhang (bib101) 2011; 127
Eljamal, Sasaki, Hirajima (bib56) 2011; 35
Liu, Li, Waite (bib168) 2013; 47
Ramaswami, Tawachsupa, Isleyen (bib248) 2001; 35
Arthy, Phanikumar (bib5) 2016; 20
Xu, Huang (bib335) 2019; 222
Manning, Martens (bib187) 1997; 31
Liang, Li, Guo, Lin, Su, Liu (bib154) 2021; 404
Li, Wang, Liang, Zhang (bib141) 2017; 322
Das, Lindsay, Essilfie-Dughan, Hendry (bib34) 2017; 2
Nekhunguni, Tavengwa, Tutu (bib207) 2017; 197
Yu, Amrhein, Zhang, Matsumoto (bib345) 2006; 132
Cantrell, Kaplan, Wietsma (bib22) 1995; 42
Figueiredo, Quintelas (bib72) 2014; 274
Darab, Smith (bib33) 1996; 8
Dong, Zinin, Cowen, Ming (bib47) 2009; 168
Ryden, Syers, Tillman (bib261) 1987; 38
Filella, Belzile, Chen (bib74) 2002; 59
Noubactep (bib213) 2008; 29
de Arroyabe Loyo, Nikitenko, Scheinost, Simonoff (bib38) 2008; 42
Newsome, Morris, Cleary, Masters-Waage, Boothman, Joshi, Atherton, Lloyd (bib209) 2019; 364
Cornelis, Johnson, Van Gerven, Vandecasteele (bib29) 2008; 23
Mondal, Bhowmick, Chatterjee, Figoli, Van der Bruggen (bib199) 2013; 92
Ramos, Yan, Li, Koel, Zhang (bib249) 2009; 113
Tiraferri, Hernandez, Bianco, Tosco, Sethi (bib295) 2017; 19
Cullen, Reimer (bib31) 1989; 89
Lian, Xu, Zhang, Han (bib152) 2013; 67
Nguyen Chi, Wichitsathian, Yossapol, Wonglertarak, Te (bib210) 2019; 19
Padil, Filip, Suresh, Waclawek, Cernik (bib223) 2016; 6
Petala, Baikousi, Karakassides, Zoppellaro, Filip, Tucek, Vasilopoulos, Pechousek, Zboril (bib230) 2016; 18
Melitas, Wang, Conklin, O'Day, Farrell (bib193) 2002; 36
Lu, Zhu, Zhang, Zhu, Qiu (bib177) 2015; 276
Hoover, Masselli (bib95) 1941; 33
Su, Puls (bib280) 2008; 193
Gu, Schmitt, Chen, Liang, McCarthy (bib85) 1994; 28
Ahn, Jo, Kim, Koh (bib3) 2012; 53
Das, Sakthivel, Jeyaranjan, Seal, Bezbaruah (bib36) 2020; 253
Pratt, Blowes, Ptacek (bib238) 1997; 31
Mystrioti, Sparis, Papasiopi, Xenidis, Dermatas, Chrysochoou (bib205) 2015; 94
Tyrovola, Peroulaki, Nikolaidis (bib300) 2007; 43
Weidner, Ciesielczyk (bib315) 2019; 12
Xue, Shen, Zhao, Zhao (bib338) 2013; 261
Shao, Xu, Wang, Huang, Zhang, Huang, Fan, Tratnyek (bib270) 2018; 135
Du, Bao, Lu, Werner (bib52) 2016; 102
O'Carroll, Sleep, Krol, Boparai, Kocur (bib217) 2013; 51
Zhang, Zhang, Gao, Xu (bib352) 2019; 378
Waychunas, Rea, Fuller, Davis (bib313) 1993; 57
Marshall, Morris, Law, Mosselmans, Bots, Parry, Shaw (bib188) 2014; 48
Tandon, Shukla, Singh (bib292) 2013; 52
Sun, Li, Huang, Guan (bib286) 2016; 100
Dong, Guan, Lo (bib43) 2012; 46
Schweitzer, L (bib265) 2010
Li, Seaman, Murph, Kaplan, Taylor-Pashow, Feng, Chang, Tandukar (bib134) 2019; 374
Balistrieri, Chao (bib9) 1990; 54
Dries, Bastiaens, Springael, Kuypers, Agathos, Diels (bib51) 2005; 39
Li, Wang, Liu, Zhang (bib142) 2014; 254
Qin, Sun, Yang, Fan, Qiao, Guan (bib244) 2018; 334
He, Huang, He, Yang, Yue, Zhu, Astruc, Zhao (bib93) 2020; 388
Nakseedee, Tanboonchuy, Pimpha, Khemthong, Liao, Grisdanurak (bib206) 2015; 47
Deng, Zhou, Zhang, Yang, Sun, Wang, Liu (bib41) 2018; 77
Scheinost, Charlet (bib264) 2008; 42
Hou, Wan, Liu, Fan, Liu, Wang (bib96) 2008; 84
Zou, Hu, Yang, Gong, He (bib368) 2019; 650
Yang, Shan, Zhang, Jiang, Guan, Pan (bib341) 2016; 106
Li, Ai, Jiang (bib144) 2016; 288
Wen, Tu, Guo, Hao, Wu, Tao (bib316) 2020; 146
Boglaienko, Emerson, Katsenovich, Levitskaia (bib19) 2019; 380
Mak, Lo (bib182) 2011; 84
Xu, Yang, Liu, Sun, Jiao, Lin (bib330) 2018; 67
Xu, Yan, Mao, Wu (bib336) 2020; 384
Zhang, Qiu, Lu, Chen, He, Lu, Ren (bib349) 2018; 52
Kendelewicz, Liu, Doyle, Brown, Nelson, Chambers (bib117) 1999; 424
Wu, Peng, Hou, Tang, Wang, Xu (bib319) 2018; 240
Pearce, Icenhower, Asmussen, Tratnyek, Rosso, Lukens, Qafoku (bib227) 2018; 2
Odziemkowski, Schuhmacher, Gillham, Reardon (bib218) 1998; 40
Kumar, Couture, Millot, Battaglia-Brunet, Rose (bib125) 2016; 50
Zhou, Gong, Hu, Cheng, Zhou, Dong, Wang, Ding, Qiu, Guo (bib361) 2020; 242
Zhao, Liu, Cai, Han, Qian, Zhao (bib358) 2016; 100
Chung, Li, Rittmann (bib26) 2006; 65
Li, Wu, Hu, Ren, Hursthouse (bib149) 2018; 93
Ravikumar, Argulwar, Sudakaran, Pulimi, Chandrasekaran, Mukherjee (bib252) 2018; 9
Park, Jeong, Lee, Park, Kim (bib225) 2019; 92
Song, Zhang, Wu, Wang, Chen, Zhang (bib276) 2019; 86
Lien, Wilkin (bib156) 2005; 59
Li, Zhang, Liu, Pan, Zhang, Shi, Guan (bib138) 2018; 52
Sun, Hu, Huang, Li, Qin, Guan (bib285) 2017; 51
Liu, Rao, Mak, Wang, Lo (bib170) 2009; 43
Xiao, Zhang, Xu, Yuan, Jing, Huang, Li, Sun (bib327) 2017; 174
Wilopo, Sasaki, Hirajima, Yamanaka (bib318) 2008; 49
Bang, Korfiatis, Meng (bib11) 2005; 121
Guan, Sun, Qin, Li, Lo, He, Dong (bib86) 2015; 75
Chen, Wei, Li, Wang, Yu, Liu, Liu, Xie, Wang, Chen, Hayat, Wang (bib24) 2018; 181
Manning, Hunt, Amrhein, Yarmoff (bib186) 2002; 36
Doyle, Kendelewicz, Brown (bib50) 2004; 230
Katsoyiannis, Ruettimann, Hug (bib115) 2008; 42
Kim, Ahn, Kim, Lee, Hwang (bib120) 2014; 113
Hsu, Lin, Liao, Chen (bib97) 2008; 72
Johnson, Moench, Wersin, Kugler, Wenger (bib110) 2005; 34
Gong, Hu, Xiao, Cheng, Liu, Wang, Qiu, Guo (bib82) 2018; 6
Xi, Zou, Luo, Li, Li, Liao, Zhang, Wang, Lin (bib326) 2019; 375
Johnson, Scherer, Tratnyek (bib111) 1996; 30
Tanboonchuy, Hsu, Grisdanurak, Liao (bib291) 2011; 18
Farrell, Wang, O'Day, Conklin (bib67) 2001; 35
Lv, Qin, Wang, Peng, Wang, Jiang (bib179) 2019; 373
Pryor, Cohen (bib239) 1953; 100
Zhong, Yin, Li, Li, Wu, Jiang, Gu, Liang (bib359) 2017; 122
Qiu, Lai, Roberson, Hunt, Amrhein, Giancarlo, Flynn, Yarmoff (bib246) 2000; 16
Deng, Huang, An, Hu, Ju, Xiao (bib40) 2014; 300
Zhang, Yi, Zhang, Han, Liu, Tong (bib353) 2020; 388
Matheson, Tratnyek (bib190) 1994; 28
Dong, Zeng, Zeng, Huang, Liang, Zhao, He, Xie, Wu (bib46) 2016; 165
Lian, Huang, Chen, Wang, Wang, Niu, Liu (bib151) 2018; 77
Mortazavian, An, Chun, Moon (bib201) 2018; 353
Mamindy-Pajany, Hurel, Marmier, Romeo (bib184) 2011; 281
Dorjee, Arnarasiriwardena, Xing (bib48) 2014; 116
Boersig, Scheinost, Shaw, Schild, Neumann (bib18) 2018; 47
Um, Chang, Icenhower, Lukens, Serne, Qafoku, Westsik, Buck, Smith (bib302) 2011; 45
Shi, Zhang, Chen (bib274) 2011; 45
Contelot, Thomas, Seaman (bib27) 2019; 128
Liu, Zhang, Wang, Wang, Bush (bib172) 2019; 9
Yadav, Sharma, Babu (bib339) 2016; 4
Li, Qin, Zhang, Shi, Zhao, Guan (bib137) 2017; 176
Ling, Qiao, Song, Sun (bib158) 2019; 378
Kim, Boulegue (bib118) 2003; 91
Song, Zhao, He (bib277) 2020; 249
Sun, Wang, Zhang, Sui, Xu (bib282) 2006; 129
Wagman, Evans, Parker, Schumm, Halow, Bailey, Churney, Nuttall (bib306) 1982; 11
Lee, Lee, Yoon, Kamala-Kannan, Park, Oh (bib128) 2009; 30
Wang, Zhao, Zhou, Li, Wang, Gao, Sato, Feng, Yin, Igalavithana, Oleszczuk, Wang, Ok (bib309) 2019; 373
Fendorf, Eick, Grossl, Sparks (bib68) 1997; 31
Korte, Fernando (bib123) 1991; 21
Myneni, Tokunaga, Brown (bib204) 1997; 278
Alijani, Shariatinia (bib4) 2017; 171
Blowes, Ptacek, Jambor (bib17
Tanboonchuy (10.1016/j.chemosphere.2021.130766_bib291) 2011; 18
Wu (10.1016/j.chemosphere.2021.130766_bib320) 2000; 166
Doyle (10.1016/j.chemosphere.2021.130766_bib49) 2004; 68
Pratt (10.1016/j.chemosphere.2021.130766_bib238) 1997; 31
Waychunas (10.1016/j.chemosphere.2021.130766_bib313) 1993; 57
Wu (10.1016/j.chemosphere.2021.130766_bib324) 2011; 13
Huang (10.1016/j.chemosphere.2021.130766_bib99) 2016; 146
Schweitzer (10.1016/j.chemosphere.2021.130766_bib265) 2010
Sun (10.1016/j.chemosphere.2021.130766_bib284) 2014; 48
Brookins (10.1016/j.chemosphere.2021.130766_bib20) 1983; 17
Li (10.1016/j.chemosphere.2021.130766_bib148) 2012; 227
Balistrieri (10.1016/j.chemosphere.2021.130766_bib9) 1990; 54
Ryden (10.1016/j.chemosphere.2021.130766_bib261) 1987; 38
Shi (10.1016/j.chemosphere.2021.130766_bib275) 2015; 181
Kanel (10.1016/j.chemosphere.2021.130766_bib112) 2005; 39
Wilopo (10.1016/j.chemosphere.2021.130766_bib318) 2008; 49
Um (10.1016/j.chemosphere.2021.130766_bib302) 2011; 45
Zhu (10.1016/j.chemosphere.2021.130766_bib367) 2009; 172
Murphy (10.1016/j.chemosphere.2021.130766_bib203) 1988; 27
Hao (10.1016/j.chemosphere.2021.130766_bib91) 2018; 8
Lv (10.1016/j.chemosphere.2021.130766_bib180) 2011; 85
Saslow (10.1016/j.chemosphere.2021.130766_bib263) 2017; 51
Zhou (10.1016/j.chemosphere.2021.130766_bib364) 2015; 226
Xiong (10.1016/j.chemosphere.2021.130766_bib328) 2016; 18
Zhang (10.1016/j.chemosphere.2021.130766_bib355) 2005; 350
Liu (10.1016/j.chemosphere.2021.130766_bib172) 2019; 9
Xu (10.1016/j.chemosphere.2021.130766_bib337) 2007; 41
Lackovic (10.1016/j.chemosphere.2021.130766_bib127) 2000; 17
Xi (10.1016/j.chemosphere.2021.130766_bib326) 2019; 375
Li (10.1016/j.chemosphere.2021.130766_bib150) 2018; 344
Feng (10.1016/j.chemosphere.2021.130766_bib70) 2015; 31
Adegoke (10.1016/j.chemosphere.2021.130766_bib2) 2013; 22
Bhowmick (10.1016/j.chemosphere.2021.130766_bib14) 2014; 243
Franco (10.1016/j.chemosphere.2021.130766_bib76) 2009; 197
Bang (10.1016/j.chemosphere.2021.130766_bib11) 2005; 121
Jiao (10.1016/j.chemosphere.2021.130766_bib109) 2020; 25
Boglaienko (10.1016/j.chemosphere.2021.130766_bib19) 2019; 380
Qian (10.1016/j.chemosphere.2021.130766_bib241) 2018; 344
Zhu (10.1016/j.chemosphere.2021.130766_bib366) 2018; 174
He (10.1016/j.chemosphere.2021.130766_bib94) 2020; 27
Shi (10.1016/j.chemosphere.2021.130766_bib274) 2011; 45
Xu (10.1016/j.chemosphere.2021.130766_bib335) 2019; 222
Sheng (10.1016/j.chemosphere.2021.130766_bib273) 2016; 148
Blowes (10.1016/j.chemosphere.2021.130766_bib16) 2000; 45
Kanel (10.1016/j.chemosphere.2021.130766_bib113) 2007; 9
Mondal (10.1016/j.chemosphere.2021.130766_bib198) 2004; 43
Fu (10.1016/j.chemosphere.2021.130766_bib77) 2017; 174
Te (10.1016/j.chemosphere.2021.130766_bib294) 2018; 36
Tyrovola (10.1016/j.chemosphere.2021.130766_bib299) 2006; 40
Huang (10.1016/j.chemosphere.2021.130766_bib101) 2011; 127
Ji (10.1016/j.chemosphere.2021.130766_bib107) 2019; 30
Daus (10.1016/j.chemosphere.2021.130766_bib37) 2004; 38
Liu (10.1016/j.chemosphere.2021.130766_bib160) 2013; 58
Li (10.1016/j.chemosphere.2021.130766_bib134) 2019; 374
Xu (10.1016/j.chemosphere.2021.130766_bib332) 2016; 50
Myneni (10.1016/j.chemosphere.2021.130766_bib204) 1997; 278
Sheng (10.1016/j.chemosphere.2021.130766_bib272) 2016; 99
Fan (10.1016/j.chemosphere.2021.130766_bib62) 2020; 610
Kim (10.1016/j.chemosphere.2021.130766_bib118) 2003; 91
Zou (10.1016/j.chemosphere.2021.130766_bib368) 2019; 650
Noubactep (10.1016/j.chemosphere.2021.130766_bib216) 2005; 2
Pearce (10.1016/j.chemosphere.2021.130766_bib227) 2018; 2
Liu (10.1016/j.chemosphere.2021.130766_bib167) 2020; 736
Lu (10.1016/j.chemosphere.2021.130766_bib177) 2015; 276
Gupta (10.1016/j.chemosphere.2021.130766_bib90) 2012; 86
Li (10.1016/j.chemosphere.2021.130766_bib146) 2018; 345
Dong (10.1016/j.chemosphere.2021.130766_bib46) 2016; 165
Zhao (10.1016/j.chemosphere.2021.130766_bib357) 2014; 247
Qin (10.1016/j.chemosphere.2021.130766_bib245) 2019; 33
Morgada (10.1016/j.chemosphere.2021.130766_bib200) 2009; 143
Elrashidi (10.1016/j.chemosphere.2021.130766_bib57) 1987; 144
Tokunaga (10.1016/j.chemosphere.2021.130766_bib296) 1997; 31
Leiviska (10.1016/j.chemosphere.2021.130766_bib130) 2017; 190
Li (10.1016/j.chemosphere.2021.130766_bib137) 2017; 176
Mamindy-Pajany (10.1016/j.chemosphere.2021.130766_bib184) 2011; 281
Zghida (10.1016/j.chemosphere.2021.130766_bib348) 2003; 87
Deng (10.1016/j.chemosphere.2021.130766_bib41) 2018; 77
Lian (10.1016/j.chemosphere.2021.130766_bib152) 2013; 67
Contelot (10.1016/j.chemosphere.2021.130766_bib27) 2019; 128
Cui (10.1016/j.chemosphere.2021.130766_bib30) 2018; 34
Manning (10.1016/j.chemosphere.2021.130766_bib186) 2002; 36
Su (10.1016/j.chemosphere.2021.130766_bib280) 2008; 193
Bello (10.1016/j.chemosphere.2021.130766_bib12) 2019; 374
Manning (10.1016/j.chemosphere.2021.130766_bib187) 1997; 31
Tratnyek (10.1016/j.chemosphere.2021.130766_bib297) 2003
Awuah (10.1016/j.chemosphere.2021.130766_bib7) 2009; 248
Lian (10.1016/j.chemosphere.2021.130766_bib151) 2018; 77
Deng (10.1016/j.chemosphere.2021.130766_bib40) 2014; 300
Guo (10.1016/j.chemosphere.2021.130766_bib89) 2016; 88
Chung (10.1016/j.chemosphere.2021.130766_bib26) 2006; 65
Li (10.1016/j.chemosphere.2021.130766_bib142) 2014; 254
Wu (10.1016/j.chemosphere.2021.130766_bib321) 2017; 4
Dong (10.1016/j.chemosphere.2021.130766_bib47) 2009; 168
Katsoyiannis (10.1016/j.chemosphere.2021.130766_bib116) 2015; 297
Xiong (10.1016/j.chemosphere.2021.130766_bib329) 2011; 102
Xu (10.1016/j.chemosphere.2021.130766_bib336) 2020; 384
Tyrovola (10.1016/j.chemosphere.2021.130766_bib300) 2007; 43
Lien (10.1016/j.chemosphere.2021.130766_bib156) 2005; 59
Oh (10.1016/j.chemosphere.2021.130766_bib219) 2007; 66
Fan (10.1016/j.chemosphere.2021.130766_bib59) 2013; 47
Deng (10.1016/j.chemosphere.2021.130766_bib39) 2005
Liu (10.1016/j.chemosphere.2021.130766_bib163) 2017; 243
Wei (10.1016/j.chemosphere.2021.130766_bib314) 2020; 391
Peacock (10.1016/j.chemosphere.2021.130766_bib226) 2004; 68
Roberson (10.1016/j.chemosphere.2021.130766_bib257) 1999
Zhang (10.1016/j.chemosphere.2021.130766_bib350) 2020; 12
Farrell (10.1016/j.chemosphere.2021.130766_bib66) 1999; 33
Lv (10.1016/j.chemosphere.2021.130766_bib181) 2017; 506
Ravikumar (10.1016/j.chemosphere.2021.130766_bib252) 2018; 9
de Arroyabe Loyo (10.1016/j.chemosphere.2021.130766_bib38) 2008; 42
Shan (10.1016/j.chemosphere.2021.130766_bib268) 2018; 133
Tanboonchuy (10.1016/j.chemosphere.2021.130766_bib290) 2011; 186
Miehr (10.1016/j.chemosphere.2021.130766_bib195) 2004; 38
Qin (10.1016/j.chemosphere.2021.130766_bib243) 2016; 6
He (10.1016/j.chemosphere.2021.130766_bib92) 2020; 22
Reinoso Maset (10.1016/j.chemosphere.2021.130766_bib254) 2006; 40
Xiao (10.1016/j.chemosphere.2021.130766_bib327) 2017; 174
Kong (10.1016/j.chemosphere.2021.130766_bib122) 2020; 392
Zhao (10.1016/j.chemosphere.2021.130766_bib358) 2016; 100
Li (10.1016/j.chemosphere.2021.130766_bib140) 2020; 263
Alijani (10.1016/j.chemosphere.2021.130766_bib4) 2017; 171
Mystrioti (10.1016/j.chemosphere.2021.130766_bib205) 2015; 94
Fan (10.1016/j.chemosphere.2021.130766_bib63) 2019; 159
Yayayuruk (10.1016/j.chemosphere.2021.130766_bib342) 2017; 92
Farrell (10.1016/j.chemosphere.2021.130766_bib67) 2001; 35
Gheju (10.1016/j.chemosphere.2021.130766_bib80) 2011; 222
Wu (10.1016/j.chemosphere.2021.130766_bib322) 2018; 6
Du (10.1016/j.chemosphere.2021.130766_bib52) 2016; 102
Qu (10.1016/j.chemosphere.2021.130766_bib247) 2019; 26
Doyle (10.1016/j.chemosphere.2021.130766_bib50) 2004; 230
Zhang (10.1016/j.chemosphere.2021.130766_bib354) 2018; 335
Liu (10.1016/j.chemosphere.2021.130766_bib165) 2013; 5
Cantrell (10.1016/j.chemosphere.2021.130766_bib22) 1995; 42
Nikolaidis (10.1016/j.chemosphere.2021.130766_bib211) 2003; 37
Nishimura (10.1016/j.chemosphere.2021.130766_bib212) 2000
Li (10.1016/j.chemosphere.2021.130766_bib135) 2015; 151
Zhou (10.1016/j.chemosphere.2021.130766_bib360) 2020; 395
Lee (10.1016/j.chemosphere.2021.130766_bib128) 2009; 30
Hoover (10.1016/j.chemosphere.2021.130766_bib95) 1941; 33
Fan (10.1016/j.chemosphere.2021.130766_bib61) 2017; 51
Vollprecht (10.1016/j.chemosphere.2021.130766_bib305) 2019; 208
Meena (10.1016/j.chemosphere.2021.130766_bib192) 2017; 15
Zhong (10.1016/j.chemosphere.2021.130766_bib359) 2017; 122
Xue (10.1016/j.chemosphere.2021.130766_bib338) 2013; 261
Mondal (10.1016/j.chemosphere.2021.130766_bib199) 2013; 92
Dong (10.1016/j.chemosphere.2021.130766_bib44) 2016; 471
Zhang (10.1016/j.chemosphere.2021.130766_bib349) 2018; 52
Ling (10.1016/j.chemosphere.2021.130766_bib158) 2019; 378
Wen (10.1016/j.chemosphere.2021.130766_bib316) 2020; 146
Song (10.1016/j.chemosphere.2021.130766_bib277) 2020; 249
Eary (10.1016/j.chemosphere.2021.130766_bib55) 1989; 289
Xu (10.1016/j.chemosphere.2021.130766_bib333) 2014; 225
Pryor (10.1016/j.chemosphere.2021.130766_bib239) 1953; 100
Um (10.1016/j.chemosphere.2021.130766_bib301) 2012; 429
Das (10.1016/j.chemosphere.2021.130766_bib36) 2020; 253
Sun (10.1016/j.chemosphere.2021.130766_bib286) 2016; 100
Dorjee (10.1016/j.chemosphere.2021.130766_bib48) 2014; 116
Liu (10.1016/j.chemosphere.2021.130766_bib166) 2015; 138
Asmel (10.1016/j.chemosphere.2021.130766_bib6) 2017; 317
Noubactep (10.1016/j.chemosphere.2021.130766_bib215) 2010; 36
Huang (10.1016/j.chemosphere.2021.130766_bib100) 2018; 338
Das (10.1016/j.chemosphere.2021.130766_bib35) 2019; 78
Melitas (10.1016/j.chemosphere.2021.130766_bib193) 2002; 36
Rau (10.1016/j.chemosphere.2021.130766_bib251) 2002; 36
Wijnja (10.1016/j.chemosphere.2021.130766_bib317) 2000; 229
Liu (10.1016/j.chemosphere.2021.130766_bib159) 2019; 151
Balistrieri (10.1016/j.chemosphere.2021.130766_bib8) 1987; 51
Darab (10.1016/j.chemosphere.2021.130766_bib33) 1996; 8
Jang (10.1016/j.chemosphere.2021.130766_bib106) 2020; 491
Kim (10.1016/j.chemosphere.2021.130766_bib119) 2011; 3
Ding (10.1016/j.chemosphere.2021.130766_bib42) 2013; 30
Guo (10.1016/j.chemosphere.2021.130766_bib88) 2014; 276
Peterson (10.1016/j.chemosphere.2021.130766_bib232) 1997; 61
Liu (10.1016/j.chemosphere.2021.130766_bib174) 2019; 235
Bhaumik (10.1016/j.chemosphere.2021.130766_bib13) 2015; 271
Zeng (10.1016/j.chemosphere.2021.130766_bib
References_xml – volume: 197
  start-page: 331
  year: 2017
  end-page: 337
  ident: bib269
  article-title: Removal of chromium(VI) from water using nanoscale zerovalent iron particles supported on herb-residue biochar
  publication-title: J. Environ. Manag.
– volume: 22
  start-page: 528
  year: 2020
  end-page: 542
  ident: bib92
  article-title: Quantifying the efficiency and selectivity of organohalide dechlorination by zerovalent iron
  publication-title: Environmental Science-Processes & Impacts
– volume: 45
  start-page: 4904
  year: 2011
  end-page: 4913
  ident: bib302
  article-title: Immobilization of
  publication-title: Environ. Sci. Technol.
– volume: 374
  start-page: 177
  year: 2019
  end-page: 185
  ident: bib134
  article-title: Porous iron material for TcO
  publication-title: J. Hazard Mater.
– volume: 18
  start-page: 267
  year: 2016
  ident: bib328
  article-title: Zero-valent iron particles embedded on the mesoporous silica-carbon for chromium (VI) removal from aqueous solution
  publication-title: J. Nano Res.
– volume: 225
  start-page: 1799
  year: 2014
  ident: bib32
  article-title: Removal of Sb(III) and Sb(V) from aqueous solutions using nZVI
  publication-title: Water Air Soil Pollut.
– volume: 17
  start-page: 29
  year: 2000
  end-page: 39
  ident: bib127
  article-title: Inorganic arsenic removal by zero-valent iron
  publication-title: Environ. Eng. Sci.
– volume: 65
  start-page: 24
  year: 2006
  end-page: 34
  ident: bib26
  article-title: Bio-reduction of arsenate using a hydrogen-based membrane biofilm reactor
  publication-title: Chemosphere
– volume: 128
  start-page: 379
  year: 2019
  end-page: 389
  ident: bib27
  article-title: Using porous iron composite (PIC) material to immobilize rhenium as an analogue for technetium
  publication-title: Environ. Int.
– volume: 85
  start-page: 155
  year: 2018
  end-page: 164
  ident: bib143
  article-title: Zero valent iron as an electron transfer agent in a reaction system based on zero valent iron/magnetite nanocomposites for adsorption and oxidation of Sb(III)
  publication-title: J. Taiwan Inst. Chem. Eng
– volume: 113
  start-page: 93
  year: 2014
  end-page: 100
  ident: bib120
  article-title: Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid
  publication-title: Chemosphere
– volume: 8
  start-page: 39545
  year: 2018
  end-page: 39560
  ident: bib91
  article-title: A critical review on arsenic removal from water using iron-based adsorbents
  publication-title: RSC Adv.
– volume: 84
  start-page: 234
  year: 2011
  end-page: 240
  ident: bib182
  article-title: Influences of redox transformation, metal complexation and aggregation of fulvic acid and humic acid on Cr(VI) and As(V) removal by zero-valent iron
  publication-title: Chemosphere
– volume: 37
  start-page: 2734
  year: 2003
  end-page: 2742
  ident: bib102
  article-title: Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction
  publication-title: Environ. Sci. Technol.
– volume: 39
  start-page: 3531
  year: 2005
  end-page: 3540
  ident: bib51
  article-title: Effect of humic acids on heavy metal removal by zero-valent iron in batch and continuous flow column systems
  publication-title: Water Res.
– volume: 297
  start-page: 1
  year: 2015
  end-page: 7
  ident: bib116
  article-title: Enhanced As(III) oxidation and removal by combined use of zero valent iron and hydrogen peroxide in aerated waters at neutral pH values
  publication-title: J. Hazard Mater.
– volume: 166
  start-page: 251
  year: 2000
  end-page: 259
  ident: bib320
  article-title: Competitive adsorption of molybdate, chromate, sulfate, selenate, and selenite on γ-Al
  publication-title: Colloid. Surface. Physicochem. Eng. Aspect.
– volume: 89
  start-page: 713
  year: 1989
  end-page: 764
  ident: bib31
  article-title: Arsenic speciation in the environment
  publication-title: Chem. Rev.
– volume: 227
  start-page: 211
  year: 2012
  end-page: 218
  ident: bib148
  article-title: Mechanism insights into enhanced Cr(VI) removal using nanoscale zerovalent iron supported on the pillared bentonite by macroscopic and spectroscopic studies
  publication-title: J. Hazard Mater.
– volume: 59
  start-page: 377
  year: 2005
  end-page: 386
  ident: bib156
  article-title: High-level arsenite removal from groundwater by zero-valent iron
  publication-title: Chemosphere
– volume: 373
  start-page: 810
  year: 2019
  end-page: 819
  ident: bib281
  article-title: Synthesis and characterization of zeolite-based composites functionalized with nanoscale zero-valent iron for removing arsenic in the presence of selenium from water
  publication-title: J. Hazard Mater.
– volume: 45
  start-page: 123
  year: 2000
  end-page: 137
  ident: bib16
  article-title: Treatment of inorganic contaminants using permeable reactive barriers
  publication-title: J. Contam. Hydrol.
– volume: 6
  start-page: 11119
  year: 2018
  end-page: 11128
  ident: bib82
  article-title: Triple layered core-shell ZVI@carbon@polyaniline composite enhanced electron utilization in Cr(VI) reduction
  publication-title: J. Mater. Chem. A
– start-page: 355
  year: 2000
  end-page: 362
  ident: bib212
  article-title: Removal of selenium from industrial waste water
  publication-title: Minor Elements 2000: Processing and Environmental Aspects of as, Sb, Se, Te, and Bi
– volume: 193
  start-page: 65
  year: 2008
  end-page: 78
  ident: bib280
  article-title: Arsenate and arsenite sorption on magnetite: relations to groundwater arsenic treatment using zerovalent iron and natural attenuation
  publication-title: Water Air Soil Pollut.
– volume: 77
  start-page: 375
  year: 2018
  end-page: 386
  ident: bib41
  article-title: Remediation of arsenic(III) from aqueous solutions using zero-valent iron (ZVI) combined with potassium permanganate and ferrous ions
  publication-title: Water Sci. Technol.
– volume: 19
  start-page: 51
  year: 2017
  end-page: 59
  ident: bib104
  article-title: Kinetic equilibrium and thermodynamic study of arsenic removal from water using alumina supported iron nano particles
  publication-title: J. Water Process. Eng.
– volume: 38
  start-page: 2948
  year: 2004
  end-page: 2954
  ident: bib37
  article-title: Sorption materials for arsenic removal from water: a comparative study
  publication-title: Water Res.
– volume: 65
  start-page: 1396
  year: 2006
  end-page: 1404
  ident: bib310
  article-title: Preparation of spherical iron nanoclusters in ethanol-water solution for nitrate removal
  publication-title: Chemosphere
– volume: 50
  start-page: 1483
  year: 2016
  end-page: 1491
  ident: bib332
  article-title: Sequestration of antimonite by zerovalent Iron: using weak magnetic field effects to enhance performance and characterize reaction mechanisms
  publication-title: Environ. Sci. Technol.
– volume: 253
  start-page: 126702
  year: 2020
  ident: bib36
  article-title: Ultra-high arsenic adsorption by graphene oxide iron nanohybrid: removal mechanisms and potential applications
  publication-title: Chemosphere
– volume: 129
  start-page: 297
  year: 2006
  end-page: 303
  ident: bib282
  article-title: Treatment of groundwater polluted by arsenic compounds by zero valent iron
  publication-title: J. Hazard Mater.
– volume: 53
  start-page: 1028
  year: 1989
  end-page: 1034
  ident: bib228
  article-title: Kinetics and mechanisms of molybdate adsorption desorption at the goethite water interface using pressure-jump relaxation
  publication-title: Soil Sci. Soc. Am. J.
– volume: 146
  start-page: 115
  year: 2016
  end-page: 122
  ident: bib99
  article-title: Floatable, macroporous structured alginate sphere supporting iron nanoparticles used for emergent Cr(VI) spill treatment
  publication-title: Carbohydr. Polym.
– volume: 230
  start-page: 113
  year: 2019
  ident: bib356
  article-title: Application of carboxymethyl cellulose-stabilized sulfidated nano zerovalent iron for removal of Cr(VI) in simulated groundwater
  publication-title: Water Air Soil Pollut.
– volume: 197
  start-page: 49
  year: 2009
  end-page: 60
  ident: bib76
  article-title: Reduction of hexavalent chromium in soil and ground water using zero-valent iron under batch and semi-batch conditions
  publication-title: Water Air Soil Pollut.
– volume: 60
  start-page: 121
  year: 1996
  end-page: 131
  ident: bib185
  article-title: Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals
  publication-title: Soil Sci. Soc. Am. J.
– volume: 19
  start-page: 107
  year: 2017
  ident: bib295
  article-title: Colloidal behavior of goethite nanoparticles modified with humic acid and implications for aquifer reclamation
  publication-title: J. Nano Res.
– volume: 334
  start-page: 296
  year: 2018
  end-page: 304
  ident: bib244
  article-title: Unexpected effect of buffer solution on removal of selenite and selenate by zerovalent iron
  publication-title: Chem. Eng. J.
– volume: 353
  start-page: 246
  year: 2018
  end-page: 253
  ident: bib242
  article-title: Effect of solution chemistry on the reactivity and electron selectivity of zerovalent iron toward Se(VI) removal
  publication-title: Chem. Eng. J.
– volume: 35
  start-page: 1487
  year: 2001
  end-page: 1492
  ident: bib279
  article-title: Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediation
  publication-title: Environ. Sci. Technol.
– volume: 6
  start-page: 95865
  year: 2016
  end-page: 95878
  ident: bib196
  article-title: Removal of antimonite (Sb(III)) and antimonate (Sb(V)) using zerovalent iron decorated functionalized carbon nanotubes
  publication-title: RSC Adv.
– volume: 243
  start-page: 14
  year: 2014
  end-page: 23
  ident: bib14
  article-title: Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: kinetics and mechanism
  publication-title: Chem. Eng. J.
– volume: 87
  start-page: 1660
  year: 2003
  end-page: 1665
  ident: bib348
  article-title: Sorption of chromium oxy-anions onto cationized ligno-cellulosic material
  publication-title: J. Appl. Polym. Sci.
– volume: 13
  start-page: 2292
  year: 2011
  end-page: 2303
  ident: bib324
  article-title: Behaviors of dissolved antimony in the Yangtze River Estuary and its adjacent waters
  publication-title: J. Environ. Monit.
– volume: 227
  year: 2019
  ident: bib351
  article-title: Simultaneous removal of nitrate, copper and hexavalent chromium from water by aluminum-iron alloy particles
  publication-title: J. Contam. Hydrol.
– volume: 102
  start-page: 73
  year: 2016
  end-page: 81
  ident: bib52
  article-title: Reductive sequestration of chromate by hierarchical FeS@Fe
  publication-title: Water Res.
– volume: 25
  start-page: 6175
  year: 2018
  end-page: 6195
  ident: bib65
  article-title: From nZVI to SNCs: development of a better material for pollutant removal in water
  publication-title: Environ. Sci. Pollut. Res.
– volume: 190
  start-page: 231
  year: 2017
  end-page: 242
  ident: bib130
  article-title: Removal of vanadium from industrial wastewater using iron sorbents in batch and continuous flow pilot systems
  publication-title: J. Environ. Manag.
– volume: 226
  start-page: 76
  year: 2015
  ident: bib364
  article-title: The removal of antimony by novel nZVI-zeolite: the role of iron transformation
  publication-title: Water Air Soil Pollut.
– volume: 181
  start-page: 745
  year: 2018
  end-page: 752
  ident: bib24
  article-title: Macroscopic and microscopic investigation of Cr(VI) immobilization by nanoscaled zero-valent iron supported zeolite MCM-41 via batch, visual, XPS and EXAFS techniques
  publication-title: J. Clean. Prod.
– volume: 373
  start-page: 820
  year: 2019
  end-page: 834
  ident: bib309
  article-title: Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: a critical review
  publication-title: J. Hazard Mater.
– volume: 5
  start-page: 1686
  year: 2013
  end-page: 1693
  ident: bib165
  article-title: Synthesizing the composites of graphene oxide-wrapped polyaniline hollow microspheres for high-performance supercapacitors
  publication-title: Sci. Adv. Mater.
– volume: 12
  start-page: 2057
  year: 2010
  end-page: 2068
  ident: bib220
  article-title: Reduction of Se(VI) to Se(-II) by zerovalent iron nanoparticle suspensions
  publication-title: J. Nano Res.
– volume: 391
  start-page: 122057
  year: 2020
  ident: bib314
  article-title: Simultaneous adsorption and oxidation of antimonite onto nano zero-valent iron sludge-based biochar: indispensable role of reactive oxygen species and redox-active moieties
  publication-title: J. Hazard Mater.
– volume: 47
  start-page: 182
  year: 2015
  end-page: 189
  ident: bib206
  article-title: Arsenic removal by nanoiron coupled with gas bubbling system
  publication-title: J. Taiwan Inst. Chem. Eng.
– volume: 249
  start-page: 117161
  year: 2020
  ident: bib277
  article-title: Lithium recovery from Li
  publication-title: Separ. Purif. Technol.
– volume: 57
  start-page: 125
  year: 2002
  end-page: 176
  ident: bib73
  article-title: Antimony in the environment: a review focused on natural waters I. Occurrence
  publication-title: Earth Sci. Rev.
– volume: 288
  start-page: 789
  year: 2016
  end-page: 797
  ident: bib144
  article-title: Nanoscale zerovalent iron decorated on graphene nanosheets for Cr(VI) removal from aqueous solution: surface corrosion retard induced the enhanced performance
  publication-title: Chem. Eng. J.
– volume: 392
  start-page: 122392
  year: 2020
  ident: bib122
  article-title: Enhanced removal of vanadium(V) from groundwater by layered double hydroxide-supported nanoscale zerovalent iron
  publication-title: J. Hazard Mater.
– volume: 19
  start-page: 1929
  year: 2019
  end-page: 1937
  ident: bib210
  article-title: Improvement of aqueous solution coexisting with arsenite and arsenate using iron mixed porous clay pellets in batch and fixed-bed column studies
  publication-title: Water Sci. Technol. Water Supply
– volume: 186
  start-page: 2123
  year: 2011
  end-page: 2128
  ident: bib290
  article-title: Gas-bubbled nano zero-valent iron process for high concentration arsenate removal
  publication-title: J. Hazard Mater.
– volume: 189
  start-page: 237
  year: 2012
  end-page: 243
  ident: bib21
  article-title: Arsenic removal via ZVI in a hybrid spouted vessel/fixed bed filter system
  publication-title: Chem. Eng. J.
– volume: 85
  start-page: 1204
  year: 2011
  end-page: 1209
  ident: bib180
  article-title: Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes
  publication-title: Chemosphere
– volume: 240
  start-page: 717
  year: 2018
  end-page: 724
  ident: bib319
  article-title: Dynamic study of Cr(VI) removal performance and mechanism from water using multilayer material coated nanoscale zerovalent iron
  publication-title: Environ. Pollut.
– volume: 7
  start-page: 470
  year: 2018
  end-page: 476
  ident: bib126
  article-title: Removal of Cr(VI) ions from the aqueous solution through nanoscale zero-valent iron (nZVI) magnetite corn cob silica (MCCS): a bio-waste based water purification perspective
  publication-title: Groundwater Sustain. Dev.
– volume: 38
  start-page: 139
  year: 2004
  end-page: 147
  ident: bib195
  article-title: Diversity of contaminant reduction reactions by zerovalent iron: role of the reductate
  publication-title: Environ. Sci. Technol.
– volume: 71
  start-page: 2137
  year: 2007
  end-page: 2157
  ident: bib346
  article-title: Reduction of pertechnetate Tc(VII) by aqueous Fe(II) and the nature of solid phase redox products
  publication-title: Geochem. Cosmochim. Acta
– year: 2005
  ident: bib288
  article-title: Atlas of Eh-pH Diagrams
– volume: 30
  start-page: 1425
  year: 2009
  end-page: 1434
  ident: bib128
  article-title: Assessment of zero-valent iron as a permeable reactive barrier for long-term removal of arsenic compounds from synthetic water
  publication-title: Environ. Technol.
– volume: 116
  start-page: 5303
  year: 2012
  end-page: 5311
  ident: bib340
  article-title: As(III) sequestration by iron nanoparticles: study of solid-phase redox transformations with X-ray photoelectron spectroscopy
  publication-title: J. Phys. Chem. C
– volume: 127
  start-page: 39
  year: 2011
  end-page: 47
  ident: bib101
  article-title: As(III) adsorption from drinking water on nanoscale zero-valent iron: kinetics and isotherm studies
  publication-title: Integrated Ferroelectrics Int. J.
– volume: 225
  start-page: 1945
  year: 2014
  ident: bib363
  article-title: Synthesis, characterization, and adsorptive properties of magnetic cellulose nanocomposites for arsenic removal
  publication-title: Water Air Soil Pollut.
– volume: 133
  start-page: 103
  year: 2002
  end-page: 111
  ident: bib194
  article-title: Combined effects of anions on arsenic removal by iron hydroxides
  publication-title: Toxicol. Lett.
– volume: 75
  start-page: 156
  year: 2009
  end-page: 162
  ident: bib250
  article-title: Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses
  publication-title: Chemosphere
– volume: 174
  start-page: 184
  year: 2018
  end-page: 190
  ident: bib366
  article-title: Green synthesis of nano zero-valent iron/Cu by green tea to remove hexavalent chromium from groundwater
  publication-title: J. Clean. Prod.
– volume: 3
  start-page: 1457
  year: 2011
  end-page: 1462
  ident: bib119
  article-title: Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications
  publication-title: ACS Appl. Mater. Interfaces
– volume: 395
  start-page: 122623
  year: 2020
  ident: bib164
  article-title: Simultaneous removal of Cd(II) and As(III) by graphene-like biochar-supported zero-valent iron from irrigation waters under aerobic conditions: synergistic effects and mechanisms
  publication-title: J. Hazard Mater.
– volume: 29
  start-page: 1913
  year: 1995
  end-page: 1922
  ident: bib237
  article-title: Coupled iron corrosion and chromate reduction-mechanisms for subsurface remediation
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 1970
  year: 2009
  end-page: 1976
  ident: bib178
  article-title: Treatment of arsenic, heavy metals, and acidity using a mixed ZVI-compost PRB
  publication-title: Environ. Sci. Technol.
– volume: 28
  start-page: 559
  year: 1988
  end-page: 576
  ident: bib191
  article-title: An XPS study of passive film formation on iron in chromate solutions Corros
  publication-title: Science
– volume: 36
  start-page: 442
  year: 2011
  end-page: 446
  ident: bib308
  article-title: Effects and mechanism of humic acid on chromium(VI) removal by zero-valent iron (Fe
  publication-title: Phys. Chem. Earth
– volume: 33
  start-page: 1550
  year: 2019
  end-page: 1557
  ident: bib245
  article-title: Nanoscale zero valent iron-based optimization system and their application in environmental remediation: a review
  publication-title: Mater. Rev.
– volume: 373
  start-page: 176
  year: 2019
  end-page: 186
  ident: bib179
  article-title: Nanoscale zero valent iron supported on MgAl-LDH-decorated reduced graphene oxide: enhanced performance in Cr(VI) removal, mechanism and regeneration
  publication-title: J. Hazard Mater.
– volume: 52
  start-page: 10052
  year: 2013
  end-page: 10058
  ident: bib292
  article-title: Removal of arsenic(III) from water with clay-supported zerovalent iron nanoparticles synthesized with the help of tea liquor
  publication-title: Ind. Eng. Chem. Res.
– volume: 374
  start-page: 372
  year: 2019
  end-page: 381
  ident: bib12
  article-title: Synthesis of zerovalent iron from water treatment residue as a conjugate with kaolin and its application for vanadium removal
  publication-title: J. Hazard Mater.
– volume: 53
  start-page: 14577
  year: 2019
  end-page: 14585
  ident: bib64
  article-title: Coupled effect of sulfidation and ferrous dosing on selenate removal by zerovalent iron under aerobic conditions
  publication-title: Environ. Sci. Technol.
– volume: 30
  start-page: 713
  year: 2013
  end-page: 718
  ident: bib42
  article-title: Kinetics of reductive immobilization of rhenium in soil and groundwater using zero valent iron nanoparticles
  publication-title: Environ. Eng. Sci.
– volume: 51
  start-page: 104
  year: 2013
  end-page: 122
  ident: bib217
  article-title: Nanoscale zero valent iron and bimetallic particles for contaminated site remediation
  publication-title: Adv. Water Resour.
– volume: 36
  start-page: 5455
  year: 2002
  end-page: 5461
  ident: bib186
  article-title: Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products
  publication-title: Environ. Sci. Technol.
– year: 1999
  ident: bib257
  article-title: Removal of Selenate from Irrigation Drainage Water Using Zerovalent Iron
– volume: 40
  start-page: 184
  year: 2000
  end-page: 194
  ident: bib258
  article-title: Characterization of corrosion products in the permeable reactive barriers
  publication-title: Environ. Geol.
– volume: 261
  start-page: 295
  year: 2013
  end-page: 306
  ident: bib231
  article-title: Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution
  publication-title: J. Hazard Mater.
– volume: 61
  start-page: 2185
  year: 1997
  end-page: 2192
  ident: bib267
  article-title: Reduction of hexavalent chromium by ferrous iron
  publication-title: Geochem. Cosmochim. Acta
– volume: 151
  start-page: 242
  year: 2019
  end-page: 251
  ident: bib159
  article-title: Controlled fabrication of functionalized nanoscale zero-valent iron/celluloses composite with silicon as protective layer for arsenic removal
  publication-title: Chem. Eng. Res. Des.
– volume: 384
  start-page: 123295
  year: 2020
  ident: bib336
  article-title: Enhancing the dioxygen activation for arsenic removal by Cu
  publication-title: Chem. Eng. J.
– volume: 360
  start-page: 1
  year: 2019
  end-page: 9
  ident: bib133
  article-title: Pertechnetate (TcO
  publication-title: Chem. Eng. J.
– volume: 43
  start-page: 2540
  year: 2009
  end-page: 2548
  ident: bib170
  article-title: Removal of co-present chromate and arsenate by zero-valent iron in groundwater with humic acid and bicarbonate
  publication-title: Water Res.
– volume: 280
  start-page: 149
  year: 2017
  end-page: 154
  ident: bib176
  article-title: Removal of As(III) from aqueous solutions through simultaneous photocatalytic oxidation and adsorption by TiO
  publication-title: Catal. Today
– volume: 4
  start-page: 3441
  year: 2016
  end-page: 3450
  ident: bib303
  article-title: Antimony oxyanions uptake by green marine macroalgae
  publication-title: J. Environ. Chem. Eng.
– volume: 222
  start-page: 415
  year: 2019
  end-page: 421
  ident: bib335
  article-title: A simple and novel method to enhance As(V) removal by zero valent iron and activated iron media through air injection at intervals
  publication-title: Chemosphere
– volume: 117
  start-page: 108
  year: 2014
  end-page: 114
  ident: bib124
  article-title: Implementation of zero-valent iron (ZVI) into drinking water supply - role of the ZVI and biological processes
  publication-title: Chemosphere
– year: 2010
  ident: bib265
  article-title: The Aqueous Chemistry of the Elements
– volume: 169
  start-page: 1081
  year: 2009
  end-page: 1087
  ident: bib256
  article-title: Reduction of hexavalent chromium mediated by micro- and nano-sized mixed metallic particles
  publication-title: J. Hazard Mater.
– volume: 24
  start-page: 91
  year: 1990
  end-page: 96
  ident: bib189
  article-title: Transformations of selenium as affected by sediment oxidation reduction potential and pH
  publication-title: Environ. Sci. Technol.
– volume: 17
  start-page: 223
  year: 1983
  end-page: 229
  ident: bib20
  article-title: Eh-pH diagrams for the rare-earth elements at 25°C and one bar pressure
  publication-title: Geochem. J.
– volume: 248
  start-page: 222
  year: 2017
  end-page: 233
  ident: bib25
  article-title: Structure investigation of nano-FeO(OH) modified clinoptilolite tuff for antimony removal
  publication-title: Microporous Mesoporous Mater.
– volume: 274
  start-page: 287
  year: 2014
  end-page: 299
  ident: bib72
  article-title: Tailored zeolites for the removal of metal oxyanions: overcoming intrinsic limitations of zeolites
  publication-title: J. Hazard Mater.
– volume: 2
  start-page: 532
  year: 2018
  end-page: 547
  ident: bib227
  article-title: Technetium stabilization in low-solubility sulfide phases: a review
  publication-title: ACS Earth Space Chem
– volume: 51
  start-page: 1145
  year: 1987
  end-page: 1151
  ident: bib8
  article-title: Selenium adsorption by goethite
  publication-title: Soil Sci. Soc. Am. J.
– volume: 388
  year: 2020
  ident: bib353
  article-title: Modification of zero valent iron nanoparticles by sodium alginate and bentonite: enhanced transport, effective hexavalent chromium removal and reduced bacterial toxicity
  publication-title: J. Hazard Mater.
– volume: 67
  start-page: 14
  year: 2018
  end-page: 22
  ident: bib330
  article-title: Performance and mechanism of Cr(VI) removal by zero-valent iron loaded onto expanded graphite
  publication-title: J. Environ. Sci.
– volume: 116
  start-page: 15
  year: 2014
  end-page: 23
  ident: bib48
  article-title: Antimony adsorption by zero-valent iron nanoparticles (nZVI): ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP-MS) study
  publication-title: Microchem. J.
– volume: 36
  start-page: 663
  year: 2010
  end-page: 670
  ident: bib215
  article-title: The fundamental mechanism of aqueous contaminant removal by metallic iron
  publication-title: WaterSA
– volume: 121
  start-page: 61
  year: 2005
  end-page: 67
  ident: bib11
  article-title: Removal of arsenic from water by zero-valent iron
  publication-title: J. Hazard Mater.
– volume: 144
  start-page: 141
  year: 1987
  end-page: 152
  ident: bib57
  article-title: Chemical equilibrla of selenium in soils: a theoretical development
  publication-title: Soil Sci.
– volume: 375
  start-page: 121928
  year: 2019
  ident: bib326
  article-title: Performance and mechanism of arsenic removal in waste acid by combination of CuSO
  publication-title: Chem. Eng. J.
– volume: 736
  start-page: 139629
  year: 2020
  ident: bib167
  article-title: Removal of Sb(III) by sulfidated nanoscale zerovalent iron: the mechanism and impact of environmental conditions
  publication-title: Sci. Total Environ.
– volume: 49
  start-page: 684
  year: 2006
  end-page: 695
  ident: bib233
  article-title: Remediation of ground water containing chlorinated and brominated hydrocarbons, benzene and chromate by sequential treatment using ZVI and GAC
  publication-title: Environ. Geol.
– volume: 135
  start-page: 322
  year: 2018
  end-page: 330
  ident: bib270
  article-title: Dynamic interactions between sulfidated zerovalent iron and dissolved oxygen: mechanistic insights for enhanced chromate removal
  publication-title: Water Res.
– volume: 86
  start-page: 150
  year: 2012
  end-page: 155
  ident: bib90
  article-title: Zerovalent iron encapsulated chitosan nanospheres - a novel adsorbent for the removal of total inorganic Arsenic from aqueous systems
  publication-title: Chemosphere
– volume: 122
  start-page: 536
  year: 2017
  end-page: 544
  ident: bib359
  article-title: Column study of enhanced Cr(VI) removal and longevity by coupled abiotic and biotic processes using Fe
  publication-title: Water Res.
– volume: 47
  start-page: 7350
  year: 2013
  end-page: 7356
  ident: bib168
  article-title: Depassivation of aged Fe
  publication-title: Environ. Sci. Technol.
– volume: 39
  start-page: 763
  year: 2005
  end-page: 770
  ident: bib10
  article-title: Chemical reactions between arsenic and zero-valent iron in water
  publication-title: Water Res.
– volume: 97
  start-page: 21
  year: 2009
  end-page: 28
  ident: bib58
  article-title: Removal of Mo(VI) as oxoanions from aqueous solutions using chemically modified magnetic chitosan resins
  publication-title: Hydrometallurgy
– volume: 37
  start-page: 68
  year: 2014
  end-page: 73
  ident: bib323
  article-title: Zero-valent iron technology and equipment applicable to remove nonbiodegradable hazardous pollutants with high efficiency
  publication-title: Enuivon. Sci. Technol.
– volume: 382
  start-page: 122999
  year: 2020
  ident: bib347
  article-title: Chitosan functionalized iron nanosheet for enhanced removal of As(III) and Sb(III): synergistic effect and mechanism
  publication-title: Chem. Eng. J.
– volume: 39
  start-page: 1729
  year: 2005
  end-page: 1740
  ident: bib132
  article-title: Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron
  publication-title: Water Res.
– volume: 40
  start-page: 371
  year: 1998
  end-page: 389
  ident: bib218
  article-title: Mechanism of oxide film formation on iron in simulating groundwater solutions: Raman spectroscopic studies
  publication-title: Corrosion Sci.
– volume: 150
  start-page: 431
  year: 2009
  end-page: 439
  ident: bib298
  article-title: Effect of operating conditions on iron corrosion rates in zero-valent iron systems for arsenic removal
  publication-title: Chem. Eng. J.
– volume: 91
  start-page: 211
  year: 2003
  end-page: 216
  ident: bib118
  article-title: Chemistry of rhenium as an analogue of technetium: experimental studies of the dissolution of rhenium oxides in aqueous solutions
  publication-title: Radiochim. Acta
– volume: 143
  start-page: 261
  year: 2009
  end-page: 268
  ident: bib200
  article-title: Arsenic (V) removal with nanoparticulate zerovalent iron: effect of UV light and humic acids
  publication-title: Catal. Today
– volume: 335
  start-page: 945
  year: 2018
  end-page: 953
  ident: bib354
  article-title: Mechanism investigation of anoxic Cr(VI) removal by nano zero-valent iron based on XPS analysis in time scale
  publication-title: Chem. Eng. J.
– volume: 57
  start-page: 2251
  year: 1993
  end-page: 2269
  ident: bib313
  article-title: Surface-chemistyr of ferrihydrite .1. EXAFS studies of the geometry of coprecipiated and adsorbed arsenate Geochim
  publication-title: Cosmochim. Acta
– volume: 229
  start-page: 286
  year: 2000
  end-page: 297
  ident: bib317
  article-title: Vibrational spectroscopy study of selenate and sulfate adsorption mechanisms on Fe and Al (hydr)oxide surfaces
  publication-title: J. Colloid Interface Sci.
– volume: 36
  start-page: 2074
  year: 2002
  end-page: 2081
  ident: bib193
  article-title: Understanding soluble arsenate removal kinetics by zerovalent iron media
  publication-title: Environ. Sci. Technol.
– volume: 2
  start-page: 71
  year: 2005
  end-page: 76
  ident: bib216
  article-title: Testing the suitability of zerovalent iron materials for reactive walls
  publication-title: Environ. Chem.
– volume: 53
  start-page: 5936
  year: 2019
  end-page: 5945
  ident: bib334
  article-title: Reactivity, selectivity, and long-term performance of sulfidized nanoscale zerovalent iron with different properties
  publication-title: Environ. Sci. Technol.
– volume: 50
  start-page: 7610
  year: 2016
  end-page: 7617
  ident: bib125
  article-title: Microbial sulfate reduction enhances arsenic mobility downstream of zerovalent-iron-based permeable reactive barrier
  publication-title: Environ. Sci. Technol.
– volume: 138
  start-page: 616
  year: 2015
  end-page: 624
  ident: bib166
  article-title: Adsorption of antimony(V) onto Mn(II)-enriched surfaces of manganese-oxide and Fe-Mn binary oxide
  publication-title: Chemosphere
– volume: 43
  start-page: 6786
  year: 2009
  end-page: 6792
  ident: bib75
  article-title: Assessment of long-term performance and chromate reduction mechanisms in a field scale permeable reactive barrier
  publication-title: Environ. Sci. Technol.
– volume: 354
  start-page: 445
  year: 2018
  end-page: 453
  ident: bib287
  article-title: Enhanced chromium(VI) removal by zero-valent iron in the presence of anions and a weak magnetic field: batch and column tests
  publication-title: Chem. Eng. J.
– volume: 77
  start-page: 859
  year: 2018
  end-page: 868
  ident: bib151
  article-title: Removal of molybdenum(VI) from aqueous solutions using nano zero-valent iron supported on biochar enhanced by cetyl-trimethyl ammonium bromide: adsorption kinetic, isotherm and mechanism studies
  publication-title: Water Sci. Technol.
– volume: 35
  start-page: 2026
  year: 2001
  end-page: 2032
  ident: bib67
  article-title: Electrochemical and spectroscopic study of arsenate removal from water using zero-valent Iran media
  publication-title: Environ. Sci. Technol.
– volume: 59
  start-page: 265
  year: 2002
  end-page: 285
  ident: bib74
  article-title: Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry
  publication-title: Earth Sci. Rev.
– volume: 254
  start-page: 115
  year: 2014
  end-page: 123
  ident: bib142
  article-title: Zero-valent iron nanoparticles (nZVI) for the treatment of smelting wastewater: a pilot-scale demonstration
  publication-title: Chem. Eng. J.
– volume: 34
  start-page: 2564
  year: 2000
  end-page: 2569
  ident: bib235
  article-title: Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron
  publication-title: Environ. Sci. Technol.
– volume: 380
  start-page: 120836
  year: 2019
  ident: bib19
  article-title: Comparative analysis of ZVI materials for reductive separation of
  publication-title: J. Hazard Mater.
– volume: 66
  start-page: 858
  year: 2007
  end-page: 865
  ident: bib219
  article-title: Effect of amorphous silica and silica sand on removal of chromium(VI) by zero-valent iron
  publication-title: Chemosphere
– volume: 26
  start-page: 5176
  year: 2019
  end-page: 5188
  ident: bib247
  article-title: Magnetic Fe
  publication-title: Environ. Sci. Pollut. Res.
– volume: 332
  start-page: 42
  year: 2017
  end-page: 50
  ident: bib343
  article-title: Enhanced Cr(VI) removal from groundwater by Fe
  publication-title: J. Hazard Mater.
– volume: 38
  start-page: 211
  year: 1987
  end-page: 217
  ident: bib261
  article-title: Inorganic anion sorption and interactions with phosphate sorption by hydrous ferric- oxide gel
  publication-title: J. Soil Sci.
– volume: 156
  start-page: 827
  year: 2008
  end-page: 831
  ident: bib28
  article-title: In field arsenic removal from natural water by zero-valent iron assisted by solar radiation
  publication-title: Environ. Pollut.
– volume: 248
  start-page: 20
  year: 2013
  end-page: 28
  ident: bib114
  article-title: Interaction of aqueous Se(IV)/Se(VI) with FeSe/FeSe
  publication-title: J. Hazard Mater.
– volume: 47
  start-page: 5846
  year: 2013
  end-page: 5855
  ident: bib155
  article-title: Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron
  publication-title: Water Res.
– volume: 90
  start-page: 385
  year: 2020
  end-page: 394
  ident: bib362
  article-title: A collaborative strategy for enhanced reduction of Cr(VI) by Fe(0) in the presence of oxalate under sunlight: performance and mechanism
  publication-title: J. Environ. Sci.
– volume: 43
  start-page: 4922
  year: 2004
  end-page: 4934
  ident: bib198
  article-title: Removal of selenate by Fe and NiFe nanosized particles
  publication-title: Ind. Eng. Chem. Res.
– volume: 345
  start-page: 432
  year: 2018
  end-page: 440
  ident: bib146
  article-title: Selenite removal from groundwater by zero-valent iron (ZVI) in combination with oxidants
  publication-title: Chem. Eng. J.
– volume: 650
  start-page: 419
  year: 2019
  end-page: 426
  ident: bib368
  article-title: Chromium(VI) removal by mechanochemically sulfidated zero valent iron and its effect on dechlorination of trichloroethene as a co-contaminant
  publication-title: Sci. Total Environ.
– volume: 78
  start-page: 7
  year: 2010
  end-page: 12
  ident: bib15
  article-title: Arsenite removal from waters by zero valent iron: batch and column tests
  publication-title: Chemosphere
– volume: 72
  start-page: 1049
  year: 2008
  end-page: 1055
  ident: bib97
  article-title: Evaluation of the multiple-ion competition in the adsorption of As(V) onto reclaimed iron-oxide coated sands by fractional factorial design
  publication-title: Chemosphere
– volume: 39
  start-page: 1291
  year: 2005
  end-page: 1298
  ident: bib112
  article-title: Removal of arsenic(III) from groundwater by nanoscale zero-valent iron
  publication-title: Environ. Sci. Technol.
– volume: 144
  start-page: 4018004
  year: 2018
  ident: bib175
  article-title: Synthesis of nano-Fe
  publication-title: J. Environ. Eng.
– volume: 171
  start-page: 502
  year: 2017
  end-page: 511
  ident: bib4
  article-title: Effective aqueous arsenic removal using zero valent iron doped MWCNT synthesized by in situ CVD method using natural α-Fe
  publication-title: Chemosphere
– volume: 298
  start-page: 1
  year: 2015
  end-page: 10
  ident: bib202
  article-title: Negative impact of oxygen molecular activation on Cr(VI) removal with core-shell Fe@Fe
  publication-title: J. Hazard Mater.
– volume: 364
  start-page: 134
  year: 2019
  end-page: 142
  ident: bib209
  article-title: The impact of iron nanoparticles on technetium-contaminated groundwater and sediment microbial communities
  publication-title: J. Hazard Mater.
– volume: 49
  start-page: 2265
  year: 2008
  end-page: 2274
  ident: bib318
  article-title: Immobilization of arsenic and manganese in contaminated groundwater by permeable reactive barriers using zero valent iron and sheep manure
  publication-title: Mater. Trans.
– volume: 31
  start-page: 315
  year: 1997
  end-page: 320
  ident: bib68
  article-title: Arsenate and chromate retention mechanisms on goethite .1. Surface structure
  publication-title: Environ. Sci. Technol.
– volume: 595
  start-page: 743
  year: 2017
  end-page: 751
  ident: bib83
  article-title: Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles
  publication-title: Sci. Total Environ.
– volume: 300
  start-page: 835
  year: 2014
  end-page: 842
  ident: bib40
  article-title: Cloud point extraction and simultaneous spectrophotometric determination of V(V), Co(II) and Cu(II) ions in water samples by 5-Br-PADAP using partial least squares regression
  publication-title: J. Radioanal. Nucl. Chem.
– volume: 353
  start-page: 781
  year: 2018
  end-page: 795
  ident: bib201
  article-title: Activated carbon impregnated by zero-valent iron nanoparticles (AC/nZVI) optimized for simultaneous adsorption and reduction of aqueous hexavalent chromium: material characterizations and kinetic studies
  publication-title: Chem. Eng. J.
– volume: 51
  start-page: 8635
  year: 2017
  end-page: 8642
  ident: bib263
  article-title: Reduction and simultaneous removal of
  publication-title: Environ. Sci. Technol.
– volume: 47
  start-page: 5302
  year: 2013
  end-page: 5310
  ident: bib59
  article-title: Reductive sequestration of pertechnetate (
  publication-title: Environ. Sci. Technol.
– volume: 34
  start-page: 819
  year: 2000
  end-page: 825
  ident: bib253
  article-title: Reduction of SeO
  publication-title: Environ. Sci. Technol.
– volume: 9
  start-page: 122
  year: 2018
  end-page: 133
  ident: bib252
  article-title: Nano-Bio sequential removal of hexavalent chromium using polymer-nZVI composite film and sulfate reducing bacteria under anaerobic condition
  publication-title: Environ. Technol. Innov.
– volume: 407
  start-page: 3407
  year: 2009
  end-page: 3414
  ident: bib169
  article-title: Influences of humic acid, bicarbonate and calcium on Cr(VI) reductive removal by zero-valent iron
  publication-title: Sci. Total Environ.
– volume: 47
  start-page: 11002
  year: 2018
  end-page: 11015
  ident: bib18
  article-title: Retention and multiphase transformation of selenium oxyanions during the formation of magnetite via iron(II) hydroxide and green rust
  publication-title: Dalton Trans.
– volume: 322
  start-page: 163
  year: 2017
  end-page: 171
  ident: bib141
  article-title: Heavy metal removal using nanoscale zero-valent iron (nZVI): theory and application
  publication-title: J. Hazard Mater.
– volume: 29
  start-page: 909
  year: 2008
  end-page: 920
  ident: bib213
  article-title: A critical review on the process of contaminant removal in Fe
  publication-title: Environ. Technol.
– volume: 35
  start-page: 4562
  year: 2001
  end-page: 4568
  ident: bib278
  article-title: Arsenate and arsenite removal by zerovalent iron: effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride
  publication-title: Environ. Sci. Technol.
– volume: 42
  start-page: 7424
  year: 2008
  end-page: 7430
  ident: bib115
  article-title: pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water
  publication-title: Environ. Sci. Technol.
– volume: 36
  start-page: 372
  year: 2018
  end-page: 392
  ident: bib294
  article-title: Development of low-cost iron mixed porous pellet adsorbent by mixture design approach and its application for arsenate and arsenite adsorption from water
  publication-title: Adsorpt. Sci. Technol.
– volume: 471
  start-page: 7
  year: 2016
  end-page: 13
  ident: bib44
  article-title: Chromate removal by surface-modified nanoscale zero-valent iron: effect of different surface coatings and water chemistry
  publication-title: J. Colloid Interface Sci.
– volume: 222
  start-page: 103
  year: 2011
  end-page: 148
  ident: bib80
  article-title: Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems
  publication-title: Water Air Soil Pollut.
– volume: 404
  year: 2021
  ident: bib154
  article-title: The removal of heavy metal cations by sulfidated nanoscale zero-valent iron (S-nZVI): the reaction mechanisms and the role of sulfur
  publication-title: J. Hazard Mater.
– volume: 94
  start-page: 302
  year: 2015
  end-page: 307
  ident: bib205
  article-title: Assessment of polyphenol coated nano zero valent iron for hexavalent chromium removal from contaminated waters
  publication-title: Bull. Environ. Contam. Toxicol.
– volume: 35
  start-page: 4474
  year: 2001
  end-page: 4479
  ident: bib248
  article-title: Batch-mixed iron treatment of high arsenic waters
  publication-title: Water Res.
– volume: 181
  start-page: 17
  year: 2015
  end-page: 35
  ident: bib275
  article-title: Methods for characterizing the fate and effects of nano zerovalent iron during groundwater remediation
  publication-title: J. Contam. Hydrol.
– volume: 102
  start-page: 190
  year: 2016
  end-page: 203
  ident: bib1
  article-title: A novel MD-ZVI integrated approach for high arsenic groundwater decontamination and effluent immobilization
  publication-title: Process Saf. Environ. Protect.
– volume: 27
  start-page: 16484
  year: 2020
  end-page: 16495
  ident: bib94
  article-title: Enhanced adsorption of antimonate by ball-milled microscale zero valent iron/pyrite composite: adsorption properties and mechanism insight
  publication-title: Environ. Sci. Pollut. Res.
– volume: 88
  start-page: 671
  year: 2016
  end-page: 680
  ident: bib89
  article-title: Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water
  publication-title: Water Res.
– volume: 388
  year: 2020
  ident: bib93
  article-title: Nanoscale zero-valent iron intercalated 2D titanium carbides for removal of Cr(VI) in aqueous solution and the mechanistic aspect
  publication-title: J. Hazard Mater.
– volume: 159
  start-page: 375
  year: 2019
  end-page: 384
  ident: bib63
  article-title: Selenate removal by Fe
  publication-title: Water Res.
– volume: 51
  start-page: 3742
  year: 2017
  end-page: 3750
  ident: bib285
  article-title: Combined effect of weak magnetic fields and anions on arsenite sequestration by zerovalent iron: kinetics and mechanisms
  publication-title: Environ. Sci. Technol.
– volume: 4
  start-page: 681
  year: 2016
  end-page: 694
  ident: bib339
  article-title: Sorptive removal of arsenite As(III) and arsenate As(V) by fuller's earth immobilized nanoscale zero-valent iron nanoparticles (F-nZVI): effect of Fe
  publication-title: J. Environ. Chem. Eng.
– volume: 104
  start-page: 185
  year: 2011
  end-page: 192
  ident: bib344
  article-title: Reduction and adsorption mechanisms of selenate by zero-valent iron and related iron corrosion
  publication-title: Appl. Catal. B Environ.
– volume: 174
  start-page: 362
  year: 2017
  end-page: 371
  ident: bib77
  article-title: Fast and highly efficient removal of chromium(VI) using humus-supported nanoscale zero-valent iron: influencing factors, kinetics and mechanism
  publication-title: Separ. Purif. Technol.
– volume: 168
  start-page: 626
  year: 2009
  end-page: 632
  ident: bib47
  article-title: Iron coated pottery granules for arsenic removal from drinking water
  publication-title: J. Hazard Mater.
– volume: 36
  start-page: 1497
  year: 2002
  end-page: 1504
  ident: bib251
  article-title: Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria
  publication-title: Environ. Sci. Technol.
– volume: 91
  start-page: 449
  year: 2018
  end-page: 456
  ident: bib78
  article-title: Scavenging of Cr(VI) from aqueous solutions by sulfide-modified nanoscale zero-valent iron supported by biochar
  publication-title: J. Taiwan Inst. Chem. Eng.
– volume: 6
  start-page: 50144
  year: 2016
  end-page: 50152
  ident: bib243
  article-title: Role of dissolved oxygen in metal(loid) removal by zerovalent iron at different pH: its dependence on the removal mechanisms
  publication-title: RSC Adv.
– volume: 51
  start-page: 13533
  year: 2017
  end-page: 13544
  ident: bib139
  article-title: Advances in sulfidation of zerovalent iron for water decontamination
  publication-title: Environ. Sci. Technol.
– volume: 4
  start-page: 1544
  year: 2017
  end-page: 1552
  ident: bib321
  article-title: The double influence mechanism of pH on arsenic removal by nano zero valent iron: electrostatic interactions and the corrosion of Fe
  publication-title: Environ. Sci. Nano
– volume: 174
  start-page: 466
  year: 2017
  end-page: 473
  ident: bib327
  article-title: Ultra-efficient removal of chromium from aqueous medium by biogenic iron based nanoparticles
  publication-title: Separ. Purif. Technol.
– volume: 146
  start-page: 692
  year: 2020
  end-page: 704
  ident: bib316
  article-title: An ion release controlled Cr(VI) treatment agent: nano zero-valent iron/carbon/alginate composite gel
  publication-title: Int. J. Biol. Macromol.
– volume: 174
  start-page: 188
  year: 2010
  end-page: 193
  ident: bib136
  article-title: Removal of nitrate by zero-valent iron and pillared bentonite
  publication-title: J. Hazard Mater.
– volume: 281
  start-page: 93
  year: 2011
  end-page: 99
  ident: bib184
  article-title: Arsenic(V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: effects of pH, concentration and reversibility
  publication-title: Desalination
– volume: 51
  start-page: 13070
  year: 2017
  end-page: 13085
  ident: bib61
  article-title: Sulfidation of iron-based materials: a review of processes and implications for water treatment and remediation
  publication-title: Environ. Sci. Technol.
– volume: 92
  start-page: 49
  year: 2019
  end-page: 58
  ident: bib225
  article-title: Removal of aqueous-phase Pb(II), Cd(II), As(III), and As(V) by nanoscale zero-valent iron supported on exhausted coffee grounds
  publication-title: Waste Manag.
– volume: 44
  start-page: 5416
  year: 2010
  end-page: 5422
  ident: bib221
  article-title: XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O
  publication-title: Environ. Sci. Technol.
– volume: 344
  start-page: 698
  year: 2018
  end-page: 706
  ident: bib241
  article-title: Simultaneous molybdate (Mo(VI)) recovery and hazardous ions immobilization via nanoscale zerovalent iron
  publication-title: J. Hazard Mater.
– volume: 186
  start-page: 280
  year: 2011
  end-page: 287
  ident: bib266
  article-title: Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants
  publication-title: J. Hazard Mater.
– volume: 25
  start-page: 47
  year: 2020
  ident: bib109
  article-title: Preparation of activated carbon supported bead string structure nano zero valent iron in a polyethylene glycol-aqueous solution and its efficient treatment of Cr(VI) wastewater
  publication-title: Molecules
– year: 2003
  ident: bib297
  article-title: Permeable Reactive Barriers of Iron and Other Zero-Valent Metals
– volume: 92
  start-page: 1891
  year: 2017
  end-page: 1898
  ident: bib342
  article-title: Adsorptive performance of nanosized zero-valent iron for V(V) removal from aqueous solutions
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 132
  start-page: 1459
  year: 2006
  end-page: 1469
  ident: bib345
  article-title: Factors influencing arsenite removal by zero-valent iron
  publication-title: J. Environ. Eng.
– volume: 174
  start-page: 329
  year: 2015
  end-page: 335
  ident: bib145
  article-title: Synergetic effect of a pillared bentonite support on SE(VI) removal by nanoscale zero valent iron
  publication-title: Appl. Catal. B Environ.
– volume: 168
  start-page: 1626
  year: 2009
  end-page: 1631
  ident: bib214
  article-title: An analysis of the evolution of reactive species in Fe
  publication-title: J. Hazard Mater.
– volume: 31
  start-page: 171
  year: 1997
  end-page: 177
  ident: bib187
  article-title: Speciation of arsenic(III) and arsenic(V) in sediment extracts by high-performance liquid chromatography hydride generation atomic absorption spectrophotometry
  publication-title: Environ. Sci. Technol.
– volume: 40
  start-page: 5472
  year: 2006
  end-page: 5477
  ident: bib254
  article-title: Effect of organic co-contaminants on technetium and rhenium speciation and solubility under reducing conditions
  publication-title: Environ. Sci. Technol.
– volume: 27
  start-page: 187
  year: 1988
  end-page: 191
  ident: bib203
  article-title: Removal of selenate from water by chemical-reduction
  publication-title: Ind. Eng. Chem. Res.
– volume: 33
  start-page: 1244
  year: 1999
  end-page: 1249
  ident: bib66
  article-title: Electrosorption and reduction of pertechnetate by anodically polarized magnetite
  publication-title: Environ. Sci. Technol.
– volume: 247
  start-page: 250
  year: 2014
  end-page: 257
  ident: bib357
  article-title: Antimonate and antimonite adsorption by a polyvinyl alcohol-stabilized granular adsorbent containing nanoscale zero-valent iron
  publication-title: Chem. Eng. J.
– volume: 40
  start-page: 2375
  year: 2006
  end-page: 2386
  ident: bib299
  article-title: Arsenic removal from geothermal waters with zero-valent iron - effect of temperature, phosphate and nitrate
  publication-title: Water Res.
– volume: 25
  start-page: 5259
  year: 2018
  end-page: 5275
  ident: bib271
  article-title: Reductive-co-precipitated cellulose immobilized zerovalent iron nanoparticles in ionic liquid/water for Cr(VI) adsorption
  publication-title: Cellulose
– volume: 29
  start-page: 1422
  year: 2000
  end-page: 1430
  ident: bib105
  article-title: Effect of competing anions on the adsorption of arsenate and arsenite by ferrihydrite
  publication-title: J. Environ. Qual.
– volume: 28
  start-page: 2045
  year: 1994
  end-page: 2053
  ident: bib190
  article-title: Reductive dehalogenation of chlorinated methanes by iron metal
  publication-title: Environ. Sci. Technol.
– volume: 31
  start-page: 343
  year: 1997
  end-page: 345
  ident: bib222
  article-title: Removal of chlorine residues in aqueous media by metallic iron
  publication-title: Water Res.
– volume: 378
  year: 2019
  ident: bib161
  article-title: Plant-mediated biosynthesis of iron nanoparticles-calcium alginate hydrogel membrane and its eminent performance in removal of Cr(VI)
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 927
  year: 2019
  ident: bib315
  article-title: Removal of hazardous oxyanions from the environment using metal-oxide-based materials
  publication-title: Materials
– volume: 30
  start-page: 1614
  year: 1996
  end-page: 1617
  ident: bib69
  article-title: Kinetics of chromate reduction by ferrous iron
  publication-title: Environ. Sci. Technol.
– volume: 50
  start-page: 7290
  year: 2016
  end-page: 7304
  ident: bib369
  article-title: Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review
  publication-title: Environ. Sci. Technol.
– volume: 344
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib150
  article-title: Zeolite-supported nanoscale zero-valent iron: new findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil
  publication-title: J. Hazard Mater.
– volume: 18
  start-page: 857
  year: 2011
  end-page: 864
  ident: bib291
  article-title: Impact of selected solution factors on arsenate and arsenite removal by nanoiron particles
  publication-title: Environ. Sci. Pollut. Res.
– volume: 23
  start-page: 955
  year: 2008
  end-page: 976
  ident: bib29
  article-title: Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: a review
  publication-title: Appl. Geochem.
– volume: 63
  start-page: 2781
  year: 2011
  end-page: 2787
  ident: bib147
  article-title: Removal of hexavalent chromium in soil and groundwater by supported nano zero-valent iron on silica fume
  publication-title: Water Sci. Technol.
– volume: 154
  start-page: 1537
  year: 1974
  end-page: &
  ident: bib236
  article-title: Atlas of electrochemical equilibria in aqueous solutions
  publication-title: Science
– volume: 76
  start-page: 1261
  year: 2017
  end-page: 1271
  ident: bib45
  article-title: Single and combined removal of Cr(VI) and Cd(II) by nanoscale zero-valent iron in the absence and presence of EDDS
  publication-title: Water Sci. Technol.
– volume: 395
  start-page: 125168
  year: 2020
  ident: bib360
  article-title: Combining high electron transfer efficiency and oxidation resistance in nZVI with coatings of microbial extracellular polymeric substances to enhance Sb (V) reduction and adsorption
  publication-title: Chem. Eng. J.
– volume: 225
  start-page: 1845
  year: 2014
  ident: bib333
  article-title: Fast and highly efficient removal of chromate from aqueous solution using nanoscale zero-valent iron/activated carbon (nZVI/AC)
  publication-title: Water Air Soil Pollut.
– volume: 429
  start-page: 201
  year: 2012
  end-page: 209
  ident: bib301
  article-title: Iron oxide waste form for stabilizing
  publication-title: J. Nucl. Mater.
– volume: 100
  start-page: 277
  year: 2016
  end-page: 295
  ident: bib286
  article-title: The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: a review
  publication-title: Water Res.
– volume: 644
  start-page: 1277
  year: 2018
  end-page: 1285
  ident: bib87
  article-title: Removal of antimonate (Sb(V)) and antimonite (Sb(III)) from aqueous solutions by coagulation-flocculation-sedimentation (CFS): dependence on influencing factors and insights into removal mechanisms
  publication-title: Sci. Total Environ.
– volume: 9
  start-page: 39475
  year: 2019
  end-page: 39487
  ident: bib172
  article-title: Highly efficient and rapid removal of arsenic(III) from aqueous solutions by nanoscale zero-valent iron supported on a zirconium 1,4-dicarboxybenzene metal-organic framework (UiO-66 MOF)
  publication-title: RSC Adv.
– volume: 289
  start-page: 180
  year: 1989
  end-page: 213
  ident: bib55
  article-title: Kinetics of chromate reduction by ferrous-ions derived from hematite and biotite at 25°C
  publication-title: Am. J. Sci.
– volume: 46
  start-page: 4071
  year: 2012
  end-page: 4080
  ident: bib43
  article-title: Fate of As(V)-treated nano zero-valent iron: determination of arsenic desorption potential under varying environmental conditions by phosphate extraction
  publication-title: Water Res.
– volume: 53
  start-page: 1324
  year: 2012
  end-page: 1329
  ident: bib3
  article-title: Effect of NaCl on Cr(VI) reduction by granular zero valent iron (ZVI) in aqueous solutions
  publication-title: Mater. Trans.
– volume: 31
  start-page: 175
  year: 2015
  end-page: 183
  ident: bib70
  article-title: Weak magnetic field accelerates chromate removal by zero-valent iron
  publication-title: J. Environ. Sci.
– volume: 235
  start-page: 276
  year: 2019
  end-page: 281
  ident: bib174
  article-title: Adsorption and reductive degradation of Cr(VI) and TCE by a simply synthesized zero valent iron magnetic biochar
  publication-title: J. Environ. Manag.
– volume: 73
  start-page: 96
  year: 2018
  end-page: 106
  ident: bib255
  article-title: Reduced graphene oxide-nano zero value iron (rGO-nZVI) micro-electrolysis accelerating Cr(VI) removal in aquifer
  publication-title: J. Environ. Sci.
– volume: 30
  start-page: 2163
  year: 2019
  end-page: 2168
  ident: bib107
  article-title: Reductive immobilization and long-term remobilization of radioactive pertechnetate using bio-macromolecules stabilized zero valent iron nanoparticles
  publication-title: Chin. Chem. Lett.
– volume: 17
  start-page: 212
  year: 2017
  end-page: 220
  ident: bib234
  article-title: Improvement of As(III) removal with diatomite overlay nanoscale zero-valent iron (nZVI-D): adsorption isotherm and adsorption kinetic studies
  publication-title: Water Sci. Technol. Water Supply
– volume: 33
  start-page: 131
  year: 1941
  end-page: 134
  ident: bib95
  article-title: Disposal of waste liquors from chromium plating
  publication-title: Ind. Eng. Chem.
– volume: 48
  start-page: 7409
  year: 2014
  end-page: 7417
  ident: bib60
  article-title: Oxidative remobilization of technetium sequestered by sulfide-transformed nano zerovalent iron
  publication-title: Environ. Sci. Technol.
– volume: 33
  start-page: 576
  year: 2014
  end-page: 583
  ident: bib162
  article-title: Review on transformation of oxidized nanoscale zero valent iron in environment media
  publication-title: Environ. Chem.
– volume: 51
  start-page: 10100
  year: 2017
  end-page: 10108
  ident: bib229
  article-title: Effect of arsenic on the formation and adsorption property of ferric hydroxide precipitates in ZVI treatment
  publication-title: Environ. Sci. Technol.
– volume: 67
  start-page: 1859
  year: 2013
  end-page: 1866
  ident: bib152
  article-title: Molybdenum(VI) removal by using constructed wetlands with different filter media and plants
  publication-title: Water Sci. Technol.
– volume: 15
  start-page: 241
  year: 2017
  end-page: 263
  ident: bib192
  article-title: Environmental geochemistry of technetium
  publication-title: Environ. Chem. Lett.
– volume: 230
  start-page: 260
  year: 2004
  end-page: 271
  ident: bib50
  article-title: Inhibition of the reduction of Cr(VI) at the magnetite-water interface by calcium carbonate coatings
  publication-title: Appl. Surf. Sci.
– volume: 136
  start-page: 405
  year: 2010
  end-page: 411
  ident: bib260
  article-title: Modeling arsenite adsorption on rusting metallic iron
  publication-title: J. Environ. Eng.
– volume: 2
  start-page: 1513
  year: 2017
  end-page: 1522
  ident: bib34
  article-title: Dissolved selenium(VI) removal by zero-valent iron under oxic conditions: influence of sulfate and nitrate
  publication-title: ACS Omega
– volume: 22
  start-page: 972
  year: 1988
  end-page: 977
  ident: bib54
  article-title: Chromate removal from aqueous wastes by reduction with ferrous ion
  publication-title: Environ. Sci. Technol.
– volume: 321
  start-page: 335
  year: 2017
  end-page: 343
  ident: bib131
  article-title: Perrhenate sorption kinetics in zerovalent iron in high pH and nitrate media
  publication-title: J. Hazard Mater.
– volume: 86
  start-page: 131
  year: 2019
  end-page: 140
  ident: bib276
  article-title: Ligand effects on arsenite removal by zero-valent iron/O
  publication-title: J. Environ. Sci.
– volume: 248
  start-page: 42
  year: 2009
  end-page: 47
  ident: bib7
  article-title: Evaluation of simple methods of arsenic removal from domestic water supplies in rural communities
  publication-title: Desalination
– volume: 54
  start-page: 739
  year: 1990
  end-page: 751
  ident: bib9
  article-title: Adsorption of selenium by amorphous iron oxyhydroxide and manganese-dioxide Geochim
  publication-title: Cosmochim. Acta
– volume: 491
  year: 2020
  ident: bib106
  article-title: Developments and future prospects of reverse electrodialysis for salinity gradient power generation: influence of ion exchange membranes and electrodes
  publication-title: Desalination
– volume: 151
  start-page: 276
  year: 2015
  end-page: 283
  ident: bib135
  article-title: Effective Sb(V) immobilization from water by zero-valent iron with weak magnetic field
  publication-title: Separ. Purif. Technol.
– volume: 205
  start-page: 40
  year: 2012
  end-page: 46
  ident: bib289
  article-title: Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design
  publication-title: J. Hazard Mater.
– volume: 266
  start-page: 26
  year: 2014
  end-page: 33
  ident: bib283
  article-title: SBA-15-incorporated nanoscale zero-valent iron particles for chromium(VI) removal from groundwater: mechanism, effect of pH, humic acid and sustained reactivity
  publication-title: J. Hazard Mater.
– volume: 5
  start-page: 3983
  year: 2017
  end-page: 3990
  ident: bib103
  article-title: Efficient oxidation of arsenic in aqueous solution using zero valent iron-activated persulfate process
  publication-title: J. Environ. Chem. Eng.
– volume: 100
  start-page: 245
  year: 2016
  end-page: 266
  ident: bib358
  article-title: An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation
  publication-title: Water Res.
– volume: 47
  start-page: 6064
  year: 2013
  end-page: 6074
  ident: bib53
  article-title: Bifunctional resin-ZVI composites for effective removal of arsenite through simultaneous adsorption and oxidation
  publication-title: Water Res.
– volume: 350
  start-page: 1
  year: 2005
  end-page: 11
  ident: bib355
  article-title: Effect of arsenate and molybdate on removal of selenate from an aqueous solution by zero-valent iron
  publication-title: Sci. Total Environ.
– volume: 21
  start-page: 1
  year: 1991
  end-page: 39
  ident: bib123
  article-title: A review of arsenic(III) in groundwater
  publication-title: Crit. Rev. Environ. Contr.
– volume: 11
  start-page: 1981
  year: 2009
  end-page: 1989
  ident: bib224
  article-title: As(V) remediation using electrochemically synthesized maghemite nanoparticles
  publication-title: J. Nano Res.
– volume: 78
  start-page: 528
  year: 2019
  ident: bib35
  article-title: Selenate removal by zero-valent iron under anoxic conditions: effects of nitrate and sulfate
  publication-title: Environ. Earth Sci.
– volume: 276
  start-page: 365
  year: 2015
  end-page: 375
  ident: bib177
  article-title: Simultaneous removal of arsenate and antimonate in simulated and practical water samples by adsorption onto Zn/Fe layered double hydroxide
  publication-title: Chem. Eng. J.
– volume: 50
  start-page: 11879
  year: 2016
  end-page: 11887
  ident: bib331
  article-title: Effects of sulfidation, magnetization, and oxygenation on azo dye reduction by zerovalent iron
  publication-title: Environ. Sci. Technol.
– volume: 424
  start-page: 219
  year: 1999
  end-page: 231
  ident: bib117
  article-title: X-ray absorption and photoemission study of the adsorption of aqueous Cr(VI) on single crystal hematite and magnetite surfaces
  publication-title: Surf. Sci.
– volume: 34
  start-page: 248
  year: 2005
  end-page: 254
  ident: bib110
  article-title: Solubility of antimony and other elements in samples taken from shooting ranges
  publication-title: J. Environ. Qual.
– volume: 58
  start-page: 275
  year: 2013
  end-page: 281
  ident: bib160
  article-title: Reductive immobilization of perrhenate in soil and groundwater using starch-stabilized ZVI nanoparticles
  publication-title: Chin. Sci. Bull.
– volume: 137
  start-page: 762
  year: 2006
  end-page: 811
  ident: bib197
  article-title: Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water
  publication-title: J. Hazard Mater.
– volume: 278
  start-page: 1106
  year: 1997
  end-page: 1109
  ident: bib204
  article-title: Abiotic selenium redox transformations in the presence of Fe(II,III) oxides
  publication-title: Science
– volume: 64
  start-page: 1882
  year: 1960
  end-page: 1887
  ident: bib23
  article-title: The comparative roles of oxygen and inhibitors in the passivation of iron. II. The pertechnetate ion
  publication-title: J. Phys. Chem.
– volume: 41
  start-page: 2022
  year: 2007
  end-page: 2027
  ident: bib81
  article-title: Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal
  publication-title: Environ. Sci. Technol.
– volume: 68
  start-page: 4287
  year: 2004
  end-page: 4299
  ident: bib49
  article-title: Soft X-ray spectroscopic studies of the reaction of fractured pyrite surfaces with Cr(Vl)-containing aqueous solutions
  publication-title: Geochem. Cosmochim. Acta
– volume: 48
  start-page: 6850
  year: 2014
  end-page: 6858
  ident: bib284
  article-title: Effect of weak magnetic field on arsenate and arsenite removal from water by zerovalent Iron: an XAFS investigation
  publication-title: Environ. Sci. Technol.
– volume: 242
  start-page: 125235
  year: 2020
  ident: bib361
  article-title: Optimizing nanocarbon shell in zero-valent iron nanoparticles for improved electron utilization in Cr(VI) reduction
  publication-title: Chemosphere
– start-page: 284
  year: 2005
  end-page: 293
  ident: bib39
  article-title: Arsenic removal by activated carbon-based materials
  publication-title: Advances in Arsenic Research: Integration of Experimental and Observational Studies and Implications for Mitigation
– volume: 84
  start-page: 170
  year: 2008
  end-page: 175
  ident: bib96
  article-title: The effect of different divalent cations on the reduction of hexavalent chromium by zerovalent iron
  publication-title: Appl. Catal. B Environ.
– volume: 43
  start-page: 356
  year: 2007
  end-page: 367
  ident: bib300
  article-title: Modeling of arsenic immobilization by zero valent iron
  publication-title: Eur. J. Soil Biol.
– volume: 28
  start-page: 38
  year: 1994
  end-page: 46
  ident: bib85
  article-title: Adsorption and desorption of natural organic-matter on iron-oxide-mechanisms and models
  publication-title: Environ. Sci. Technol.
– volume: 59
  start-page: 489
  year: 2003
  end-page: 497
  ident: bib208
  article-title: A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films - Part 2: a numerical experiment
  publication-title: Corrosion
– volume: 6
  start-page: 111
  year: 1996
  end-page: 122
  ident: bib153
  article-title: Removal of technetium-99 from contaminated groundwater with sorbents and reductive materials
  publication-title: Sep. Technol.
– volume: 243
  start-page: 205
  year: 2017
  end-page: 211
  ident: bib163
  article-title: Removal of Pb(II) and Cr(VI) from aqueous solutions using the fly ash-based adsorbent material-supported zero-valent iron
  publication-title: J. Mol. Liq.
– volume: 6
  start-page: 3039
  year: 2018
  end-page: 3048
  ident: bib322
  article-title: Enhanced As(III) sequestration using sulfide-modified nano-scale zero-valent iron with a characteristic core-shell structure: sulfidation and as distribution
  publication-title: ACS Sustain. Chem. Eng.
– volume: 48
  start-page: 11853
  year: 2014
  end-page: 11862
  ident: bib188
  article-title: Incorporation and retention of
  publication-title: Environ. Sci. Technol.
– volume: 148
  start-page: 227
  year: 2016
  end-page: 232
  ident: bib273
  article-title: Enhanced sequestration of Cr(VI) by nanoscale zero-valent iron supported on layered double hydroxide by batch and XAFS study
  publication-title: Chemosphere
– volume: 44
  start-page: 109
  year: 2010
  end-page: 115
  ident: bib312
  article-title: Evidence for different surface speciation of arsenite and arsenate on green rust: an EXAFS and XANES study
  publication-title: Environ. Sci. Technol.
– volume: 133
  start-page: 173
  year: 2018
  end-page: 181
  ident: bib268
  article-title: Enhanced removal of Se(VI) from water via pre-corrosion of zero-valent iron using H
  publication-title: Water Res.
– volume: 276
  start-page: 339
  year: 2014
  end-page: 345
  ident: bib88
  article-title: Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure
  publication-title: J. Hazard Mater.
– volume: 102
  start-page: 6857
  year: 2011
  end-page: 6862
  ident: bib329
  article-title: Investigation on the removal of Mo(VI) from Mo-Re containing wastewater by chemically modified persimmon residua
  publication-title: Bioresour. Technol.
– volume: 113
  start-page: 14591
  year: 2009
  end-page: 14594
  ident: bib249
  article-title: Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure
  publication-title: J. Phys. Chem. C
– volume: 42
  start-page: 2451
  year: 2008
  end-page: 2456
  ident: bib38
  article-title: Immobilization of selenite on Fe
  publication-title: Environ. Sci. Technol.
– volume: 610
  year: 2020
  ident: bib62
  article-title: Advancing the conductivity-permselectivity tradeoff of electrodialysis ion-exchange membranes with sulfonated CNT nanocomposites
  publication-title: J. Membr. Sci.
– volume: 49
  start-page: 3499
  year: 2015
  end-page: 3505
  ident: bib121
  article-title: Mechanisms of Sb(III) oxidation by pyrite-induced hydroxyl radicals and hydrogen peroxide
  publication-title: Environ. Sci. Technol.
– volume: 378
  start-page: 122124
  year: 2019
  ident: bib158
  article-title: Influence of coexisting ions on the electron efficiency of sulfidated zerovalent iron toward Se(VI) removal
  publication-title: Chem. Eng. J.
– volume: 18
  start-page: 10637
  year: 2016
  end-page: 10646
  ident: bib230
  article-title: Synthesis, physical properties and application of the zero-valent iron/titanium dioxide heterocomposite having high activity for the sustainable photocatalytic removal of hexavalent chromium in water
  publication-title: Phys. Chem. Chem. Phys.
– volume: 11
  start-page: 1
  year: 1982
  end-page: &
  ident: bib306
  article-title: The nbs tables of chemical thermodynamic properties-selected values for inorganic and
  publication-title: J. Phys. Chem. Ref. Data
– volume: 66
  start-page: 115
  year: 2016
  end-page: 125
  ident: bib311
  article-title: Comparative study on properties, mechanisms of anionic dispersant modified nano zero-valent iron for removal of Cr(VI)
  publication-title: J. Taiwan Inst. Chem. Eng.
– volume: 41
  start-page: 2101
  year: 2007
  end-page: 2108
  ident: bib337
  article-title: Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles
  publication-title: Water Res.
– volume: 73
  start-page: 1471
  year: 2008
  end-page: 1477
  ident: bib157
  article-title: Effects of anions on the kinetics and reactivity of nanoscale Pd/Fe in trichlorobenzene dechlorination
  publication-title: Chemosphere
– volume: 31
  start-page: 1419
  year: 1997
  end-page: 1425
  ident: bib296
  article-title: Selenium redox reactions and transport between ponded waters and sediments
  publication-title: Environ. Sci. Technol.
– volume: 100
  start-page: 203
  year: 1953
  end-page: 215
  ident: bib239
  article-title: The inhibition of the corrosion of iron by some anodic inhibitors
  publication-title: J. Electrochem. Soc.
– volume: 45
  start-page: 407
  year: 2015
  end-page: 411
  ident: bib304
  article-title: Recycling of spent adsorbents for oxyanions and heavy metal ions in the production of ceramics
  publication-title: Waste Manag.
– volume: 118
  start-page: 165
  year: 2010
  end-page: 183
  ident: bib84
  article-title: Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off?
  publication-title: J. Contam. Hydrol.
– volume: 22
  start-page: 7
  year: 2013
  end-page: 24
  ident: bib2
  article-title: Sorptive interaction of oxyanions with iron oxides: a review
  publication-title: Pol. J. Environ. Stud.
– volume: 20
  start-page: 4016005
  year: 2016
  ident: bib5
  article-title: Efficacy of iron-based nanoparticles and nanobiocomposites in removal of Cr
  publication-title: J. Hazard. Toxic Radioact. Waste
– volume: 347
  start-page: 8
  year: 2009
  end-page: 17
  ident: bib262
  article-title: Sorption and speciation of arsenic by zero-valent iron
  publication-title: Colloid. Surface. Physicochem. Eng. Aspect.
– volume: 106
  start-page: 461
  year: 2016
  end-page: 469
  ident: bib341
  article-title: Temporospatial evolution and removal mechanisms of As(V) and Se(VI) in ZVI column with H
  publication-title: Water Res.
– volume: 165
  start-page: 86
  year: 2016
  end-page: 91
  ident: bib46
  article-title: EDDS-assisted reduction of Cr(VI) by nanoscale zero-valent iron
  publication-title: Separ. Purif. Technol.
– volume: 76
  start-page: 184
  year: 2010
  end-page: 190
  ident: bib325
  article-title: Removal of antimony (III) and antimony (V) from drinking water by ferric chloride coagulation: competing ion effect and the mechanism analysis
  publication-title: Separ. Purif. Technol.
– volume: 14
  start-page: 989
  year: 1999
  end-page: 1000
  ident: bib240
  article-title: The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: a field test
  publication-title: Appl. Geochem.
– volume: 31
  start-page: 2492
  year: 1997
  end-page: 2498
  ident: bib238
  article-title: Products of chromate reduction on proposed subsurface remediation material
  publication-title: Environ. Sci. Technol.
– volume: 45
  start-page: 6575
  year: 2011
  end-page: 6584
  ident: bib183
  article-title: Synergistic effect of coupling zero-valent iron with iron oxide-coated sand in columns for chromate and arsenate removal from groundwater: influences of humic acid and the reactive media configuration
  publication-title: Water Res.
– volume: 261
  start-page: 621
  year: 2013
  end-page: 627
  ident: bib338
  article-title: Arsenite removal from aqueous solution by a microbial fuel cell-zerovalent iron hybrid process
  publication-title: J. Hazard Mater.
– volume: 506
  start-page: 633
  year: 2017
  end-page: 643
  ident: bib181
  article-title: Zero-valent iron nanoparticles embedded into reduced graphene oxide-alginate beads for efficient chromium(VI) removal
  publication-title: J. Colloid Interface Sci.
– volume: 99
  start-page: 123
  year: 2016
  end-page: 130
  ident: bib272
  article-title: Enhanced sequestration of selenite in water by nanoscale zero valent iron immobilization on carbon nanotubes by a combined batch, XPS and XAFS investigation
  publication-title: Carbon
– volume: 208
  start-page: 1409
  year: 2019
  end-page: 1420
  ident: bib305
  article-title: Removal of critical metals from waste water by zero-valent iron
  publication-title: J. Clean. Prod.
– volume: 42
  start-page: 201
  year: 1995
  end-page: 212
  ident: bib22
  article-title: Zero-valent iron for the in-situ remediation of selected metals in groundwater
  publication-title: J. Hazard Mater.
– volume: 68
  start-page: 1723
  year: 2004
  end-page: 1733
  ident: bib226
  article-title: Vanadium(V) adsorption onto goethite (α-FeOOH) at pH 1.5 to 12: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy
  publication-title: Geochem. Cosmochim. Acta
– volume: 75
  start-page: 575
  year: 2017
  end-page: 582
  ident: bib293
  article-title: Research progress of aqueous pollutants removal by sulfidated nanoscale zero-valent iron
  publication-title: Hua Hsueh Hsueh Pao
– volume: 34
  start-page: 546
  year: 2018
  end-page: 551
  ident: bib30
  article-title: Removal of chromium(VI) from groundwater using oil shale ash supported nanoscaled zero-valent iron
  publication-title: Chem. Res. Chin. Univ.
– volume: 6
  start-page: 110288
  year: 2016
  end-page: 110300
  ident: bib223
  article-title: Electrospun membrane composed of poly acrylonitrile-co-(methyl acrylate)-co-(itaconic acid) terpolymer and ZVI nanoparticles and its application for the removal of arsenic from water
  publication-title: RSC Adv.
– volume: 45
  start-page: 886
  year: 2011
  end-page: 892
  ident: bib274
  article-title: Removal of Chromium(VI) from wastewater using bentonite-supported nanoscale zero-valent iron
  publication-title: Water Res.
– volume: 271
  start-page: 135
  year: 2015
  end-page: 146
  ident: bib13
  article-title: Polyaniline/Fe
  publication-title: Chem. Eng. J.
– volume: 172
  start-page: 1591
  year: 2009
  end-page: 1596
  ident: bib367
  article-title: Removal of arsenic from water by supported nano zero-valent iron on activated carbon
  publication-title: J. Hazard Mater.
– volume: 9
  start-page: 744
  year: 1975
  end-page: 749
  ident: bib129
  article-title: Removal of dissolved molybdenum from wastewaters by precipitates by precipitates of ferric iron
  publication-title: Environ. Sci. Technol.
– volume: 47
  start-page: 6691
  year: 2013
  end-page: 6700
  ident: bib171
  article-title: Enhanced chitosan beads-supported Fe
  publication-title: Water Res.
– volume: 378
  year: 2019
  ident: bib352
  article-title: Insights on the effects of pH and Fe(II) regeneration during the chromate sequestration by sulfidated zero-valent iron
  publication-title: Chem. Eng. J.
– volume: 37
  start-page: 1417
  year: 2003
  end-page: 1425
  ident: bib211
  article-title: Arsenic removal by zero-valent iron: field, laboratory and modeling studies
  publication-title: Water Res.
– volume: 35
  start-page: 1043
  year: 2000
  end-page: 1059
  ident: bib259
  article-title: Electro-enhanced remediation of radionuclide-contaminated groundwater using zero-valent iron
  publication-title: J. Environ. Sci. Health - Part A Toxic/Hazard. Subst. Environ. Eng.
– volume: 163
  start-page: 544
  year: 2018
  end-page: 550
  ident: bib365
  article-title: Effect of pH, temperature and co-existing anions on the Removal of Cr(VI) in groundwater by green synthesized nZVI/Ni
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 61
  start-page: 3399
  year: 1997
  end-page: 3412
  ident: bib232
  article-title: Differential redox and sorption of Cr(III/VI) on natural silicate and oxide minerals: EXAFS and XANES results
  publication-title: Geochem. Cosmochim. Acta
– volume: 75
  start-page: 224
  year: 2015
  end-page: 248
  ident: bib86
  article-title: The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014)
  publication-title: Water Res.
– volume: 263
  year: 2020
  ident: bib140
  article-title: Phosphate modification enables high efficiency and electron selectivity of nZVI toward Cr(VI) removal
  publication-title: Appl. Catal. B Environ.
– volume: 197
  start-page: 550
  year: 2017
  end-page: 558
  ident: bib207
  article-title: Investigation of As(V) removal from acid mine drainage by iron (hydr) oxide modified zeolite
  publication-title: J. Environ. Manag.
– volume: 44
  start-page: 3101
  year: 2010
  end-page: 3108
  ident: bib98
  article-title: Hexavalent chromium removal from near natural water by copper-iron bimetallic particles
  publication-title: Water Res.
– volume: 52
  start-page: 2988
  year: 2018
  end-page: 2997
  ident: bib138
  article-title: Enhanced reactivity and electron selectivity of sulfidated zerovalent iron toward chromate under aerobic conditions
  publication-title: Environ. Sci. Technol.
– volume: 93
  start-page: 2527
  year: 2018
  end-page: 2534
  ident: bib149
  article-title: A mechanistic analysis of the influence of iron-oxidizing bacteria on antimony (V) removal from water by microscale zero-valent iron
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 366
  start-page: 200
  year: 2019
  end-page: 207
  ident: bib108
  article-title: Enhanced sequestration of Cr(VI) by copper doped sulfidated zerovalent iron (SZVI-Cu): characterization, performance, and mechanisms
  publication-title: Chem. Eng. J.
– volume: 92
  start-page: 157
  year: 2013
  end-page: 170
  ident: bib199
  article-title: Remediation of inorganic arsenic in groundwater for safe water supply: a critical assessment of technological solutions
  publication-title: Chemosphere
– volume: 8
  start-page: 1004
  year: 1996
  end-page: 1021
  ident: bib33
  article-title: Chemistry of technetium and rhenium species during low-level radioactive waste vitrification
  publication-title: Chem. Mater.
– volume: 54
  start-page: 8373
  year: 2020
  end-page: 8379
  ident: bib79
  article-title: Surface modulation and chromium complexation: all-in-one solution for the Cr(VI) sequestration with bifunctional molecules
  publication-title: Environ. Sci. Technol.
– volume: 317
  start-page: 343
  year: 2017
  end-page: 355
  ident: bib6
  article-title: High concentration arsenic removal from aqueous solution using nano-iron ion enrich material (NIIEM) super adsorbent
  publication-title: Chem. Eng. J.
– volume: 31
  start-page: 3348
  year: 1997
  end-page: 3357
  ident: bib17
  article-title: In-situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls: laboratory studies
  publication-title: Environ. Sci. Technol.
– volume: 251
  start-page: 72
  year: 2019
  end-page: 80
  ident: bib173
  article-title: Simultaneous oxidation and sorption of highly toxic Sb(III) using a dual-functional electroactive filter
  publication-title: Environ. Pollut.
– volume: 268
  start-page: 124
  year: 2014
  end-page: 131
  ident: bib307
  article-title: Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites
  publication-title: J. Hazard Mater.
– volume: 176
  start-page: 40
  year: 2017
  end-page: 47
  ident: bib137
  article-title: Enhanced Cr(VI) removal by zero-valent iron coupled with weak magnetic field: role of magnetic gradient force
  publication-title: Separ. Purif. Technol.
– volume: 12
  year: 2020
  ident: bib350
  article-title: Nanoscale zero valent iron supported by biomass-activated carbon for highly efficient total chromium removal from electroplating wastewater
  publication-title: Water
– volume: 338
  start-page: 539
  year: 2018
  end-page: 547
  ident: bib100
  article-title: Sulfide-modified zerovalent iron for enhanced antimonite sequestration: characterization, performance, and reaction mechanisms
  publication-title: Chem. Eng. J.
– volume: 30
  start-page: 2634
  year: 1996
  end-page: 2640
  ident: bib111
  article-title: Kinetics of halogenated organic compound degradation by iron metal
  publication-title: Environ. Sci. Technol.
– volume: 6
  start-page: 1259
  year: 1972
  ident: bib71
  article-title: Review of arsenic cycle natural waters
  publication-title: Water Res.
– volume: 9
  start-page: 725
  year: 2007
  end-page: 735
  ident: bib113
  article-title: Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation
  publication-title: J. Nano Res.
– volume: 16
  start-page: 2230
  year: 2000
  end-page: 2236
  ident: bib246
  article-title: Removal of contaminants from aqueous solution by reaction with iron surfaces
  publication-title: Langmuir
– volume: 52
  start-page: 7434
  year: 2018
  end-page: 7442
  ident: bib349
  article-title: Autotrophic vanadium(V) bioreduction in groundwater by elemental sulfur and zerovalent iron
  publication-title: Environ. Sci. Technol.
– volume: 35
  start-page: 5198
  year: 2011
  end-page: 5207
  ident: bib56
  article-title: Numerical simulation for reactive solute transport of arsenic in permeable reactive barrier column including zero-valent iron
  publication-title: Appl. Math. Model.
– volume: 42
  start-page: 1984
  year: 2008
  end-page: 1989
  ident: bib264
  article-title: Selenite reduction by mackinawite, magnetite and siderite: XAS characterization of nanosized redox products
  publication-title: Environ. Sci. Technol.
– volume: 429
  start-page: 201
  year: 2012
  ident: 10.1016/j.chemosphere.2021.130766_bib301
  article-title: Iron oxide waste form for stabilizing 99TC
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2012.06.004
– volume: 22
  start-page: 972
  year: 1988
  ident: 10.1016/j.chemosphere.2021.130766_bib54
  article-title: Chromate removal from aqueous wastes by reduction with ferrous ion
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00173a018
– volume: 59
  start-page: 265
  year: 2002
  ident: 10.1016/j.chemosphere.2021.130766_bib74
  article-title: Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry
  publication-title: Earth Sci. Rev.
  doi: 10.1016/S0012-8252(02)00089-2
– volume: 9
  start-page: 39475
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib172
  article-title: Highly efficient and rapid removal of arsenic(III) from aqueous solutions by nanoscale zero-valent iron supported on a zirconium 1,4-dicarboxybenzene metal-organic framework (UiO-66 MOF)
  publication-title: RSC Adv.
  doi: 10.1039/C9RA08595E
– volume: 163
  start-page: 544
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib365
  article-title: Effect of pH, temperature and co-existing anions on the Removal of Cr(VI) in groundwater by green synthesized nZVI/Ni
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2018.07.082
– volume: 197
  start-page: 550
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib207
  article-title: Investigation of As(V) removal from acid mine drainage by iron (hydr) oxide modified zeolite
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2017.04.038
– volume: 8
  start-page: 1004
  year: 1996
  ident: 10.1016/j.chemosphere.2021.130766_bib33
  article-title: Chemistry of technetium and rhenium species during low-level radioactive waste vitrification
  publication-title: Chem. Mater.
  doi: 10.1021/cm950418+
– volume: 73
  start-page: 96
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib255
  article-title: Reduced graphene oxide-nano zero value iron (rGO-nZVI) micro-electrolysis accelerating Cr(VI) removal in aquifer
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2018.01.018
– volume: 2
  start-page: 71
  year: 2005
  ident: 10.1016/j.chemosphere.2021.130766_bib216
  article-title: Testing the suitability of zerovalent iron materials for reactive walls
  publication-title: Environ. Chem.
  doi: 10.1071/EN04014
– volume: 146
  start-page: 692
  year: 2020
  ident: 10.1016/j.chemosphere.2021.130766_bib316
  article-title: An ion release controlled Cr(VI) treatment agent: nano zero-valent iron/carbon/alginate composite gel
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.12.168
– volume: 86
  start-page: 150
  year: 2012
  ident: 10.1016/j.chemosphere.2021.130766_bib90
  article-title: Zerovalent iron encapsulated chitosan nanospheres - a novel adsorbent for the removal of total inorganic Arsenic from aqueous systems
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.10.003
– volume: 49
  start-page: 684
  year: 2006
  ident: 10.1016/j.chemosphere.2021.130766_bib233
  article-title: Remediation of ground water containing chlorinated and brominated hydrocarbons, benzene and chromate by sequential treatment using ZVI and GAC
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-005-0106-z
– volume: 8
  start-page: 39545
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib91
  article-title: A critical review on arsenic removal from water using iron-based adsorbents
  publication-title: RSC Adv.
  doi: 10.1039/C8RA08512A
– volume: 18
  start-page: 10637
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib230
  article-title: Synthesis, physical properties and application of the zero-valent iron/titanium dioxide heterocomposite having high activity for the sustainable photocatalytic removal of hexavalent chromium in water
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP01013J
– volume: 100
  start-page: 203
  year: 1953
  ident: 10.1016/j.chemosphere.2021.130766_bib239
  article-title: The inhibition of the corrosion of iron by some anodic inhibitors
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2781106
– volume: 6
  start-page: 3039
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib322
  article-title: Enhanced As(III) sequestration using sulfide-modified nano-scale zero-valent iron with a characteristic core-shell structure: sulfidation and as distribution
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02787
– volume: 33
  start-page: 131
  year: 1941
  ident: 10.1016/j.chemosphere.2021.130766_bib95
  article-title: Disposal of waste liquors from chromium plating
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50373a031
– volume: 281
  start-page: 93
  year: 2011
  ident: 10.1016/j.chemosphere.2021.130766_bib184
  article-title: Arsenic(V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: effects of pH, concentration and reversibility
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.07.046
– volume: 146
  start-page: 115
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib99
  article-title: Floatable, macroporous structured alginate sphere supporting iron nanoparticles used for emergent Cr(VI) spill treatment
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2016.03.035
– volume: 225
  start-page: 1945
  year: 2014
  ident: 10.1016/j.chemosphere.2021.130766_bib363
  article-title: Synthesis, characterization, and adsorptive properties of magnetic cellulose nanocomposites for arsenic removal
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-014-1945-6
– volume: 366
  start-page: 200
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib108
  article-title: Enhanced sequestration of Cr(VI) by copper doped sulfidated zerovalent iron (SZVI-Cu): characterization, performance, and mechanisms
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.02.058
– volume: 251
  start-page: 72
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib173
  article-title: Simultaneous oxidation and sorption of highly toxic Sb(III) using a dual-functional electroactive filter
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.04.116
– volume: 280
  start-page: 149
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib176
  article-title: Removal of As(III) from aqueous solutions through simultaneous photocatalytic oxidation and adsorption by TiO2 and zero-valent iron
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.05.043
– volume: 247
  start-page: 250
  year: 2014
  ident: 10.1016/j.chemosphere.2021.130766_bib357
  article-title: Antimonate and antimonite adsorption by a polyvinyl alcohol-stabilized granular adsorbent containing nanoscale zero-valent iron
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.02.096
– volume: 61
  start-page: 3399
  year: 1997
  ident: 10.1016/j.chemosphere.2021.130766_bib232
  article-title: Differential redox and sorption of Cr(III/VI) on natural silicate and oxide minerals: EXAFS and XANES results
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/S0016-7037(97)00165-8
– volume: 66
  start-page: 115
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib311
  article-title: Comparative study on properties, mechanisms of anionic dispersant modified nano zero-valent iron for removal of Cr(VI)
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2016.05.049
– volume: 26
  start-page: 5176
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib247
  article-title: Magnetic Fe3O4 assembled on nZVI supported on activated carbon fiber for Cr(VI) and Cu(II) removal from aqueous solution through a permeable reactive column
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-018-3985-8
– volume: 38
  start-page: 211
  year: 1987
  ident: 10.1016/j.chemosphere.2021.130766_bib261
  article-title: Inorganic anion sorption and interactions with phosphate sorption by hydrous ferric- oxide gel
  publication-title: J. Soil Sci.
  doi: 10.1111/j.1365-2389.1987.tb02138.x
– volume: 186
  start-page: 2123
  year: 2011
  ident: 10.1016/j.chemosphere.2021.130766_bib290
  article-title: Gas-bubbled nano zero-valent iron process for high concentration arsenate removal
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2010.12.125
– volume: 225
  start-page: 1799
  year: 2014
  ident: 10.1016/j.chemosphere.2021.130766_bib32
  article-title: Removal of Sb(III) and Sb(V) from aqueous solutions using nZVI
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-013-1799-3
– volume: 59
  start-page: 377
  year: 2005
  ident: 10.1016/j.chemosphere.2021.130766_bib156
  article-title: High-level arsenite removal from groundwater by zero-valent iron
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2004.10.055
– volume: 650
  start-page: 419
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib368
  article-title: Chromium(VI) removal by mechanochemically sulfidated zero valent iron and its effect on dechlorination of trichloroethene as a co-contaminant
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.09.003
– volume: 18
  start-page: 857
  year: 2011
  ident: 10.1016/j.chemosphere.2021.130766_bib291
  article-title: Impact of selected solution factors on arsenate and arsenite removal by nanoiron particles
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-011-0442-3
– volume: 29
  start-page: 1422
  year: 2000
  ident: 10.1016/j.chemosphere.2021.130766_bib105
  article-title: Effect of competing anions on the adsorption of arsenate and arsenite by ferrihydrite
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2000.00472425002900050008x
– volume: 144
  start-page: 4018004
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib175
  article-title: Synthesis of nano-Fe0/PEI composite and its reduction and chelation mechanisms for Cr(VI) from aqueous solution
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)EE.1943-7870.0001346
– volume: 35
  start-page: 1487
  year: 2001
  ident: 10.1016/j.chemosphere.2021.130766_bib279
  article-title: Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es001607i
– volume: 395
  start-page: 122623
  year: 2020
  ident: 10.1016/j.chemosphere.2021.130766_bib164
  article-title: Simultaneous removal of Cd(II) and As(III) by graphene-like biochar-supported zero-valent iron from irrigation waters under aerobic conditions: synergistic effects and mechanisms
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.122623
– volume: 34
  start-page: 546
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib30
  article-title: Removal of chromium(VI) from groundwater using oil shale ash supported nanoscaled zero-valent iron
  publication-title: Chem. Res. Chin. Univ.
  doi: 10.1007/s40242-018-8104-3
– volume: 30
  start-page: 1614
  year: 1996
  ident: 10.1016/j.chemosphere.2021.130766_bib69
  article-title: Kinetics of chromate reduction by ferrous iron
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es950618m
– volume: 388
  year: 2020
  ident: 10.1016/j.chemosphere.2021.130766_bib353
  article-title: Modification of zero valent iron nanoparticles by sodium alginate and bentonite: enhanced transport, effective hexavalent chromium removal and reduced bacterial toxicity
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2019.121822
– volume: 317
  start-page: 343
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib6
  article-title: High concentration arsenic removal from aqueous solution using nano-iron ion enrich material (NIIEM) super adsorbent
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.02.039
– volume: 33
  start-page: 1550
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib245
  article-title: Nanoscale zero valent iron-based optimization system and their application in environmental remediation: a review
  publication-title: Mater. Rev.
– volume: 205
  start-page: 40
  year: 2012
  ident: 10.1016/j.chemosphere.2021.130766_bib289
  article-title: Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2011.11.090
– volume: 53
  start-page: 1028
  year: 1989
  ident: 10.1016/j.chemosphere.2021.130766_bib228
  article-title: Kinetics and mechanisms of molybdate adsorption desorption at the goethite water interface using pressure-jump relaxation
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1989.03615995005300040007x
– volume: 102
  start-page: 73
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib52
  article-title: Reductive sequestration of chromate by hierarchical FeS@Fe0 particles
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.06.009
– volume: 17
  start-page: 29
  year: 2000
  ident: 10.1016/j.chemosphere.2021.130766_bib127
  article-title: Inorganic arsenic removal by zero-valent iron
  publication-title: Environ. Eng. Sci.
  doi: 10.1089/ees.2000.17.29
– volume: 344
  start-page: 698
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib241
  article-title: Simultaneous molybdate (Mo(VI)) recovery and hazardous ions immobilization via nanoscale zerovalent iron
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2017.10.036
– volume: 48
  start-page: 11853
  year: 2014
  ident: 10.1016/j.chemosphere.2021.130766_bib188
  article-title: Incorporation and retention of 99Tc(IV) in magnetite under high pH conditions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es503438e
– volume: 42
  start-page: 7424
  year: 2008
  ident: 10.1016/j.chemosphere.2021.130766_bib115
  article-title: pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es800649p
– volume: 28
  start-page: 38
  year: 1994
  ident: 10.1016/j.chemosphere.2021.130766_bib85
  article-title: Adsorption and desorption of natural organic-matter on iron-oxide-mechanisms and models
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00050a007
– volume: 39
  start-page: 1291
  year: 2005
  ident: 10.1016/j.chemosphere.2021.130766_bib112
  article-title: Removal of arsenic(III) from groundwater by nanoscale zero-valent iron
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es048991u
– volume: 60
  start-page: 121
  year: 1996
  ident: 10.1016/j.chemosphere.2021.130766_bib185
  article-title: Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1996.03615995006000010020x
– volume: 45
  start-page: 407
  year: 2015
  ident: 10.1016/j.chemosphere.2021.130766_bib304
  article-title: Recycling of spent adsorbents for oxyanions and heavy metal ions in the production of ceramics
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2015.07.006
– volume: 278
  start-page: 1106
  year: 1997
  ident: 10.1016/j.chemosphere.2021.130766_bib204
  article-title: Abiotic selenium redox transformations in the presence of Fe(II,III) oxides
  publication-title: Science
  doi: 10.1126/science.278.5340.1106
– volume: 35
  start-page: 1043
  year: 2000
  ident: 10.1016/j.chemosphere.2021.130766_bib259
  article-title: Electro-enhanced remediation of radionuclide-contaminated groundwater using zero-valent iron
  publication-title: J. Environ. Sci. Health - Part A Toxic/Hazard. Subst. Environ. Eng.
– volume: 138
  start-page: 616
  year: 2015
  ident: 10.1016/j.chemosphere.2021.130766_bib166
  article-title: Adsorption of antimony(V) onto Mn(II)-enriched surfaces of manganese-oxide and Fe-Mn binary oxide
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.07.039
– volume: 37
  start-page: 2734
  year: 2003
  ident: 10.1016/j.chemosphere.2021.130766_bib102
  article-title: Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es026208x
– volume: 29
  start-page: 1913
  year: 1995
  ident: 10.1016/j.chemosphere.2021.130766_bib237
  article-title: Coupled iron corrosion and chromate reduction-mechanisms for subsurface remediation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00008a008
– volume: 37
  start-page: 1417
  year: 2003
  ident: 10.1016/j.chemosphere.2021.130766_bib211
  article-title: Arsenic removal by zero-valent iron: field, laboratory and modeling studies
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(02)00483-9
– volume: 595
  start-page: 743
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib83
  article-title: Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.03.282
– volume: 9
  start-page: 744
  year: 1975
  ident: 10.1016/j.chemosphere.2021.130766_bib129
  article-title: Removal of dissolved molybdenum from wastewaters by precipitates by precipitates of ferric iron
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es60106a010
– volume: 44
  start-page: 5416
  year: 2010
  ident: 10.1016/j.chemosphere.2021.130766_bib221
  article-title: XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O2 via Fe2+-mediated reactions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1000616
– volume: 45
  start-page: 123
  year: 2000
  ident: 10.1016/j.chemosphere.2021.130766_bib16
  article-title: Treatment of inorganic contaminants using permeable reactive barriers
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/S0169-7722(00)00122-4
– volume: 54
  start-page: 8373
  year: 2020
  ident: 10.1016/j.chemosphere.2021.130766_bib79
  article-title: Surface modulation and chromium complexation: all-in-one solution for the Cr(VI) sequestration with bifunctional molecules
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c00710
– volume: 31
  start-page: 171
  year: 1997
  ident: 10.1016/j.chemosphere.2021.130766_bib187
  article-title: Speciation of arsenic(III) and arsenic(V) in sediment extracts by high-performance liquid chromatography hydride generation atomic absorption spectrophotometry
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9602556
– volume: 31
  start-page: 315
  year: 1997
  ident: 10.1016/j.chemosphere.2021.130766_bib68
  article-title: Arsenate and chromate retention mechanisms on goethite .1. Surface structure
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es950653t
– year: 2005
  ident: 10.1016/j.chemosphere.2021.130766_bib288
– volume: 225
  start-page: 1845
  year: 2014
  ident: 10.1016/j.chemosphere.2021.130766_bib333
  article-title: Fast and highly efficient removal of chromate from aqueous solution using nanoscale zero-valent iron/activated carbon (nZVI/AC)
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-013-1845-1
– volume: 35
  start-page: 4474
  year: 2001
  ident: 10.1016/j.chemosphere.2021.130766_bib248
  article-title: Batch-mixed iron treatment of high arsenic waters
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(01)00168-3
– volume: 378
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib352
  article-title: Insights on the effects of pH and Fe(II) regeneration during the chromate sequestration by sulfidated zero-valent iron
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122115
– volume: 22
  start-page: 528
  year: 2020
  ident: 10.1016/j.chemosphere.2021.130766_bib92
  article-title: Quantifying the efficiency and selectivity of organohalide dechlorination by zerovalent iron
  publication-title: Environmental Science-Processes & Impacts
  doi: 10.1039/C9EM00592G
– volume: 135
  start-page: 322
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib270
  article-title: Dynamic interactions between sulfidated zerovalent iron and dissolved oxygen: mechanistic insights for enhanced chromate removal
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.02.030
– volume: 261
  start-page: 295
  year: 2013
  ident: 10.1016/j.chemosphere.2021.130766_bib231
  article-title: Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2013.07.046
– volume: 45
  start-page: 886
  year: 2011
  ident: 10.1016/j.chemosphere.2021.130766_bib274
  article-title: Removal of Chromium(VI) from wastewater using bentonite-supported nanoscale zero-valent iron
  publication-title: Water Res.
  doi: 10.1016/j.watres.2010.09.025
– volume: 113
  start-page: 14591
  year: 2009
  ident: 10.1016/j.chemosphere.2021.130766_bib249
  article-title: Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp9051837
– volume: 51
  start-page: 13533
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib139
  article-title: Advances in sulfidation of zerovalent iron for water decontamination
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b02695
– volume: 53
  start-page: 5936
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib334
  article-title: Reactivity, selectivity, and long-term performance of sulfidized nanoscale zerovalent iron with different properties
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b00511
– volume: 129
  start-page: 297
  year: 2006
  ident: 10.1016/j.chemosphere.2021.130766_bib282
  article-title: Treatment of groundwater polluted by arsenic compounds by zero valent iron
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2005.08.026
– volume: 227
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib351
  article-title: Simultaneous removal of nitrate, copper and hexavalent chromium from water by aluminum-iron alloy particles
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2019.103541
– volume: 36
  start-page: 372
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib294
  article-title: Development of low-cost iron mixed porous pellet adsorbent by mixture design approach and its application for arsenate and arsenite adsorption from water
  publication-title: Adsorpt. Sci. Technol.
  doi: 10.1177/0263617417693626
– volume: 37
  start-page: 68
  year: 2014
  ident: 10.1016/j.chemosphere.2021.130766_bib323
  article-title: Zero-valent iron technology and equipment applicable to remove nonbiodegradable hazardous pollutants with high efficiency
  publication-title: Enuivon. Sci. Technol.
– volume: 5
  start-page: 3983
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib103
  article-title: Efficient oxidation of arsenic in aqueous solution using zero valent iron-activated persulfate process
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2017.07.051
– volume: 382
  start-page: 122999
  year: 2020
  ident: 10.1016/j.chemosphere.2021.130766_bib347
  article-title: Chitosan functionalized iron nanosheet for enhanced removal of As(III) and Sb(III): synergistic effect and mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122999
– volume: 40
  start-page: 371
  year: 1998
  ident: 10.1016/j.chemosphere.2021.130766_bib218
  article-title: Mechanism of oxide film formation on iron in simulating groundwater solutions: Raman spectroscopic studies
  publication-title: Corrosion Sci.
  doi: 10.1016/S0010-938X(97)00141-8
– year: 1999
  ident: 10.1016/j.chemosphere.2021.130766_bib257
– volume: 44
  start-page: 109
  year: 2010
  ident: 10.1016/j.chemosphere.2021.130766_bib312
  article-title: Evidence for different surface speciation of arsenite and arsenate on green rust: an EXAFS and XANES study
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es901627e
– volume: 186
  start-page: 280
  year: 2011
  ident: 10.1016/j.chemosphere.2021.130766_bib266
  article-title: Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2010.10.113
– volume: 11
  start-page: 1
  year: 1982
  ident: 10.1016/j.chemosphere.2021.130766_bib306
  article-title: The nbs tables of chemical thermodynamic properties-selected values for inorganic and 1C and 2C organic-substances in SI unites
  publication-title: J. Phys. Chem. Ref. Data
– volume: 350
  start-page: 1
  year: 2005
  ident: 10.1016/j.chemosphere.2021.130766_bib355
  article-title: Effect of arsenate and molybdate on removal of selenate from an aqueous solution by zero-valent iron
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2005.02.032
– volume: 378
  start-page: 122124
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib158
  article-title: Influence of coexisting ions on the electron efficiency of sulfidated zerovalent iron toward Se(VI) removal
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122124
– volume: 47
  start-page: 182
  year: 2015
  ident: 10.1016/j.chemosphere.2021.130766_bib206
  article-title: Arsenic removal by nanoiron coupled with gas bubbling system
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2014.10.006
– volume: 102
  start-page: 6857
  year: 2011
  ident: 10.1016/j.chemosphere.2021.130766_bib329
  article-title: Investigation on the removal of Mo(VI) from Mo-Re containing wastewater by chemically modified persimmon residua
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.04.040
– volume: 268
  start-page: 124
  year: 2014
  ident: 10.1016/j.chemosphere.2021.130766_bib307
  article-title: Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2014.01.009
– volume: 52
  start-page: 2988
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib138
  article-title: Enhanced reactivity and electron selectivity of sulfidated zerovalent iron toward chromate under aerobic conditions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b06502
– volume: 27
  start-page: 187
  year: 1988
  ident: 10.1016/j.chemosphere.2021.130766_bib203
  article-title: Removal of selenate from water by chemical-reduction
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00073a033
– volume: 35
  start-page: 5198
  year: 2011
  ident: 10.1016/j.chemosphere.2021.130766_bib56
  article-title: Numerical simulation for reactive solute transport of arsenic in permeable reactive barrier column including zero-valent iron
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2011.04.040
– volume: 424
  start-page: 219
  year: 1999
  ident: 10.1016/j.chemosphere.2021.130766_bib117
  article-title: X-ray absorption and photoemission study of the adsorption of aqueous Cr(VI) on single crystal hematite and magnetite surfaces
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(98)00940-6
– volume: 181
  start-page: 745
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib24
  article-title: Macroscopic and microscopic investigation of Cr(VI) immobilization by nanoscaled zero-valent iron supported zeolite MCM-41 via batch, visual, XPS and EXAFS techniques
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.01.231
– volume: 321
  start-page: 335
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib131
  article-title: Perrhenate sorption kinetics in zerovalent iron in high pH and nitrate media
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2016.09.024
– volume: 30
  start-page: 713
  year: 2013
  ident: 10.1016/j.chemosphere.2021.130766_bib42
  article-title: Kinetics of reductive immobilization of rhenium in soil and groundwater using zero valent iron nanoparticles
  publication-title: Environ. Eng. Sci.
  doi: 10.1089/ees.2012.0160
– volume: 222
  start-page: 103
  year: 2011
  ident: 10.1016/j.chemosphere.2021.130766_bib80
  article-title: Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-011-0812-y
– volume: 34
  start-page: 2564
  year: 2000
  ident: 10.1016/j.chemosphere.2021.130766_bib235
  article-title: Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9911420
– volume: 25
  start-page: 47
  year: 2020
  ident: 10.1016/j.chemosphere.2021.130766_bib109
  article-title: Preparation of activated carbon supported bead string structure nano zero valent iron in a polyethylene glycol-aqueous solution and its efficient treatment of Cr(VI) wastewater
  publication-title: Molecules
  doi: 10.3390/molecules25010047
– volume: 16
  start-page: 2230
  year: 2000
  ident: 10.1016/j.chemosphere.2021.130766_bib246
  article-title: Removal of contaminants from aqueous solution by reaction with iron surfaces
  publication-title: Langmuir
  doi: 10.1021/la990902h
– volume: 47
  start-page: 7350
  year: 2013
  ident: 10.1016/j.chemosphere.2021.130766_bib168
  article-title: Depassivation of aged Fe0 by inorganic salts: implications to contaminant degradation in seawater
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es400362w
– volume: 18
  start-page: 267
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib328
  article-title: Zero-valent iron particles embedded on the mesoporous silica-carbon for chromium (VI) removal from aqueous solution
  publication-title: J. Nano Res.
  doi: 10.1007/s11051-016-3582-z
– volume: 391
  start-page: 122057
  year: 2020
  ident: 10.1016/j.chemosphere.2021.130766_bib314
  article-title: Simultaneous adsorption and oxidation of antimonite onto nano zero-valent iron sludge-based biochar: indispensable role of reactive oxygen species and redox-active moieties
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.122057
– volume: 12
  start-page: 2057
  year: 2010
  ident: 10.1016/j.chemosphere.2021.130766_bib220
  article-title: Reduction of Se(VI) to Se(-II) by zerovalent iron nanoparticle suspensions
  publication-title: J. Nano Res.
  doi: 10.1007/s11051-009-9764-1
– volume: 53
  start-page: 1324
  year: 2012
  ident: 10.1016/j.chemosphere.2021.130766_bib3
  article-title: Effect of NaCl on Cr(VI) reduction by granular zero valent iron (ZVI) in aqueous solutions
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.M2011375
– volume: 25
  start-page: 6175
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib65
  article-title: From nZVI to SNCs: development of a better material for pollutant removal in water
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-1143-3
– volume: 68
  start-page: 4287
  year: 2004
  ident: 10.1016/j.chemosphere.2021.130766_bib49
  article-title: Soft X-ray spectroscopic studies of the reaction of fractured pyrite surfaces with Cr(Vl)-containing aqueous solutions
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/j.gca.2004.02.015
– volume: 15
  start-page: 241
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib192
  article-title: Environmental geochemistry of technetium
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-017-0605-7
– volume: 20
  start-page: 4016005
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib5
  article-title: Efficacy of iron-based nanoparticles and nanobiocomposites in removal of Cr3+
  publication-title: J. Hazard. Toxic Radioact. Waste
  doi: 10.1061/(ASCE)HZ.2153-5515.0000317
– volume: 78
  start-page: 7
  year: 2010
  ident: 10.1016/j.chemosphere.2021.130766_bib15
  article-title: Arsenite removal from waters by zero valent iron: batch and column tests
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.10.007
– volume: 248
  start-page: 222
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib25
  article-title: Structure investigation of nano-FeO(OH) modified clinoptilolite tuff for antimony removal
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2017.04.022
– volume: 59
  start-page: 489
  year: 2003
  ident: 10.1016/j.chemosphere.2021.130766_bib208
  article-title: A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films - Part 2: a numerical experiment
  publication-title: Corrosion
  doi: 10.5006/1.3277579
– volume: 50
  start-page: 7610
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib125
  article-title: Microbial sulfate reduction enhances arsenic mobility downstream of zerovalent-iron-based permeable reactive barrier
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b00128
– volume: 373
  start-page: 820
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib309
  article-title: Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: a critical review
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2019.03.080
– volume: 176
  start-page: 40
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib137
  article-title: Enhanced Cr(VI) removal by zero-valent iron coupled with weak magnetic field: role of magnetic gradient force
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2016.11.075
– volume: 67
  start-page: 14
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib330
  article-title: Performance and mechanism of Cr(VI) removal by zero-valent iron loaded onto expanded graphite
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2017.11.003
– volume: 84
  start-page: 234
  year: 2011
  ident: 10.1016/j.chemosphere.2021.130766_bib182
  article-title: Influences of redox transformation, metal complexation and aggregation of fulvic acid and humic acid on Cr(VI) and As(V) removal by zero-valent iron
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.04.024
– volume: 24
  start-page: 91
  year: 1990
  ident: 10.1016/j.chemosphere.2021.130766_bib189
  article-title: Transformations of selenium as affected by sediment oxidation reduction potential and pH
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00071a010
– volume: 354
  start-page: 445
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib287
  article-title: Enhanced chromium(VI) removal by zero-valent iron in the presence of anions and a weak magnetic field: batch and column tests
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.08.047
– volume: 116
  start-page: 15
  year: 2014
  ident: 10.1016/j.chemosphere.2021.130766_bib48
  article-title: Antimony adsorption by zero-valent iron nanoparticles (nZVI): ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP-MS) study
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2014.03.010
– volume: 36
  start-page: 663
  year: 2010
  ident: 10.1016/j.chemosphere.2021.130766_bib215
  article-title: The fundamental mechanism of aqueous contaminant removal by metallic iron
  publication-title: WaterSA
– volume: 2
  start-page: 532
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib227
  article-title: Technetium stabilization in low-solubility sulfide phases: a review
  publication-title: ACS Earth Space Chem
  doi: 10.1021/acsearthspacechem.8b00015
– volume: 57
  start-page: 2251
  year: 1993
  ident: 10.1016/j.chemosphere.2021.130766_bib313
  article-title: Surface-chemistyr of ferrihydrite .1. EXAFS studies of the geometry of coprecipiated and adsorbed arsenate Geochim
  publication-title: Cosmochim. Acta
  doi: 10.1016/0016-7037(93)90567-G
– volume: 240
  start-page: 717
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib319
  article-title: Dynamic study of Cr(VI) removal performance and mechanism from water using multilayer material coated nanoscale zerovalent iron
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.04.099
– volume: 174
  start-page: 184
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib366
  article-title: Green synthesis of nano zero-valent iron/Cu by green tea to remove hexavalent chromium from groundwater
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.10.302
– volume: 53
  start-page: 14577
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib64
  article-title: Coupled effect of sulfidation and ferrous dosing on selenate removal by zerovalent iron under aerobic conditions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b04956
– volume: 25
  start-page: 5259
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib271
  article-title: Reductive-co-precipitated cellulose immobilized zerovalent iron nanoparticles in ionic liquid/water for Cr(VI) adsorption
  publication-title: Cellulose
  doi: 10.1007/s10570-018-1932-y
– volume: 49
  start-page: 2265
  year: 2008
  ident: 10.1016/j.chemosphere.2021.130766_bib318
  article-title: Immobilization of arsenic and manganese in contaminated groundwater by permeable reactive barriers using zero valent iron and sheep manure
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.M-MRA2008827
– volume: 248
  start-page: 42
  year: 2009
  ident: 10.1016/j.chemosphere.2021.130766_bib7
  article-title: Evaluation of simple methods of arsenic removal from domestic water supplies in rural communities
  publication-title: Desalination
  doi: 10.1016/j.desal.2008.05.036
– volume: 51
  start-page: 3742
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib285
  article-title: Combined effect of weak magnetic fields and anions on arsenite sequestration by zerovalent iron: kinetics and mechanisms
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b06117
– volume: 21
  start-page: 1
  year: 1991
  ident: 10.1016/j.chemosphere.2021.130766_bib123
  article-title: A review of arsenic(III) in groundwater
  publication-title: Crit. Rev. Environ. Contr.
  doi: 10.1080/10643389109388408
– volume: 73
  start-page: 1471
  year: 2008
  ident: 10.1016/j.chemosphere.2021.130766_bib157
  article-title: Effects of anions on the kinetics and reactivity of nanoscale Pd/Fe in trichlorobenzene dechlorination
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.07.050
– volume: 50
  start-page: 7290
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib369
  article-title: Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b01897
– volume: 75
  start-page: 224
  year: 2015
  ident: 10.1016/j.chemosphere.2021.130766_bib86
  article-title: The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014)
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.02.034
– volume: 190
  start-page: 231
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib130
  article-title: Removal of vanadium from industrial wastewater using iron sorbents in batch and continuous flow pilot systems
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2016.12.063
– volume: 166
  start-page: 251
  year: 2000
  ident: 10.1016/j.chemosphere.2021.130766_bib320
  article-title: Competitive adsorption of molybdate, chromate, sulfate, selenate, and selenite on γ-Al2O3
  publication-title: Colloid. Surface. Physicochem. Eng. Aspect.
  doi: 10.1016/S0927-7757(99)00404-5
– volume: 51
  start-page: 1145
  year: 1987
  ident: 10.1016/j.chemosphere.2021.130766_bib8
  article-title: Selenium adsorption by goethite
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1987.03615995005100050009x
– volume: 364
  start-page: 134
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib209
  article-title: The impact of iron nanoparticles on technetium-contaminated groundwater and sediment microbial communities
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2018.10.008
– volume: 46
  start-page: 4071
  year: 2012
  ident: 10.1016/j.chemosphere.2021.130766_bib43
  article-title: Fate of As(V)-treated nano zero-valent iron: determination of arsenic desorption potential under varying environmental conditions by phosphate extraction
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.05.015
– volume: 42
  start-page: 201
  year: 1995
  ident: 10.1016/j.chemosphere.2021.130766_bib22
  article-title: Zero-valent iron for the in-situ remediation of selected metals in groundwater
  publication-title: J. Hazard Mater.
  doi: 10.1016/0304-3894(95)00016-N
– volume: 380
  start-page: 120836
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib19
  article-title: Comparative analysis of ZVI materials for reductive separation of 99Tc(VII) from aqueous waste streams
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2019.120836
– volume: 263
  year: 2020
  ident: 10.1016/j.chemosphere.2021.130766_bib140
  article-title: Phosphate modification enables high efficiency and electron selectivity of nZVI toward Cr(VI) removal
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118364
– volume: 144
  start-page: 141
  year: 1987
  ident: 10.1016/j.chemosphere.2021.130766_bib57
  article-title: Chemical equilibrla of selenium in soils: a theoretical development
  publication-title: Soil Sci.
  doi: 10.1097/00010694-198708000-00008
– volume: 36
  start-page: 442
  year: 2011
  ident: 10.1016/j.chemosphere.2021.130766_bib308
  article-title: Effects and mechanism of humic acid on chromium(VI) removal by zero-valent iron (Fe0) nanoparticles
  publication-title: Phys. Chem. Earth
  doi: 10.1016/j.pce.2010.03.020
– volume: 23
  start-page: 955
  year: 2008
  ident: 10.1016/j.chemosphere.2021.130766_bib29
  article-title: Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: a review
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2008.02.001
– volume: 38
  start-page: 139
  year: 2004
  ident: 10.1016/j.chemosphere.2021.130766_bib195
  article-title: Diversity of contaminant reduction reactions by zerovalent iron: role of the reductate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es034237h
– volume: 99
  start-page: 123
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib272
  article-title: Enhanced sequestration of selenite in water by nanoscale zero valent iron immobilization on carbon nanotubes by a combined batch, XPS and XAFS investigation
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.12.013
– volume: 133
  start-page: 173
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib268
  article-title: Enhanced removal of Se(VI) from water via pre-corrosion of zero-valent iron using H2O2/HCl: effect of solution chemistry and mechanism investigation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.01.038
– volume: 52
  start-page: 7434
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib349
  article-title: Autotrophic vanadium(V) bioreduction in groundwater by elemental sulfur and zerovalent iron
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b01317
– volume: 41
  start-page: 2022
  year: 2007
  ident: 10.1016/j.chemosphere.2021.130766_bib81
  article-title: Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0616534
– volume: 65
  start-page: 1396
  year: 2006
  ident: 10.1016/j.chemosphere.2021.130766_bib310
  article-title: Preparation of spherical iron nanoclusters in ethanol-water solution for nitrate removal
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.03.075
– volume: 128
  start-page: 379
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib27
  article-title: Using porous iron composite (PIC) material to immobilize rhenium as an analogue for technetium
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.05.001
– volume: 92
  start-page: 157
  year: 2013
  ident: 10.1016/j.chemosphere.2021.130766_bib199
  article-title: Remediation of inorganic arsenic in groundwater for safe water supply: a critical assessment of technological solutions
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.01.097
– volume: 121
  start-page: 61
  year: 2005
  ident: 10.1016/j.chemosphere.2021.130766_bib11
  article-title: Removal of arsenic from water by zero-valent iron
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2005.01.030
– volume: 13
  start-page: 2292
  year: 2011
  ident: 10.1016/j.chemosphere.2021.130766_bib324
  article-title: Behaviors of dissolved antimony in the Yangtze River Estuary and its adjacent waters
  publication-title: J. Environ. Monit.
  doi: 10.1039/c1em10239g
– volume: 506
  start-page: 633
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib181
  article-title: Zero-valent iron nanoparticles embedded into reduced graphene oxide-alginate beads for efficient chromium(VI) removal
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.07.024
– volume: 35
  start-page: 4562
  year: 2001
  ident: 10.1016/j.chemosphere.2021.130766_bib278
  article-title: Arsenate and arsenite removal by zerovalent iron: effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es010768z
– volume: 30
  start-page: 2634
  year: 1996
  ident: 10.1016/j.chemosphere.2021.130766_bib111
  article-title: Kinetics of halogenated organic compound degradation by iron metal
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9600901
– volume: 91
  start-page: 449
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib78
  article-title: Scavenging of Cr(VI) from aqueous solutions by sulfide-modified nanoscale zero-valent iron supported by biochar
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2018.06.033
– volume: 93
  start-page: 2527
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib149
  article-title: A mechanistic analysis of the influence of iron-oxidizing bacteria on antimony (V) removal from water by microscale zero-valent iron
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.5606
– volume: 133
  start-page: 103
  year: 2002
  ident: 10.1016/j.chemosphere.2021.130766_bib194
  article-title: Combined effects of anions on arsenic removal by iron hydroxides
  publication-title: Toxicol. Lett.
  doi: 10.1016/S0378-4274(02)00080-2
– volume: 165
  start-page: 86
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib46
  article-title: EDDS-assisted reduction of Cr(VI) by nanoscale zero-valent iron
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2016.03.055
– volume: 644
  start-page: 1277
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib87
  article-title: Removal of antimonate (Sb(V)) and antimonite (Sb(III)) from aqueous solutions by coagulation-flocculation-sedimentation (CFS): dependence on influencing factors and insights into removal mechanisms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.07.034
– volume: 36
  start-page: 1497
  year: 2002
  ident: 10.1016/j.chemosphere.2021.130766_bib251
  article-title: Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es010227+
– volume: 41
  start-page: 2101
  year: 2007
  ident: 10.1016/j.chemosphere.2021.130766_bib337
  article-title: Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.02.037
– volume: 75
  start-page: 575
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib293
  article-title: Research progress of aqueous pollutants removal by sulfidated nanoscale zero-valent iron
  publication-title: Hua Hsueh Hsueh Pao
– volume: 117
  start-page: 108
  year: 2014
  ident: 10.1016/j.chemosphere.2021.130766_bib124
  article-title: Implementation of zero-valent iron (ZVI) into drinking water supply - role of the ZVI and biological processes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.05.088
– volume: 92
  start-page: 49
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib225
  article-title: Removal of aqueous-phase Pb(II), Cd(II), As(III), and As(V) by nanoscale zero-valent iron supported on exhausted coffee grounds
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2019.05.017
– volume: 90
  start-page: 385
  year: 2020
  ident: 10.1016/j.chemosphere.2021.130766_bib362
  article-title: A collaborative strategy for enhanced reduction of Cr(VI) by Fe(0) in the presence of oxalate under sunlight: performance and mechanism
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2019.12.003
– volume: 89
  start-page: 713
  year: 1989
  ident: 10.1016/j.chemosphere.2021.130766_bib31
  article-title: Arsenic speciation in the environment
  publication-title: Chem. Rev.
  doi: 10.1021/cr00094a002
– volume: 334
  start-page: 296
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib244
  article-title: Unexpected effect of buffer solution on removal of selenite and selenate by zerovalent iron
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.10.025
– volume: 48
  start-page: 6850
  year: 2014
  ident: 10.1016/j.chemosphere.2021.130766_bib284
  article-title: Effect of weak magnetic field on arsenate and arsenite removal from water by zerovalent Iron: an XAFS investigation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5003956
– volume: 17
  start-page: 223
  year: 1983
  ident: 10.1016/j.chemosphere.2021.130766_bib20
  article-title: Eh-pH diagrams for the rare-earth elements at 25°C and one bar pressure
  publication-title: Geochem. J.
  doi: 10.2343/geochemj.17.223
– start-page: 284
  year: 2005
  ident: 10.1016/j.chemosphere.2021.130766_bib39
  article-title: Arsenic removal by activated carbon-based materials
– volume: 335
  start-page: 945
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib354
  article-title: Mechanism investigation of anoxic Cr(VI) removal by nano zero-valent iron based on XPS analysis in time scale
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.10.182
– volume: 276
  start-page: 365
  year: 2015
  ident: 10.1016/j.chemosphere.2021.130766_bib177
  article-title: Simultaneous removal of arsenate and antimonate in simulated and practical water samples by adsorption onto Zn/Fe layered double hydroxide
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.04.095
– volume: 50
  start-page: 1483
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib332
  article-title: Sequestration of antimonite by zerovalent Iron: using weak magnetic field effects to enhance performance and characterize reaction mechanisms
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b05360
– volume: 172
  start-page: 1591
  year: 2009
  ident: 10.1016/j.chemosphere.2021.130766_bib367
  article-title: Removal of arsenic from water by supported nano zero-valent iron on activated carbon
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2009.08.031
– volume: 67
  start-page: 1859
  year: 2013
  ident: 10.1016/j.chemosphere.2021.130766_bib152
  article-title: Molybdenum(VI) removal by using constructed wetlands with different filter media and plants
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2013.067
– volume: 106
  start-page: 461
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib341
  article-title: Temporospatial evolution and removal mechanisms of As(V) and Se(VI) in ZVI column with H2O2 as corrosion accelerator
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.10.030
– volume: 235
  start-page: 276
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib174
  article-title: Adsorption and reductive degradation of Cr(VI) and TCE by a simply synthesized zero valent iron magnetic biochar
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2019.01.045
– volume: 261
  start-page: 621
  year: 2013
  ident: 10.1016/j.chemosphere.2021.130766_bib338
  article-title: Arsenite removal from aqueous solution by a microbial fuel cell-zerovalent iron hybrid process
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2013.07.072
– volume: 230
  start-page: 260
  year: 2004
  ident: 10.1016/j.chemosphere.2021.130766_bib50
  article-title: Inhibition of the reduction of Cr(VI) at the magnetite-water interface by calcium carbonate coatings
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2004.02.035
– volume: 7
  start-page: 470
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib126
  article-title: Removal of Cr(VI) ions from the aqueous solution through nanoscale zero-valent iron (nZVI) magnetite corn cob silica (MCCS): a bio-waste based water purification perspective
  publication-title: Groundwater Sustain. Dev.
  doi: 10.1016/j.gsd.2017.12.007
– volume: 77
  start-page: 859
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib151
  article-title: Removal of molybdenum(VI) from aqueous solutions using nano zero-valent iron supported on biochar enhanced by cetyl-trimethyl ammonium bromide: adsorption kinetic, isotherm and mechanism studies
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2018.258
– volume: 88
  start-page: 671
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib89
  article-title: Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.10.045
– volume: 344
  start-page: 1
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib150
  article-title: Zeolite-supported nanoscale zero-valent iron: new findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2017.09.036
– volume: 248
  start-page: 20
  year: 2013
  ident: 10.1016/j.chemosphere.2021.130766_bib114
  article-title: Interaction of aqueous Se(IV)/Se(VI) with FeSe/FeSe2: implication to Se redox process
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2012.12.037
– volume: 91
  start-page: 211
  year: 2003
  ident: 10.1016/j.chemosphere.2021.130766_bib118
  article-title: Chemistry of rhenium as an analogue of technetium: experimental studies of the dissolution of rhenium oxides in aqueous solutions
  publication-title: Radiochim. Acta
  doi: 10.1524/ract.91.4.211.19968
– volume: 14
  start-page: 989
  year: 1999
  ident: 10.1016/j.chemosphere.2021.130766_bib240
  article-title: The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: a field test
  publication-title: Appl. Geochem.
  doi: 10.1016/S0883-2927(99)00010-4
– volume: 76
  start-page: 184
  year: 2010
  ident: 10.1016/j.chemosphere.2021.130766_bib325
  article-title: Removal of antimony (III) and antimony (V) from drinking water by ferric chloride coagulation: competing ion effect and the mechanism analysis
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2010.10.006
– volume: 168
  start-page: 1626
  year: 2009
  ident: 10.1016/j.chemosphere.2021.130766_bib214
  article-title: An analysis of the evolution of reactive species in Fe0/H2O systems
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2009.02.143
– volume: 4
  start-page: 3441
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib303
  article-title: Antimony oxyanions uptake by green marine macroalgae
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2016.07.023
– volume: 243
  start-page: 14
  year: 2014
  ident: 10.1016/j.chemosphere.2021.130766_bib14
  article-title: Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: kinetics and mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.12.049
– volume: 84
  start-page: 170
  year: 2008
  ident: 10.1016/j.chemosphere.2021.130766_bib96
  article-title: The effect of different divalent cations on the reduction of hexavalent chromium by zerovalent iron
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2008.03.016
– volume: 375
  start-page: 121928
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib326
  article-title: Performance and mechanism of arsenic removal in waste acid by combination of CuSO4 and zero-valent iron
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.121928
– volume: 374
  start-page: 372
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib12
  article-title: Synthesis of zerovalent iron from water treatment residue as a conjugate with kaolin and its application for vanadium removal
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2019.04.056
– volume: 76
  start-page: 1261
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib45
  article-title: Single and combined removal of Cr(VI) and Cd(II) by nanoscale zero-valent iron in the absence and presence of EDDS
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2017.321
– volume: 39
  start-page: 1729
  year: 2005
  ident: 10.1016/j.chemosphere.2021.130766_bib132
  article-title: Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron
  publication-title: Water Res.
  doi: 10.1016/j.watres.2005.02.012
– volume: 226
  start-page: 76
  year: 2015
  ident: 10.1016/j.chemosphere.2021.130766_bib364
  article-title: The removal of antimony by novel nZVI-zeolite: the role of iron transformation
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-014-2293-2
– volume: 54
  start-page: 739
  year: 1990
  ident: 10.1016/j.chemosphere.2021.130766_bib9
  article-title: Adsorption of selenium by amorphous iron oxyhydroxide and manganese-dioxide Geochim
  publication-title: Cosmochim. Acta
  doi: 10.1016/0016-7037(90)90369-V
– volume: 289
  start-page: 180
  year: 1989
  ident: 10.1016/j.chemosphere.2021.130766_bib55
  article-title: Kinetics of chromate reduction by ferrous-ions derived from hematite and biotite at 25°C
  publication-title: Am. J. Sci.
  doi: 10.2475/ajs.289.2.180
– volume: 266
  start-page: 26
  year: 2014
  ident: 10.1016/j.chemosphere.2021.130766_bib283
  article-title: SBA-15-incorporated nanoscale zero-valent iron particles for chromium(VI) removal from groundwater: mechanism, effect of pH, humic acid and sustained reactivity
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2013.12.001
– volume: 159
  start-page: 375
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib63
  article-title: Selenate removal by Fe0 coupled with ferrous iron, hydrogen peroxide, sulfidation, and weak magnetic field: a comparative study
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.05.037
– volume: 85
  start-page: 1204
  year: 2011
  ident: 10.1016/j.chemosphere.2021.130766_bib180
  article-title: Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.09.005
– volume: 19
  start-page: 1929
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib210
  article-title: Improvement of aqueous solution coexisting with arsenite and arsenate using iron mixed porous clay pellets in batch and fixed-bed column studies
  publication-title: Water Sci. Technol. Water Supply
  doi: 10.2166/ws.2019.069
– volume: 49
  start-page: 3499
  year: 2015
  ident: 10.1016/j.chemosphere.2021.130766_bib121
  article-title: Mechanisms of Sb(III) oxidation by pyrite-induced hydroxyl radicals and hydrogen peroxide
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es505584r
– volume: 51
  start-page: 13070
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib61
  article-title: Sulfidation of iron-based materials: a review of processes and implications for water treatment and remediation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b04177
– volume: 6
  start-page: 50144
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib243
  article-title: Role of dissolved oxygen in metal(loid) removal by zerovalent iron at different pH: its dependence on the removal mechanisms
  publication-title: RSC Adv.
  doi: 10.1039/C6RA08886D
– volume: 47
  start-page: 5302
  year: 2013
  ident: 10.1016/j.chemosphere.2021.130766_bib59
  article-title: Reductive sequestration of pertechnetate (99TcO4-) by nano zerovalent iron (nZVI) transformed by abiotic sulfide
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es304829z
– volume: 322
  start-page: 163
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib141
  article-title: Heavy metal removal using nanoscale zero-valent iron (nZVI): theory and application
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2016.01.032
– volume: 347
  start-page: 8
  year: 2009
  ident: 10.1016/j.chemosphere.2021.130766_bib262
  article-title: Sorption and speciation of arsenic by zero-valent iron
  publication-title: Colloid. Surface. Physicochem. Eng. Aspect.
  doi: 10.1016/j.colsurfa.2008.10.033
– volume: 30
  start-page: 2163
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib107
  article-title: Reductive immobilization and long-term remobilization of radioactive pertechnetate using bio-macromolecules stabilized zero valent iron nanoparticles
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2019.06.004
– volume: 97
  start-page: 21
  year: 2009
  ident: 10.1016/j.chemosphere.2021.130766_bib58
  article-title: Removal of Mo(VI) as oxoanions from aqueous solutions using chemically modified magnetic chitosan resins
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2008.12.009
– volume: 94
  start-page: 302
  year: 2015
  ident: 10.1016/j.chemosphere.2021.130766_bib205
  article-title: Assessment of polyphenol coated nano zero valent iron for hexavalent chromium removal from contaminated waters
  publication-title: Bull. Environ. Contam. Toxicol.
  doi: 10.1007/s00128-014-1442-z
– volume: 22
  start-page: 7
  year: 2013
  ident: 10.1016/j.chemosphere.2021.130766_bib2
  article-title: Sorptive interaction of oxyanions with iron oxides: a review
  publication-title: Pol. J. Environ. Stud.
– volume: 227
  start-page: 211
  year: 2012
  ident: 10.1016/j.chemosphere.2021.130766_bib148
  article-title: Mechanism insights into enhanced Cr(VI) removal using nanoscale zerovalent iron supported on the pillared bentonite by macroscopic and spectroscopic studies
  publication-title: J. Hazard Mater.
– start-page: 355
  year: 2000
  ident: 10.1016/j.chemosphere.2021.130766_bib212
  article-title: Removal of selenium from industrial waste water
– volume: 19
  start-page: 51
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib104
  article-title: Kinetic equilibrium and thermodynamic study of arsenic removal from water using alumina supported iron nano particles
  publication-title: J. Water Process. Eng.
  doi: 10.1016/j.jwpe.2017.07.001
– volume: 353
  start-page: 246
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib242
  article-title: Effect of solution chemistry on the reactivity and electron selectivity of zerovalent iron toward Se(VI) removal
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.07.113
– volume: 86
  start-page: 131
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib276
  article-title: Ligand effects on arsenite removal by zero-valent iron/O2: dissolution, corrosion, oxidation and coprecipitation
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2019.05.023
– volume: 4
  start-page: 681
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib339
  article-title: Sorptive removal of arsenite As(III) and arsenate As(V) by fuller's earth immobilized nanoscale zero-valent iron nanoparticles (F-nZVI): effect of Fe0 loading on adsorption activity
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2015.12.019
– volume: 338
  start-page: 539
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib100
  article-title: Sulfide-modified zerovalent iron for enhanced antimonite sequestration: characterization, performance, and reaction mechanisms
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.01.033
– volume: 42
  start-page: 2451
  year: 2008
  ident: 10.1016/j.chemosphere.2021.130766_bib38
  article-title: Immobilization of selenite on Fe3O4 and Fe/Fe3C ultrasmall particles
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es702579w
– year: 2010
  ident: 10.1016/j.chemosphere.2021.130766_bib265
– year: 2003
  ident: 10.1016/j.chemosphere.2021.130766_bib297
– volume: 407
  start-page: 3407
  year: 2009
  ident: 10.1016/j.chemosphere.2021.130766_bib169
  article-title: Influences of humic acid, bicarbonate and calcium on Cr(VI) reductive removal by zero-valent iron
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2009.01.043
– volume: 30
  start-page: 1425
  year: 2009
  ident: 10.1016/j.chemosphere.2021.130766_bib128
  article-title: Assessment of zero-valent iron as a permeable reactive barrier for long-term removal of arsenic compounds from synthetic water
  publication-title: Environ. Technol.
  doi: 10.1080/09593330903186240
– volume: 374
  start-page: 177
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib134
  article-title: Porous iron material for TcO4- and ReO4- sequestration from groundwater under ambient oxic conditions
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2019.04.030
– volume: 66
  start-page: 858
  year: 2007
  ident: 10.1016/j.chemosphere.2021.130766_bib219
  article-title: Effect of amorphous silica and silica sand on removal of chromium(VI) by zero-valent iron
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.06.034
– volume: 12
  year: 2020
  ident: 10.1016/j.chemosphere.2021.130766_bib350
  article-title: Nanoscale zero valent iron supported by biomass-activated carbon for highly efficient total chromium removal from electroplating wastewater
  publication-title: Water
– volume: 63
  start-page: 2781
  year: 2011
  ident: 10.1016/j.chemosphere.2021.130766_bib147
  article-title: Removal of hexavalent chromium in soil and groundwater by supported nano zero-valent iron on silica fume
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2011.454
– volume: 222
  start-page: 415
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib335
  article-title: A simple and novel method to enhance As(V) removal by zero valent iron and activated iron media through air injection at intervals
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.01.183
– volume: 61
  start-page: 2185
  year: 1997
  ident: 10.1016/j.chemosphere.2021.130766_bib267
  article-title: Reduction of hexavalent chromium by ferrous iron
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/S0016-7037(97)00077-X
– volume: 345
  start-page: 432
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib146
  article-title: Selenite removal from groundwater by zero-valent iron (ZVI) in combination with oxidants
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.03.187
– volume: 68
  start-page: 1723
  year: 2004
  ident: 10.1016/j.chemosphere.2021.130766_bib226
  article-title: Vanadium(V) adsorption onto goethite (α-FeOOH) at pH 1.5 to 12: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/j.gca.2003.10.018
– volume: 45
  start-page: 6575
  year: 2011
  ident: 10.1016/j.chemosphere.2021.130766_bib183
  article-title: Synergistic effect of coupling zero-valent iron with iron oxide-coated sand in columns for chromate and arsenate removal from groundwater: influences of humic acid and the reactive media configuration
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.10.002
– volume: 28
  start-page: 559
  year: 1988
  ident: 10.1016/j.chemosphere.2021.130766_bib191
  article-title: An XPS study of passive film formation on iron in chromate solutions Corros
  publication-title: Science
– volume: 230
  start-page: 113
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib356
  article-title: Application of carboxymethyl cellulose-stabilized sulfidated nano zerovalent iron for removal of Cr(VI) in simulated groundwater
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-019-4166-1
– volume: 45
  start-page: 4904
  year: 2011
  ident: 10.1016/j.chemosphere.2021.130766_bib302
  article-title: Immobilization of 99Technetium(VII) by Fe(II)-Goethite and limited reoxidation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es104343p
– volume: 392
  start-page: 122392
  year: 2020
  ident: 10.1016/j.chemosphere.2021.130766_bib122
  article-title: Enhanced removal of vanadium(V) from groundwater by layered double hydroxide-supported nanoscale zerovalent iron
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.122392
– volume: 31
  start-page: 343
  year: 1997
  ident: 10.1016/j.chemosphere.2021.130766_bib222
  article-title: Removal of chlorine residues in aqueous media by metallic iron
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(96)00240-0
– volume: 40
  start-page: 5472
  year: 2006
  ident: 10.1016/j.chemosphere.2021.130766_bib254
  article-title: Effect of organic co-contaminants on technetium and rhenium speciation and solubility under reducing conditions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es061157f
– volume: 104
  start-page: 185
  year: 2011
  ident: 10.1016/j.chemosphere.2021.130766_bib344
  article-title: Reduction and adsorption mechanisms of selenate by zero-valent iron and related iron corrosion
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2011.02.014
– volume: 229
  start-page: 286
  year: 2000
  ident: 10.1016/j.chemosphere.2021.130766_bib317
  article-title: Vibrational spectroscopy study of selenate and sulfate adsorption mechanisms on Fe and Al (hydr)oxide surfaces
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.2000.6960
– volume: 47
  start-page: 11002
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib18
  article-title: Retention and multiphase transformation of selenium oxyanions during the formation of magnetite via iron(II) hydroxide and green rust
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT01799A
– volume: 77
  start-page: 375
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib41
  article-title: Remediation of arsenic(III) from aqueous solutions using zero-valent iron (ZVI) combined with potassium permanganate and ferrous ions
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2017.512
– volume: 174
  start-page: 466
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib327
  article-title: Ultra-efficient removal of chromium from aqueous medium by biogenic iron based nanoparticles
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2016.10.047
– volume: 11
  start-page: 1981
  year: 2009
  ident: 10.1016/j.chemosphere.2021.130766_bib224
  article-title: As(V) remediation using electrochemically synthesized maghemite nanoparticles
  publication-title: J. Nano Res.
  doi: 10.1007/s11051-008-9558-x
– volume: 40
  start-page: 184
  year: 2000
  ident: 10.1016/j.chemosphere.2021.130766_bib258
  article-title: Characterization of corrosion products in the permeable reactive barriers
  publication-title: Environ. Geol.
  doi: 10.1007/s002540000178
– volume: 154
  start-page: 1537
  year: 1974
  ident: 10.1016/j.chemosphere.2021.130766_bib236
  article-title: Atlas of electrochemical equilibria in aqueous solutions
  publication-title: Science
– volume: 384
  start-page: 123295
  year: 2020
  ident: 10.1016/j.chemosphere.2021.130766_bib336
  article-title: Enhancing the dioxygen activation for arsenic removal by Cu0 nano-shell-decorated nZVI: synergistic effects and mechanisms
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123295
– volume: 378
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib161
  article-title: Plant-mediated biosynthesis of iron nanoparticles-calcium alginate hydrogel membrane and its eminent performance in removal of Cr(VI)
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122120
– volume: 6
  start-page: 1259
  year: 1972
  ident: 10.1016/j.chemosphere.2021.130766_bib71
  article-title: Review of arsenic cycle natural waters
  publication-title: Water Res.
  doi: 10.1016/0043-1354(72)90052-8
– volume: 116
  start-page: 5303
  year: 2012
  ident: 10.1016/j.chemosphere.2021.130766_bib340
  article-title: As(III) sequestration by iron nanoparticles: study of solid-phase redox transformations with X-ray photoelectron spectroscopy
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp208600n
– volume: 136
  start-page: 405
  year: 2010
  ident: 10.1016/j.chemosphere.2021.130766_bib260
  article-title: Modeling arsenite adsorption on rusting metallic iron
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)EE.1943-7870.0000169
– volume: 100
  start-page: 277
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib286
  article-title: The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: a review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.05.031
– volume: 298
  start-page: 1
  year: 2015
  ident: 10.1016/j.chemosphere.2021.130766_bib202
  article-title: Negative impact of oxygen molecular activation on Cr(VI) removal with core-shell Fe@Fe2O3 nanowires
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2015.05.008
– volume: 47
  start-page: 6691
  year: 2013
  ident: 10.1016/j.chemosphere.2021.130766_bib171
  article-title: Enhanced chitosan beads-supported Fe0-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.09.006
– volume: 87
  start-page: 1660
  year: 2003
  ident: 10.1016/j.chemosphere.2021.130766_bib348
  article-title: Sorption of chromium oxy-anions onto cationized ligno-cellulosic material
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.11596
– volume: 102
  start-page: 190
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib1
  article-title: A novel MD-ZVI integrated approach for high arsenic groundwater decontamination and effluent immobilization
  publication-title: Process Saf. Environ. Protect.
  doi: 10.1016/j.psep.2016.03.007
– volume: 243
  start-page: 205
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib163
  article-title: Removal of Pb(II) and Cr(VI) from aqueous solutions using the fly ash-based adsorbent material-supported zero-valent iron
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2017.08.004
– volume: 2
  start-page: 1513
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib34
  article-title: Dissolved selenium(VI) removal by zero-valent iron under oxic conditions: influence of sulfate and nitrate
  publication-title: ACS Omega
  doi: 10.1021/acsomega.6b00382
– volume: 3
  start-page: 1457
  year: 2011
  ident: 10.1016/j.chemosphere.2021.130766_bib119
  article-title: Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am200016v
– volume: 57
  start-page: 125
  year: 2002
  ident: 10.1016/j.chemosphere.2021.130766_bib73
  article-title: Antimony in the environment: a review focused on natural waters I. Occurrence
  publication-title: Earth Sci. Rev.
  doi: 10.1016/S0012-8252(01)00070-8
– volume: 50
  start-page: 11879
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib331
  article-title: Effects of sulfidation, magnetization, and oxygenation on azo dye reduction by zerovalent iron
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b03184
– volume: 52
  start-page: 10052
  year: 2013
  ident: 10.1016/j.chemosphere.2021.130766_bib292
  article-title: Removal of arsenic(III) from water with clay-supported zerovalent iron nanoparticles synthesized with the help of tea liquor
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie400702k
– volume: 156
  start-page: 827
  year: 2008
  ident: 10.1016/j.chemosphere.2021.130766_bib28
  article-title: In field arsenic removal from natural water by zero-valent iron assisted by solar radiation
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2008.05.022
– volume: 72
  start-page: 1049
  year: 2008
  ident: 10.1016/j.chemosphere.2021.130766_bib97
  article-title: Evaluation of the multiple-ion competition in the adsorption of As(V) onto reclaimed iron-oxide coated sands by fractional factorial design
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.03.060
– volume: 242
  start-page: 125235
  year: 2020
  ident: 10.1016/j.chemosphere.2021.130766_bib361
  article-title: Optimizing nanocarbon shell in zero-valent iron nanoparticles for improved electron utilization in Cr(VI) reduction
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.125235
– volume: 33
  start-page: 576
  year: 2014
  ident: 10.1016/j.chemosphere.2021.130766_bib162
  article-title: Review on transformation of oxidized nanoscale zero valent iron in environment media
  publication-title: Environ. Chem.
– volume: 174
  start-page: 188
  year: 2010
  ident: 10.1016/j.chemosphere.2021.130766_bib136
  article-title: Removal of nitrate by zero-valent iron and pillared bentonite
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2009.09.035
– volume: 12
  start-page: 927
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib315
  article-title: Removal of hazardous oxyanions from the environment using metal-oxide-based materials
  publication-title: Materials
  doi: 10.3390/ma12060927
– volume: 17
  start-page: 212
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib234
  article-title: Improvement of As(III) removal with diatomite overlay nanoscale zero-valent iron (nZVI-D): adsorption isotherm and adsorption kinetic studies
  publication-title: Water Sci. Technol. Water Supply
  doi: 10.2166/ws.2016.120
– volume: 271
  start-page: 135
  year: 2015
  ident: 10.1016/j.chemosphere.2021.130766_bib13
  article-title: Polyaniline/Fe0 composite nanofibers: an excellent adsorbent for the removal of arsenic from aqueous solutions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.02.079
– volume: 36
  start-page: 5455
  year: 2002
  ident: 10.1016/j.chemosphere.2021.130766_bib186
  article-title: Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0206846
– volume: 44
  start-page: 3101
  year: 2010
  ident: 10.1016/j.chemosphere.2021.130766_bib98
  article-title: Hexavalent chromium removal from near natural water by copper-iron bimetallic particles
  publication-title: Water Res.
  doi: 10.1016/j.watres.2010.02.037
– volume: 27
  start-page: 16484
  year: 2020
  ident: 10.1016/j.chemosphere.2021.130766_bib94
  article-title: Enhanced adsorption of antimonate by ball-milled microscale zero valent iron/pyrite composite: adsorption properties and mechanism insight
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-08163-y
– volume: 274
  start-page: 287
  year: 2014
  ident: 10.1016/j.chemosphere.2021.130766_bib72
  article-title: Tailored zeolites for the removal of metal oxyanions: overcoming intrinsic limitations of zeolites
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2014.04.012
– volume: 75
  start-page: 156
  year: 2009
  ident: 10.1016/j.chemosphere.2021.130766_bib250
  article-title: Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.12.019
– volume: 34
  start-page: 819
  year: 2000
  ident: 10.1016/j.chemosphere.2021.130766_bib253
  article-title: Reduction of SeO42- anions and anoxic formation of iron(II)-iron(III) hydroxy selenate green rust
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es990376g
– volume: 9
  start-page: 122
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib252
  article-title: Nano-Bio sequential removal of hexavalent chromium using polymer-nZVI composite film and sulfate reducing bacteria under anaerobic condition
  publication-title: Environ. Technol. Innov.
  doi: 10.1016/j.eti.2017.11.006
– volume: 47
  start-page: 5846
  year: 2013
  ident: 10.1016/j.chemosphere.2021.130766_bib155
  article-title: Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.07.011
– volume: 43
  start-page: 356
  year: 2007
  ident: 10.1016/j.chemosphere.2021.130766_bib300
  article-title: Modeling of arsenic immobilization by zero valent iron
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2007.03.011
– volume: 353
  start-page: 781
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib201
  article-title: Activated carbon impregnated by zero-valent iron nanoparticles (AC/nZVI) optimized for simultaneous adsorption and reduction of aqueous hexavalent chromium: material characterizations and kinetic studies
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.07.170
– volume: 39
  start-page: 763
  year: 2005
  ident: 10.1016/j.chemosphere.2021.130766_bib10
  article-title: Chemical reactions between arsenic and zero-valent iron in water
  publication-title: Water Res.
  doi: 10.1016/j.watres.2004.12.022
– volume: 92
  start-page: 1891
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib342
  article-title: Adsorptive performance of nanosized zero-valent iron for V(V) removal from aqueous solutions
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.5209
– volume: 42
  start-page: 1984
  year: 2008
  ident: 10.1016/j.chemosphere.2021.130766_bib264
  article-title: Selenite reduction by mackinawite, magnetite and siderite: XAS characterization of nanosized redox products
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es071573f
– volume: 297
  start-page: 1
  year: 2015
  ident: 10.1016/j.chemosphere.2021.130766_bib116
  article-title: Enhanced As(III) oxidation and removal by combined use of zero valent iron and hydrogen peroxide in aerated waters at neutral pH values
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2015.04.038
– volume: 43
  start-page: 1970
  year: 2009
  ident: 10.1016/j.chemosphere.2021.130766_bib178
  article-title: Treatment of arsenic, heavy metals, and acidity using a mixed ZVI-compost PRB
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es802394p
– volume: 28
  start-page: 2045
  year: 1994
  ident: 10.1016/j.chemosphere.2021.130766_bib190
  article-title: Reductive dehalogenation of chlorinated methanes by iron metal
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00061a012
– volume: 137
  start-page: 762
  year: 2006
  ident: 10.1016/j.chemosphere.2021.130766_bib197
  article-title: Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2006.06.060
– volume: 43
  start-page: 4922
  year: 2004
  ident: 10.1016/j.chemosphere.2021.130766_bib198
  article-title: Removal of selenate by Fe and NiFe nanosized particles
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie030715l
– volume: 4
  start-page: 1544
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib321
  article-title: The double influence mechanism of pH on arsenic removal by nano zero valent iron: electrostatic interactions and the corrosion of Fe0
  publication-title: Environ. Sci. Nano
  doi: 10.1039/C7EN00240H
– volume: 150
  start-page: 431
  year: 2009
  ident: 10.1016/j.chemosphere.2021.130766_bib298
  article-title: Effect of operating conditions on iron corrosion rates in zero-valent iron systems for arsenic removal
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2009.01.029
– volume: 43
  start-page: 2540
  year: 2009
  ident: 10.1016/j.chemosphere.2021.130766_bib170
  article-title: Removal of co-present chromate and arsenate by zero-valent iron in groundwater with humic acid and bicarbonate
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.03.005
– volume: 373
  start-page: 810
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib281
  article-title: Synthesis and characterization of zeolite-based composites functionalized with nanoscale zero-valent iron for removing arsenic in the presence of selenium from water
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2019.03.125
– volume: 31
  start-page: 3348
  year: 1997
  ident: 10.1016/j.chemosphere.2021.130766_bib17
  article-title: In-situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls: laboratory studies
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es960844b
– volume: 71
  start-page: 2137
  year: 2007
  ident: 10.1016/j.chemosphere.2021.130766_bib346
  article-title: Reduction of pertechnetate Tc(VII) by aqueous Fe(II) and the nature of solid phase redox products
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/j.gca.2006.10.025
– volume: 736
  start-page: 139629
  year: 2020
  ident: 10.1016/j.chemosphere.2021.130766_bib167
  article-title: Removal of Sb(III) by sulfidated nanoscale zerovalent iron: the mechanism and impact of environmental conditions
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.139629
– volume: 174
  start-page: 362
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib77
  article-title: Fast and highly efficient removal of chromium(VI) using humus-supported nanoscale zero-valent iron: influencing factors, kinetics and mechanism
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2016.10.058
– volume: 395
  start-page: 125168
  year: 2020
  ident: 10.1016/j.chemosphere.2021.130766_bib360
  article-title: Combining high electron transfer efficiency and oxidation resistance in nZVI with coatings of microbial extracellular polymeric substances to enhance Sb (V) reduction and adsorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125168
– volume: 151
  start-page: 276
  year: 2015
  ident: 10.1016/j.chemosphere.2021.130766_bib135
  article-title: Effective Sb(V) immobilization from water by zero-valent iron with weak magnetic field
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2015.07.056
– volume: 169
  start-page: 1081
  year: 2009
  ident: 10.1016/j.chemosphere.2021.130766_bib256
  article-title: Reduction of hexavalent chromium mediated by micro- and nano-sized mixed metallic particles
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2009.04.062
– volume: 118
  start-page: 165
  year: 2010
  ident: 10.1016/j.chemosphere.2021.130766_bib84
  article-title: Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off?
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2010.07.011
– volume: 36
  start-page: 2074
  year: 2002
  ident: 10.1016/j.chemosphere.2021.130766_bib193
  article-title: Understanding soluble arsenate removal kinetics by zerovalent iron media
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es011250y
– volume: 35
  start-page: 2026
  year: 2001
  ident: 10.1016/j.chemosphere.2021.130766_bib67
  article-title: Electrochemical and spectroscopic study of arsenate removal from water using zero-valent Iran media
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0016710
– volume: 288
  start-page: 789
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib144
  article-title: Nanoscale zerovalent iron decorated on graphene nanosheets for Cr(VI) removal from aqueous solution: surface corrosion retard induced the enhanced performance
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.12.022
– volume: 151
  start-page: 242
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib159
  article-title: Controlled fabrication of functionalized nanoscale zero-valent iron/celluloses composite with silicon as protective layer for arsenic removal
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2019.09.020
– volume: 171
  start-page: 502
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib4
  article-title: Effective aqueous arsenic removal using zero valent iron doped MWCNT synthesized by in situ CVD method using natural α-Fe2O3 as a precursor
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.12.106
– volume: 40
  start-page: 2375
  year: 2006
  ident: 10.1016/j.chemosphere.2021.130766_bib299
  article-title: Arsenic removal from geothermal waters with zero-valent iron - effect of temperature, phosphate and nitrate
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.04.006
– volume: 6
  start-page: 95865
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib196
  article-title: Removal of antimonite (Sb(III)) and antimonate (Sb(V)) using zerovalent iron decorated functionalized carbon nanotubes
  publication-title: RSC Adv.
  doi: 10.1039/C6RA18965B
– volume: 9
  start-page: 725
  year: 2007
  ident: 10.1016/j.chemosphere.2021.130766_bib113
  article-title: Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation
  publication-title: J. Nano Res.
  doi: 10.1007/s11051-007-9225-7
– volume: 113
  start-page: 93
  year: 2014
  ident: 10.1016/j.chemosphere.2021.130766_bib120
  article-title: Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.04.047
– volume: 38
  start-page: 2948
  year: 2004
  ident: 10.1016/j.chemosphere.2021.130766_bib37
  article-title: Sorption materials for arsenic removal from water: a comparative study
  publication-title: Water Res.
  doi: 10.1016/j.watres.2004.04.003
– volume: 208
  start-page: 1409
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib305
  article-title: Removal of critical metals from waste water by zero-valent iron
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.10.180
– volume: 33
  start-page: 1244
  year: 1999
  ident: 10.1016/j.chemosphere.2021.130766_bib66
  article-title: Electrosorption and reduction of pertechnetate by anodically polarized magnetite
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es980086k
– volume: 122
  start-page: 536
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib359
  article-title: Column study of enhanced Cr(VI) removal and longevity by coupled abiotic and biotic processes using Fe0 and mixed anaerobic culture
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.05.043
– volume: 276
  start-page: 339
  year: 2014
  ident: 10.1016/j.chemosphere.2021.130766_bib88
  article-title: Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2014.05.025
– volume: 127
  start-page: 39
  year: 2011
  ident: 10.1016/j.chemosphere.2021.130766_bib101
  article-title: As(III) adsorption from drinking water on nanoscale zero-valent iron: kinetics and isotherm studies
  publication-title: Integrated Ferroelectrics Int. J.
  doi: 10.1080/10584587.2011.575629
– volume: 31
  start-page: 1419
  year: 1997
  ident: 10.1016/j.chemosphere.2021.130766_bib296
  article-title: Selenium redox reactions and transport between ponded waters and sediments
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es960665u
– volume: 132
  start-page: 1459
  year: 2006
  ident: 10.1016/j.chemosphere.2021.130766_bib345
  article-title: Factors influencing arsenite removal by zero-valent iron
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)0733-9372(2006)132:11(1459)
– volume: 85
  start-page: 155
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib143
  article-title: Zero valent iron as an electron transfer agent in a reaction system based on zero valent iron/magnetite nanocomposites for adsorption and oxidation of Sb(III)
  publication-title: J. Taiwan Inst. Chem. Eng
  doi: 10.1016/j.jtice.2018.01.032
– volume: 373
  start-page: 176
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib179
  article-title: Nanoscale zero valent iron supported on MgAl-LDH-decorated reduced graphene oxide: enhanced performance in Cr(VI) removal, mechanism and regeneration
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2019.03.091
– volume: 51
  start-page: 8635
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib263
  article-title: Reduction and simultaneous removal of 99Tc and Cr by Fe(OH)2(s) mineral transformation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b02278
– volume: 43
  start-page: 6786
  year: 2009
  ident: 10.1016/j.chemosphere.2021.130766_bib75
  article-title: Assessment of long-term performance and chromate reduction mechanisms in a field scale permeable reactive barrier
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803526g
– volume: 5
  start-page: 1686
  year: 2013
  ident: 10.1016/j.chemosphere.2021.130766_bib165
  article-title: Synthesizing the composites of graphene oxide-wrapped polyaniline hollow microspheres for high-performance supercapacitors
  publication-title: Sci. Adv. Mater.
  doi: 10.1166/sam.2013.1637
– volume: 19
  start-page: 107
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib295
  article-title: Colloidal behavior of goethite nanoparticles modified with humic acid and implications for aquifer reclamation
  publication-title: J. Nano Res.
  doi: 10.1007/s11051-017-3814-x
– volume: 181
  start-page: 17
  year: 2015
  ident: 10.1016/j.chemosphere.2021.130766_bib275
  article-title: Methods for characterizing the fate and effects of nano zerovalent iron during groundwater remediation
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2015.03.004
– volume: 332
  start-page: 42
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib343
  article-title: Enhanced Cr(VI) removal from groundwater by Fe0-H2O system with bio-amended iron corrosion
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2017.02.045
– volume: 65
  start-page: 24
  year: 2006
  ident: 10.1016/j.chemosphere.2021.130766_bib26
  article-title: Bio-reduction of arsenate using a hydrogen-based membrane biofilm reactor
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.03.018
– volume: 51
  start-page: 10100
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib229
  article-title: Effect of arsenic on the formation and adsorption property of ferric hydroxide precipitates in ZVI treatment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b02635
– volume: 100
  start-page: 245
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib358
  article-title: An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.05.019
– volume: 404
  year: 2021
  ident: 10.1016/j.chemosphere.2021.130766_bib154
  article-title: The removal of heavy metal cations by sulfidated nanoscale zero-valent iron (S-nZVI): the reaction mechanisms and the role of sulfur
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.124057
– volume: 491
  year: 2020
  ident: 10.1016/j.chemosphere.2021.130766_bib106
  article-title: Developments and future prospects of reverse electrodialysis for salinity gradient power generation: influence of ion exchange membranes and electrodes
  publication-title: Desalination
  doi: 10.1016/j.desal.2020.114540
– volume: 189
  start-page: 237
  year: 2012
  ident: 10.1016/j.chemosphere.2021.130766_bib21
  article-title: Arsenic removal via ZVI in a hybrid spouted vessel/fixed bed filter system
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.02.063
– volume: 51
  start-page: 104
  year: 2013
  ident: 10.1016/j.chemosphere.2021.130766_bib217
  article-title: Nanoscale zero valent iron and bimetallic particles for contaminated site remediation
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2012.02.005
– volume: 197
  start-page: 331
  year: 2017
  ident: 10.1016/j.chemosphere.2021.130766_bib269
  article-title: Removal of chromium(VI) from water using nanoscale zerovalent iron particles supported on herb-residue biochar
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2017.03.085
– volume: 48
  start-page: 7409
  year: 2014
  ident: 10.1016/j.chemosphere.2021.130766_bib60
  article-title: Oxidative remobilization of technetium sequestered by sulfide-transformed nano zerovalent iron
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es501607s
– volume: 6
  start-page: 111
  year: 1996
  ident: 10.1016/j.chemosphere.2021.130766_bib153
  article-title: Removal of technetium-99 from contaminated groundwater with sorbents and reductive materials
  publication-title: Sep. Technol.
  doi: 10.1016/0956-9618(96)00148-8
– volume: 31
  start-page: 175
  year: 2015
  ident: 10.1016/j.chemosphere.2021.130766_bib70
  article-title: Weak magnetic field accelerates chromate removal by zero-valent iron
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2014.10.017
– volume: 58
  start-page: 275
  year: 2013
  ident: 10.1016/j.chemosphere.2021.130766_bib160
  article-title: Reductive immobilization of perrhenate in soil and groundwater using starch-stabilized ZVI nanoparticles
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/s11434-012-5425-3
– volume: 193
  start-page: 65
  year: 2008
  ident: 10.1016/j.chemosphere.2021.130766_bib280
  article-title: Arsenate and arsenite sorption on magnetite: relations to groundwater arsenic treatment using zerovalent iron and natural attenuation
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-008-9668-1
– volume: 471
  start-page: 7
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib44
  article-title: Chromate removal by surface-modified nanoscale zero-valent iron: effect of different surface coatings and water chemistry
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2016.03.011
– volume: 34
  start-page: 248
  year: 2005
  ident: 10.1016/j.chemosphere.2021.130766_bib110
  article-title: Solubility of antimony and other elements in samples taken from shooting ranges
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2005.0248
– volume: 360
  start-page: 1
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib133
  article-title: Pertechnetate (TcO4-) sequestration from groundwater by cost-effective organoclays and granular activated carbon under oxic environmental conditions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.146
– volume: 64
  start-page: 1882
  year: 1960
  ident: 10.1016/j.chemosphere.2021.130766_bib23
  article-title: The comparative roles of oxygen and inhibitors in the passivation of iron. II. The pertechnetate ion
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100841a018
– volume: 78
  start-page: 528
  year: 2019
  ident: 10.1016/j.chemosphere.2021.130766_bib35
  article-title: Selenate removal by zero-valent iron under anoxic conditions: effects of nitrate and sulfate
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-019-8538-z
– volume: 174
  start-page: 329
  year: 2015
  ident: 10.1016/j.chemosphere.2021.130766_bib145
  article-title: Synergetic effect of a pillared bentonite support on SE(VI) removal by nanoscale zero valent iron
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2015.03.025
– volume: 610
  year: 2020
  ident: 10.1016/j.chemosphere.2021.130766_bib62
  article-title: Advancing the conductivity-permselectivity tradeoff of electrodialysis ion-exchange membranes with sulfonated CNT nanocomposites
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118259
– volume: 39
  start-page: 3531
  year: 2005
  ident: 10.1016/j.chemosphere.2021.130766_bib51
  article-title: Effect of humic acids on heavy metal removal by zero-valent iron in batch and continuous flow column systems
  publication-title: Water Res.
  doi: 10.1016/j.watres.2005.06.020
– volume: 148
  start-page: 227
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib273
  article-title: Enhanced sequestration of Cr(VI) by nanoscale zero-valent iron supported on layered double hydroxide by batch and XAFS study
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.01.035
– volume: 197
  start-page: 49
  year: 2009
  ident: 10.1016/j.chemosphere.2021.130766_bib76
  article-title: Reduction of hexavalent chromium in soil and ground water using zero-valent iron under batch and semi-batch conditions
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-008-9790-0
– volume: 253
  start-page: 126702
  year: 2020
  ident: 10.1016/j.chemosphere.2021.130766_bib36
  article-title: Ultra-high arsenic adsorption by graphene oxide iron nanohybrid: removal mechanisms and potential applications
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126702
– volume: 29
  start-page: 909
  year: 2008
  ident: 10.1016/j.chemosphere.2021.130766_bib213
  article-title: A critical review on the process of contaminant removal in Fe0-H2O systems
  publication-title: Environ. Technol.
  doi: 10.1080/09593330802131602
– volume: 6
  start-page: 11119
  year: 2018
  ident: 10.1016/j.chemosphere.2021.130766_bib82
  article-title: Triple layered core-shell ZVI@carbon@polyaniline composite enhanced electron utilization in Cr(VI) reduction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03066A
– volume: 47
  start-page: 6064
  year: 2013
  ident: 10.1016/j.chemosphere.2021.130766_bib53
  article-title: Bifunctional resin-ZVI composites for effective removal of arsenite through simultaneous adsorption and oxidation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.07.020
– volume: 388
  year: 2020
  ident: 10.1016/j.chemosphere.2021.130766_bib93
  article-title: Nanoscale zero-valent iron intercalated 2D titanium carbides for removal of Cr(VI) in aqueous solution and the mechanistic aspect
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2019.121761
– volume: 143
  start-page: 261
  year: 2009
  ident: 10.1016/j.chemosphere.2021.130766_bib200
  article-title: Arsenic (V) removal with nanoparticulate zerovalent iron: effect of UV light and humic acids
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2008.09.038
– volume: 31
  start-page: 2492
  year: 1997
  ident: 10.1016/j.chemosphere.2021.130766_bib238
  article-title: Products of chromate reduction on proposed subsurface remediation material
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9607897
– volume: 168
  start-page: 626
  year: 2009
  ident: 10.1016/j.chemosphere.2021.130766_bib47
  article-title: Iron coated pottery granules for arsenic removal from drinking water
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2009.02.168
– volume: 6
  start-page: 110288
  year: 2016
  ident: 10.1016/j.chemosphere.2021.130766_bib223
  article-title: Electrospun membrane composed of poly acrylonitrile-co-(methyl acrylate)-co-(itaconic acid) terpolymer and ZVI nanoparticles and its application for the removal of arsenic from water
  publication-title: RSC Adv.
  doi: 10.1039/C6RA24036D
– volume: 254
  start-page: 115
  year: 2014
  ident: 10.1016/j.chemosphere.2021.130766_bib142
  article-title: Zero-valent iron nanoparticles (nZVI) for the treatment of smelting wastewater: a pilot-scale demonstration
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.05.111
– volume: 249
  start-page: 117161
  year: 2020
  ident: 10.1016/j.chemosphere.2021.130766_bib277
  article-title: Lithium recovery from Li3PO4 leaching liquor: solvent extraction mechanism of saponified D2EHPA system
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2020.117161
– volume: 300
  start-page: 835
  year: 2014
  ident: 10.1016/j.chemosphere.2021.130766_bib40
  article-title: Cloud point extraction and simultaneous spectrophotometric determination of V(V), Co(II) and Cu(II) ions in water samples by 5-Br-PADAP using partial least squares regression
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1007/s10967-014-3062-9
SSID ssj0001659
Score 2.559841
SecondaryResourceType review_article
Snippet Metal(loid) oxyanions in groundwater, surface water, and wastewater can have harmful effects on human or ecological health due to their high toxicity,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 130766
SubjectTerms Adsorption
Coprecipitation
corrosion
environmental health
Groundwater
Humans
Iron
iron oxyhydroxides
Kinetics
Metal(loid) oxyanion
Metals
oxyanions
Reduction
Sequestration
surface water
toxicity
wastewater
wastewater treatment
Water Pollutants, Chemical
Zerovalent iron
Title Advances in metal(loid) oxyanion removal by zerovalent iron: Kinetics, pathways, and mechanisms
URI https://dx.doi.org/10.1016/j.chemosphere.2021.130766
https://www.ncbi.nlm.nih.gov/pubmed/34162087
https://www.proquest.com/docview/2544878419
https://www.proquest.com/docview/2574372806
Volume 280
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEF_E0o-XUm2rtlZW6IOFpib7fdKX41CuFXxS8G3ZJLsQ8RK5nNTzoX97Z7KJttAWwTyETdhdlpnZnR_szG8I-WjK1BRZyBOWa5YIIWHPFYwnWvkiOOdVFjq2zxM1PRPfz-X5CpkMuTAYVtmf_fFM707r_s9-L839q6rCHF9EIwAgkKIK9glmsAuNVv7l532YR6ZkhMBCJtj7Gdm9j_ECucyaFvP3kTGTZVgbORIm_tVH_QuDdr7o6BV52YNIOo7rXCMrvl4nzydD7bZ18vSwI6NeviZ2HC_5W1rVdOYBau9dNlX5iTY3S1eDUugcFgfmRvMlvfVzbIIfopj9dkCPAYMij_NnipWLf7gltFxdwkSYMFy1s_YNOTs6PJ1Mk76oQlKILF0k3GXa4Us5L2XwppAB9aW95lnIitHIC1HC43kwTvHA0kKPjApGucBBgm_Jat3UfpPQ0nAvPOM5oBARTG58rqQsWcpLVnrBt4gZxGiLnnEcC19c2iG07ML-pgGLGrBRA1uE3Q29irQbDxn0ddCV_cOGLLiHhwzfHfRrQV14ceJq31y3FmncDF7Qjv7XR-MVqElhno1oHHcrB6SgWGr0u8ct8D15gV8xlHCbrC7m1_4DQKJFvtPZ_A55Mv52PD35BSGtDPw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5Shza9lDZ9pc8N9NBCRaR9aV16MSbBqVOfEshtWUm7oBJLwXJI3F_fGUtyW2hLoDoIIWmXYb99fDAz3wC8M0Vs8iRkEc9SHkmpcM3lXESp9nlwzuskrNU-Z3pyJr-cq_MtGPe5MBRW2e397Z6-3q27NwfdaB5cliXl-BIbQQJBElW4Tu7ANqlTqQFsj46nk9lmQ060almwVBE1uAf7P8O8cGjmdUMp_CSayRMqj9xqJv7xmPobDV0fR0cP4UHHI9moNfURbPlqF3bGffm2Xbh7uNajXj0GO2r9_A0rKzb3yLbfX9Rl8YHVNytXIS5sgcbhjGPZin33C3rEo4hRAtwnNkUaSlLOHxkVL752K3xyVYEdUc5w2cybJ3B2dHg6nkRdXYUol0m8jIRLUkc37bxSwZtcBYIs9alIQpIPh17KAi8vgnFaBB7n6dDoYLQLAkfwKQyquvLPgRVGeOm5yJCIyGAy4zOtVMFjUfDCS7EHph9Gm3ei41T74sL20WXf7C8IWELAtgjsAd80vWyVN27T6HOPlf1tGlk8IW7TfL_H1yJc5Dtxla-vGktKboZ8tMN__ZOSF9TE2M-zdnJsLEeyoHls0hf_Z-Bb2Jmcfj2xJ8ez6Uu4T1_ayMJXMFgurvxrZEjL7E23An4ASm4PrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+metal%28loid%29+oxyanion+removal+by+zerovalent+iron%3A+Kinetics%2C+pathways%2C+and+mechanisms&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Wang%2C+Xiao&rft.au=Zhang%2C+Yue&rft.au=Wang%2C+Zhiwei&rft.au=Xu%2C+Chunhua&rft.date=2021-10-01&rft.pub=Elsevier+Ltd&rft.issn=0045-6535&rft.eissn=1879-1298&rft.volume=280&rft_id=info:doi/10.1016%2Fj.chemosphere.2021.130766&rft.externalDocID=S0045653521012376
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon