Advances in metal(loid) oxyanion removal by zerovalent iron: Kinetics, pathways, and mechanisms
Metal(loid) oxyanions in groundwater, surface water, and wastewater can have harmful effects on human or ecological health due to their high toxicity, mobility, and lack of degradation. In recent years, the removal of metal(loid) oxyanions using zerovalent iron (ZVI) has been the subject of many stu...
Saved in:
Published in | Chemosphere (Oxford) Vol. 280; p. 130766 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal(loid) oxyanions in groundwater, surface water, and wastewater can have harmful effects on human or ecological health due to their high toxicity, mobility, and lack of degradation. In recent years, the removal of metal(loid) oxyanions using zerovalent iron (ZVI) has been the subject of many studies, but the full scope of this literature has not been systematically reviewed. The main elements that form metal(loid) oxyanions under environmental conditions are Cr(VI), As(V and III), Sb(V and III), Tc(VII), Re(VII), Mo(VI), V(V), etc. The removal mechanisms of metal(loid) oxyanions by ZVI may involve redox reactions, adsorption, precipitation, and coprecipitation, usually with one of these mechanisms being the main reaction pathway and the other playing auxiliary roles. However, the removal mechanisms are coupled to the reactions involved in corrosion of Fe(0) and reaction conditions. The layer of iron oxyhydroxides that forms on ZVI during corrosion mediates the sequestration of metal(loid) oxyanions. This review summarizes most of the currently available data on mechanisms and performance (e.g., kinetics) of removal of the most widely studies metal(loid) oxyanion contaminants (Cr, As, Sb) by different types of ZVI typically used in wastewater treatment, as well as ZVI that has been sulfidated or combination with catalytic bimetals.
[Display omitted]
•The removal of Cr, As, Sb, Tc, Re, Mo, V and Se by ZVI was reviewed.•A periodic table was introduced to show the elements that form oxyanions.•Full range ZVI applications to removal of metal(loid) oxyanions were covered.•The mechanisms, kinetics of metal(loid) oxyanions remediated by ZVI were organized. |
---|---|
AbstractList | Metal(loid) oxyanions in groundwater, surface water, and wastewater can have harmful effects on human or ecological health due to their high toxicity, mobility, and lack of degradation. In recent years, the removal of metal(loid) oxyanions using zerovalent iron (ZVI) has been the subject of many studies, but the full scope of this literature has not been systematically reviewed. The main elements that form metal(loid) oxyanions under environmental conditions are Cr(VI), As(V and III), Sb(V and III), Tc(VII), Re(VII), Mo(VI), V(V), etc. The removal mechanisms of metal(loid) oxyanions by ZVI may involve redox reactions, adsorption, precipitation, and coprecipitation, usually with one of these mechanisms being the main reaction pathway and the other playing auxiliary roles. However, the removal mechanisms are coupled to the reactions involved in corrosion of Fe(0) and reaction conditions. The layer of iron oxyhydroxides that forms on ZVI during corrosion mediates the sequestration of metal(loid) oxyanions. This review summarizes most of the currently available data on mechanisms and performance (e.g., kinetics) of removal of the most widely studies metal(loid) oxyanion contaminants (Cr, As, Sb) by different types of ZVI typically used in wastewater treatment, as well as ZVI that has been sulfidated or combination with catalytic bimetals. Metal(loid) oxyanions in groundwater, surface water, and wastewater can have harmful effects on human or ecological health due to their high toxicity, mobility, and lack of degradation. In recent years, the removal of metal(loid) oxyanions using zerovalent iron (ZVI) has been the subject of many studies, but the full scope of this literature has not been systematically reviewed. The main elements that form metal(loid) oxyanions under environmental conditions are Cr(VI), As(V and III), Sb(V and III), Tc(VII), Re(VII), Mo(VI), V(V), etc. The removal mechanisms of metal(loid) oxyanions by ZVI may involve redox reactions, adsorption, precipitation, and coprecipitation, usually with one of these mechanisms being the main reaction pathway and the other playing auxiliary roles. However, the removal mechanisms are coupled to the reactions involved in corrosion of Fe(0) and reaction conditions. The layer of iron oxyhydroxides that forms on ZVI during corrosion mediates the sequestration of metal(loid) oxyanions. This review summarizes most of the currently available data on mechanisms and performance (e.g., kinetics) of removal of the most widely studies metal(loid) oxyanion contaminants (Cr, As, Sb) by different types of ZVI typically used in wastewater treatment, as well as ZVI that has been sulfidated or combination with catalytic bimetals.Metal(loid) oxyanions in groundwater, surface water, and wastewater can have harmful effects on human or ecological health due to their high toxicity, mobility, and lack of degradation. In recent years, the removal of metal(loid) oxyanions using zerovalent iron (ZVI) has been the subject of many studies, but the full scope of this literature has not been systematically reviewed. The main elements that form metal(loid) oxyanions under environmental conditions are Cr(VI), As(V and III), Sb(V and III), Tc(VII), Re(VII), Mo(VI), V(V), etc. The removal mechanisms of metal(loid) oxyanions by ZVI may involve redox reactions, adsorption, precipitation, and coprecipitation, usually with one of these mechanisms being the main reaction pathway and the other playing auxiliary roles. However, the removal mechanisms are coupled to the reactions involved in corrosion of Fe(0) and reaction conditions. The layer of iron oxyhydroxides that forms on ZVI during corrosion mediates the sequestration of metal(loid) oxyanions. This review summarizes most of the currently available data on mechanisms and performance (e.g., kinetics) of removal of the most widely studies metal(loid) oxyanion contaminants (Cr, As, Sb) by different types of ZVI typically used in wastewater treatment, as well as ZVI that has been sulfidated or combination with catalytic bimetals. Metal(loid) oxyanions in groundwater, surface water, and wastewater can have harmful effects on human or ecological health due to their high toxicity, mobility, and lack of degradation. In recent years, the removal of metal(loid) oxyanions using zerovalent iron (ZVI) has been the subject of many studies, but the full scope of this literature has not been systematically reviewed. The main elements that form metal(loid) oxyanions under environmental conditions are Cr(VI), As(V and III), Sb(V and III), Tc(VII), Re(VII), Mo(VI), V(V), etc. The removal mechanisms of metal(loid) oxyanions by ZVI may involve redox reactions, adsorption, precipitation, and coprecipitation, usually with one of these mechanisms being the main reaction pathway and the other playing auxiliary roles. However, the removal mechanisms are coupled to the reactions involved in corrosion of Fe(0) and reaction conditions. The layer of iron oxyhydroxides that forms on ZVI during corrosion mediates the sequestration of metal(loid) oxyanions. This review summarizes most of the currently available data on mechanisms and performance (e.g., kinetics) of removal of the most widely studies metal(loid) oxyanion contaminants (Cr, As, Sb) by different types of ZVI typically used in wastewater treatment, as well as ZVI that has been sulfidated or combination with catalytic bimetals. [Display omitted] •The removal of Cr, As, Sb, Tc, Re, Mo, V and Se by ZVI was reviewed.•A periodic table was introduced to show the elements that form oxyanions.•Full range ZVI applications to removal of metal(loid) oxyanions were covered.•The mechanisms, kinetics of metal(loid) oxyanions remediated by ZVI were organized. |
ArticleNumber | 130766 |
Author | Xu, Chunhua Tratnyek, Paul G. Zhang, Yue Wang, Xiao Wang, Zhiwei |
Author_xml | – sequence: 1 givenname: Xiao surname: Wang fullname: Wang, Xiao organization: Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China – sequence: 2 givenname: Yue surname: Zhang fullname: Zhang, Yue organization: Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China – sequence: 3 givenname: Zhiwei orcidid: 0000-0003-4588-8472 surname: Wang fullname: Wang, Zhiwei organization: Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China – sequence: 4 givenname: Chunhua orcidid: 0000-0001-5453-0339 surname: Xu fullname: Xu, Chunhua email: xuchunhua@sdu.edu.cn organization: Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China – sequence: 5 givenname: Paul G. surname: Tratnyek fullname: Tratnyek, Paul G. email: tratnyek@ohsu.edu organization: OHSU-PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34162087$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1uGyEUhVGUKnHSvkJEdqnUcWFggMmmiqz-qZG6adeIMBcZawYcwG7dpy-W0yjqyizgLr5zrjjnAp2GGACha0rmlFDxfjW3S5hiXi8hwbwlLZ1TRqQQJ2hGlewb2vbqFM0I4V0jOtado4ucV4RUcdefoXPGqWiJkjOk74atCRYy9gFPUMx4M0Y_vMXx984EHwNOddPWjPhhh_9A2o8QCvYphlv8zQco3uZ3eG3K8pfZ1cmEoRrZZVXnKb9Gr5wZM7x5ei_Rz08ffyy-NPffP39d3N03llNSGmaoNPtLGOg6B8p2biDKSpCMOmr7Hjgf6gHmlBHMtcTKXgmnhHGsfvES3Rx81yk-biAXPflsYRxNgLjJuu0kZ7JVRByBcq6k4rSv6NUTunmYYNDr5CeTdvpffhXoD4BNMecE7hmhRO-70iv9oiu970ofuqraD_9prS-m1MxLMn48ymFxcICa7NZD0tl6qG0OPoEteoj-CJe_Fdq4dg |
CitedBy_id | crossref_primary_10_1038_s41545_022_00175_0 crossref_primary_10_1038_s44221_023_00098_1 crossref_primary_10_1021_acs_est_1c07731 crossref_primary_10_1016_j_jhazmat_2024_135274 crossref_primary_10_1016_j_jwpe_2025_107165 crossref_primary_10_3390_w15081481 crossref_primary_10_1016_j_chemosphere_2024_142395 crossref_primary_10_1021_acs_est_3c08367 crossref_primary_10_1016_j_envpol_2022_119205 crossref_primary_10_1016_j_jece_2021_106553 crossref_primary_10_1007_s11356_022_22609_5 crossref_primary_10_1016_j_jece_2022_109004 crossref_primary_10_1016_j_jhazmat_2023_131313 crossref_primary_10_1016_j_chemosphere_2021_132699 crossref_primary_10_1038_s41598_021_91475_x crossref_primary_10_1002_slct_202302529 crossref_primary_10_1016_j_chemosphere_2021_132913 crossref_primary_10_1016_j_ccr_2024_215759 crossref_primary_10_1016_j_cej_2024_149954 crossref_primary_10_1016_j_jhazmat_2022_129833 crossref_primary_10_1016_j_jenvman_2024_121761 crossref_primary_10_1016_j_jhazmat_2024_135066 crossref_primary_10_1016_j_jece_2023_111412 crossref_primary_10_1016_j_chemosphere_2024_141391 crossref_primary_10_1016_j_chemosphere_2023_140485 crossref_primary_10_1016_j_biortech_2023_129745 crossref_primary_10_1016_j_seppur_2025_132503 crossref_primary_10_1007_s44246_023_00044_6 crossref_primary_10_1016_j_chemosphere_2022_137436 crossref_primary_10_1016_j_jece_2022_107214 crossref_primary_10_1016_j_chemosphere_2022_136128 crossref_primary_10_1016_j_chemosphere_2023_137979 crossref_primary_10_1016_j_envadv_2021_100099 crossref_primary_10_1016_j_jece_2022_108841 crossref_primary_10_1016_j_seppur_2024_128494 crossref_primary_10_1021_acs_est_3c08635 crossref_primary_10_1016_j_envpol_2023_121866 crossref_primary_10_1016_j_gsf_2022_101494 crossref_primary_10_1016_j_seppur_2023_125487 crossref_primary_10_1016_j_jenvman_2024_120187 crossref_primary_10_1016_j_jhazmat_2021_127013 crossref_primary_10_1016_j_carbpol_2021_118789 crossref_primary_10_1016_j_psep_2023_08_023 |
Cites_doi | 10.1016/j.jnucmat.2012.06.004 10.1021/es00173a018 10.1016/S0012-8252(02)00089-2 10.1039/C9RA08595E 10.1016/j.ecoenv.2018.07.082 10.1016/j.jenvman.2017.04.038 10.1021/cm950418+ 10.1016/j.jes.2018.01.018 10.1071/EN04014 10.1016/j.ijbiomac.2019.12.168 10.1016/j.chemosphere.2011.10.003 10.1007/s00254-005-0106-z 10.1039/C8RA08512A 10.1039/C6CP01013J 10.1149/1.2781106 10.1021/acssuschemeng.7b02787 10.1021/ie50373a031 10.1016/j.desal.2011.07.046 10.1016/j.carbpol.2016.03.035 10.1007/s11270-014-1945-6 10.1016/j.cej.2019.02.058 10.1016/j.envpol.2019.04.116 10.1016/j.cattod.2016.05.043 10.1016/j.cej.2014.02.096 10.1016/S0016-7037(97)00165-8 10.1016/j.jtice.2016.05.049 10.1007/s11356-018-3985-8 10.1111/j.1365-2389.1987.tb02138.x 10.1016/j.jhazmat.2010.12.125 10.1007/s11270-013-1799-3 10.1016/j.chemosphere.2004.10.055 10.1016/j.scitotenv.2018.09.003 10.1007/s11356-011-0442-3 10.2134/jeq2000.00472425002900050008x 10.1061/(ASCE)EE.1943-7870.0001346 10.1021/es001607i 10.1016/j.jhazmat.2020.122623 10.1007/s40242-018-8104-3 10.1021/es950618m 10.1016/j.jhazmat.2019.121822 10.1016/j.cej.2017.02.039 10.1016/j.jhazmat.2011.11.090 10.2136/sssaj1989.03615995005300040007x 10.1016/j.watres.2016.06.009 10.1089/ees.2000.17.29 10.1016/j.jhazmat.2017.10.036 10.1021/es503438e 10.1021/es800649p 10.1021/es00050a007 10.1021/es048991u 10.2136/sssaj1996.03615995006000010020x 10.1016/j.wasman.2015.07.006 10.1126/science.278.5340.1106 10.1016/j.chemosphere.2015.07.039 10.1021/es026208x 10.1021/es00008a008 10.1016/S0043-1354(02)00483-9 10.1016/j.scitotenv.2017.03.282 10.1021/es60106a010 10.1021/es1000616 10.1016/S0169-7722(00)00122-4 10.1021/acs.est.0c00710 10.1021/es9602556 10.1021/es950653t 10.1007/s11270-013-1845-1 10.1016/S0043-1354(01)00168-3 10.1016/j.cej.2019.122115 10.1039/C9EM00592G 10.1016/j.watres.2018.02.030 10.1016/j.jhazmat.2013.07.046 10.1016/j.watres.2010.09.025 10.1021/jp9051837 10.1021/acs.est.7b02695 10.1021/acs.est.9b00511 10.1016/j.jhazmat.2005.08.026 10.1016/j.jconhyd.2019.103541 10.1177/0263617417693626 10.1016/j.jece.2017.07.051 10.1016/j.cej.2019.122999 10.1016/S0010-938X(97)00141-8 10.1021/es901627e 10.1016/j.jhazmat.2010.10.113 10.1016/j.scitotenv.2005.02.032 10.1016/j.cej.2019.122124 10.1016/j.jtice.2014.10.006 10.1016/j.biortech.2011.04.040 10.1016/j.jhazmat.2014.01.009 10.1021/acs.est.7b06502 10.1021/ie00073a033 10.1016/j.apm.2011.04.040 10.1016/S0039-6028(98)00940-6 10.1016/j.jclepro.2018.01.231 10.1016/j.jhazmat.2016.09.024 10.1089/ees.2012.0160 10.1007/s11270-011-0812-y 10.1021/es9911420 10.3390/molecules25010047 10.1021/la990902h 10.1021/es400362w 10.1007/s11051-016-3582-z 10.1016/j.jhazmat.2020.122057 10.1007/s11051-009-9764-1 10.2320/matertrans.M2011375 10.1007/s11356-017-1143-3 10.1016/j.gca.2004.02.015 10.1007/s10311-017-0605-7 10.1061/(ASCE)HZ.2153-5515.0000317 10.1016/j.chemosphere.2009.10.007 10.1016/j.micromeso.2017.04.022 10.5006/1.3277579 10.1021/acs.est.6b00128 10.1016/j.jhazmat.2019.03.080 10.1016/j.seppur.2016.11.075 10.1016/j.jes.2017.11.003 10.1016/j.chemosphere.2011.04.024 10.1021/es00071a010 10.1016/j.cej.2018.08.047 10.1016/j.microc.2014.03.010 10.1021/acsearthspacechem.8b00015 10.1016/0016-7037(93)90567-G 10.1016/j.envpol.2018.04.099 10.1016/j.jclepro.2017.10.302 10.1021/acs.est.9b04956 10.1007/s10570-018-1932-y 10.2320/matertrans.M-MRA2008827 10.1016/j.desal.2008.05.036 10.1021/acs.est.6b06117 10.1080/10643389109388408 10.1016/j.chemosphere.2008.07.050 10.1021/acs.est.6b01897 10.1016/j.watres.2015.02.034 10.1016/j.jenvman.2016.12.063 10.1016/S0927-7757(99)00404-5 10.2136/sssaj1987.03615995005100050009x 10.1016/j.jhazmat.2018.10.008 10.1016/j.watres.2012.05.015 10.1016/0304-3894(95)00016-N 10.1016/j.jhazmat.2019.120836 10.1016/j.apcatb.2019.118364 10.1097/00010694-198708000-00008 10.1016/j.pce.2010.03.020 10.1016/j.apgeochem.2008.02.001 10.1021/es034237h 10.1016/j.carbon.2015.12.013 10.1016/j.watres.2018.01.038 10.1021/acs.est.8b01317 10.1021/es0616534 10.1016/j.chemosphere.2006.03.075 10.1016/j.envint.2019.05.001 10.1016/j.chemosphere.2013.01.097 10.1016/j.jhazmat.2005.01.030 10.1039/c1em10239g 10.1016/j.jcis.2017.07.024 10.1021/es010768z 10.1021/es9600901 10.1016/j.jtice.2018.06.033 10.1002/jctb.5606 10.1016/S0378-4274(02)00080-2 10.1016/j.seppur.2016.03.055 10.1016/j.scitotenv.2018.07.034 10.1021/es010227+ 10.1016/j.watres.2007.02.037 10.1016/j.chemosphere.2014.05.088 10.1016/j.wasman.2019.05.017 10.1016/j.jes.2019.12.003 10.1021/cr00094a002 10.1016/j.cej.2017.10.025 10.1021/es5003956 10.2343/geochemj.17.223 10.1016/j.cej.2017.10.182 10.1016/j.cej.2015.04.095 10.1021/acs.est.5b05360 10.1016/j.jhazmat.2009.08.031 10.2166/wst.2013.067 10.1016/j.watres.2016.10.030 10.1016/j.jenvman.2019.01.045 10.1016/j.jhazmat.2013.07.072 10.1016/j.apsusc.2004.02.035 10.1016/j.gsd.2017.12.007 10.2166/wst.2018.258 10.1016/j.watres.2015.10.045 10.1016/j.jhazmat.2017.09.036 10.1016/j.jhazmat.2012.12.037 10.1524/ract.91.4.211.19968 10.1016/S0883-2927(99)00010-4 10.1016/j.seppur.2010.10.006 10.1016/j.jhazmat.2009.02.143 10.1016/j.jece.2016.07.023 10.1016/j.cej.2013.12.049 10.1016/j.apcatb.2008.03.016 10.1016/j.cej.2019.121928 10.1016/j.jhazmat.2019.04.056 10.2166/wst.2017.321 10.1016/j.watres.2005.02.012 10.1007/s11270-014-2293-2 10.1016/0016-7037(90)90369-V 10.2475/ajs.289.2.180 10.1016/j.jhazmat.2013.12.001 10.1016/j.watres.2019.05.037 10.1016/j.chemosphere.2011.09.005 10.2166/ws.2019.069 10.1021/es505584r 10.1021/acs.est.7b04177 10.1039/C6RA08886D 10.1021/es304829z 10.1016/j.jhazmat.2016.01.032 10.1016/j.colsurfa.2008.10.033 10.1016/j.cclet.2019.06.004 10.1016/j.hydromet.2008.12.009 10.1007/s00128-014-1442-z 10.1016/j.jwpe.2017.07.001 10.1016/j.cej.2018.07.113 10.1016/j.jes.2019.05.023 10.1016/j.jece.2015.12.019 10.1016/j.cej.2018.01.033 10.1021/es702579w 10.1016/j.scitotenv.2009.01.043 10.1080/09593330903186240 10.1016/j.jhazmat.2019.04.030 10.1016/j.chemosphere.2006.06.034 10.2166/wst.2011.454 10.1016/j.chemosphere.2019.01.183 10.1016/S0016-7037(97)00077-X 10.1016/j.cej.2018.03.187 10.1016/j.gca.2003.10.018 10.1016/j.watres.2011.10.002 10.1007/s11270-019-4166-1 10.1021/es104343p 10.1016/j.jhazmat.2020.122392 10.1016/S0043-1354(96)00240-0 10.1021/es061157f 10.1016/j.apcatb.2011.02.014 10.1006/jcis.2000.6960 10.1039/C8DT01799A 10.2166/wst.2017.512 10.1016/j.seppur.2016.10.047 10.1007/s11051-008-9558-x 10.1007/s002540000178 10.1016/j.cej.2019.123295 10.1016/j.cej.2019.122120 10.1016/0043-1354(72)90052-8 10.1021/jp208600n 10.1061/(ASCE)EE.1943-7870.0000169 10.1016/j.watres.2016.05.031 10.1016/j.jhazmat.2015.05.008 10.1016/j.watres.2013.09.006 10.1002/app.11596 10.1016/j.psep.2016.03.007 10.1016/j.molliq.2017.08.004 10.1021/acsomega.6b00382 10.1021/am200016v 10.1016/S0012-8252(01)00070-8 10.1021/acs.est.6b03184 10.1021/ie400702k 10.1016/j.envpol.2008.05.022 10.1016/j.chemosphere.2008.03.060 10.1016/j.chemosphere.2019.125235 10.1016/j.jhazmat.2009.09.035 10.3390/ma12060927 10.2166/ws.2016.120 10.1016/j.cej.2015.02.079 10.1021/es0206846 10.1016/j.watres.2010.02.037 10.1007/s11356-020-08163-y 10.1016/j.jhazmat.2014.04.012 10.1016/j.chemosphere.2008.12.019 10.1021/es990376g 10.1016/j.eti.2017.11.006 10.1016/j.watres.2013.07.011 10.1016/j.ejsobi.2007.03.011 10.1016/j.cej.2018.07.170 10.1016/j.watres.2004.12.022 10.1002/jctb.5209 10.1021/es071573f 10.1016/j.jhazmat.2015.04.038 10.1021/es802394p 10.1021/es00061a012 10.1016/j.jhazmat.2006.06.060 10.1021/ie030715l 10.1039/C7EN00240H 10.1016/j.cej.2009.01.029 10.1016/j.watres.2009.03.005 10.1016/j.jhazmat.2019.03.125 10.1021/es960844b 10.1016/j.gca.2006.10.025 10.1016/j.scitotenv.2020.139629 10.1016/j.seppur.2016.10.058 10.1016/j.cej.2020.125168 10.1016/j.seppur.2015.07.056 10.1016/j.jhazmat.2009.04.062 10.1016/j.jconhyd.2010.07.011 10.1021/es011250y 10.1021/es0016710 10.1016/j.cej.2015.12.022 10.1016/j.cherd.2019.09.020 10.1016/j.chemosphere.2016.12.106 10.1016/j.watres.2006.04.006 10.1039/C6RA18965B 10.1007/s11051-007-9225-7 10.1016/j.chemosphere.2014.04.047 10.1016/j.watres.2004.04.003 10.1016/j.jclepro.2018.10.180 10.1021/es980086k 10.1016/j.watres.2017.05.043 10.1016/j.jhazmat.2014.05.025 10.1080/10584587.2011.575629 10.1021/es960665u 10.1061/(ASCE)0733-9372(2006)132:11(1459) 10.1016/j.jtice.2018.01.032 10.1016/j.jhazmat.2019.03.091 10.1021/acs.est.7b02278 10.1021/es803526g 10.1166/sam.2013.1637 10.1007/s11051-017-3814-x 10.1016/j.jconhyd.2015.03.004 10.1016/j.jhazmat.2017.02.045 10.1016/j.chemosphere.2006.03.018 10.1021/acs.est.7b02635 10.1016/j.watres.2016.05.019 10.1016/j.jhazmat.2020.124057 10.1016/j.desal.2020.114540 10.1016/j.cej.2012.02.063 10.1016/j.advwatres.2012.02.005 10.1016/j.jenvman.2017.03.085 10.1021/es501607s 10.1016/0956-9618(96)00148-8 10.1016/j.jes.2014.10.017 10.1007/s11434-012-5425-3 10.1007/s11270-008-9668-1 10.1016/j.jcis.2016.03.011 10.2134/jeq2005.0248 10.1016/j.cej.2018.11.146 10.1021/j100841a018 10.1007/s12665-019-8538-z 10.1016/j.apcatb.2015.03.025 10.1016/j.memsci.2020.118259 10.1016/j.watres.2005.06.020 10.1016/j.chemosphere.2016.01.035 10.1007/s11270-008-9790-0 10.1016/j.chemosphere.2020.126702 10.1080/09593330802131602 10.1039/C8TA03066A 10.1016/j.watres.2013.07.020 10.1016/j.jhazmat.2019.121761 10.1016/j.cattod.2008.09.038 10.1021/es9607897 10.1016/j.jhazmat.2009.02.168 10.1039/C6RA24036D 10.1016/j.cej.2014.05.111 10.1016/j.seppur.2020.117161 10.1007/s10967-014-3062-9 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.chemosphere.2021.130766 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
ExternalDocumentID | 34162087 10_1016_j_chemosphere_2021_130766 S0045653521012376 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c410t-3a17a3a176ae55fe8c5fd08c7e731f1c99e44dddde3f8a63f20c7986f86af3653 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 1879-1298 |
IngestDate | Thu Jul 10 21:56:21 EDT 2025 Fri Jul 11 11:35:08 EDT 2025 Mon Jul 21 05:49:45 EDT 2025 Thu Apr 24 22:53:14 EDT 2025 Tue Jul 01 02:34:37 EDT 2025 Fri Feb 23 02:45:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Reduction Adsorption Zerovalent iron Metal(loid) oxyanion Coprecipitation Sequestration |
Language | English |
License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-3a17a3a176ae55fe8c5fd08c7e731f1c99e44dddde3f8a63f20c7986f86af3653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5453-0339 0000-0003-4588-8472 |
PMID | 34162087 |
PQID | 2544878419 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2574372806 proquest_miscellaneous_2544878419 pubmed_primary_34162087 crossref_primary_10_1016_j_chemosphere_2021_130766 crossref_citationtrail_10_1016_j_chemosphere_2021_130766 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2021_130766 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-00 2021-Oct 20211001 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wu, He, Guo, Zhou (bib325) 2010; 76 Noubactep (bib214) 2009; 168 Wu, Peng, Yan, Shao, Feng, Zhang (bib322) 2018; 6 Xiong, Gao, Zhou, Zhang (bib328) 2016; 18 Wu, Lo, Lin (bib320) 2000; 166 Wang, Luo, Zhang, Wu, Zhang, Chen (bib307) 2014; 268 Abass, Ma, Kong, Wang, Mpinda (bib1) 2016; 102 Jiao, Tan, Lin, Yang (bib109) 2020; 25 Awuah, Morris, Owusu, Sundell, Lindstrom (bib7) 2009; 248 Morgada, Levy, Salomone, Farias, Lopez, Litter (bib200) 2009; 143 Ponder, Darab, Mallouk (bib235) 2000; 34 Cartledge (bib23) 1960; 64 Hug, Leupin (bib102) 2003; 37 Zhu, Ma, Liu, Deng (bib366) 2018; 174 Wang, Jin, Li, Zhang, Gao (bib310) 2006; 65 Triszcz, Port, Garcia Einschlag (bib298) 2009; 150 Brookins (bib20) 1983; 17 Filella, Belzile, Chen (bib73) 2002; 57 Liang, Yang, Guan, Li, Xu, Wu, Huang, Zhang (bib155) 2013; 47 Elwakeel, Atia, Donia (bib58) 2009; 97 Kang, Ma, Bardelli, Chen, Liu, Zheng, Wu, Charlet (bib114) 2013; 248 Zhang, Wu, Chao, Shi, Li, Hu, Yang (bib351) 2019; 227 Zhang, Wu, Tang, Xing, Peng, Li, Liu, Luo, Zou, Min, Luo (bib354) 2018; 335 Zhou, Li, Ma, Zhao, Deng, Pi, Tang, Yang (bib360) 2020; 395 Balistrieri, Chao (bib8) 1987; 51 Peng, Xi, Zhao, Shi, Meng, Mao, Jiang, Ma, Tan, Liu, Gong (bib229) 2017; 51 Wang, Morin, Ona-Nguema, Juillot, Guyot, Calas, Brown (bib312) 2010; 44 Liu, Liu, Zhang (bib162) 2014; 33 Wu, Tu, Liu, Zhang, Chu, Lu, Lin, Dang (bib321) 2017; 4 Xu, Wang, Weng, Bai, Jiao, Kaegi, Lowry (bib334) 2019; 53 Miehr, Tratnyek, Bandstra, Scherer, Alowitz, Bylaska (bib195) 2004; 38 Katsoyiannis, Voegelin, Zouboulis, Hug (bib116) 2015; 297 Plagentz, Ebert, Dahmke (bib233) 2006; 49 Liu, Li, Cui, Yang, Fang (bib164) 2020; 395 Qu, Zeng, Chu, Wang, Liang, Qiang (bib247) 2019; 26 Yin, Li, Wu, Chen, Jiang, Li, Gu, Liang, Liu (bib343) 2017; 332 Roh, Lee, Elless, Cho (bib259) 2000; 35 Shi, Fan, Johnson, Tratnyek, Nurmi, Wu, Williams (bib275) 2015; 181 Doyle, Kendelewicz, Bostick, Brown (bib49) 2004; 68 Guo, Yang, Dong, Guan, Ren, Lv, Jin (bib89) 2016; 88 Zhou, Wang, Sun, Chen, Wu, Na (bib363) 2014; 225 Mak, Lo, Liu (bib183) 2011; 45 Qin, Cao, Wang, Zhang, Lyu (bib245) 2019; 33 Zhu, Jia, Wu, Wang (bib367) 2009; 172 Sasaki, Nakano, Wilopo, Miura, Hirajima (bib262) 2009; 347 Tratnyek, Scherer, Johnson, Matheson (bib297) 2003 Li, Mu, Shang, Mao, Cao, Ai, Zhang (bib140) 2020; 263 Zeng, Qi, Shi, Pichler, Wang, Wang, Sui (bib347) 2020; 382 Lv, Zhang, Fu, Cao, Zhang, Ma, Jiang (bib181) 2017; 506 Zhang, Amrhein, Frankenberger (bib355) 2005; 350 He, Gong, Fan, Tratnyek, Lowry (bib92) 2020; 22 Shan, Chen, Yang, Jia, Guan, Zhang, Pan (bib268) 2018; 133 Dong, He, Zeng, Tang, Zhang, Xie, Zeng, Zhao, Wu (bib44) 2016; 471 Wang, Le, Wang, Liu, Ma, Li (bib311) 2016; 66 Verbinnen, Block, Van Caneghem, Vandecasteele (bib304) 2015; 45 Kumari, Goswami, Kumar, Mazumder, Kataki, Shim (bib126) 2018; 7 Liu, Liu, Ho, Liu, Jing, Cheng (bib175) 2018; 144 Xu, Zhu, Wang, Lin, Chen (bib333) 2014; 225 Tanboonchuy, Grisdanurak, Liao (bib289) 2012; 205 Zhou, Dai, Zhou, Zhao, Zhang (bib364) 2015; 226 Bhowmick, Chakraborty, Mondal, Van Renterghem, Van den Berghe, Roman Ross, Chatterjee, Iglesias (bib14) 2014; 243 Chmielewska, Tylus, Drabik, Majzlan, Kravcak, Williams, Caplovicova, Caplovic (bib25) 2017; 248 Hao, Liu, Wang, Li (bib91) 2018; 8 Guo, Wu, He, Meng, Jin, Qiu, Zhang (bib88) 2014; 276 Wu, Liu, Jiang, Zhao, Li (bib323) 2014; 37 Xu, Zhao (bib337) 2007; 41 Ji, Zhu, Duan, Liu, Zhao (bib107) 2019; 30 Huang, Liu, Qin, Liu, Zhang (bib101) 2011; 127 Eljamal, Sasaki, Hirajima (bib56) 2011; 35 Liu, Li, Waite (bib168) 2013; 47 Ramaswami, Tawachsupa, Isleyen (bib248) 2001; 35 Arthy, Phanikumar (bib5) 2016; 20 Xu, Huang (bib335) 2019; 222 Manning, Martens (bib187) 1997; 31 Liang, Li, Guo, Lin, Su, Liu (bib154) 2021; 404 Li, Wang, Liang, Zhang (bib141) 2017; 322 Das, Lindsay, Essilfie-Dughan, Hendry (bib34) 2017; 2 Nekhunguni, Tavengwa, Tutu (bib207) 2017; 197 Yu, Amrhein, Zhang, Matsumoto (bib345) 2006; 132 Cantrell, Kaplan, Wietsma (bib22) 1995; 42 Figueiredo, Quintelas (bib72) 2014; 274 Darab, Smith (bib33) 1996; 8 Dong, Zinin, Cowen, Ming (bib47) 2009; 168 Ryden, Syers, Tillman (bib261) 1987; 38 Filella, Belzile, Chen (bib74) 2002; 59 Noubactep (bib213) 2008; 29 de Arroyabe Loyo, Nikitenko, Scheinost, Simonoff (bib38) 2008; 42 Newsome, Morris, Cleary, Masters-Waage, Boothman, Joshi, Atherton, Lloyd (bib209) 2019; 364 Cornelis, Johnson, Van Gerven, Vandecasteele (bib29) 2008; 23 Mondal, Bhowmick, Chatterjee, Figoli, Van der Bruggen (bib199) 2013; 92 Ramos, Yan, Li, Koel, Zhang (bib249) 2009; 113 Tiraferri, Hernandez, Bianco, Tosco, Sethi (bib295) 2017; 19 Cullen, Reimer (bib31) 1989; 89 Lian, Xu, Zhang, Han (bib152) 2013; 67 Nguyen Chi, Wichitsathian, Yossapol, Wonglertarak, Te (bib210) 2019; 19 Padil, Filip, Suresh, Waclawek, Cernik (bib223) 2016; 6 Petala, Baikousi, Karakassides, Zoppellaro, Filip, Tucek, Vasilopoulos, Pechousek, Zboril (bib230) 2016; 18 Melitas, Wang, Conklin, O'Day, Farrell (bib193) 2002; 36 Lu, Zhu, Zhang, Zhu, Qiu (bib177) 2015; 276 Hoover, Masselli (bib95) 1941; 33 Su, Puls (bib280) 2008; 193 Gu, Schmitt, Chen, Liang, McCarthy (bib85) 1994; 28 Ahn, Jo, Kim, Koh (bib3) 2012; 53 Das, Sakthivel, Jeyaranjan, Seal, Bezbaruah (bib36) 2020; 253 Pratt, Blowes, Ptacek (bib238) 1997; 31 Mystrioti, Sparis, Papasiopi, Xenidis, Dermatas, Chrysochoou (bib205) 2015; 94 Tyrovola, Peroulaki, Nikolaidis (bib300) 2007; 43 Weidner, Ciesielczyk (bib315) 2019; 12 Xue, Shen, Zhao, Zhao (bib338) 2013; 261 Shao, Xu, Wang, Huang, Zhang, Huang, Fan, Tratnyek (bib270) 2018; 135 Du, Bao, Lu, Werner (bib52) 2016; 102 O'Carroll, Sleep, Krol, Boparai, Kocur (bib217) 2013; 51 Zhang, Zhang, Gao, Xu (bib352) 2019; 378 Waychunas, Rea, Fuller, Davis (bib313) 1993; 57 Marshall, Morris, Law, Mosselmans, Bots, Parry, Shaw (bib188) 2014; 48 Tandon, Shukla, Singh (bib292) 2013; 52 Sun, Li, Huang, Guan (bib286) 2016; 100 Dong, Guan, Lo (bib43) 2012; 46 Schweitzer, L (bib265) 2010 Li, Seaman, Murph, Kaplan, Taylor-Pashow, Feng, Chang, Tandukar (bib134) 2019; 374 Balistrieri, Chao (bib9) 1990; 54 Dries, Bastiaens, Springael, Kuypers, Agathos, Diels (bib51) 2005; 39 Li, Wang, Liu, Zhang (bib142) 2014; 254 Qin, Sun, Yang, Fan, Qiao, Guan (bib244) 2018; 334 He, Huang, He, Yang, Yue, Zhu, Astruc, Zhao (bib93) 2020; 388 Nakseedee, Tanboonchuy, Pimpha, Khemthong, Liao, Grisdanurak (bib206) 2015; 47 Deng, Zhou, Zhang, Yang, Sun, Wang, Liu (bib41) 2018; 77 Scheinost, Charlet (bib264) 2008; 42 Hou, Wan, Liu, Fan, Liu, Wang (bib96) 2008; 84 Zou, Hu, Yang, Gong, He (bib368) 2019; 650 Yang, Shan, Zhang, Jiang, Guan, Pan (bib341) 2016; 106 Li, Ai, Jiang (bib144) 2016; 288 Wen, Tu, Guo, Hao, Wu, Tao (bib316) 2020; 146 Boglaienko, Emerson, Katsenovich, Levitskaia (bib19) 2019; 380 Mak, Lo (bib182) 2011; 84 Xu, Yang, Liu, Sun, Jiao, Lin (bib330) 2018; 67 Xu, Yan, Mao, Wu (bib336) 2020; 384 Zhang, Qiu, Lu, Chen, He, Lu, Ren (bib349) 2018; 52 Kendelewicz, Liu, Doyle, Brown, Nelson, Chambers (bib117) 1999; 424 Wu, Peng, Hou, Tang, Wang, Xu (bib319) 2018; 240 Pearce, Icenhower, Asmussen, Tratnyek, Rosso, Lukens, Qafoku (bib227) 2018; 2 Odziemkowski, Schuhmacher, Gillham, Reardon (bib218) 1998; 40 Kumar, Couture, Millot, Battaglia-Brunet, Rose (bib125) 2016; 50 Zhou, Gong, Hu, Cheng, Zhou, Dong, Wang, Ding, Qiu, Guo (bib361) 2020; 242 Zhao, Liu, Cai, Han, Qian, Zhao (bib358) 2016; 100 Chung, Li, Rittmann (bib26) 2006; 65 Li, Wu, Hu, Ren, Hursthouse (bib149) 2018; 93 Ravikumar, Argulwar, Sudakaran, Pulimi, Chandrasekaran, Mukherjee (bib252) 2018; 9 Park, Jeong, Lee, Park, Kim (bib225) 2019; 92 Song, Zhang, Wu, Wang, Chen, Zhang (bib276) 2019; 86 Lien, Wilkin (bib156) 2005; 59 Li, Zhang, Liu, Pan, Zhang, Shi, Guan (bib138) 2018; 52 Sun, Hu, Huang, Li, Qin, Guan (bib285) 2017; 51 Liu, Rao, Mak, Wang, Lo (bib170) 2009; 43 Xiao, Zhang, Xu, Yuan, Jing, Huang, Li, Sun (bib327) 2017; 174 Wilopo, Sasaki, Hirajima, Yamanaka (bib318) 2008; 49 Bang, Korfiatis, Meng (bib11) 2005; 121 Guan, Sun, Qin, Li, Lo, He, Dong (bib86) 2015; 75 Chen, Wei, Li, Wang, Yu, Liu, Liu, Xie, Wang, Chen, Hayat, Wang (bib24) 2018; 181 Manning, Hunt, Amrhein, Yarmoff (bib186) 2002; 36 Doyle, Kendelewicz, Brown (bib50) 2004; 230 Katsoyiannis, Ruettimann, Hug (bib115) 2008; 42 Kim, Ahn, Kim, Lee, Hwang (bib120) 2014; 113 Hsu, Lin, Liao, Chen (bib97) 2008; 72 Johnson, Moench, Wersin, Kugler, Wenger (bib110) 2005; 34 Gong, Hu, Xiao, Cheng, Liu, Wang, Qiu, Guo (bib82) 2018; 6 Xi, Zou, Luo, Li, Li, Liao, Zhang, Wang, Lin (bib326) 2019; 375 Johnson, Scherer, Tratnyek (bib111) 1996; 30 Tanboonchuy, Hsu, Grisdanurak, Liao (bib291) 2011; 18 Farrell, Wang, O'Day, Conklin (bib67) 2001; 35 Lv, Qin, Wang, Peng, Wang, Jiang (bib179) 2019; 373 Pryor, Cohen (bib239) 1953; 100 Zhong, Yin, Li, Li, Wu, Jiang, Gu, Liang (bib359) 2017; 122 Qiu, Lai, Roberson, Hunt, Amrhein, Giancarlo, Flynn, Yarmoff (bib246) 2000; 16 Deng, Huang, An, Hu, Ju, Xiao (bib40) 2014; 300 Zhang, Yi, Zhang, Han, Liu, Tong (bib353) 2020; 388 Matheson, Tratnyek (bib190) 1994; 28 Dong, Zeng, Zeng, Huang, Liang, Zhao, He, Xie, Wu (bib46) 2016; 165 Lian, Huang, Chen, Wang, Wang, Niu, Liu (bib151) 2018; 77 Mortazavian, An, Chun, Moon (bib201) 2018; 353 Mamindy-Pajany, Hurel, Marmier, Romeo (bib184) 2011; 281 Dorjee, Arnarasiriwardena, Xing (bib48) 2014; 116 Boersig, Scheinost, Shaw, Schild, Neumann (bib18) 2018; 47 Um, Chang, Icenhower, Lukens, Serne, Qafoku, Westsik, Buck, Smith (bib302) 2011; 45 Shi, Zhang, Chen (bib274) 2011; 45 Contelot, Thomas, Seaman (bib27) 2019; 128 Liu, Zhang, Wang, Wang, Bush (bib172) 2019; 9 Yadav, Sharma, Babu (bib339) 2016; 4 Li, Qin, Zhang, Shi, Zhao, Guan (bib137) 2017; 176 Ling, Qiao, Song, Sun (bib158) 2019; 378 Kim, Boulegue (bib118) 2003; 91 Song, Zhao, He (bib277) 2020; 249 Sun, Wang, Zhang, Sui, Xu (bib282) 2006; 129 Wagman, Evans, Parker, Schumm, Halow, Bailey, Churney, Nuttall (bib306) 1982; 11 Lee, Lee, Yoon, Kamala-Kannan, Park, Oh (bib128) 2009; 30 Wang, Zhao, Zhou, Li, Wang, Gao, Sato, Feng, Yin, Igalavithana, Oleszczuk, Wang, Ok (bib309) 2019; 373 Fendorf, Eick, Grossl, Sparks (bib68) 1997; 31 Korte, Fernando (bib123) 1991; 21 Myneni, Tokunaga, Brown (bib204) 1997; 278 Alijani, Shariatinia (bib4) 2017; 171 Blowes, Ptacek, Jambor (bib17 Tanboonchuy (10.1016/j.chemosphere.2021.130766_bib291) 2011; 18 Wu (10.1016/j.chemosphere.2021.130766_bib320) 2000; 166 Doyle (10.1016/j.chemosphere.2021.130766_bib49) 2004; 68 Pratt (10.1016/j.chemosphere.2021.130766_bib238) 1997; 31 Waychunas (10.1016/j.chemosphere.2021.130766_bib313) 1993; 57 Wu (10.1016/j.chemosphere.2021.130766_bib324) 2011; 13 Huang (10.1016/j.chemosphere.2021.130766_bib99) 2016; 146 Schweitzer (10.1016/j.chemosphere.2021.130766_bib265) 2010 Sun (10.1016/j.chemosphere.2021.130766_bib284) 2014; 48 Brookins (10.1016/j.chemosphere.2021.130766_bib20) 1983; 17 Li (10.1016/j.chemosphere.2021.130766_bib148) 2012; 227 Balistrieri (10.1016/j.chemosphere.2021.130766_bib9) 1990; 54 Ryden (10.1016/j.chemosphere.2021.130766_bib261) 1987; 38 Shi (10.1016/j.chemosphere.2021.130766_bib275) 2015; 181 Kanel (10.1016/j.chemosphere.2021.130766_bib112) 2005; 39 Wilopo (10.1016/j.chemosphere.2021.130766_bib318) 2008; 49 Um (10.1016/j.chemosphere.2021.130766_bib302) 2011; 45 Zhu (10.1016/j.chemosphere.2021.130766_bib367) 2009; 172 Murphy (10.1016/j.chemosphere.2021.130766_bib203) 1988; 27 Hao (10.1016/j.chemosphere.2021.130766_bib91) 2018; 8 Lv (10.1016/j.chemosphere.2021.130766_bib180) 2011; 85 Saslow (10.1016/j.chemosphere.2021.130766_bib263) 2017; 51 Zhou (10.1016/j.chemosphere.2021.130766_bib364) 2015; 226 Xiong (10.1016/j.chemosphere.2021.130766_bib328) 2016; 18 Zhang (10.1016/j.chemosphere.2021.130766_bib355) 2005; 350 Liu (10.1016/j.chemosphere.2021.130766_bib172) 2019; 9 Xu (10.1016/j.chemosphere.2021.130766_bib337) 2007; 41 Lackovic (10.1016/j.chemosphere.2021.130766_bib127) 2000; 17 Xi (10.1016/j.chemosphere.2021.130766_bib326) 2019; 375 Li (10.1016/j.chemosphere.2021.130766_bib150) 2018; 344 Feng (10.1016/j.chemosphere.2021.130766_bib70) 2015; 31 Adegoke (10.1016/j.chemosphere.2021.130766_bib2) 2013; 22 Bhowmick (10.1016/j.chemosphere.2021.130766_bib14) 2014; 243 Franco (10.1016/j.chemosphere.2021.130766_bib76) 2009; 197 Bang (10.1016/j.chemosphere.2021.130766_bib11) 2005; 121 Jiao (10.1016/j.chemosphere.2021.130766_bib109) 2020; 25 Boglaienko (10.1016/j.chemosphere.2021.130766_bib19) 2019; 380 Qian (10.1016/j.chemosphere.2021.130766_bib241) 2018; 344 Zhu (10.1016/j.chemosphere.2021.130766_bib366) 2018; 174 He (10.1016/j.chemosphere.2021.130766_bib94) 2020; 27 Shi (10.1016/j.chemosphere.2021.130766_bib274) 2011; 45 Xu (10.1016/j.chemosphere.2021.130766_bib335) 2019; 222 Sheng (10.1016/j.chemosphere.2021.130766_bib273) 2016; 148 Blowes (10.1016/j.chemosphere.2021.130766_bib16) 2000; 45 Kanel (10.1016/j.chemosphere.2021.130766_bib113) 2007; 9 Mondal (10.1016/j.chemosphere.2021.130766_bib198) 2004; 43 Fu (10.1016/j.chemosphere.2021.130766_bib77) 2017; 174 Te (10.1016/j.chemosphere.2021.130766_bib294) 2018; 36 Tyrovola (10.1016/j.chemosphere.2021.130766_bib299) 2006; 40 Huang (10.1016/j.chemosphere.2021.130766_bib101) 2011; 127 Ji (10.1016/j.chemosphere.2021.130766_bib107) 2019; 30 Daus (10.1016/j.chemosphere.2021.130766_bib37) 2004; 38 Liu (10.1016/j.chemosphere.2021.130766_bib160) 2013; 58 Li (10.1016/j.chemosphere.2021.130766_bib134) 2019; 374 Xu (10.1016/j.chemosphere.2021.130766_bib332) 2016; 50 Myneni (10.1016/j.chemosphere.2021.130766_bib204) 1997; 278 Sheng (10.1016/j.chemosphere.2021.130766_bib272) 2016; 99 Fan (10.1016/j.chemosphere.2021.130766_bib62) 2020; 610 Kim (10.1016/j.chemosphere.2021.130766_bib118) 2003; 91 Zou (10.1016/j.chemosphere.2021.130766_bib368) 2019; 650 Noubactep (10.1016/j.chemosphere.2021.130766_bib216) 2005; 2 Pearce (10.1016/j.chemosphere.2021.130766_bib227) 2018; 2 Liu (10.1016/j.chemosphere.2021.130766_bib167) 2020; 736 Lu (10.1016/j.chemosphere.2021.130766_bib177) 2015; 276 Gupta (10.1016/j.chemosphere.2021.130766_bib90) 2012; 86 Li (10.1016/j.chemosphere.2021.130766_bib146) 2018; 345 Dong (10.1016/j.chemosphere.2021.130766_bib46) 2016; 165 Zhao (10.1016/j.chemosphere.2021.130766_bib357) 2014; 247 Qin (10.1016/j.chemosphere.2021.130766_bib245) 2019; 33 Morgada (10.1016/j.chemosphere.2021.130766_bib200) 2009; 143 Elrashidi (10.1016/j.chemosphere.2021.130766_bib57) 1987; 144 Tokunaga (10.1016/j.chemosphere.2021.130766_bib296) 1997; 31 Leiviska (10.1016/j.chemosphere.2021.130766_bib130) 2017; 190 Li (10.1016/j.chemosphere.2021.130766_bib137) 2017; 176 Mamindy-Pajany (10.1016/j.chemosphere.2021.130766_bib184) 2011; 281 Zghida (10.1016/j.chemosphere.2021.130766_bib348) 2003; 87 Deng (10.1016/j.chemosphere.2021.130766_bib41) 2018; 77 Lian (10.1016/j.chemosphere.2021.130766_bib152) 2013; 67 Contelot (10.1016/j.chemosphere.2021.130766_bib27) 2019; 128 Cui (10.1016/j.chemosphere.2021.130766_bib30) 2018; 34 Manning (10.1016/j.chemosphere.2021.130766_bib186) 2002; 36 Su (10.1016/j.chemosphere.2021.130766_bib280) 2008; 193 Bello (10.1016/j.chemosphere.2021.130766_bib12) 2019; 374 Manning (10.1016/j.chemosphere.2021.130766_bib187) 1997; 31 Tratnyek (10.1016/j.chemosphere.2021.130766_bib297) 2003 Awuah (10.1016/j.chemosphere.2021.130766_bib7) 2009; 248 Lian (10.1016/j.chemosphere.2021.130766_bib151) 2018; 77 Deng (10.1016/j.chemosphere.2021.130766_bib40) 2014; 300 Guo (10.1016/j.chemosphere.2021.130766_bib89) 2016; 88 Chung (10.1016/j.chemosphere.2021.130766_bib26) 2006; 65 Li (10.1016/j.chemosphere.2021.130766_bib142) 2014; 254 Wu (10.1016/j.chemosphere.2021.130766_bib321) 2017; 4 Dong (10.1016/j.chemosphere.2021.130766_bib47) 2009; 168 Katsoyiannis (10.1016/j.chemosphere.2021.130766_bib116) 2015; 297 Xiong (10.1016/j.chemosphere.2021.130766_bib329) 2011; 102 Xu (10.1016/j.chemosphere.2021.130766_bib336) 2020; 384 Tyrovola (10.1016/j.chemosphere.2021.130766_bib300) 2007; 43 Lien (10.1016/j.chemosphere.2021.130766_bib156) 2005; 59 Oh (10.1016/j.chemosphere.2021.130766_bib219) 2007; 66 Fan (10.1016/j.chemosphere.2021.130766_bib59) 2013; 47 Deng (10.1016/j.chemosphere.2021.130766_bib39) 2005 Liu (10.1016/j.chemosphere.2021.130766_bib163) 2017; 243 Wei (10.1016/j.chemosphere.2021.130766_bib314) 2020; 391 Peacock (10.1016/j.chemosphere.2021.130766_bib226) 2004; 68 Roberson (10.1016/j.chemosphere.2021.130766_bib257) 1999 Zhang (10.1016/j.chemosphere.2021.130766_bib350) 2020; 12 Farrell (10.1016/j.chemosphere.2021.130766_bib66) 1999; 33 Lv (10.1016/j.chemosphere.2021.130766_bib181) 2017; 506 Ravikumar (10.1016/j.chemosphere.2021.130766_bib252) 2018; 9 de Arroyabe Loyo (10.1016/j.chemosphere.2021.130766_bib38) 2008; 42 Shan (10.1016/j.chemosphere.2021.130766_bib268) 2018; 133 Tanboonchuy (10.1016/j.chemosphere.2021.130766_bib290) 2011; 186 Miehr (10.1016/j.chemosphere.2021.130766_bib195) 2004; 38 Qin (10.1016/j.chemosphere.2021.130766_bib243) 2016; 6 He (10.1016/j.chemosphere.2021.130766_bib92) 2020; 22 Reinoso Maset (10.1016/j.chemosphere.2021.130766_bib254) 2006; 40 Xiao (10.1016/j.chemosphere.2021.130766_bib327) 2017; 174 Kong (10.1016/j.chemosphere.2021.130766_bib122) 2020; 392 Zhao (10.1016/j.chemosphere.2021.130766_bib358) 2016; 100 Li (10.1016/j.chemosphere.2021.130766_bib140) 2020; 263 Alijani (10.1016/j.chemosphere.2021.130766_bib4) 2017; 171 Mystrioti (10.1016/j.chemosphere.2021.130766_bib205) 2015; 94 Fan (10.1016/j.chemosphere.2021.130766_bib63) 2019; 159 Yayayuruk (10.1016/j.chemosphere.2021.130766_bib342) 2017; 92 Farrell (10.1016/j.chemosphere.2021.130766_bib67) 2001; 35 Gheju (10.1016/j.chemosphere.2021.130766_bib80) 2011; 222 Wu (10.1016/j.chemosphere.2021.130766_bib322) 2018; 6 Du (10.1016/j.chemosphere.2021.130766_bib52) 2016; 102 Qu (10.1016/j.chemosphere.2021.130766_bib247) 2019; 26 Doyle (10.1016/j.chemosphere.2021.130766_bib50) 2004; 230 Zhang (10.1016/j.chemosphere.2021.130766_bib354) 2018; 335 Liu (10.1016/j.chemosphere.2021.130766_bib165) 2013; 5 Cantrell (10.1016/j.chemosphere.2021.130766_bib22) 1995; 42 Nikolaidis (10.1016/j.chemosphere.2021.130766_bib211) 2003; 37 Nishimura (10.1016/j.chemosphere.2021.130766_bib212) 2000 Li (10.1016/j.chemosphere.2021.130766_bib135) 2015; 151 Zhou (10.1016/j.chemosphere.2021.130766_bib360) 2020; 395 Lee (10.1016/j.chemosphere.2021.130766_bib128) 2009; 30 Hoover (10.1016/j.chemosphere.2021.130766_bib95) 1941; 33 Fan (10.1016/j.chemosphere.2021.130766_bib61) 2017; 51 Vollprecht (10.1016/j.chemosphere.2021.130766_bib305) 2019; 208 Meena (10.1016/j.chemosphere.2021.130766_bib192) 2017; 15 Zhong (10.1016/j.chemosphere.2021.130766_bib359) 2017; 122 Xue (10.1016/j.chemosphere.2021.130766_bib338) 2013; 261 Mondal (10.1016/j.chemosphere.2021.130766_bib199) 2013; 92 Dong (10.1016/j.chemosphere.2021.130766_bib44) 2016; 471 Zhang (10.1016/j.chemosphere.2021.130766_bib349) 2018; 52 Ling (10.1016/j.chemosphere.2021.130766_bib158) 2019; 378 Wen (10.1016/j.chemosphere.2021.130766_bib316) 2020; 146 Song (10.1016/j.chemosphere.2021.130766_bib277) 2020; 249 Eary (10.1016/j.chemosphere.2021.130766_bib55) 1989; 289 Xu (10.1016/j.chemosphere.2021.130766_bib333) 2014; 225 Pryor (10.1016/j.chemosphere.2021.130766_bib239) 1953; 100 Um (10.1016/j.chemosphere.2021.130766_bib301) 2012; 429 Das (10.1016/j.chemosphere.2021.130766_bib36) 2020; 253 Sun (10.1016/j.chemosphere.2021.130766_bib286) 2016; 100 Dorjee (10.1016/j.chemosphere.2021.130766_bib48) 2014; 116 Liu (10.1016/j.chemosphere.2021.130766_bib166) 2015; 138 Asmel (10.1016/j.chemosphere.2021.130766_bib6) 2017; 317 Noubactep (10.1016/j.chemosphere.2021.130766_bib215) 2010; 36 Huang (10.1016/j.chemosphere.2021.130766_bib100) 2018; 338 Das (10.1016/j.chemosphere.2021.130766_bib35) 2019; 78 Melitas (10.1016/j.chemosphere.2021.130766_bib193) 2002; 36 Rau (10.1016/j.chemosphere.2021.130766_bib251) 2002; 36 Wijnja (10.1016/j.chemosphere.2021.130766_bib317) 2000; 229 Liu (10.1016/j.chemosphere.2021.130766_bib159) 2019; 151 Balistrieri (10.1016/j.chemosphere.2021.130766_bib8) 1987; 51 Darab (10.1016/j.chemosphere.2021.130766_bib33) 1996; 8 Jang (10.1016/j.chemosphere.2021.130766_bib106) 2020; 491 Kim (10.1016/j.chemosphere.2021.130766_bib119) 2011; 3 Ding (10.1016/j.chemosphere.2021.130766_bib42) 2013; 30 Guo (10.1016/j.chemosphere.2021.130766_bib88) 2014; 276 Peterson (10.1016/j.chemosphere.2021.130766_bib232) 1997; 61 Liu (10.1016/j.chemosphere.2021.130766_bib174) 2019; 235 Bhaumik (10.1016/j.chemosphere.2021.130766_bib13) 2015; 271 Zeng (10.1016/j.chemosphere.2021.130766_bib |
References_xml | – volume: 197 start-page: 331 year: 2017 end-page: 337 ident: bib269 article-title: Removal of chromium(VI) from water using nanoscale zerovalent iron particles supported on herb-residue biochar publication-title: J. Environ. Manag. – volume: 22 start-page: 528 year: 2020 end-page: 542 ident: bib92 article-title: Quantifying the efficiency and selectivity of organohalide dechlorination by zerovalent iron publication-title: Environmental Science-Processes & Impacts – volume: 45 start-page: 4904 year: 2011 end-page: 4913 ident: bib302 article-title: Immobilization of publication-title: Environ. Sci. Technol. – volume: 374 start-page: 177 year: 2019 end-page: 185 ident: bib134 article-title: Porous iron material for TcO publication-title: J. Hazard Mater. – volume: 18 start-page: 267 year: 2016 ident: bib328 article-title: Zero-valent iron particles embedded on the mesoporous silica-carbon for chromium (VI) removal from aqueous solution publication-title: J. Nano Res. – volume: 225 start-page: 1799 year: 2014 ident: bib32 article-title: Removal of Sb(III) and Sb(V) from aqueous solutions using nZVI publication-title: Water Air Soil Pollut. – volume: 17 start-page: 29 year: 2000 end-page: 39 ident: bib127 article-title: Inorganic arsenic removal by zero-valent iron publication-title: Environ. Eng. Sci. – volume: 65 start-page: 24 year: 2006 end-page: 34 ident: bib26 article-title: Bio-reduction of arsenate using a hydrogen-based membrane biofilm reactor publication-title: Chemosphere – volume: 128 start-page: 379 year: 2019 end-page: 389 ident: bib27 article-title: Using porous iron composite (PIC) material to immobilize rhenium as an analogue for technetium publication-title: Environ. Int. – volume: 85 start-page: 155 year: 2018 end-page: 164 ident: bib143 article-title: Zero valent iron as an electron transfer agent in a reaction system based on zero valent iron/magnetite nanocomposites for adsorption and oxidation of Sb(III) publication-title: J. Taiwan Inst. Chem. Eng – volume: 113 start-page: 93 year: 2014 end-page: 100 ident: bib120 article-title: Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid publication-title: Chemosphere – volume: 8 start-page: 39545 year: 2018 end-page: 39560 ident: bib91 article-title: A critical review on arsenic removal from water using iron-based adsorbents publication-title: RSC Adv. – volume: 84 start-page: 234 year: 2011 end-page: 240 ident: bib182 article-title: Influences of redox transformation, metal complexation and aggregation of fulvic acid and humic acid on Cr(VI) and As(V) removal by zero-valent iron publication-title: Chemosphere – volume: 37 start-page: 2734 year: 2003 end-page: 2742 ident: bib102 article-title: Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction publication-title: Environ. Sci. Technol. – volume: 39 start-page: 3531 year: 2005 end-page: 3540 ident: bib51 article-title: Effect of humic acids on heavy metal removal by zero-valent iron in batch and continuous flow column systems publication-title: Water Res. – volume: 297 start-page: 1 year: 2015 end-page: 7 ident: bib116 article-title: Enhanced As(III) oxidation and removal by combined use of zero valent iron and hydrogen peroxide in aerated waters at neutral pH values publication-title: J. Hazard Mater. – volume: 166 start-page: 251 year: 2000 end-page: 259 ident: bib320 article-title: Competitive adsorption of molybdate, chromate, sulfate, selenate, and selenite on γ-Al publication-title: Colloid. Surface. Physicochem. Eng. Aspect. – volume: 89 start-page: 713 year: 1989 end-page: 764 ident: bib31 article-title: Arsenic speciation in the environment publication-title: Chem. Rev. – volume: 227 start-page: 211 year: 2012 end-page: 218 ident: bib148 article-title: Mechanism insights into enhanced Cr(VI) removal using nanoscale zerovalent iron supported on the pillared bentonite by macroscopic and spectroscopic studies publication-title: J. Hazard Mater. – volume: 59 start-page: 377 year: 2005 end-page: 386 ident: bib156 article-title: High-level arsenite removal from groundwater by zero-valent iron publication-title: Chemosphere – volume: 373 start-page: 810 year: 2019 end-page: 819 ident: bib281 article-title: Synthesis and characterization of zeolite-based composites functionalized with nanoscale zero-valent iron for removing arsenic in the presence of selenium from water publication-title: J. Hazard Mater. – volume: 45 start-page: 123 year: 2000 end-page: 137 ident: bib16 article-title: Treatment of inorganic contaminants using permeable reactive barriers publication-title: J. Contam. Hydrol. – volume: 6 start-page: 11119 year: 2018 end-page: 11128 ident: bib82 article-title: Triple layered core-shell ZVI@carbon@polyaniline composite enhanced electron utilization in Cr(VI) reduction publication-title: J. Mater. Chem. A – start-page: 355 year: 2000 end-page: 362 ident: bib212 article-title: Removal of selenium from industrial waste water publication-title: Minor Elements 2000: Processing and Environmental Aspects of as, Sb, Se, Te, and Bi – volume: 193 start-page: 65 year: 2008 end-page: 78 ident: bib280 article-title: Arsenate and arsenite sorption on magnetite: relations to groundwater arsenic treatment using zerovalent iron and natural attenuation publication-title: Water Air Soil Pollut. – volume: 77 start-page: 375 year: 2018 end-page: 386 ident: bib41 article-title: Remediation of arsenic(III) from aqueous solutions using zero-valent iron (ZVI) combined with potassium permanganate and ferrous ions publication-title: Water Sci. Technol. – volume: 19 start-page: 51 year: 2017 end-page: 59 ident: bib104 article-title: Kinetic equilibrium and thermodynamic study of arsenic removal from water using alumina supported iron nano particles publication-title: J. Water Process. Eng. – volume: 38 start-page: 2948 year: 2004 end-page: 2954 ident: bib37 article-title: Sorption materials for arsenic removal from water: a comparative study publication-title: Water Res. – volume: 65 start-page: 1396 year: 2006 end-page: 1404 ident: bib310 article-title: Preparation of spherical iron nanoclusters in ethanol-water solution for nitrate removal publication-title: Chemosphere – volume: 50 start-page: 1483 year: 2016 end-page: 1491 ident: bib332 article-title: Sequestration of antimonite by zerovalent Iron: using weak magnetic field effects to enhance performance and characterize reaction mechanisms publication-title: Environ. Sci. Technol. – volume: 253 start-page: 126702 year: 2020 ident: bib36 article-title: Ultra-high arsenic adsorption by graphene oxide iron nanohybrid: removal mechanisms and potential applications publication-title: Chemosphere – volume: 129 start-page: 297 year: 2006 end-page: 303 ident: bib282 article-title: Treatment of groundwater polluted by arsenic compounds by zero valent iron publication-title: J. Hazard Mater. – volume: 53 start-page: 1028 year: 1989 end-page: 1034 ident: bib228 article-title: Kinetics and mechanisms of molybdate adsorption desorption at the goethite water interface using pressure-jump relaxation publication-title: Soil Sci. Soc. Am. J. – volume: 146 start-page: 115 year: 2016 end-page: 122 ident: bib99 article-title: Floatable, macroporous structured alginate sphere supporting iron nanoparticles used for emergent Cr(VI) spill treatment publication-title: Carbohydr. Polym. – volume: 230 start-page: 113 year: 2019 ident: bib356 article-title: Application of carboxymethyl cellulose-stabilized sulfidated nano zerovalent iron for removal of Cr(VI) in simulated groundwater publication-title: Water Air Soil Pollut. – volume: 197 start-page: 49 year: 2009 end-page: 60 ident: bib76 article-title: Reduction of hexavalent chromium in soil and ground water using zero-valent iron under batch and semi-batch conditions publication-title: Water Air Soil Pollut. – volume: 60 start-page: 121 year: 1996 end-page: 131 ident: bib185 article-title: Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals publication-title: Soil Sci. Soc. Am. J. – volume: 19 start-page: 107 year: 2017 ident: bib295 article-title: Colloidal behavior of goethite nanoparticles modified with humic acid and implications for aquifer reclamation publication-title: J. Nano Res. – volume: 334 start-page: 296 year: 2018 end-page: 304 ident: bib244 article-title: Unexpected effect of buffer solution on removal of selenite and selenate by zerovalent iron publication-title: Chem. Eng. J. – volume: 353 start-page: 246 year: 2018 end-page: 253 ident: bib242 article-title: Effect of solution chemistry on the reactivity and electron selectivity of zerovalent iron toward Se(VI) removal publication-title: Chem. Eng. J. – volume: 35 start-page: 1487 year: 2001 end-page: 1492 ident: bib279 article-title: Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediation publication-title: Environ. Sci. Technol. – volume: 6 start-page: 95865 year: 2016 end-page: 95878 ident: bib196 article-title: Removal of antimonite (Sb(III)) and antimonate (Sb(V)) using zerovalent iron decorated functionalized carbon nanotubes publication-title: RSC Adv. – volume: 243 start-page: 14 year: 2014 end-page: 23 ident: bib14 article-title: Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: kinetics and mechanism publication-title: Chem. Eng. J. – volume: 87 start-page: 1660 year: 2003 end-page: 1665 ident: bib348 article-title: Sorption of chromium oxy-anions onto cationized ligno-cellulosic material publication-title: J. Appl. Polym. Sci. – volume: 13 start-page: 2292 year: 2011 end-page: 2303 ident: bib324 article-title: Behaviors of dissolved antimony in the Yangtze River Estuary and its adjacent waters publication-title: J. Environ. Monit. – volume: 227 year: 2019 ident: bib351 article-title: Simultaneous removal of nitrate, copper and hexavalent chromium from water by aluminum-iron alloy particles publication-title: J. Contam. Hydrol. – volume: 102 start-page: 73 year: 2016 end-page: 81 ident: bib52 article-title: Reductive sequestration of chromate by hierarchical FeS@Fe publication-title: Water Res. – volume: 25 start-page: 6175 year: 2018 end-page: 6195 ident: bib65 article-title: From nZVI to SNCs: development of a better material for pollutant removal in water publication-title: Environ. Sci. Pollut. Res. – volume: 190 start-page: 231 year: 2017 end-page: 242 ident: bib130 article-title: Removal of vanadium from industrial wastewater using iron sorbents in batch and continuous flow pilot systems publication-title: J. Environ. Manag. – volume: 226 start-page: 76 year: 2015 ident: bib364 article-title: The removal of antimony by novel nZVI-zeolite: the role of iron transformation publication-title: Water Air Soil Pollut. – volume: 181 start-page: 745 year: 2018 end-page: 752 ident: bib24 article-title: Macroscopic and microscopic investigation of Cr(VI) immobilization by nanoscaled zero-valent iron supported zeolite MCM-41 via batch, visual, XPS and EXAFS techniques publication-title: J. Clean. Prod. – volume: 373 start-page: 820 year: 2019 end-page: 834 ident: bib309 article-title: Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: a critical review publication-title: J. Hazard Mater. – volume: 5 start-page: 1686 year: 2013 end-page: 1693 ident: bib165 article-title: Synthesizing the composites of graphene oxide-wrapped polyaniline hollow microspheres for high-performance supercapacitors publication-title: Sci. Adv. Mater. – volume: 12 start-page: 2057 year: 2010 end-page: 2068 ident: bib220 article-title: Reduction of Se(VI) to Se(-II) by zerovalent iron nanoparticle suspensions publication-title: J. Nano Res. – volume: 391 start-page: 122057 year: 2020 ident: bib314 article-title: Simultaneous adsorption and oxidation of antimonite onto nano zero-valent iron sludge-based biochar: indispensable role of reactive oxygen species and redox-active moieties publication-title: J. Hazard Mater. – volume: 47 start-page: 182 year: 2015 end-page: 189 ident: bib206 article-title: Arsenic removal by nanoiron coupled with gas bubbling system publication-title: J. Taiwan Inst. Chem. Eng. – volume: 249 start-page: 117161 year: 2020 ident: bib277 article-title: Lithium recovery from Li publication-title: Separ. Purif. Technol. – volume: 57 start-page: 125 year: 2002 end-page: 176 ident: bib73 article-title: Antimony in the environment: a review focused on natural waters I. Occurrence publication-title: Earth Sci. Rev. – volume: 288 start-page: 789 year: 2016 end-page: 797 ident: bib144 article-title: Nanoscale zerovalent iron decorated on graphene nanosheets for Cr(VI) removal from aqueous solution: surface corrosion retard induced the enhanced performance publication-title: Chem. Eng. J. – volume: 392 start-page: 122392 year: 2020 ident: bib122 article-title: Enhanced removal of vanadium(V) from groundwater by layered double hydroxide-supported nanoscale zerovalent iron publication-title: J. Hazard Mater. – volume: 19 start-page: 1929 year: 2019 end-page: 1937 ident: bib210 article-title: Improvement of aqueous solution coexisting with arsenite and arsenate using iron mixed porous clay pellets in batch and fixed-bed column studies publication-title: Water Sci. Technol. Water Supply – volume: 186 start-page: 2123 year: 2011 end-page: 2128 ident: bib290 article-title: Gas-bubbled nano zero-valent iron process for high concentration arsenate removal publication-title: J. Hazard Mater. – volume: 189 start-page: 237 year: 2012 end-page: 243 ident: bib21 article-title: Arsenic removal via ZVI in a hybrid spouted vessel/fixed bed filter system publication-title: Chem. Eng. J. – volume: 85 start-page: 1204 year: 2011 end-page: 1209 ident: bib180 article-title: Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes publication-title: Chemosphere – volume: 240 start-page: 717 year: 2018 end-page: 724 ident: bib319 article-title: Dynamic study of Cr(VI) removal performance and mechanism from water using multilayer material coated nanoscale zerovalent iron publication-title: Environ. Pollut. – volume: 7 start-page: 470 year: 2018 end-page: 476 ident: bib126 article-title: Removal of Cr(VI) ions from the aqueous solution through nanoscale zero-valent iron (nZVI) magnetite corn cob silica (MCCS): a bio-waste based water purification perspective publication-title: Groundwater Sustain. Dev. – volume: 38 start-page: 139 year: 2004 end-page: 147 ident: bib195 article-title: Diversity of contaminant reduction reactions by zerovalent iron: role of the reductate publication-title: Environ. Sci. Technol. – volume: 71 start-page: 2137 year: 2007 end-page: 2157 ident: bib346 article-title: Reduction of pertechnetate Tc(VII) by aqueous Fe(II) and the nature of solid phase redox products publication-title: Geochem. Cosmochim. Acta – year: 2005 ident: bib288 article-title: Atlas of Eh-pH Diagrams – volume: 30 start-page: 1425 year: 2009 end-page: 1434 ident: bib128 article-title: Assessment of zero-valent iron as a permeable reactive barrier for long-term removal of arsenic compounds from synthetic water publication-title: Environ. Technol. – volume: 116 start-page: 5303 year: 2012 end-page: 5311 ident: bib340 article-title: As(III) sequestration by iron nanoparticles: study of solid-phase redox transformations with X-ray photoelectron spectroscopy publication-title: J. Phys. Chem. C – volume: 127 start-page: 39 year: 2011 end-page: 47 ident: bib101 article-title: As(III) adsorption from drinking water on nanoscale zero-valent iron: kinetics and isotherm studies publication-title: Integrated Ferroelectrics Int. J. – volume: 225 start-page: 1945 year: 2014 ident: bib363 article-title: Synthesis, characterization, and adsorptive properties of magnetic cellulose nanocomposites for arsenic removal publication-title: Water Air Soil Pollut. – volume: 133 start-page: 103 year: 2002 end-page: 111 ident: bib194 article-title: Combined effects of anions on arsenic removal by iron hydroxides publication-title: Toxicol. Lett. – volume: 75 start-page: 156 year: 2009 end-page: 162 ident: bib250 article-title: Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses publication-title: Chemosphere – volume: 174 start-page: 184 year: 2018 end-page: 190 ident: bib366 article-title: Green synthesis of nano zero-valent iron/Cu by green tea to remove hexavalent chromium from groundwater publication-title: J. Clean. Prod. – volume: 3 start-page: 1457 year: 2011 end-page: 1462 ident: bib119 article-title: Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications publication-title: ACS Appl. Mater. Interfaces – volume: 395 start-page: 122623 year: 2020 ident: bib164 article-title: Simultaneous removal of Cd(II) and As(III) by graphene-like biochar-supported zero-valent iron from irrigation waters under aerobic conditions: synergistic effects and mechanisms publication-title: J. Hazard Mater. – volume: 29 start-page: 1913 year: 1995 end-page: 1922 ident: bib237 article-title: Coupled iron corrosion and chromate reduction-mechanisms for subsurface remediation publication-title: Environ. Sci. Technol. – volume: 43 start-page: 1970 year: 2009 end-page: 1976 ident: bib178 article-title: Treatment of arsenic, heavy metals, and acidity using a mixed ZVI-compost PRB publication-title: Environ. Sci. Technol. – volume: 28 start-page: 559 year: 1988 end-page: 576 ident: bib191 article-title: An XPS study of passive film formation on iron in chromate solutions Corros publication-title: Science – volume: 36 start-page: 442 year: 2011 end-page: 446 ident: bib308 article-title: Effects and mechanism of humic acid on chromium(VI) removal by zero-valent iron (Fe publication-title: Phys. Chem. Earth – volume: 33 start-page: 1550 year: 2019 end-page: 1557 ident: bib245 article-title: Nanoscale zero valent iron-based optimization system and their application in environmental remediation: a review publication-title: Mater. Rev. – volume: 373 start-page: 176 year: 2019 end-page: 186 ident: bib179 article-title: Nanoscale zero valent iron supported on MgAl-LDH-decorated reduced graphene oxide: enhanced performance in Cr(VI) removal, mechanism and regeneration publication-title: J. Hazard Mater. – volume: 52 start-page: 10052 year: 2013 end-page: 10058 ident: bib292 article-title: Removal of arsenic(III) from water with clay-supported zerovalent iron nanoparticles synthesized with the help of tea liquor publication-title: Ind. Eng. Chem. Res. – volume: 374 start-page: 372 year: 2019 end-page: 381 ident: bib12 article-title: Synthesis of zerovalent iron from water treatment residue as a conjugate with kaolin and its application for vanadium removal publication-title: J. Hazard Mater. – volume: 53 start-page: 14577 year: 2019 end-page: 14585 ident: bib64 article-title: Coupled effect of sulfidation and ferrous dosing on selenate removal by zerovalent iron under aerobic conditions publication-title: Environ. Sci. Technol. – volume: 30 start-page: 713 year: 2013 end-page: 718 ident: bib42 article-title: Kinetics of reductive immobilization of rhenium in soil and groundwater using zero valent iron nanoparticles publication-title: Environ. Eng. Sci. – volume: 51 start-page: 104 year: 2013 end-page: 122 ident: bib217 article-title: Nanoscale zero valent iron and bimetallic particles for contaminated site remediation publication-title: Adv. Water Resour. – volume: 36 start-page: 5455 year: 2002 end-page: 5461 ident: bib186 article-title: Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products publication-title: Environ. Sci. Technol. – year: 1999 ident: bib257 article-title: Removal of Selenate from Irrigation Drainage Water Using Zerovalent Iron – volume: 40 start-page: 184 year: 2000 end-page: 194 ident: bib258 article-title: Characterization of corrosion products in the permeable reactive barriers publication-title: Environ. Geol. – volume: 261 start-page: 295 year: 2013 end-page: 306 ident: bib231 article-title: Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution publication-title: J. Hazard Mater. – volume: 61 start-page: 2185 year: 1997 end-page: 2192 ident: bib267 article-title: Reduction of hexavalent chromium by ferrous iron publication-title: Geochem. Cosmochim. Acta – volume: 151 start-page: 242 year: 2019 end-page: 251 ident: bib159 article-title: Controlled fabrication of functionalized nanoscale zero-valent iron/celluloses composite with silicon as protective layer for arsenic removal publication-title: Chem. Eng. Res. Des. – volume: 384 start-page: 123295 year: 2020 ident: bib336 article-title: Enhancing the dioxygen activation for arsenic removal by Cu publication-title: Chem. Eng. J. – volume: 360 start-page: 1 year: 2019 end-page: 9 ident: bib133 article-title: Pertechnetate (TcO publication-title: Chem. Eng. J. – volume: 43 start-page: 2540 year: 2009 end-page: 2548 ident: bib170 article-title: Removal of co-present chromate and arsenate by zero-valent iron in groundwater with humic acid and bicarbonate publication-title: Water Res. – volume: 280 start-page: 149 year: 2017 end-page: 154 ident: bib176 article-title: Removal of As(III) from aqueous solutions through simultaneous photocatalytic oxidation and adsorption by TiO publication-title: Catal. Today – volume: 4 start-page: 3441 year: 2016 end-page: 3450 ident: bib303 article-title: Antimony oxyanions uptake by green marine macroalgae publication-title: J. Environ. Chem. Eng. – volume: 222 start-page: 415 year: 2019 end-page: 421 ident: bib335 article-title: A simple and novel method to enhance As(V) removal by zero valent iron and activated iron media through air injection at intervals publication-title: Chemosphere – volume: 117 start-page: 108 year: 2014 end-page: 114 ident: bib124 article-title: Implementation of zero-valent iron (ZVI) into drinking water supply - role of the ZVI and biological processes publication-title: Chemosphere – year: 2010 ident: bib265 article-title: The Aqueous Chemistry of the Elements – volume: 169 start-page: 1081 year: 2009 end-page: 1087 ident: bib256 article-title: Reduction of hexavalent chromium mediated by micro- and nano-sized mixed metallic particles publication-title: J. Hazard Mater. – volume: 24 start-page: 91 year: 1990 end-page: 96 ident: bib189 article-title: Transformations of selenium as affected by sediment oxidation reduction potential and pH publication-title: Environ. Sci. Technol. – volume: 17 start-page: 223 year: 1983 end-page: 229 ident: bib20 article-title: Eh-pH diagrams for the rare-earth elements at 25°C and one bar pressure publication-title: Geochem. J. – volume: 248 start-page: 222 year: 2017 end-page: 233 ident: bib25 article-title: Structure investigation of nano-FeO(OH) modified clinoptilolite tuff for antimony removal publication-title: Microporous Mesoporous Mater. – volume: 274 start-page: 287 year: 2014 end-page: 299 ident: bib72 article-title: Tailored zeolites for the removal of metal oxyanions: overcoming intrinsic limitations of zeolites publication-title: J. Hazard Mater. – volume: 2 start-page: 532 year: 2018 end-page: 547 ident: bib227 article-title: Technetium stabilization in low-solubility sulfide phases: a review publication-title: ACS Earth Space Chem – volume: 51 start-page: 1145 year: 1987 end-page: 1151 ident: bib8 article-title: Selenium adsorption by goethite publication-title: Soil Sci. Soc. Am. J. – volume: 388 year: 2020 ident: bib353 article-title: Modification of zero valent iron nanoparticles by sodium alginate and bentonite: enhanced transport, effective hexavalent chromium removal and reduced bacterial toxicity publication-title: J. Hazard Mater. – volume: 67 start-page: 14 year: 2018 end-page: 22 ident: bib330 article-title: Performance and mechanism of Cr(VI) removal by zero-valent iron loaded onto expanded graphite publication-title: J. Environ. Sci. – volume: 116 start-page: 15 year: 2014 end-page: 23 ident: bib48 article-title: Antimony adsorption by zero-valent iron nanoparticles (nZVI): ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP-MS) study publication-title: Microchem. J. – volume: 36 start-page: 663 year: 2010 end-page: 670 ident: bib215 article-title: The fundamental mechanism of aqueous contaminant removal by metallic iron publication-title: WaterSA – volume: 121 start-page: 61 year: 2005 end-page: 67 ident: bib11 article-title: Removal of arsenic from water by zero-valent iron publication-title: J. Hazard Mater. – volume: 144 start-page: 141 year: 1987 end-page: 152 ident: bib57 article-title: Chemical equilibrla of selenium in soils: a theoretical development publication-title: Soil Sci. – volume: 375 start-page: 121928 year: 2019 ident: bib326 article-title: Performance and mechanism of arsenic removal in waste acid by combination of CuSO publication-title: Chem. Eng. J. – volume: 736 start-page: 139629 year: 2020 ident: bib167 article-title: Removal of Sb(III) by sulfidated nanoscale zerovalent iron: the mechanism and impact of environmental conditions publication-title: Sci. Total Environ. – volume: 49 start-page: 684 year: 2006 end-page: 695 ident: bib233 article-title: Remediation of ground water containing chlorinated and brominated hydrocarbons, benzene and chromate by sequential treatment using ZVI and GAC publication-title: Environ. Geol. – volume: 135 start-page: 322 year: 2018 end-page: 330 ident: bib270 article-title: Dynamic interactions between sulfidated zerovalent iron and dissolved oxygen: mechanistic insights for enhanced chromate removal publication-title: Water Res. – volume: 86 start-page: 150 year: 2012 end-page: 155 ident: bib90 article-title: Zerovalent iron encapsulated chitosan nanospheres - a novel adsorbent for the removal of total inorganic Arsenic from aqueous systems publication-title: Chemosphere – volume: 122 start-page: 536 year: 2017 end-page: 544 ident: bib359 article-title: Column study of enhanced Cr(VI) removal and longevity by coupled abiotic and biotic processes using Fe publication-title: Water Res. – volume: 47 start-page: 7350 year: 2013 end-page: 7356 ident: bib168 article-title: Depassivation of aged Fe publication-title: Environ. Sci. Technol. – volume: 39 start-page: 763 year: 2005 end-page: 770 ident: bib10 article-title: Chemical reactions between arsenic and zero-valent iron in water publication-title: Water Res. – volume: 97 start-page: 21 year: 2009 end-page: 28 ident: bib58 article-title: Removal of Mo(VI) as oxoanions from aqueous solutions using chemically modified magnetic chitosan resins publication-title: Hydrometallurgy – volume: 37 start-page: 68 year: 2014 end-page: 73 ident: bib323 article-title: Zero-valent iron technology and equipment applicable to remove nonbiodegradable hazardous pollutants with high efficiency publication-title: Enuivon. Sci. Technol. – volume: 382 start-page: 122999 year: 2020 ident: bib347 article-title: Chitosan functionalized iron nanosheet for enhanced removal of As(III) and Sb(III): synergistic effect and mechanism publication-title: Chem. Eng. J. – volume: 39 start-page: 1729 year: 2005 end-page: 1740 ident: bib132 article-title: Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron publication-title: Water Res. – volume: 40 start-page: 371 year: 1998 end-page: 389 ident: bib218 article-title: Mechanism of oxide film formation on iron in simulating groundwater solutions: Raman spectroscopic studies publication-title: Corrosion Sci. – volume: 150 start-page: 431 year: 2009 end-page: 439 ident: bib298 article-title: Effect of operating conditions on iron corrosion rates in zero-valent iron systems for arsenic removal publication-title: Chem. Eng. J. – volume: 91 start-page: 211 year: 2003 end-page: 216 ident: bib118 article-title: Chemistry of rhenium as an analogue of technetium: experimental studies of the dissolution of rhenium oxides in aqueous solutions publication-title: Radiochim. Acta – volume: 143 start-page: 261 year: 2009 end-page: 268 ident: bib200 article-title: Arsenic (V) removal with nanoparticulate zerovalent iron: effect of UV light and humic acids publication-title: Catal. Today – volume: 335 start-page: 945 year: 2018 end-page: 953 ident: bib354 article-title: Mechanism investigation of anoxic Cr(VI) removal by nano zero-valent iron based on XPS analysis in time scale publication-title: Chem. Eng. J. – volume: 57 start-page: 2251 year: 1993 end-page: 2269 ident: bib313 article-title: Surface-chemistyr of ferrihydrite .1. EXAFS studies of the geometry of coprecipiated and adsorbed arsenate Geochim publication-title: Cosmochim. Acta – volume: 229 start-page: 286 year: 2000 end-page: 297 ident: bib317 article-title: Vibrational spectroscopy study of selenate and sulfate adsorption mechanisms on Fe and Al (hydr)oxide surfaces publication-title: J. Colloid Interface Sci. – volume: 36 start-page: 2074 year: 2002 end-page: 2081 ident: bib193 article-title: Understanding soluble arsenate removal kinetics by zerovalent iron media publication-title: Environ. Sci. Technol. – volume: 2 start-page: 71 year: 2005 end-page: 76 ident: bib216 article-title: Testing the suitability of zerovalent iron materials for reactive walls publication-title: Environ. Chem. – volume: 53 start-page: 5936 year: 2019 end-page: 5945 ident: bib334 article-title: Reactivity, selectivity, and long-term performance of sulfidized nanoscale zerovalent iron with different properties publication-title: Environ. Sci. Technol. – volume: 50 start-page: 7610 year: 2016 end-page: 7617 ident: bib125 article-title: Microbial sulfate reduction enhances arsenic mobility downstream of zerovalent-iron-based permeable reactive barrier publication-title: Environ. Sci. Technol. – volume: 138 start-page: 616 year: 2015 end-page: 624 ident: bib166 article-title: Adsorption of antimony(V) onto Mn(II)-enriched surfaces of manganese-oxide and Fe-Mn binary oxide publication-title: Chemosphere – volume: 43 start-page: 6786 year: 2009 end-page: 6792 ident: bib75 article-title: Assessment of long-term performance and chromate reduction mechanisms in a field scale permeable reactive barrier publication-title: Environ. Sci. Technol. – volume: 354 start-page: 445 year: 2018 end-page: 453 ident: bib287 article-title: Enhanced chromium(VI) removal by zero-valent iron in the presence of anions and a weak magnetic field: batch and column tests publication-title: Chem. Eng. J. – volume: 77 start-page: 859 year: 2018 end-page: 868 ident: bib151 article-title: Removal of molybdenum(VI) from aqueous solutions using nano zero-valent iron supported on biochar enhanced by cetyl-trimethyl ammonium bromide: adsorption kinetic, isotherm and mechanism studies publication-title: Water Sci. Technol. – volume: 35 start-page: 2026 year: 2001 end-page: 2032 ident: bib67 article-title: Electrochemical and spectroscopic study of arsenate removal from water using zero-valent Iran media publication-title: Environ. Sci. Technol. – volume: 59 start-page: 265 year: 2002 end-page: 285 ident: bib74 article-title: Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry publication-title: Earth Sci. Rev. – volume: 254 start-page: 115 year: 2014 end-page: 123 ident: bib142 article-title: Zero-valent iron nanoparticles (nZVI) for the treatment of smelting wastewater: a pilot-scale demonstration publication-title: Chem. Eng. J. – volume: 34 start-page: 2564 year: 2000 end-page: 2569 ident: bib235 article-title: Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron publication-title: Environ. Sci. Technol. – volume: 380 start-page: 120836 year: 2019 ident: bib19 article-title: Comparative analysis of ZVI materials for reductive separation of publication-title: J. Hazard Mater. – volume: 66 start-page: 858 year: 2007 end-page: 865 ident: bib219 article-title: Effect of amorphous silica and silica sand on removal of chromium(VI) by zero-valent iron publication-title: Chemosphere – volume: 26 start-page: 5176 year: 2019 end-page: 5188 ident: bib247 article-title: Magnetic Fe publication-title: Environ. Sci. Pollut. Res. – volume: 332 start-page: 42 year: 2017 end-page: 50 ident: bib343 article-title: Enhanced Cr(VI) removal from groundwater by Fe publication-title: J. Hazard Mater. – volume: 38 start-page: 211 year: 1987 end-page: 217 ident: bib261 article-title: Inorganic anion sorption and interactions with phosphate sorption by hydrous ferric- oxide gel publication-title: J. Soil Sci. – volume: 156 start-page: 827 year: 2008 end-page: 831 ident: bib28 article-title: In field arsenic removal from natural water by zero-valent iron assisted by solar radiation publication-title: Environ. Pollut. – volume: 248 start-page: 20 year: 2013 end-page: 28 ident: bib114 article-title: Interaction of aqueous Se(IV)/Se(VI) with FeSe/FeSe publication-title: J. Hazard Mater. – volume: 47 start-page: 5846 year: 2013 end-page: 5855 ident: bib155 article-title: Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron publication-title: Water Res. – volume: 90 start-page: 385 year: 2020 end-page: 394 ident: bib362 article-title: A collaborative strategy for enhanced reduction of Cr(VI) by Fe(0) in the presence of oxalate under sunlight: performance and mechanism publication-title: J. Environ. Sci. – volume: 43 start-page: 4922 year: 2004 end-page: 4934 ident: bib198 article-title: Removal of selenate by Fe and NiFe nanosized particles publication-title: Ind. Eng. Chem. Res. – volume: 345 start-page: 432 year: 2018 end-page: 440 ident: bib146 article-title: Selenite removal from groundwater by zero-valent iron (ZVI) in combination with oxidants publication-title: Chem. Eng. J. – volume: 650 start-page: 419 year: 2019 end-page: 426 ident: bib368 article-title: Chromium(VI) removal by mechanochemically sulfidated zero valent iron and its effect on dechlorination of trichloroethene as a co-contaminant publication-title: Sci. Total Environ. – volume: 78 start-page: 7 year: 2010 end-page: 12 ident: bib15 article-title: Arsenite removal from waters by zero valent iron: batch and column tests publication-title: Chemosphere – volume: 72 start-page: 1049 year: 2008 end-page: 1055 ident: bib97 article-title: Evaluation of the multiple-ion competition in the adsorption of As(V) onto reclaimed iron-oxide coated sands by fractional factorial design publication-title: Chemosphere – volume: 39 start-page: 1291 year: 2005 end-page: 1298 ident: bib112 article-title: Removal of arsenic(III) from groundwater by nanoscale zero-valent iron publication-title: Environ. Sci. Technol. – volume: 144 start-page: 4018004 year: 2018 ident: bib175 article-title: Synthesis of nano-Fe publication-title: J. Environ. Eng. – volume: 171 start-page: 502 year: 2017 end-page: 511 ident: bib4 article-title: Effective aqueous arsenic removal using zero valent iron doped MWCNT synthesized by in situ CVD method using natural α-Fe publication-title: Chemosphere – volume: 298 start-page: 1 year: 2015 end-page: 10 ident: bib202 article-title: Negative impact of oxygen molecular activation on Cr(VI) removal with core-shell Fe@Fe publication-title: J. Hazard Mater. – volume: 364 start-page: 134 year: 2019 end-page: 142 ident: bib209 article-title: The impact of iron nanoparticles on technetium-contaminated groundwater and sediment microbial communities publication-title: J. Hazard Mater. – volume: 49 start-page: 2265 year: 2008 end-page: 2274 ident: bib318 article-title: Immobilization of arsenic and manganese in contaminated groundwater by permeable reactive barriers using zero valent iron and sheep manure publication-title: Mater. Trans. – volume: 31 start-page: 315 year: 1997 end-page: 320 ident: bib68 article-title: Arsenate and chromate retention mechanisms on goethite .1. Surface structure publication-title: Environ. Sci. Technol. – volume: 595 start-page: 743 year: 2017 end-page: 751 ident: bib83 article-title: Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles publication-title: Sci. Total Environ. – volume: 300 start-page: 835 year: 2014 end-page: 842 ident: bib40 article-title: Cloud point extraction and simultaneous spectrophotometric determination of V(V), Co(II) and Cu(II) ions in water samples by 5-Br-PADAP using partial least squares regression publication-title: J. Radioanal. Nucl. Chem. – volume: 353 start-page: 781 year: 2018 end-page: 795 ident: bib201 article-title: Activated carbon impregnated by zero-valent iron nanoparticles (AC/nZVI) optimized for simultaneous adsorption and reduction of aqueous hexavalent chromium: material characterizations and kinetic studies publication-title: Chem. Eng. J. – volume: 51 start-page: 8635 year: 2017 end-page: 8642 ident: bib263 article-title: Reduction and simultaneous removal of publication-title: Environ. Sci. Technol. – volume: 47 start-page: 5302 year: 2013 end-page: 5310 ident: bib59 article-title: Reductive sequestration of pertechnetate ( publication-title: Environ. Sci. Technol. – volume: 34 start-page: 819 year: 2000 end-page: 825 ident: bib253 article-title: Reduction of SeO publication-title: Environ. Sci. Technol. – volume: 9 start-page: 122 year: 2018 end-page: 133 ident: bib252 article-title: Nano-Bio sequential removal of hexavalent chromium using polymer-nZVI composite film and sulfate reducing bacteria under anaerobic condition publication-title: Environ. Technol. Innov. – volume: 407 start-page: 3407 year: 2009 end-page: 3414 ident: bib169 article-title: Influences of humic acid, bicarbonate and calcium on Cr(VI) reductive removal by zero-valent iron publication-title: Sci. Total Environ. – volume: 47 start-page: 11002 year: 2018 end-page: 11015 ident: bib18 article-title: Retention and multiphase transformation of selenium oxyanions during the formation of magnetite via iron(II) hydroxide and green rust publication-title: Dalton Trans. – volume: 322 start-page: 163 year: 2017 end-page: 171 ident: bib141 article-title: Heavy metal removal using nanoscale zero-valent iron (nZVI): theory and application publication-title: J. Hazard Mater. – volume: 29 start-page: 909 year: 2008 end-page: 920 ident: bib213 article-title: A critical review on the process of contaminant removal in Fe publication-title: Environ. Technol. – volume: 35 start-page: 4562 year: 2001 end-page: 4568 ident: bib278 article-title: Arsenate and arsenite removal by zerovalent iron: effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride publication-title: Environ. Sci. Technol. – volume: 42 start-page: 7424 year: 2008 end-page: 7430 ident: bib115 article-title: pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water publication-title: Environ. Sci. Technol. – volume: 36 start-page: 372 year: 2018 end-page: 392 ident: bib294 article-title: Development of low-cost iron mixed porous pellet adsorbent by mixture design approach and its application for arsenate and arsenite adsorption from water publication-title: Adsorpt. Sci. Technol. – volume: 471 start-page: 7 year: 2016 end-page: 13 ident: bib44 article-title: Chromate removal by surface-modified nanoscale zero-valent iron: effect of different surface coatings and water chemistry publication-title: J. Colloid Interface Sci. – volume: 222 start-page: 103 year: 2011 end-page: 148 ident: bib80 article-title: Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems publication-title: Water Air Soil Pollut. – volume: 404 year: 2021 ident: bib154 article-title: The removal of heavy metal cations by sulfidated nanoscale zero-valent iron (S-nZVI): the reaction mechanisms and the role of sulfur publication-title: J. Hazard Mater. – volume: 94 start-page: 302 year: 2015 end-page: 307 ident: bib205 article-title: Assessment of polyphenol coated nano zero valent iron for hexavalent chromium removal from contaminated waters publication-title: Bull. Environ. Contam. Toxicol. – volume: 35 start-page: 4474 year: 2001 end-page: 4479 ident: bib248 article-title: Batch-mixed iron treatment of high arsenic waters publication-title: Water Res. – volume: 181 start-page: 17 year: 2015 end-page: 35 ident: bib275 article-title: Methods for characterizing the fate and effects of nano zerovalent iron during groundwater remediation publication-title: J. Contam. Hydrol. – volume: 102 start-page: 190 year: 2016 end-page: 203 ident: bib1 article-title: A novel MD-ZVI integrated approach for high arsenic groundwater decontamination and effluent immobilization publication-title: Process Saf. Environ. Protect. – volume: 27 start-page: 16484 year: 2020 end-page: 16495 ident: bib94 article-title: Enhanced adsorption of antimonate by ball-milled microscale zero valent iron/pyrite composite: adsorption properties and mechanism insight publication-title: Environ. Sci. Pollut. Res. – volume: 88 start-page: 671 year: 2016 end-page: 680 ident: bib89 article-title: Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water publication-title: Water Res. – volume: 388 year: 2020 ident: bib93 article-title: Nanoscale zero-valent iron intercalated 2D titanium carbides for removal of Cr(VI) in aqueous solution and the mechanistic aspect publication-title: J. Hazard Mater. – volume: 159 start-page: 375 year: 2019 end-page: 384 ident: bib63 article-title: Selenate removal by Fe publication-title: Water Res. – volume: 51 start-page: 3742 year: 2017 end-page: 3750 ident: bib285 article-title: Combined effect of weak magnetic fields and anions on arsenite sequestration by zerovalent iron: kinetics and mechanisms publication-title: Environ. Sci. Technol. – volume: 4 start-page: 681 year: 2016 end-page: 694 ident: bib339 article-title: Sorptive removal of arsenite As(III) and arsenate As(V) by fuller's earth immobilized nanoscale zero-valent iron nanoparticles (F-nZVI): effect of Fe publication-title: J. Environ. Chem. Eng. – volume: 104 start-page: 185 year: 2011 end-page: 192 ident: bib344 article-title: Reduction and adsorption mechanisms of selenate by zero-valent iron and related iron corrosion publication-title: Appl. Catal. B Environ. – volume: 174 start-page: 362 year: 2017 end-page: 371 ident: bib77 article-title: Fast and highly efficient removal of chromium(VI) using humus-supported nanoscale zero-valent iron: influencing factors, kinetics and mechanism publication-title: Separ. Purif. Technol. – volume: 168 start-page: 626 year: 2009 end-page: 632 ident: bib47 article-title: Iron coated pottery granules for arsenic removal from drinking water publication-title: J. Hazard Mater. – volume: 36 start-page: 1497 year: 2002 end-page: 1504 ident: bib251 article-title: Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria publication-title: Environ. Sci. Technol. – volume: 91 start-page: 449 year: 2018 end-page: 456 ident: bib78 article-title: Scavenging of Cr(VI) from aqueous solutions by sulfide-modified nanoscale zero-valent iron supported by biochar publication-title: J. Taiwan Inst. Chem. Eng. – volume: 6 start-page: 50144 year: 2016 end-page: 50152 ident: bib243 article-title: Role of dissolved oxygen in metal(loid) removal by zerovalent iron at different pH: its dependence on the removal mechanisms publication-title: RSC Adv. – volume: 51 start-page: 13533 year: 2017 end-page: 13544 ident: bib139 article-title: Advances in sulfidation of zerovalent iron for water decontamination publication-title: Environ. Sci. Technol. – volume: 4 start-page: 1544 year: 2017 end-page: 1552 ident: bib321 article-title: The double influence mechanism of pH on arsenic removal by nano zero valent iron: electrostatic interactions and the corrosion of Fe publication-title: Environ. Sci. Nano – volume: 174 start-page: 466 year: 2017 end-page: 473 ident: bib327 article-title: Ultra-efficient removal of chromium from aqueous medium by biogenic iron based nanoparticles publication-title: Separ. Purif. Technol. – volume: 146 start-page: 692 year: 2020 end-page: 704 ident: bib316 article-title: An ion release controlled Cr(VI) treatment agent: nano zero-valent iron/carbon/alginate composite gel publication-title: Int. J. Biol. Macromol. – volume: 174 start-page: 188 year: 2010 end-page: 193 ident: bib136 article-title: Removal of nitrate by zero-valent iron and pillared bentonite publication-title: J. Hazard Mater. – volume: 281 start-page: 93 year: 2011 end-page: 99 ident: bib184 article-title: Arsenic(V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: effects of pH, concentration and reversibility publication-title: Desalination – volume: 51 start-page: 13070 year: 2017 end-page: 13085 ident: bib61 article-title: Sulfidation of iron-based materials: a review of processes and implications for water treatment and remediation publication-title: Environ. Sci. Technol. – volume: 92 start-page: 49 year: 2019 end-page: 58 ident: bib225 article-title: Removal of aqueous-phase Pb(II), Cd(II), As(III), and As(V) by nanoscale zero-valent iron supported on exhausted coffee grounds publication-title: Waste Manag. – volume: 44 start-page: 5416 year: 2010 end-page: 5422 ident: bib221 article-title: XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O publication-title: Environ. Sci. Technol. – volume: 344 start-page: 698 year: 2018 end-page: 706 ident: bib241 article-title: Simultaneous molybdate (Mo(VI)) recovery and hazardous ions immobilization via nanoscale zerovalent iron publication-title: J. Hazard Mater. – volume: 186 start-page: 280 year: 2011 end-page: 287 ident: bib266 article-title: Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants publication-title: J. Hazard Mater. – volume: 25 start-page: 47 year: 2020 ident: bib109 article-title: Preparation of activated carbon supported bead string structure nano zero valent iron in a polyethylene glycol-aqueous solution and its efficient treatment of Cr(VI) wastewater publication-title: Molecules – year: 2003 ident: bib297 article-title: Permeable Reactive Barriers of Iron and Other Zero-Valent Metals – volume: 92 start-page: 1891 year: 2017 end-page: 1898 ident: bib342 article-title: Adsorptive performance of nanosized zero-valent iron for V(V) removal from aqueous solutions publication-title: J. Chem. Technol. Biotechnol. – volume: 132 start-page: 1459 year: 2006 end-page: 1469 ident: bib345 article-title: Factors influencing arsenite removal by zero-valent iron publication-title: J. Environ. Eng. – volume: 174 start-page: 329 year: 2015 end-page: 335 ident: bib145 article-title: Synergetic effect of a pillared bentonite support on SE(VI) removal by nanoscale zero valent iron publication-title: Appl. Catal. B Environ. – volume: 168 start-page: 1626 year: 2009 end-page: 1631 ident: bib214 article-title: An analysis of the evolution of reactive species in Fe publication-title: J. Hazard Mater. – volume: 31 start-page: 171 year: 1997 end-page: 177 ident: bib187 article-title: Speciation of arsenic(III) and arsenic(V) in sediment extracts by high-performance liquid chromatography hydride generation atomic absorption spectrophotometry publication-title: Environ. Sci. Technol. – volume: 40 start-page: 5472 year: 2006 end-page: 5477 ident: bib254 article-title: Effect of organic co-contaminants on technetium and rhenium speciation and solubility under reducing conditions publication-title: Environ. Sci. Technol. – volume: 27 start-page: 187 year: 1988 end-page: 191 ident: bib203 article-title: Removal of selenate from water by chemical-reduction publication-title: Ind. Eng. Chem. Res. – volume: 33 start-page: 1244 year: 1999 end-page: 1249 ident: bib66 article-title: Electrosorption and reduction of pertechnetate by anodically polarized magnetite publication-title: Environ. Sci. Technol. – volume: 247 start-page: 250 year: 2014 end-page: 257 ident: bib357 article-title: Antimonate and antimonite adsorption by a polyvinyl alcohol-stabilized granular adsorbent containing nanoscale zero-valent iron publication-title: Chem. Eng. J. – volume: 40 start-page: 2375 year: 2006 end-page: 2386 ident: bib299 article-title: Arsenic removal from geothermal waters with zero-valent iron - effect of temperature, phosphate and nitrate publication-title: Water Res. – volume: 25 start-page: 5259 year: 2018 end-page: 5275 ident: bib271 article-title: Reductive-co-precipitated cellulose immobilized zerovalent iron nanoparticles in ionic liquid/water for Cr(VI) adsorption publication-title: Cellulose – volume: 29 start-page: 1422 year: 2000 end-page: 1430 ident: bib105 article-title: Effect of competing anions on the adsorption of arsenate and arsenite by ferrihydrite publication-title: J. Environ. Qual. – volume: 28 start-page: 2045 year: 1994 end-page: 2053 ident: bib190 article-title: Reductive dehalogenation of chlorinated methanes by iron metal publication-title: Environ. Sci. Technol. – volume: 31 start-page: 343 year: 1997 end-page: 345 ident: bib222 article-title: Removal of chlorine residues in aqueous media by metallic iron publication-title: Water Res. – volume: 378 year: 2019 ident: bib161 article-title: Plant-mediated biosynthesis of iron nanoparticles-calcium alginate hydrogel membrane and its eminent performance in removal of Cr(VI) publication-title: Chem. Eng. J. – volume: 12 start-page: 927 year: 2019 ident: bib315 article-title: Removal of hazardous oxyanions from the environment using metal-oxide-based materials publication-title: Materials – volume: 30 start-page: 1614 year: 1996 end-page: 1617 ident: bib69 article-title: Kinetics of chromate reduction by ferrous iron publication-title: Environ. Sci. Technol. – volume: 50 start-page: 7290 year: 2016 end-page: 7304 ident: bib369 article-title: Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review publication-title: Environ. Sci. Technol. – volume: 344 start-page: 1 year: 2018 end-page: 11 ident: bib150 article-title: Zeolite-supported nanoscale zero-valent iron: new findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil publication-title: J. Hazard Mater. – volume: 18 start-page: 857 year: 2011 end-page: 864 ident: bib291 article-title: Impact of selected solution factors on arsenate and arsenite removal by nanoiron particles publication-title: Environ. Sci. Pollut. Res. – volume: 23 start-page: 955 year: 2008 end-page: 976 ident: bib29 article-title: Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: a review publication-title: Appl. Geochem. – volume: 63 start-page: 2781 year: 2011 end-page: 2787 ident: bib147 article-title: Removal of hexavalent chromium in soil and groundwater by supported nano zero-valent iron on silica fume publication-title: Water Sci. Technol. – volume: 154 start-page: 1537 year: 1974 end-page: & ident: bib236 article-title: Atlas of electrochemical equilibria in aqueous solutions publication-title: Science – volume: 76 start-page: 1261 year: 2017 end-page: 1271 ident: bib45 article-title: Single and combined removal of Cr(VI) and Cd(II) by nanoscale zero-valent iron in the absence and presence of EDDS publication-title: Water Sci. Technol. – volume: 395 start-page: 125168 year: 2020 ident: bib360 article-title: Combining high electron transfer efficiency and oxidation resistance in nZVI with coatings of microbial extracellular polymeric substances to enhance Sb (V) reduction and adsorption publication-title: Chem. Eng. J. – volume: 225 start-page: 1845 year: 2014 ident: bib333 article-title: Fast and highly efficient removal of chromate from aqueous solution using nanoscale zero-valent iron/activated carbon (nZVI/AC) publication-title: Water Air Soil Pollut. – volume: 429 start-page: 201 year: 2012 end-page: 209 ident: bib301 article-title: Iron oxide waste form for stabilizing publication-title: J. Nucl. Mater. – volume: 100 start-page: 277 year: 2016 end-page: 295 ident: bib286 article-title: The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: a review publication-title: Water Res. – volume: 644 start-page: 1277 year: 2018 end-page: 1285 ident: bib87 article-title: Removal of antimonate (Sb(V)) and antimonite (Sb(III)) from aqueous solutions by coagulation-flocculation-sedimentation (CFS): dependence on influencing factors and insights into removal mechanisms publication-title: Sci. Total Environ. – volume: 9 start-page: 39475 year: 2019 end-page: 39487 ident: bib172 article-title: Highly efficient and rapid removal of arsenic(III) from aqueous solutions by nanoscale zero-valent iron supported on a zirconium 1,4-dicarboxybenzene metal-organic framework (UiO-66 MOF) publication-title: RSC Adv. – volume: 289 start-page: 180 year: 1989 end-page: 213 ident: bib55 article-title: Kinetics of chromate reduction by ferrous-ions derived from hematite and biotite at 25°C publication-title: Am. J. Sci. – volume: 46 start-page: 4071 year: 2012 end-page: 4080 ident: bib43 article-title: Fate of As(V)-treated nano zero-valent iron: determination of arsenic desorption potential under varying environmental conditions by phosphate extraction publication-title: Water Res. – volume: 53 start-page: 1324 year: 2012 end-page: 1329 ident: bib3 article-title: Effect of NaCl on Cr(VI) reduction by granular zero valent iron (ZVI) in aqueous solutions publication-title: Mater. Trans. – volume: 31 start-page: 175 year: 2015 end-page: 183 ident: bib70 article-title: Weak magnetic field accelerates chromate removal by zero-valent iron publication-title: J. Environ. Sci. – volume: 235 start-page: 276 year: 2019 end-page: 281 ident: bib174 article-title: Adsorption and reductive degradation of Cr(VI) and TCE by a simply synthesized zero valent iron magnetic biochar publication-title: J. Environ. Manag. – volume: 73 start-page: 96 year: 2018 end-page: 106 ident: bib255 article-title: Reduced graphene oxide-nano zero value iron (rGO-nZVI) micro-electrolysis accelerating Cr(VI) removal in aquifer publication-title: J. Environ. Sci. – volume: 30 start-page: 2163 year: 2019 end-page: 2168 ident: bib107 article-title: Reductive immobilization and long-term remobilization of radioactive pertechnetate using bio-macromolecules stabilized zero valent iron nanoparticles publication-title: Chin. Chem. Lett. – volume: 17 start-page: 212 year: 2017 end-page: 220 ident: bib234 article-title: Improvement of As(III) removal with diatomite overlay nanoscale zero-valent iron (nZVI-D): adsorption isotherm and adsorption kinetic studies publication-title: Water Sci. Technol. Water Supply – volume: 33 start-page: 131 year: 1941 end-page: 134 ident: bib95 article-title: Disposal of waste liquors from chromium plating publication-title: Ind. Eng. Chem. – volume: 48 start-page: 7409 year: 2014 end-page: 7417 ident: bib60 article-title: Oxidative remobilization of technetium sequestered by sulfide-transformed nano zerovalent iron publication-title: Environ. Sci. Technol. – volume: 33 start-page: 576 year: 2014 end-page: 583 ident: bib162 article-title: Review on transformation of oxidized nanoscale zero valent iron in environment media publication-title: Environ. Chem. – volume: 51 start-page: 10100 year: 2017 end-page: 10108 ident: bib229 article-title: Effect of arsenic on the formation and adsorption property of ferric hydroxide precipitates in ZVI treatment publication-title: Environ. Sci. Technol. – volume: 67 start-page: 1859 year: 2013 end-page: 1866 ident: bib152 article-title: Molybdenum(VI) removal by using constructed wetlands with different filter media and plants publication-title: Water Sci. Technol. – volume: 15 start-page: 241 year: 2017 end-page: 263 ident: bib192 article-title: Environmental geochemistry of technetium publication-title: Environ. Chem. Lett. – volume: 230 start-page: 260 year: 2004 end-page: 271 ident: bib50 article-title: Inhibition of the reduction of Cr(VI) at the magnetite-water interface by calcium carbonate coatings publication-title: Appl. Surf. Sci. – volume: 136 start-page: 405 year: 2010 end-page: 411 ident: bib260 article-title: Modeling arsenite adsorption on rusting metallic iron publication-title: J. Environ. Eng. – volume: 2 start-page: 1513 year: 2017 end-page: 1522 ident: bib34 article-title: Dissolved selenium(VI) removal by zero-valent iron under oxic conditions: influence of sulfate and nitrate publication-title: ACS Omega – volume: 22 start-page: 972 year: 1988 end-page: 977 ident: bib54 article-title: Chromate removal from aqueous wastes by reduction with ferrous ion publication-title: Environ. Sci. Technol. – volume: 321 start-page: 335 year: 2017 end-page: 343 ident: bib131 article-title: Perrhenate sorption kinetics in zerovalent iron in high pH and nitrate media publication-title: J. Hazard Mater. – volume: 86 start-page: 131 year: 2019 end-page: 140 ident: bib276 article-title: Ligand effects on arsenite removal by zero-valent iron/O publication-title: J. Environ. Sci. – volume: 248 start-page: 42 year: 2009 end-page: 47 ident: bib7 article-title: Evaluation of simple methods of arsenic removal from domestic water supplies in rural communities publication-title: Desalination – volume: 54 start-page: 739 year: 1990 end-page: 751 ident: bib9 article-title: Adsorption of selenium by amorphous iron oxyhydroxide and manganese-dioxide Geochim publication-title: Cosmochim. Acta – volume: 491 year: 2020 ident: bib106 article-title: Developments and future prospects of reverse electrodialysis for salinity gradient power generation: influence of ion exchange membranes and electrodes publication-title: Desalination – volume: 151 start-page: 276 year: 2015 end-page: 283 ident: bib135 article-title: Effective Sb(V) immobilization from water by zero-valent iron with weak magnetic field publication-title: Separ. Purif. Technol. – volume: 205 start-page: 40 year: 2012 end-page: 46 ident: bib289 article-title: Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design publication-title: J. Hazard Mater. – volume: 266 start-page: 26 year: 2014 end-page: 33 ident: bib283 article-title: SBA-15-incorporated nanoscale zero-valent iron particles for chromium(VI) removal from groundwater: mechanism, effect of pH, humic acid and sustained reactivity publication-title: J. Hazard Mater. – volume: 5 start-page: 3983 year: 2017 end-page: 3990 ident: bib103 article-title: Efficient oxidation of arsenic in aqueous solution using zero valent iron-activated persulfate process publication-title: J. Environ. Chem. Eng. – volume: 100 start-page: 245 year: 2016 end-page: 266 ident: bib358 article-title: An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation publication-title: Water Res. – volume: 47 start-page: 6064 year: 2013 end-page: 6074 ident: bib53 article-title: Bifunctional resin-ZVI composites for effective removal of arsenite through simultaneous adsorption and oxidation publication-title: Water Res. – volume: 350 start-page: 1 year: 2005 end-page: 11 ident: bib355 article-title: Effect of arsenate and molybdate on removal of selenate from an aqueous solution by zero-valent iron publication-title: Sci. Total Environ. – volume: 21 start-page: 1 year: 1991 end-page: 39 ident: bib123 article-title: A review of arsenic(III) in groundwater publication-title: Crit. Rev. Environ. Contr. – volume: 11 start-page: 1981 year: 2009 end-page: 1989 ident: bib224 article-title: As(V) remediation using electrochemically synthesized maghemite nanoparticles publication-title: J. Nano Res. – volume: 78 start-page: 528 year: 2019 ident: bib35 article-title: Selenate removal by zero-valent iron under anoxic conditions: effects of nitrate and sulfate publication-title: Environ. Earth Sci. – volume: 276 start-page: 365 year: 2015 end-page: 375 ident: bib177 article-title: Simultaneous removal of arsenate and antimonate in simulated and practical water samples by adsorption onto Zn/Fe layered double hydroxide publication-title: Chem. Eng. J. – volume: 50 start-page: 11879 year: 2016 end-page: 11887 ident: bib331 article-title: Effects of sulfidation, magnetization, and oxygenation on azo dye reduction by zerovalent iron publication-title: Environ. Sci. Technol. – volume: 424 start-page: 219 year: 1999 end-page: 231 ident: bib117 article-title: X-ray absorption and photoemission study of the adsorption of aqueous Cr(VI) on single crystal hematite and magnetite surfaces publication-title: Surf. Sci. – volume: 34 start-page: 248 year: 2005 end-page: 254 ident: bib110 article-title: Solubility of antimony and other elements in samples taken from shooting ranges publication-title: J. Environ. Qual. – volume: 58 start-page: 275 year: 2013 end-page: 281 ident: bib160 article-title: Reductive immobilization of perrhenate in soil and groundwater using starch-stabilized ZVI nanoparticles publication-title: Chin. Sci. Bull. – volume: 137 start-page: 762 year: 2006 end-page: 811 ident: bib197 article-title: Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water publication-title: J. Hazard Mater. – volume: 278 start-page: 1106 year: 1997 end-page: 1109 ident: bib204 article-title: Abiotic selenium redox transformations in the presence of Fe(II,III) oxides publication-title: Science – volume: 64 start-page: 1882 year: 1960 end-page: 1887 ident: bib23 article-title: The comparative roles of oxygen and inhibitors in the passivation of iron. II. The pertechnetate ion publication-title: J. Phys. Chem. – volume: 41 start-page: 2022 year: 2007 end-page: 2027 ident: bib81 article-title: Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal publication-title: Environ. Sci. Technol. – volume: 68 start-page: 4287 year: 2004 end-page: 4299 ident: bib49 article-title: Soft X-ray spectroscopic studies of the reaction of fractured pyrite surfaces with Cr(Vl)-containing aqueous solutions publication-title: Geochem. Cosmochim. Acta – volume: 48 start-page: 6850 year: 2014 end-page: 6858 ident: bib284 article-title: Effect of weak magnetic field on arsenate and arsenite removal from water by zerovalent Iron: an XAFS investigation publication-title: Environ. Sci. Technol. – volume: 242 start-page: 125235 year: 2020 ident: bib361 article-title: Optimizing nanocarbon shell in zero-valent iron nanoparticles for improved electron utilization in Cr(VI) reduction publication-title: Chemosphere – start-page: 284 year: 2005 end-page: 293 ident: bib39 article-title: Arsenic removal by activated carbon-based materials publication-title: Advances in Arsenic Research: Integration of Experimental and Observational Studies and Implications for Mitigation – volume: 84 start-page: 170 year: 2008 end-page: 175 ident: bib96 article-title: The effect of different divalent cations on the reduction of hexavalent chromium by zerovalent iron publication-title: Appl. Catal. B Environ. – volume: 43 start-page: 356 year: 2007 end-page: 367 ident: bib300 article-title: Modeling of arsenic immobilization by zero valent iron publication-title: Eur. J. Soil Biol. – volume: 28 start-page: 38 year: 1994 end-page: 46 ident: bib85 article-title: Adsorption and desorption of natural organic-matter on iron-oxide-mechanisms and models publication-title: Environ. Sci. Technol. – volume: 59 start-page: 489 year: 2003 end-page: 497 ident: bib208 article-title: A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films - Part 2: a numerical experiment publication-title: Corrosion – volume: 6 start-page: 111 year: 1996 end-page: 122 ident: bib153 article-title: Removal of technetium-99 from contaminated groundwater with sorbents and reductive materials publication-title: Sep. Technol. – volume: 243 start-page: 205 year: 2017 end-page: 211 ident: bib163 article-title: Removal of Pb(II) and Cr(VI) from aqueous solutions using the fly ash-based adsorbent material-supported zero-valent iron publication-title: J. Mol. Liq. – volume: 6 start-page: 3039 year: 2018 end-page: 3048 ident: bib322 article-title: Enhanced As(III) sequestration using sulfide-modified nano-scale zero-valent iron with a characteristic core-shell structure: sulfidation and as distribution publication-title: ACS Sustain. Chem. Eng. – volume: 48 start-page: 11853 year: 2014 end-page: 11862 ident: bib188 article-title: Incorporation and retention of publication-title: Environ. Sci. Technol. – volume: 148 start-page: 227 year: 2016 end-page: 232 ident: bib273 article-title: Enhanced sequestration of Cr(VI) by nanoscale zero-valent iron supported on layered double hydroxide by batch and XAFS study publication-title: Chemosphere – volume: 44 start-page: 109 year: 2010 end-page: 115 ident: bib312 article-title: Evidence for different surface speciation of arsenite and arsenate on green rust: an EXAFS and XANES study publication-title: Environ. Sci. Technol. – volume: 133 start-page: 173 year: 2018 end-page: 181 ident: bib268 article-title: Enhanced removal of Se(VI) from water via pre-corrosion of zero-valent iron using H publication-title: Water Res. – volume: 276 start-page: 339 year: 2014 end-page: 345 ident: bib88 article-title: Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure publication-title: J. Hazard Mater. – volume: 102 start-page: 6857 year: 2011 end-page: 6862 ident: bib329 article-title: Investigation on the removal of Mo(VI) from Mo-Re containing wastewater by chemically modified persimmon residua publication-title: Bioresour. Technol. – volume: 113 start-page: 14591 year: 2009 end-page: 14594 ident: bib249 article-title: Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure publication-title: J. Phys. Chem. C – volume: 42 start-page: 2451 year: 2008 end-page: 2456 ident: bib38 article-title: Immobilization of selenite on Fe publication-title: Environ. Sci. Technol. – volume: 610 year: 2020 ident: bib62 article-title: Advancing the conductivity-permselectivity tradeoff of electrodialysis ion-exchange membranes with sulfonated CNT nanocomposites publication-title: J. Membr. Sci. – volume: 49 start-page: 3499 year: 2015 end-page: 3505 ident: bib121 article-title: Mechanisms of Sb(III) oxidation by pyrite-induced hydroxyl radicals and hydrogen peroxide publication-title: Environ. Sci. Technol. – volume: 378 start-page: 122124 year: 2019 ident: bib158 article-title: Influence of coexisting ions on the electron efficiency of sulfidated zerovalent iron toward Se(VI) removal publication-title: Chem. Eng. J. – volume: 18 start-page: 10637 year: 2016 end-page: 10646 ident: bib230 article-title: Synthesis, physical properties and application of the zero-valent iron/titanium dioxide heterocomposite having high activity for the sustainable photocatalytic removal of hexavalent chromium in water publication-title: Phys. Chem. Chem. Phys. – volume: 11 start-page: 1 year: 1982 end-page: & ident: bib306 article-title: The nbs tables of chemical thermodynamic properties-selected values for inorganic and publication-title: J. Phys. Chem. Ref. Data – volume: 66 start-page: 115 year: 2016 end-page: 125 ident: bib311 article-title: Comparative study on properties, mechanisms of anionic dispersant modified nano zero-valent iron for removal of Cr(VI) publication-title: J. Taiwan Inst. Chem. Eng. – volume: 41 start-page: 2101 year: 2007 end-page: 2108 ident: bib337 article-title: Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles publication-title: Water Res. – volume: 73 start-page: 1471 year: 2008 end-page: 1477 ident: bib157 article-title: Effects of anions on the kinetics and reactivity of nanoscale Pd/Fe in trichlorobenzene dechlorination publication-title: Chemosphere – volume: 31 start-page: 1419 year: 1997 end-page: 1425 ident: bib296 article-title: Selenium redox reactions and transport between ponded waters and sediments publication-title: Environ. Sci. Technol. – volume: 100 start-page: 203 year: 1953 end-page: 215 ident: bib239 article-title: The inhibition of the corrosion of iron by some anodic inhibitors publication-title: J. Electrochem. Soc. – volume: 45 start-page: 407 year: 2015 end-page: 411 ident: bib304 article-title: Recycling of spent adsorbents for oxyanions and heavy metal ions in the production of ceramics publication-title: Waste Manag. – volume: 118 start-page: 165 year: 2010 end-page: 183 ident: bib84 article-title: Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? publication-title: J. Contam. Hydrol. – volume: 22 start-page: 7 year: 2013 end-page: 24 ident: bib2 article-title: Sorptive interaction of oxyanions with iron oxides: a review publication-title: Pol. J. Environ. Stud. – volume: 20 start-page: 4016005 year: 2016 ident: bib5 article-title: Efficacy of iron-based nanoparticles and nanobiocomposites in removal of Cr publication-title: J. Hazard. Toxic Radioact. Waste – volume: 347 start-page: 8 year: 2009 end-page: 17 ident: bib262 article-title: Sorption and speciation of arsenic by zero-valent iron publication-title: Colloid. Surface. Physicochem. Eng. Aspect. – volume: 106 start-page: 461 year: 2016 end-page: 469 ident: bib341 article-title: Temporospatial evolution and removal mechanisms of As(V) and Se(VI) in ZVI column with H publication-title: Water Res. – volume: 165 start-page: 86 year: 2016 end-page: 91 ident: bib46 article-title: EDDS-assisted reduction of Cr(VI) by nanoscale zero-valent iron publication-title: Separ. Purif. Technol. – volume: 76 start-page: 184 year: 2010 end-page: 190 ident: bib325 article-title: Removal of antimony (III) and antimony (V) from drinking water by ferric chloride coagulation: competing ion effect and the mechanism analysis publication-title: Separ. Purif. Technol. – volume: 14 start-page: 989 year: 1999 end-page: 1000 ident: bib240 article-title: The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: a field test publication-title: Appl. Geochem. – volume: 31 start-page: 2492 year: 1997 end-page: 2498 ident: bib238 article-title: Products of chromate reduction on proposed subsurface remediation material publication-title: Environ. Sci. Technol. – volume: 45 start-page: 6575 year: 2011 end-page: 6584 ident: bib183 article-title: Synergistic effect of coupling zero-valent iron with iron oxide-coated sand in columns for chromate and arsenate removal from groundwater: influences of humic acid and the reactive media configuration publication-title: Water Res. – volume: 261 start-page: 621 year: 2013 end-page: 627 ident: bib338 article-title: Arsenite removal from aqueous solution by a microbial fuel cell-zerovalent iron hybrid process publication-title: J. Hazard Mater. – volume: 506 start-page: 633 year: 2017 end-page: 643 ident: bib181 article-title: Zero-valent iron nanoparticles embedded into reduced graphene oxide-alginate beads for efficient chromium(VI) removal publication-title: J. Colloid Interface Sci. – volume: 99 start-page: 123 year: 2016 end-page: 130 ident: bib272 article-title: Enhanced sequestration of selenite in water by nanoscale zero valent iron immobilization on carbon nanotubes by a combined batch, XPS and XAFS investigation publication-title: Carbon – volume: 208 start-page: 1409 year: 2019 end-page: 1420 ident: bib305 article-title: Removal of critical metals from waste water by zero-valent iron publication-title: J. Clean. Prod. – volume: 42 start-page: 201 year: 1995 end-page: 212 ident: bib22 article-title: Zero-valent iron for the in-situ remediation of selected metals in groundwater publication-title: J. Hazard Mater. – volume: 68 start-page: 1723 year: 2004 end-page: 1733 ident: bib226 article-title: Vanadium(V) adsorption onto goethite (α-FeOOH) at pH 1.5 to 12: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy publication-title: Geochem. Cosmochim. Acta – volume: 75 start-page: 575 year: 2017 end-page: 582 ident: bib293 article-title: Research progress of aqueous pollutants removal by sulfidated nanoscale zero-valent iron publication-title: Hua Hsueh Hsueh Pao – volume: 34 start-page: 546 year: 2018 end-page: 551 ident: bib30 article-title: Removal of chromium(VI) from groundwater using oil shale ash supported nanoscaled zero-valent iron publication-title: Chem. Res. Chin. Univ. – volume: 6 start-page: 110288 year: 2016 end-page: 110300 ident: bib223 article-title: Electrospun membrane composed of poly acrylonitrile-co-(methyl acrylate)-co-(itaconic acid) terpolymer and ZVI nanoparticles and its application for the removal of arsenic from water publication-title: RSC Adv. – volume: 45 start-page: 886 year: 2011 end-page: 892 ident: bib274 article-title: Removal of Chromium(VI) from wastewater using bentonite-supported nanoscale zero-valent iron publication-title: Water Res. – volume: 271 start-page: 135 year: 2015 end-page: 146 ident: bib13 article-title: Polyaniline/Fe publication-title: Chem. Eng. J. – volume: 172 start-page: 1591 year: 2009 end-page: 1596 ident: bib367 article-title: Removal of arsenic from water by supported nano zero-valent iron on activated carbon publication-title: J. Hazard Mater. – volume: 9 start-page: 744 year: 1975 end-page: 749 ident: bib129 article-title: Removal of dissolved molybdenum from wastewaters by precipitates by precipitates of ferric iron publication-title: Environ. Sci. Technol. – volume: 47 start-page: 6691 year: 2013 end-page: 6700 ident: bib171 article-title: Enhanced chitosan beads-supported Fe publication-title: Water Res. – volume: 378 year: 2019 ident: bib352 article-title: Insights on the effects of pH and Fe(II) regeneration during the chromate sequestration by sulfidated zero-valent iron publication-title: Chem. Eng. J. – volume: 37 start-page: 1417 year: 2003 end-page: 1425 ident: bib211 article-title: Arsenic removal by zero-valent iron: field, laboratory and modeling studies publication-title: Water Res. – volume: 35 start-page: 1043 year: 2000 end-page: 1059 ident: bib259 article-title: Electro-enhanced remediation of radionuclide-contaminated groundwater using zero-valent iron publication-title: J. Environ. Sci. Health - Part A Toxic/Hazard. Subst. Environ. Eng. – volume: 163 start-page: 544 year: 2018 end-page: 550 ident: bib365 article-title: Effect of pH, temperature and co-existing anions on the Removal of Cr(VI) in groundwater by green synthesized nZVI/Ni publication-title: Ecotoxicol. Environ. Saf. – volume: 61 start-page: 3399 year: 1997 end-page: 3412 ident: bib232 article-title: Differential redox and sorption of Cr(III/VI) on natural silicate and oxide minerals: EXAFS and XANES results publication-title: Geochem. Cosmochim. Acta – volume: 75 start-page: 224 year: 2015 end-page: 248 ident: bib86 article-title: The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014) publication-title: Water Res. – volume: 263 year: 2020 ident: bib140 article-title: Phosphate modification enables high efficiency and electron selectivity of nZVI toward Cr(VI) removal publication-title: Appl. Catal. B Environ. – volume: 197 start-page: 550 year: 2017 end-page: 558 ident: bib207 article-title: Investigation of As(V) removal from acid mine drainage by iron (hydr) oxide modified zeolite publication-title: J. Environ. Manag. – volume: 44 start-page: 3101 year: 2010 end-page: 3108 ident: bib98 article-title: Hexavalent chromium removal from near natural water by copper-iron bimetallic particles publication-title: Water Res. – volume: 52 start-page: 2988 year: 2018 end-page: 2997 ident: bib138 article-title: Enhanced reactivity and electron selectivity of sulfidated zerovalent iron toward chromate under aerobic conditions publication-title: Environ. Sci. Technol. – volume: 93 start-page: 2527 year: 2018 end-page: 2534 ident: bib149 article-title: A mechanistic analysis of the influence of iron-oxidizing bacteria on antimony (V) removal from water by microscale zero-valent iron publication-title: J. Chem. Technol. Biotechnol. – volume: 366 start-page: 200 year: 2019 end-page: 207 ident: bib108 article-title: Enhanced sequestration of Cr(VI) by copper doped sulfidated zerovalent iron (SZVI-Cu): characterization, performance, and mechanisms publication-title: Chem. Eng. J. – volume: 92 start-page: 157 year: 2013 end-page: 170 ident: bib199 article-title: Remediation of inorganic arsenic in groundwater for safe water supply: a critical assessment of technological solutions publication-title: Chemosphere – volume: 8 start-page: 1004 year: 1996 end-page: 1021 ident: bib33 article-title: Chemistry of technetium and rhenium species during low-level radioactive waste vitrification publication-title: Chem. Mater. – volume: 54 start-page: 8373 year: 2020 end-page: 8379 ident: bib79 article-title: Surface modulation and chromium complexation: all-in-one solution for the Cr(VI) sequestration with bifunctional molecules publication-title: Environ. Sci. Technol. – volume: 317 start-page: 343 year: 2017 end-page: 355 ident: bib6 article-title: High concentration arsenic removal from aqueous solution using nano-iron ion enrich material (NIIEM) super adsorbent publication-title: Chem. Eng. J. – volume: 31 start-page: 3348 year: 1997 end-page: 3357 ident: bib17 article-title: In-situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls: laboratory studies publication-title: Environ. Sci. Technol. – volume: 251 start-page: 72 year: 2019 end-page: 80 ident: bib173 article-title: Simultaneous oxidation and sorption of highly toxic Sb(III) using a dual-functional electroactive filter publication-title: Environ. Pollut. – volume: 268 start-page: 124 year: 2014 end-page: 131 ident: bib307 article-title: Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites publication-title: J. Hazard Mater. – volume: 176 start-page: 40 year: 2017 end-page: 47 ident: bib137 article-title: Enhanced Cr(VI) removal by zero-valent iron coupled with weak magnetic field: role of magnetic gradient force publication-title: Separ. Purif. Technol. – volume: 12 year: 2020 ident: bib350 article-title: Nanoscale zero valent iron supported by biomass-activated carbon for highly efficient total chromium removal from electroplating wastewater publication-title: Water – volume: 338 start-page: 539 year: 2018 end-page: 547 ident: bib100 article-title: Sulfide-modified zerovalent iron for enhanced antimonite sequestration: characterization, performance, and reaction mechanisms publication-title: Chem. Eng. J. – volume: 30 start-page: 2634 year: 1996 end-page: 2640 ident: bib111 article-title: Kinetics of halogenated organic compound degradation by iron metal publication-title: Environ. Sci. Technol. – volume: 6 start-page: 1259 year: 1972 ident: bib71 article-title: Review of arsenic cycle natural waters publication-title: Water Res. – volume: 9 start-page: 725 year: 2007 end-page: 735 ident: bib113 article-title: Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation publication-title: J. Nano Res. – volume: 16 start-page: 2230 year: 2000 end-page: 2236 ident: bib246 article-title: Removal of contaminants from aqueous solution by reaction with iron surfaces publication-title: Langmuir – volume: 52 start-page: 7434 year: 2018 end-page: 7442 ident: bib349 article-title: Autotrophic vanadium(V) bioreduction in groundwater by elemental sulfur and zerovalent iron publication-title: Environ. Sci. Technol. – volume: 35 start-page: 5198 year: 2011 end-page: 5207 ident: bib56 article-title: Numerical simulation for reactive solute transport of arsenic in permeable reactive barrier column including zero-valent iron publication-title: Appl. Math. Model. – volume: 42 start-page: 1984 year: 2008 end-page: 1989 ident: bib264 article-title: Selenite reduction by mackinawite, magnetite and siderite: XAS characterization of nanosized redox products publication-title: Environ. Sci. Technol. – volume: 429 start-page: 201 year: 2012 ident: 10.1016/j.chemosphere.2021.130766_bib301 article-title: Iron oxide waste form for stabilizing 99TC publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2012.06.004 – volume: 22 start-page: 972 year: 1988 ident: 10.1016/j.chemosphere.2021.130766_bib54 article-title: Chromate removal from aqueous wastes by reduction with ferrous ion publication-title: Environ. Sci. Technol. doi: 10.1021/es00173a018 – volume: 59 start-page: 265 year: 2002 ident: 10.1016/j.chemosphere.2021.130766_bib74 article-title: Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry publication-title: Earth Sci. Rev. doi: 10.1016/S0012-8252(02)00089-2 – volume: 9 start-page: 39475 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib172 article-title: Highly efficient and rapid removal of arsenic(III) from aqueous solutions by nanoscale zero-valent iron supported on a zirconium 1,4-dicarboxybenzene metal-organic framework (UiO-66 MOF) publication-title: RSC Adv. doi: 10.1039/C9RA08595E – volume: 163 start-page: 544 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib365 article-title: Effect of pH, temperature and co-existing anions on the Removal of Cr(VI) in groundwater by green synthesized nZVI/Ni publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2018.07.082 – volume: 197 start-page: 550 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib207 article-title: Investigation of As(V) removal from acid mine drainage by iron (hydr) oxide modified zeolite publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2017.04.038 – volume: 8 start-page: 1004 year: 1996 ident: 10.1016/j.chemosphere.2021.130766_bib33 article-title: Chemistry of technetium and rhenium species during low-level radioactive waste vitrification publication-title: Chem. Mater. doi: 10.1021/cm950418+ – volume: 73 start-page: 96 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib255 article-title: Reduced graphene oxide-nano zero value iron (rGO-nZVI) micro-electrolysis accelerating Cr(VI) removal in aquifer publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2018.01.018 – volume: 2 start-page: 71 year: 2005 ident: 10.1016/j.chemosphere.2021.130766_bib216 article-title: Testing the suitability of zerovalent iron materials for reactive walls publication-title: Environ. Chem. doi: 10.1071/EN04014 – volume: 146 start-page: 692 year: 2020 ident: 10.1016/j.chemosphere.2021.130766_bib316 article-title: An ion release controlled Cr(VI) treatment agent: nano zero-valent iron/carbon/alginate composite gel publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.12.168 – volume: 86 start-page: 150 year: 2012 ident: 10.1016/j.chemosphere.2021.130766_bib90 article-title: Zerovalent iron encapsulated chitosan nanospheres - a novel adsorbent for the removal of total inorganic Arsenic from aqueous systems publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.10.003 – volume: 49 start-page: 684 year: 2006 ident: 10.1016/j.chemosphere.2021.130766_bib233 article-title: Remediation of ground water containing chlorinated and brominated hydrocarbons, benzene and chromate by sequential treatment using ZVI and GAC publication-title: Environ. Geol. doi: 10.1007/s00254-005-0106-z – volume: 8 start-page: 39545 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib91 article-title: A critical review on arsenic removal from water using iron-based adsorbents publication-title: RSC Adv. doi: 10.1039/C8RA08512A – volume: 18 start-page: 10637 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib230 article-title: Synthesis, physical properties and application of the zero-valent iron/titanium dioxide heterocomposite having high activity for the sustainable photocatalytic removal of hexavalent chromium in water publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP01013J – volume: 100 start-page: 203 year: 1953 ident: 10.1016/j.chemosphere.2021.130766_bib239 article-title: The inhibition of the corrosion of iron by some anodic inhibitors publication-title: J. Electrochem. Soc. doi: 10.1149/1.2781106 – volume: 6 start-page: 3039 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib322 article-title: Enhanced As(III) sequestration using sulfide-modified nano-scale zero-valent iron with a characteristic core-shell structure: sulfidation and as distribution publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b02787 – volume: 33 start-page: 131 year: 1941 ident: 10.1016/j.chemosphere.2021.130766_bib95 article-title: Disposal of waste liquors from chromium plating publication-title: Ind. Eng. Chem. doi: 10.1021/ie50373a031 – volume: 281 start-page: 93 year: 2011 ident: 10.1016/j.chemosphere.2021.130766_bib184 article-title: Arsenic(V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: effects of pH, concentration and reversibility publication-title: Desalination doi: 10.1016/j.desal.2011.07.046 – volume: 146 start-page: 115 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib99 article-title: Floatable, macroporous structured alginate sphere supporting iron nanoparticles used for emergent Cr(VI) spill treatment publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2016.03.035 – volume: 225 start-page: 1945 year: 2014 ident: 10.1016/j.chemosphere.2021.130766_bib363 article-title: Synthesis, characterization, and adsorptive properties of magnetic cellulose nanocomposites for arsenic removal publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-014-1945-6 – volume: 366 start-page: 200 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib108 article-title: Enhanced sequestration of Cr(VI) by copper doped sulfidated zerovalent iron (SZVI-Cu): characterization, performance, and mechanisms publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.02.058 – volume: 251 start-page: 72 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib173 article-title: Simultaneous oxidation and sorption of highly toxic Sb(III) using a dual-functional electroactive filter publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.04.116 – volume: 280 start-page: 149 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib176 article-title: Removal of As(III) from aqueous solutions through simultaneous photocatalytic oxidation and adsorption by TiO2 and zero-valent iron publication-title: Catal. Today doi: 10.1016/j.cattod.2016.05.043 – volume: 247 start-page: 250 year: 2014 ident: 10.1016/j.chemosphere.2021.130766_bib357 article-title: Antimonate and antimonite adsorption by a polyvinyl alcohol-stabilized granular adsorbent containing nanoscale zero-valent iron publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.02.096 – volume: 61 start-page: 3399 year: 1997 ident: 10.1016/j.chemosphere.2021.130766_bib232 article-title: Differential redox and sorption of Cr(III/VI) on natural silicate and oxide minerals: EXAFS and XANES results publication-title: Geochem. Cosmochim. Acta doi: 10.1016/S0016-7037(97)00165-8 – volume: 66 start-page: 115 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib311 article-title: Comparative study on properties, mechanisms of anionic dispersant modified nano zero-valent iron for removal of Cr(VI) publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2016.05.049 – volume: 26 start-page: 5176 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib247 article-title: Magnetic Fe3O4 assembled on nZVI supported on activated carbon fiber for Cr(VI) and Cu(II) removal from aqueous solution through a permeable reactive column publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-018-3985-8 – volume: 38 start-page: 211 year: 1987 ident: 10.1016/j.chemosphere.2021.130766_bib261 article-title: Inorganic anion sorption and interactions with phosphate sorption by hydrous ferric- oxide gel publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1987.tb02138.x – volume: 186 start-page: 2123 year: 2011 ident: 10.1016/j.chemosphere.2021.130766_bib290 article-title: Gas-bubbled nano zero-valent iron process for high concentration arsenate removal publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2010.12.125 – volume: 225 start-page: 1799 year: 2014 ident: 10.1016/j.chemosphere.2021.130766_bib32 article-title: Removal of Sb(III) and Sb(V) from aqueous solutions using nZVI publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-013-1799-3 – volume: 59 start-page: 377 year: 2005 ident: 10.1016/j.chemosphere.2021.130766_bib156 article-title: High-level arsenite removal from groundwater by zero-valent iron publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.10.055 – volume: 650 start-page: 419 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib368 article-title: Chromium(VI) removal by mechanochemically sulfidated zero valent iron and its effect on dechlorination of trichloroethene as a co-contaminant publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.09.003 – volume: 18 start-page: 857 year: 2011 ident: 10.1016/j.chemosphere.2021.130766_bib291 article-title: Impact of selected solution factors on arsenate and arsenite removal by nanoiron particles publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-011-0442-3 – volume: 29 start-page: 1422 year: 2000 ident: 10.1016/j.chemosphere.2021.130766_bib105 article-title: Effect of competing anions on the adsorption of arsenate and arsenite by ferrihydrite publication-title: J. Environ. Qual. doi: 10.2134/jeq2000.00472425002900050008x – volume: 144 start-page: 4018004 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib175 article-title: Synthesis of nano-Fe0/PEI composite and its reduction and chelation mechanisms for Cr(VI) from aqueous solution publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)EE.1943-7870.0001346 – volume: 35 start-page: 1487 year: 2001 ident: 10.1016/j.chemosphere.2021.130766_bib279 article-title: Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediation publication-title: Environ. Sci. Technol. doi: 10.1021/es001607i – volume: 395 start-page: 122623 year: 2020 ident: 10.1016/j.chemosphere.2021.130766_bib164 article-title: Simultaneous removal of Cd(II) and As(III) by graphene-like biochar-supported zero-valent iron from irrigation waters under aerobic conditions: synergistic effects and mechanisms publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.122623 – volume: 34 start-page: 546 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib30 article-title: Removal of chromium(VI) from groundwater using oil shale ash supported nanoscaled zero-valent iron publication-title: Chem. Res. Chin. Univ. doi: 10.1007/s40242-018-8104-3 – volume: 30 start-page: 1614 year: 1996 ident: 10.1016/j.chemosphere.2021.130766_bib69 article-title: Kinetics of chromate reduction by ferrous iron publication-title: Environ. Sci. Technol. doi: 10.1021/es950618m – volume: 388 year: 2020 ident: 10.1016/j.chemosphere.2021.130766_bib353 article-title: Modification of zero valent iron nanoparticles by sodium alginate and bentonite: enhanced transport, effective hexavalent chromium removal and reduced bacterial toxicity publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2019.121822 – volume: 317 start-page: 343 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib6 article-title: High concentration arsenic removal from aqueous solution using nano-iron ion enrich material (NIIEM) super adsorbent publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.02.039 – volume: 33 start-page: 1550 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib245 article-title: Nanoscale zero valent iron-based optimization system and their application in environmental remediation: a review publication-title: Mater. Rev. – volume: 205 start-page: 40 year: 2012 ident: 10.1016/j.chemosphere.2021.130766_bib289 article-title: Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2011.11.090 – volume: 53 start-page: 1028 year: 1989 ident: 10.1016/j.chemosphere.2021.130766_bib228 article-title: Kinetics and mechanisms of molybdate adsorption desorption at the goethite water interface using pressure-jump relaxation publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1989.03615995005300040007x – volume: 102 start-page: 73 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib52 article-title: Reductive sequestration of chromate by hierarchical FeS@Fe0 particles publication-title: Water Res. doi: 10.1016/j.watres.2016.06.009 – volume: 17 start-page: 29 year: 2000 ident: 10.1016/j.chemosphere.2021.130766_bib127 article-title: Inorganic arsenic removal by zero-valent iron publication-title: Environ. Eng. Sci. doi: 10.1089/ees.2000.17.29 – volume: 344 start-page: 698 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib241 article-title: Simultaneous molybdate (Mo(VI)) recovery and hazardous ions immobilization via nanoscale zerovalent iron publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2017.10.036 – volume: 48 start-page: 11853 year: 2014 ident: 10.1016/j.chemosphere.2021.130766_bib188 article-title: Incorporation and retention of 99Tc(IV) in magnetite under high pH conditions publication-title: Environ. Sci. Technol. doi: 10.1021/es503438e – volume: 42 start-page: 7424 year: 2008 ident: 10.1016/j.chemosphere.2021.130766_bib115 article-title: pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water publication-title: Environ. Sci. Technol. doi: 10.1021/es800649p – volume: 28 start-page: 38 year: 1994 ident: 10.1016/j.chemosphere.2021.130766_bib85 article-title: Adsorption and desorption of natural organic-matter on iron-oxide-mechanisms and models publication-title: Environ. Sci. Technol. doi: 10.1021/es00050a007 – volume: 39 start-page: 1291 year: 2005 ident: 10.1016/j.chemosphere.2021.130766_bib112 article-title: Removal of arsenic(III) from groundwater by nanoscale zero-valent iron publication-title: Environ. Sci. Technol. doi: 10.1021/es048991u – volume: 60 start-page: 121 year: 1996 ident: 10.1016/j.chemosphere.2021.130766_bib185 article-title: Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1996.03615995006000010020x – volume: 45 start-page: 407 year: 2015 ident: 10.1016/j.chemosphere.2021.130766_bib304 article-title: Recycling of spent adsorbents for oxyanions and heavy metal ions in the production of ceramics publication-title: Waste Manag. doi: 10.1016/j.wasman.2015.07.006 – volume: 278 start-page: 1106 year: 1997 ident: 10.1016/j.chemosphere.2021.130766_bib204 article-title: Abiotic selenium redox transformations in the presence of Fe(II,III) oxides publication-title: Science doi: 10.1126/science.278.5340.1106 – volume: 35 start-page: 1043 year: 2000 ident: 10.1016/j.chemosphere.2021.130766_bib259 article-title: Electro-enhanced remediation of radionuclide-contaminated groundwater using zero-valent iron publication-title: J. Environ. Sci. Health - Part A Toxic/Hazard. Subst. Environ. Eng. – volume: 138 start-page: 616 year: 2015 ident: 10.1016/j.chemosphere.2021.130766_bib166 article-title: Adsorption of antimony(V) onto Mn(II)-enriched surfaces of manganese-oxide and Fe-Mn binary oxide publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.07.039 – volume: 37 start-page: 2734 year: 2003 ident: 10.1016/j.chemosphere.2021.130766_bib102 article-title: Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction publication-title: Environ. Sci. Technol. doi: 10.1021/es026208x – volume: 29 start-page: 1913 year: 1995 ident: 10.1016/j.chemosphere.2021.130766_bib237 article-title: Coupled iron corrosion and chromate reduction-mechanisms for subsurface remediation publication-title: Environ. Sci. Technol. doi: 10.1021/es00008a008 – volume: 37 start-page: 1417 year: 2003 ident: 10.1016/j.chemosphere.2021.130766_bib211 article-title: Arsenic removal by zero-valent iron: field, laboratory and modeling studies publication-title: Water Res. doi: 10.1016/S0043-1354(02)00483-9 – volume: 595 start-page: 743 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib83 article-title: Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.03.282 – volume: 9 start-page: 744 year: 1975 ident: 10.1016/j.chemosphere.2021.130766_bib129 article-title: Removal of dissolved molybdenum from wastewaters by precipitates by precipitates of ferric iron publication-title: Environ. Sci. Technol. doi: 10.1021/es60106a010 – volume: 44 start-page: 5416 year: 2010 ident: 10.1016/j.chemosphere.2021.130766_bib221 article-title: XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O2 via Fe2+-mediated reactions publication-title: Environ. Sci. Technol. doi: 10.1021/es1000616 – volume: 45 start-page: 123 year: 2000 ident: 10.1016/j.chemosphere.2021.130766_bib16 article-title: Treatment of inorganic contaminants using permeable reactive barriers publication-title: J. Contam. Hydrol. doi: 10.1016/S0169-7722(00)00122-4 – volume: 54 start-page: 8373 year: 2020 ident: 10.1016/j.chemosphere.2021.130766_bib79 article-title: Surface modulation and chromium complexation: all-in-one solution for the Cr(VI) sequestration with bifunctional molecules publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c00710 – volume: 31 start-page: 171 year: 1997 ident: 10.1016/j.chemosphere.2021.130766_bib187 article-title: Speciation of arsenic(III) and arsenic(V) in sediment extracts by high-performance liquid chromatography hydride generation atomic absorption spectrophotometry publication-title: Environ. Sci. Technol. doi: 10.1021/es9602556 – volume: 31 start-page: 315 year: 1997 ident: 10.1016/j.chemosphere.2021.130766_bib68 article-title: Arsenate and chromate retention mechanisms on goethite .1. Surface structure publication-title: Environ. Sci. Technol. doi: 10.1021/es950653t – year: 2005 ident: 10.1016/j.chemosphere.2021.130766_bib288 – volume: 225 start-page: 1845 year: 2014 ident: 10.1016/j.chemosphere.2021.130766_bib333 article-title: Fast and highly efficient removal of chromate from aqueous solution using nanoscale zero-valent iron/activated carbon (nZVI/AC) publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-013-1845-1 – volume: 35 start-page: 4474 year: 2001 ident: 10.1016/j.chemosphere.2021.130766_bib248 article-title: Batch-mixed iron treatment of high arsenic waters publication-title: Water Res. doi: 10.1016/S0043-1354(01)00168-3 – volume: 378 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib352 article-title: Insights on the effects of pH and Fe(II) regeneration during the chromate sequestration by sulfidated zero-valent iron publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122115 – volume: 22 start-page: 528 year: 2020 ident: 10.1016/j.chemosphere.2021.130766_bib92 article-title: Quantifying the efficiency and selectivity of organohalide dechlorination by zerovalent iron publication-title: Environmental Science-Processes & Impacts doi: 10.1039/C9EM00592G – volume: 135 start-page: 322 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib270 article-title: Dynamic interactions between sulfidated zerovalent iron and dissolved oxygen: mechanistic insights for enhanced chromate removal publication-title: Water Res. doi: 10.1016/j.watres.2018.02.030 – volume: 261 start-page: 295 year: 2013 ident: 10.1016/j.chemosphere.2021.130766_bib231 article-title: Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2013.07.046 – volume: 45 start-page: 886 year: 2011 ident: 10.1016/j.chemosphere.2021.130766_bib274 article-title: Removal of Chromium(VI) from wastewater using bentonite-supported nanoscale zero-valent iron publication-title: Water Res. doi: 10.1016/j.watres.2010.09.025 – volume: 113 start-page: 14591 year: 2009 ident: 10.1016/j.chemosphere.2021.130766_bib249 article-title: Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure publication-title: J. Phys. Chem. C doi: 10.1021/jp9051837 – volume: 51 start-page: 13533 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib139 article-title: Advances in sulfidation of zerovalent iron for water decontamination publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b02695 – volume: 53 start-page: 5936 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib334 article-title: Reactivity, selectivity, and long-term performance of sulfidized nanoscale zerovalent iron with different properties publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b00511 – volume: 129 start-page: 297 year: 2006 ident: 10.1016/j.chemosphere.2021.130766_bib282 article-title: Treatment of groundwater polluted by arsenic compounds by zero valent iron publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2005.08.026 – volume: 227 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib351 article-title: Simultaneous removal of nitrate, copper and hexavalent chromium from water by aluminum-iron alloy particles publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2019.103541 – volume: 36 start-page: 372 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib294 article-title: Development of low-cost iron mixed porous pellet adsorbent by mixture design approach and its application for arsenate and arsenite adsorption from water publication-title: Adsorpt. Sci. Technol. doi: 10.1177/0263617417693626 – volume: 37 start-page: 68 year: 2014 ident: 10.1016/j.chemosphere.2021.130766_bib323 article-title: Zero-valent iron technology and equipment applicable to remove nonbiodegradable hazardous pollutants with high efficiency publication-title: Enuivon. Sci. Technol. – volume: 5 start-page: 3983 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib103 article-title: Efficient oxidation of arsenic in aqueous solution using zero valent iron-activated persulfate process publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2017.07.051 – volume: 382 start-page: 122999 year: 2020 ident: 10.1016/j.chemosphere.2021.130766_bib347 article-title: Chitosan functionalized iron nanosheet for enhanced removal of As(III) and Sb(III): synergistic effect and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122999 – volume: 40 start-page: 371 year: 1998 ident: 10.1016/j.chemosphere.2021.130766_bib218 article-title: Mechanism of oxide film formation on iron in simulating groundwater solutions: Raman spectroscopic studies publication-title: Corrosion Sci. doi: 10.1016/S0010-938X(97)00141-8 – year: 1999 ident: 10.1016/j.chemosphere.2021.130766_bib257 – volume: 44 start-page: 109 year: 2010 ident: 10.1016/j.chemosphere.2021.130766_bib312 article-title: Evidence for different surface speciation of arsenite and arsenate on green rust: an EXAFS and XANES study publication-title: Environ. Sci. Technol. doi: 10.1021/es901627e – volume: 186 start-page: 280 year: 2011 ident: 10.1016/j.chemosphere.2021.130766_bib266 article-title: Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2010.10.113 – volume: 11 start-page: 1 year: 1982 ident: 10.1016/j.chemosphere.2021.130766_bib306 article-title: The nbs tables of chemical thermodynamic properties-selected values for inorganic and 1C and 2C organic-substances in SI unites publication-title: J. Phys. Chem. Ref. Data – volume: 350 start-page: 1 year: 2005 ident: 10.1016/j.chemosphere.2021.130766_bib355 article-title: Effect of arsenate and molybdate on removal of selenate from an aqueous solution by zero-valent iron publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2005.02.032 – volume: 378 start-page: 122124 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib158 article-title: Influence of coexisting ions on the electron efficiency of sulfidated zerovalent iron toward Se(VI) removal publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122124 – volume: 47 start-page: 182 year: 2015 ident: 10.1016/j.chemosphere.2021.130766_bib206 article-title: Arsenic removal by nanoiron coupled with gas bubbling system publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2014.10.006 – volume: 102 start-page: 6857 year: 2011 ident: 10.1016/j.chemosphere.2021.130766_bib329 article-title: Investigation on the removal of Mo(VI) from Mo-Re containing wastewater by chemically modified persimmon residua publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.04.040 – volume: 268 start-page: 124 year: 2014 ident: 10.1016/j.chemosphere.2021.130766_bib307 article-title: Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2014.01.009 – volume: 52 start-page: 2988 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib138 article-title: Enhanced reactivity and electron selectivity of sulfidated zerovalent iron toward chromate under aerobic conditions publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b06502 – volume: 27 start-page: 187 year: 1988 ident: 10.1016/j.chemosphere.2021.130766_bib203 article-title: Removal of selenate from water by chemical-reduction publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00073a033 – volume: 35 start-page: 5198 year: 2011 ident: 10.1016/j.chemosphere.2021.130766_bib56 article-title: Numerical simulation for reactive solute transport of arsenic in permeable reactive barrier column including zero-valent iron publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2011.04.040 – volume: 424 start-page: 219 year: 1999 ident: 10.1016/j.chemosphere.2021.130766_bib117 article-title: X-ray absorption and photoemission study of the adsorption of aqueous Cr(VI) on single crystal hematite and magnetite surfaces publication-title: Surf. Sci. doi: 10.1016/S0039-6028(98)00940-6 – volume: 181 start-page: 745 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib24 article-title: Macroscopic and microscopic investigation of Cr(VI) immobilization by nanoscaled zero-valent iron supported zeolite MCM-41 via batch, visual, XPS and EXAFS techniques publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.01.231 – volume: 321 start-page: 335 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib131 article-title: Perrhenate sorption kinetics in zerovalent iron in high pH and nitrate media publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2016.09.024 – volume: 30 start-page: 713 year: 2013 ident: 10.1016/j.chemosphere.2021.130766_bib42 article-title: Kinetics of reductive immobilization of rhenium in soil and groundwater using zero valent iron nanoparticles publication-title: Environ. Eng. Sci. doi: 10.1089/ees.2012.0160 – volume: 222 start-page: 103 year: 2011 ident: 10.1016/j.chemosphere.2021.130766_bib80 article-title: Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-011-0812-y – volume: 34 start-page: 2564 year: 2000 ident: 10.1016/j.chemosphere.2021.130766_bib235 article-title: Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron publication-title: Environ. Sci. Technol. doi: 10.1021/es9911420 – volume: 25 start-page: 47 year: 2020 ident: 10.1016/j.chemosphere.2021.130766_bib109 article-title: Preparation of activated carbon supported bead string structure nano zero valent iron in a polyethylene glycol-aqueous solution and its efficient treatment of Cr(VI) wastewater publication-title: Molecules doi: 10.3390/molecules25010047 – volume: 16 start-page: 2230 year: 2000 ident: 10.1016/j.chemosphere.2021.130766_bib246 article-title: Removal of contaminants from aqueous solution by reaction with iron surfaces publication-title: Langmuir doi: 10.1021/la990902h – volume: 47 start-page: 7350 year: 2013 ident: 10.1016/j.chemosphere.2021.130766_bib168 article-title: Depassivation of aged Fe0 by inorganic salts: implications to contaminant degradation in seawater publication-title: Environ. Sci. Technol. doi: 10.1021/es400362w – volume: 18 start-page: 267 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib328 article-title: Zero-valent iron particles embedded on the mesoporous silica-carbon for chromium (VI) removal from aqueous solution publication-title: J. Nano Res. doi: 10.1007/s11051-016-3582-z – volume: 391 start-page: 122057 year: 2020 ident: 10.1016/j.chemosphere.2021.130766_bib314 article-title: Simultaneous adsorption and oxidation of antimonite onto nano zero-valent iron sludge-based biochar: indispensable role of reactive oxygen species and redox-active moieties publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.122057 – volume: 12 start-page: 2057 year: 2010 ident: 10.1016/j.chemosphere.2021.130766_bib220 article-title: Reduction of Se(VI) to Se(-II) by zerovalent iron nanoparticle suspensions publication-title: J. Nano Res. doi: 10.1007/s11051-009-9764-1 – volume: 53 start-page: 1324 year: 2012 ident: 10.1016/j.chemosphere.2021.130766_bib3 article-title: Effect of NaCl on Cr(VI) reduction by granular zero valent iron (ZVI) in aqueous solutions publication-title: Mater. Trans. doi: 10.2320/matertrans.M2011375 – volume: 25 start-page: 6175 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib65 article-title: From nZVI to SNCs: development of a better material for pollutant removal in water publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-1143-3 – volume: 68 start-page: 4287 year: 2004 ident: 10.1016/j.chemosphere.2021.130766_bib49 article-title: Soft X-ray spectroscopic studies of the reaction of fractured pyrite surfaces with Cr(Vl)-containing aqueous solutions publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2004.02.015 – volume: 15 start-page: 241 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib192 article-title: Environmental geochemistry of technetium publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-017-0605-7 – volume: 20 start-page: 4016005 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib5 article-title: Efficacy of iron-based nanoparticles and nanobiocomposites in removal of Cr3+ publication-title: J. Hazard. Toxic Radioact. Waste doi: 10.1061/(ASCE)HZ.2153-5515.0000317 – volume: 78 start-page: 7 year: 2010 ident: 10.1016/j.chemosphere.2021.130766_bib15 article-title: Arsenite removal from waters by zero valent iron: batch and column tests publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.10.007 – volume: 248 start-page: 222 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib25 article-title: Structure investigation of nano-FeO(OH) modified clinoptilolite tuff for antimony removal publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2017.04.022 – volume: 59 start-page: 489 year: 2003 ident: 10.1016/j.chemosphere.2021.130766_bib208 article-title: A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films - Part 2: a numerical experiment publication-title: Corrosion doi: 10.5006/1.3277579 – volume: 50 start-page: 7610 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib125 article-title: Microbial sulfate reduction enhances arsenic mobility downstream of zerovalent-iron-based permeable reactive barrier publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b00128 – volume: 373 start-page: 820 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib309 article-title: Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: a critical review publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2019.03.080 – volume: 176 start-page: 40 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib137 article-title: Enhanced Cr(VI) removal by zero-valent iron coupled with weak magnetic field: role of magnetic gradient force publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2016.11.075 – volume: 67 start-page: 14 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib330 article-title: Performance and mechanism of Cr(VI) removal by zero-valent iron loaded onto expanded graphite publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2017.11.003 – volume: 84 start-page: 234 year: 2011 ident: 10.1016/j.chemosphere.2021.130766_bib182 article-title: Influences of redox transformation, metal complexation and aggregation of fulvic acid and humic acid on Cr(VI) and As(V) removal by zero-valent iron publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.04.024 – volume: 24 start-page: 91 year: 1990 ident: 10.1016/j.chemosphere.2021.130766_bib189 article-title: Transformations of selenium as affected by sediment oxidation reduction potential and pH publication-title: Environ. Sci. Technol. doi: 10.1021/es00071a010 – volume: 354 start-page: 445 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib287 article-title: Enhanced chromium(VI) removal by zero-valent iron in the presence of anions and a weak magnetic field: batch and column tests publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.047 – volume: 116 start-page: 15 year: 2014 ident: 10.1016/j.chemosphere.2021.130766_bib48 article-title: Antimony adsorption by zero-valent iron nanoparticles (nZVI): ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP-MS) study publication-title: Microchem. J. doi: 10.1016/j.microc.2014.03.010 – volume: 36 start-page: 663 year: 2010 ident: 10.1016/j.chemosphere.2021.130766_bib215 article-title: The fundamental mechanism of aqueous contaminant removal by metallic iron publication-title: WaterSA – volume: 2 start-page: 532 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib227 article-title: Technetium stabilization in low-solubility sulfide phases: a review publication-title: ACS Earth Space Chem doi: 10.1021/acsearthspacechem.8b00015 – volume: 57 start-page: 2251 year: 1993 ident: 10.1016/j.chemosphere.2021.130766_bib313 article-title: Surface-chemistyr of ferrihydrite .1. EXAFS studies of the geometry of coprecipiated and adsorbed arsenate Geochim publication-title: Cosmochim. Acta doi: 10.1016/0016-7037(93)90567-G – volume: 240 start-page: 717 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib319 article-title: Dynamic study of Cr(VI) removal performance and mechanism from water using multilayer material coated nanoscale zerovalent iron publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.04.099 – volume: 174 start-page: 184 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib366 article-title: Green synthesis of nano zero-valent iron/Cu by green tea to remove hexavalent chromium from groundwater publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.10.302 – volume: 53 start-page: 14577 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib64 article-title: Coupled effect of sulfidation and ferrous dosing on selenate removal by zerovalent iron under aerobic conditions publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b04956 – volume: 25 start-page: 5259 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib271 article-title: Reductive-co-precipitated cellulose immobilized zerovalent iron nanoparticles in ionic liquid/water for Cr(VI) adsorption publication-title: Cellulose doi: 10.1007/s10570-018-1932-y – volume: 49 start-page: 2265 year: 2008 ident: 10.1016/j.chemosphere.2021.130766_bib318 article-title: Immobilization of arsenic and manganese in contaminated groundwater by permeable reactive barriers using zero valent iron and sheep manure publication-title: Mater. Trans. doi: 10.2320/matertrans.M-MRA2008827 – volume: 248 start-page: 42 year: 2009 ident: 10.1016/j.chemosphere.2021.130766_bib7 article-title: Evaluation of simple methods of arsenic removal from domestic water supplies in rural communities publication-title: Desalination doi: 10.1016/j.desal.2008.05.036 – volume: 51 start-page: 3742 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib285 article-title: Combined effect of weak magnetic fields and anions on arsenite sequestration by zerovalent iron: kinetics and mechanisms publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b06117 – volume: 21 start-page: 1 year: 1991 ident: 10.1016/j.chemosphere.2021.130766_bib123 article-title: A review of arsenic(III) in groundwater publication-title: Crit. Rev. Environ. Contr. doi: 10.1080/10643389109388408 – volume: 73 start-page: 1471 year: 2008 ident: 10.1016/j.chemosphere.2021.130766_bib157 article-title: Effects of anions on the kinetics and reactivity of nanoscale Pd/Fe in trichlorobenzene dechlorination publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.07.050 – volume: 50 start-page: 7290 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib369 article-title: Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b01897 – volume: 75 start-page: 224 year: 2015 ident: 10.1016/j.chemosphere.2021.130766_bib86 article-title: The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014) publication-title: Water Res. doi: 10.1016/j.watres.2015.02.034 – volume: 190 start-page: 231 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib130 article-title: Removal of vanadium from industrial wastewater using iron sorbents in batch and continuous flow pilot systems publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2016.12.063 – volume: 166 start-page: 251 year: 2000 ident: 10.1016/j.chemosphere.2021.130766_bib320 article-title: Competitive adsorption of molybdate, chromate, sulfate, selenate, and selenite on γ-Al2O3 publication-title: Colloid. Surface. Physicochem. Eng. Aspect. doi: 10.1016/S0927-7757(99)00404-5 – volume: 51 start-page: 1145 year: 1987 ident: 10.1016/j.chemosphere.2021.130766_bib8 article-title: Selenium adsorption by goethite publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1987.03615995005100050009x – volume: 364 start-page: 134 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib209 article-title: The impact of iron nanoparticles on technetium-contaminated groundwater and sediment microbial communities publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2018.10.008 – volume: 46 start-page: 4071 year: 2012 ident: 10.1016/j.chemosphere.2021.130766_bib43 article-title: Fate of As(V)-treated nano zero-valent iron: determination of arsenic desorption potential under varying environmental conditions by phosphate extraction publication-title: Water Res. doi: 10.1016/j.watres.2012.05.015 – volume: 42 start-page: 201 year: 1995 ident: 10.1016/j.chemosphere.2021.130766_bib22 article-title: Zero-valent iron for the in-situ remediation of selected metals in groundwater publication-title: J. Hazard Mater. doi: 10.1016/0304-3894(95)00016-N – volume: 380 start-page: 120836 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib19 article-title: Comparative analysis of ZVI materials for reductive separation of 99Tc(VII) from aqueous waste streams publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2019.120836 – volume: 263 year: 2020 ident: 10.1016/j.chemosphere.2021.130766_bib140 article-title: Phosphate modification enables high efficiency and electron selectivity of nZVI toward Cr(VI) removal publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.118364 – volume: 144 start-page: 141 year: 1987 ident: 10.1016/j.chemosphere.2021.130766_bib57 article-title: Chemical equilibrla of selenium in soils: a theoretical development publication-title: Soil Sci. doi: 10.1097/00010694-198708000-00008 – volume: 36 start-page: 442 year: 2011 ident: 10.1016/j.chemosphere.2021.130766_bib308 article-title: Effects and mechanism of humic acid on chromium(VI) removal by zero-valent iron (Fe0) nanoparticles publication-title: Phys. Chem. Earth doi: 10.1016/j.pce.2010.03.020 – volume: 23 start-page: 955 year: 2008 ident: 10.1016/j.chemosphere.2021.130766_bib29 article-title: Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: a review publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2008.02.001 – volume: 38 start-page: 139 year: 2004 ident: 10.1016/j.chemosphere.2021.130766_bib195 article-title: Diversity of contaminant reduction reactions by zerovalent iron: role of the reductate publication-title: Environ. Sci. Technol. doi: 10.1021/es034237h – volume: 99 start-page: 123 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib272 article-title: Enhanced sequestration of selenite in water by nanoscale zero valent iron immobilization on carbon nanotubes by a combined batch, XPS and XAFS investigation publication-title: Carbon doi: 10.1016/j.carbon.2015.12.013 – volume: 133 start-page: 173 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib268 article-title: Enhanced removal of Se(VI) from water via pre-corrosion of zero-valent iron using H2O2/HCl: effect of solution chemistry and mechanism investigation publication-title: Water Res. doi: 10.1016/j.watres.2018.01.038 – volume: 52 start-page: 7434 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib349 article-title: Autotrophic vanadium(V) bioreduction in groundwater by elemental sulfur and zerovalent iron publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b01317 – volume: 41 start-page: 2022 year: 2007 ident: 10.1016/j.chemosphere.2021.130766_bib81 article-title: Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal publication-title: Environ. Sci. Technol. doi: 10.1021/es0616534 – volume: 65 start-page: 1396 year: 2006 ident: 10.1016/j.chemosphere.2021.130766_bib310 article-title: Preparation of spherical iron nanoclusters in ethanol-water solution for nitrate removal publication-title: Chemosphere doi: 10.1016/j.chemosphere.2006.03.075 – volume: 128 start-page: 379 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib27 article-title: Using porous iron composite (PIC) material to immobilize rhenium as an analogue for technetium publication-title: Environ. Int. doi: 10.1016/j.envint.2019.05.001 – volume: 92 start-page: 157 year: 2013 ident: 10.1016/j.chemosphere.2021.130766_bib199 article-title: Remediation of inorganic arsenic in groundwater for safe water supply: a critical assessment of technological solutions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.01.097 – volume: 121 start-page: 61 year: 2005 ident: 10.1016/j.chemosphere.2021.130766_bib11 article-title: Removal of arsenic from water by zero-valent iron publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2005.01.030 – volume: 13 start-page: 2292 year: 2011 ident: 10.1016/j.chemosphere.2021.130766_bib324 article-title: Behaviors of dissolved antimony in the Yangtze River Estuary and its adjacent waters publication-title: J. Environ. Monit. doi: 10.1039/c1em10239g – volume: 506 start-page: 633 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib181 article-title: Zero-valent iron nanoparticles embedded into reduced graphene oxide-alginate beads for efficient chromium(VI) removal publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.07.024 – volume: 35 start-page: 4562 year: 2001 ident: 10.1016/j.chemosphere.2021.130766_bib278 article-title: Arsenate and arsenite removal by zerovalent iron: effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride publication-title: Environ. Sci. Technol. doi: 10.1021/es010768z – volume: 30 start-page: 2634 year: 1996 ident: 10.1016/j.chemosphere.2021.130766_bib111 article-title: Kinetics of halogenated organic compound degradation by iron metal publication-title: Environ. Sci. Technol. doi: 10.1021/es9600901 – volume: 91 start-page: 449 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib78 article-title: Scavenging of Cr(VI) from aqueous solutions by sulfide-modified nanoscale zero-valent iron supported by biochar publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2018.06.033 – volume: 93 start-page: 2527 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib149 article-title: A mechanistic analysis of the influence of iron-oxidizing bacteria on antimony (V) removal from water by microscale zero-valent iron publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.5606 – volume: 133 start-page: 103 year: 2002 ident: 10.1016/j.chemosphere.2021.130766_bib194 article-title: Combined effects of anions on arsenic removal by iron hydroxides publication-title: Toxicol. Lett. doi: 10.1016/S0378-4274(02)00080-2 – volume: 165 start-page: 86 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib46 article-title: EDDS-assisted reduction of Cr(VI) by nanoscale zero-valent iron publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2016.03.055 – volume: 644 start-page: 1277 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib87 article-title: Removal of antimonate (Sb(V)) and antimonite (Sb(III)) from aqueous solutions by coagulation-flocculation-sedimentation (CFS): dependence on influencing factors and insights into removal mechanisms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.034 – volume: 36 start-page: 1497 year: 2002 ident: 10.1016/j.chemosphere.2021.130766_bib251 article-title: Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria publication-title: Environ. Sci. Technol. doi: 10.1021/es010227+ – volume: 41 start-page: 2101 year: 2007 ident: 10.1016/j.chemosphere.2021.130766_bib337 article-title: Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles publication-title: Water Res. doi: 10.1016/j.watres.2007.02.037 – volume: 75 start-page: 575 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib293 article-title: Research progress of aqueous pollutants removal by sulfidated nanoscale zero-valent iron publication-title: Hua Hsueh Hsueh Pao – volume: 117 start-page: 108 year: 2014 ident: 10.1016/j.chemosphere.2021.130766_bib124 article-title: Implementation of zero-valent iron (ZVI) into drinking water supply - role of the ZVI and biological processes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.05.088 – volume: 92 start-page: 49 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib225 article-title: Removal of aqueous-phase Pb(II), Cd(II), As(III), and As(V) by nanoscale zero-valent iron supported on exhausted coffee grounds publication-title: Waste Manag. doi: 10.1016/j.wasman.2019.05.017 – volume: 90 start-page: 385 year: 2020 ident: 10.1016/j.chemosphere.2021.130766_bib362 article-title: A collaborative strategy for enhanced reduction of Cr(VI) by Fe(0) in the presence of oxalate under sunlight: performance and mechanism publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2019.12.003 – volume: 89 start-page: 713 year: 1989 ident: 10.1016/j.chemosphere.2021.130766_bib31 article-title: Arsenic speciation in the environment publication-title: Chem. Rev. doi: 10.1021/cr00094a002 – volume: 334 start-page: 296 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib244 article-title: Unexpected effect of buffer solution on removal of selenite and selenate by zerovalent iron publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.10.025 – volume: 48 start-page: 6850 year: 2014 ident: 10.1016/j.chemosphere.2021.130766_bib284 article-title: Effect of weak magnetic field on arsenate and arsenite removal from water by zerovalent Iron: an XAFS investigation publication-title: Environ. Sci. Technol. doi: 10.1021/es5003956 – volume: 17 start-page: 223 year: 1983 ident: 10.1016/j.chemosphere.2021.130766_bib20 article-title: Eh-pH diagrams for the rare-earth elements at 25°C and one bar pressure publication-title: Geochem. J. doi: 10.2343/geochemj.17.223 – start-page: 284 year: 2005 ident: 10.1016/j.chemosphere.2021.130766_bib39 article-title: Arsenic removal by activated carbon-based materials – volume: 335 start-page: 945 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib354 article-title: Mechanism investigation of anoxic Cr(VI) removal by nano zero-valent iron based on XPS analysis in time scale publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.10.182 – volume: 276 start-page: 365 year: 2015 ident: 10.1016/j.chemosphere.2021.130766_bib177 article-title: Simultaneous removal of arsenate and antimonate in simulated and practical water samples by adsorption onto Zn/Fe layered double hydroxide publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.04.095 – volume: 50 start-page: 1483 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib332 article-title: Sequestration of antimonite by zerovalent Iron: using weak magnetic field effects to enhance performance and characterize reaction mechanisms publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05360 – volume: 172 start-page: 1591 year: 2009 ident: 10.1016/j.chemosphere.2021.130766_bib367 article-title: Removal of arsenic from water by supported nano zero-valent iron on activated carbon publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2009.08.031 – volume: 67 start-page: 1859 year: 2013 ident: 10.1016/j.chemosphere.2021.130766_bib152 article-title: Molybdenum(VI) removal by using constructed wetlands with different filter media and plants publication-title: Water Sci. Technol. doi: 10.2166/wst.2013.067 – volume: 106 start-page: 461 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib341 article-title: Temporospatial evolution and removal mechanisms of As(V) and Se(VI) in ZVI column with H2O2 as corrosion accelerator publication-title: Water Res. doi: 10.1016/j.watres.2016.10.030 – volume: 235 start-page: 276 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib174 article-title: Adsorption and reductive degradation of Cr(VI) and TCE by a simply synthesized zero valent iron magnetic biochar publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.01.045 – volume: 261 start-page: 621 year: 2013 ident: 10.1016/j.chemosphere.2021.130766_bib338 article-title: Arsenite removal from aqueous solution by a microbial fuel cell-zerovalent iron hybrid process publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2013.07.072 – volume: 230 start-page: 260 year: 2004 ident: 10.1016/j.chemosphere.2021.130766_bib50 article-title: Inhibition of the reduction of Cr(VI) at the magnetite-water interface by calcium carbonate coatings publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2004.02.035 – volume: 7 start-page: 470 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib126 article-title: Removal of Cr(VI) ions from the aqueous solution through nanoscale zero-valent iron (nZVI) magnetite corn cob silica (MCCS): a bio-waste based water purification perspective publication-title: Groundwater Sustain. Dev. doi: 10.1016/j.gsd.2017.12.007 – volume: 77 start-page: 859 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib151 article-title: Removal of molybdenum(VI) from aqueous solutions using nano zero-valent iron supported on biochar enhanced by cetyl-trimethyl ammonium bromide: adsorption kinetic, isotherm and mechanism studies publication-title: Water Sci. Technol. doi: 10.2166/wst.2018.258 – volume: 88 start-page: 671 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib89 article-title: Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water publication-title: Water Res. doi: 10.1016/j.watres.2015.10.045 – volume: 344 start-page: 1 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib150 article-title: Zeolite-supported nanoscale zero-valent iron: new findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2017.09.036 – volume: 248 start-page: 20 year: 2013 ident: 10.1016/j.chemosphere.2021.130766_bib114 article-title: Interaction of aqueous Se(IV)/Se(VI) with FeSe/FeSe2: implication to Se redox process publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2012.12.037 – volume: 91 start-page: 211 year: 2003 ident: 10.1016/j.chemosphere.2021.130766_bib118 article-title: Chemistry of rhenium as an analogue of technetium: experimental studies of the dissolution of rhenium oxides in aqueous solutions publication-title: Radiochim. Acta doi: 10.1524/ract.91.4.211.19968 – volume: 14 start-page: 989 year: 1999 ident: 10.1016/j.chemosphere.2021.130766_bib240 article-title: The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: a field test publication-title: Appl. Geochem. doi: 10.1016/S0883-2927(99)00010-4 – volume: 76 start-page: 184 year: 2010 ident: 10.1016/j.chemosphere.2021.130766_bib325 article-title: Removal of antimony (III) and antimony (V) from drinking water by ferric chloride coagulation: competing ion effect and the mechanism analysis publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2010.10.006 – volume: 168 start-page: 1626 year: 2009 ident: 10.1016/j.chemosphere.2021.130766_bib214 article-title: An analysis of the evolution of reactive species in Fe0/H2O systems publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2009.02.143 – volume: 4 start-page: 3441 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib303 article-title: Antimony oxyanions uptake by green marine macroalgae publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2016.07.023 – volume: 243 start-page: 14 year: 2014 ident: 10.1016/j.chemosphere.2021.130766_bib14 article-title: Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: kinetics and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.12.049 – volume: 84 start-page: 170 year: 2008 ident: 10.1016/j.chemosphere.2021.130766_bib96 article-title: The effect of different divalent cations on the reduction of hexavalent chromium by zerovalent iron publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2008.03.016 – volume: 375 start-page: 121928 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib326 article-title: Performance and mechanism of arsenic removal in waste acid by combination of CuSO4 and zero-valent iron publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.121928 – volume: 374 start-page: 372 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib12 article-title: Synthesis of zerovalent iron from water treatment residue as a conjugate with kaolin and its application for vanadium removal publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2019.04.056 – volume: 76 start-page: 1261 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib45 article-title: Single and combined removal of Cr(VI) and Cd(II) by nanoscale zero-valent iron in the absence and presence of EDDS publication-title: Water Sci. Technol. doi: 10.2166/wst.2017.321 – volume: 39 start-page: 1729 year: 2005 ident: 10.1016/j.chemosphere.2021.130766_bib132 article-title: Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron publication-title: Water Res. doi: 10.1016/j.watres.2005.02.012 – volume: 226 start-page: 76 year: 2015 ident: 10.1016/j.chemosphere.2021.130766_bib364 article-title: The removal of antimony by novel nZVI-zeolite: the role of iron transformation publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-014-2293-2 – volume: 54 start-page: 739 year: 1990 ident: 10.1016/j.chemosphere.2021.130766_bib9 article-title: Adsorption of selenium by amorphous iron oxyhydroxide and manganese-dioxide Geochim publication-title: Cosmochim. Acta doi: 10.1016/0016-7037(90)90369-V – volume: 289 start-page: 180 year: 1989 ident: 10.1016/j.chemosphere.2021.130766_bib55 article-title: Kinetics of chromate reduction by ferrous-ions derived from hematite and biotite at 25°C publication-title: Am. J. Sci. doi: 10.2475/ajs.289.2.180 – volume: 266 start-page: 26 year: 2014 ident: 10.1016/j.chemosphere.2021.130766_bib283 article-title: SBA-15-incorporated nanoscale zero-valent iron particles for chromium(VI) removal from groundwater: mechanism, effect of pH, humic acid and sustained reactivity publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2013.12.001 – volume: 159 start-page: 375 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib63 article-title: Selenate removal by Fe0 coupled with ferrous iron, hydrogen peroxide, sulfidation, and weak magnetic field: a comparative study publication-title: Water Res. doi: 10.1016/j.watres.2019.05.037 – volume: 85 start-page: 1204 year: 2011 ident: 10.1016/j.chemosphere.2021.130766_bib180 article-title: Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.09.005 – volume: 19 start-page: 1929 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib210 article-title: Improvement of aqueous solution coexisting with arsenite and arsenate using iron mixed porous clay pellets in batch and fixed-bed column studies publication-title: Water Sci. Technol. Water Supply doi: 10.2166/ws.2019.069 – volume: 49 start-page: 3499 year: 2015 ident: 10.1016/j.chemosphere.2021.130766_bib121 article-title: Mechanisms of Sb(III) oxidation by pyrite-induced hydroxyl radicals and hydrogen peroxide publication-title: Environ. Sci. Technol. doi: 10.1021/es505584r – volume: 51 start-page: 13070 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib61 article-title: Sulfidation of iron-based materials: a review of processes and implications for water treatment and remediation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b04177 – volume: 6 start-page: 50144 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib243 article-title: Role of dissolved oxygen in metal(loid) removal by zerovalent iron at different pH: its dependence on the removal mechanisms publication-title: RSC Adv. doi: 10.1039/C6RA08886D – volume: 47 start-page: 5302 year: 2013 ident: 10.1016/j.chemosphere.2021.130766_bib59 article-title: Reductive sequestration of pertechnetate (99TcO4-) by nano zerovalent iron (nZVI) transformed by abiotic sulfide publication-title: Environ. Sci. Technol. doi: 10.1021/es304829z – volume: 322 start-page: 163 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib141 article-title: Heavy metal removal using nanoscale zero-valent iron (nZVI): theory and application publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2016.01.032 – volume: 347 start-page: 8 year: 2009 ident: 10.1016/j.chemosphere.2021.130766_bib262 article-title: Sorption and speciation of arsenic by zero-valent iron publication-title: Colloid. Surface. Physicochem. Eng. Aspect. doi: 10.1016/j.colsurfa.2008.10.033 – volume: 30 start-page: 2163 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib107 article-title: Reductive immobilization and long-term remobilization of radioactive pertechnetate using bio-macromolecules stabilized zero valent iron nanoparticles publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2019.06.004 – volume: 97 start-page: 21 year: 2009 ident: 10.1016/j.chemosphere.2021.130766_bib58 article-title: Removal of Mo(VI) as oxoanions from aqueous solutions using chemically modified magnetic chitosan resins publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2008.12.009 – volume: 94 start-page: 302 year: 2015 ident: 10.1016/j.chemosphere.2021.130766_bib205 article-title: Assessment of polyphenol coated nano zero valent iron for hexavalent chromium removal from contaminated waters publication-title: Bull. Environ. Contam. Toxicol. doi: 10.1007/s00128-014-1442-z – volume: 22 start-page: 7 year: 2013 ident: 10.1016/j.chemosphere.2021.130766_bib2 article-title: Sorptive interaction of oxyanions with iron oxides: a review publication-title: Pol. J. Environ. Stud. – volume: 227 start-page: 211 year: 2012 ident: 10.1016/j.chemosphere.2021.130766_bib148 article-title: Mechanism insights into enhanced Cr(VI) removal using nanoscale zerovalent iron supported on the pillared bentonite by macroscopic and spectroscopic studies publication-title: J. Hazard Mater. – start-page: 355 year: 2000 ident: 10.1016/j.chemosphere.2021.130766_bib212 article-title: Removal of selenium from industrial waste water – volume: 19 start-page: 51 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib104 article-title: Kinetic equilibrium and thermodynamic study of arsenic removal from water using alumina supported iron nano particles publication-title: J. Water Process. Eng. doi: 10.1016/j.jwpe.2017.07.001 – volume: 353 start-page: 246 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib242 article-title: Effect of solution chemistry on the reactivity and electron selectivity of zerovalent iron toward Se(VI) removal publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.07.113 – volume: 86 start-page: 131 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib276 article-title: Ligand effects on arsenite removal by zero-valent iron/O2: dissolution, corrosion, oxidation and coprecipitation publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2019.05.023 – volume: 4 start-page: 681 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib339 article-title: Sorptive removal of arsenite As(III) and arsenate As(V) by fuller's earth immobilized nanoscale zero-valent iron nanoparticles (F-nZVI): effect of Fe0 loading on adsorption activity publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2015.12.019 – volume: 338 start-page: 539 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib100 article-title: Sulfide-modified zerovalent iron for enhanced antimonite sequestration: characterization, performance, and reaction mechanisms publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.01.033 – volume: 42 start-page: 2451 year: 2008 ident: 10.1016/j.chemosphere.2021.130766_bib38 article-title: Immobilization of selenite on Fe3O4 and Fe/Fe3C ultrasmall particles publication-title: Environ. Sci. Technol. doi: 10.1021/es702579w – year: 2010 ident: 10.1016/j.chemosphere.2021.130766_bib265 – year: 2003 ident: 10.1016/j.chemosphere.2021.130766_bib297 – volume: 407 start-page: 3407 year: 2009 ident: 10.1016/j.chemosphere.2021.130766_bib169 article-title: Influences of humic acid, bicarbonate and calcium on Cr(VI) reductive removal by zero-valent iron publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2009.01.043 – volume: 30 start-page: 1425 year: 2009 ident: 10.1016/j.chemosphere.2021.130766_bib128 article-title: Assessment of zero-valent iron as a permeable reactive barrier for long-term removal of arsenic compounds from synthetic water publication-title: Environ. Technol. doi: 10.1080/09593330903186240 – volume: 374 start-page: 177 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib134 article-title: Porous iron material for TcO4- and ReO4- sequestration from groundwater under ambient oxic conditions publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2019.04.030 – volume: 66 start-page: 858 year: 2007 ident: 10.1016/j.chemosphere.2021.130766_bib219 article-title: Effect of amorphous silica and silica sand on removal of chromium(VI) by zero-valent iron publication-title: Chemosphere doi: 10.1016/j.chemosphere.2006.06.034 – volume: 12 year: 2020 ident: 10.1016/j.chemosphere.2021.130766_bib350 article-title: Nanoscale zero valent iron supported by biomass-activated carbon for highly efficient total chromium removal from electroplating wastewater publication-title: Water – volume: 63 start-page: 2781 year: 2011 ident: 10.1016/j.chemosphere.2021.130766_bib147 article-title: Removal of hexavalent chromium in soil and groundwater by supported nano zero-valent iron on silica fume publication-title: Water Sci. Technol. doi: 10.2166/wst.2011.454 – volume: 222 start-page: 415 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib335 article-title: A simple and novel method to enhance As(V) removal by zero valent iron and activated iron media through air injection at intervals publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.01.183 – volume: 61 start-page: 2185 year: 1997 ident: 10.1016/j.chemosphere.2021.130766_bib267 article-title: Reduction of hexavalent chromium by ferrous iron publication-title: Geochem. Cosmochim. Acta doi: 10.1016/S0016-7037(97)00077-X – volume: 345 start-page: 432 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib146 article-title: Selenite removal from groundwater by zero-valent iron (ZVI) in combination with oxidants publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.03.187 – volume: 68 start-page: 1723 year: 2004 ident: 10.1016/j.chemosphere.2021.130766_bib226 article-title: Vanadium(V) adsorption onto goethite (α-FeOOH) at pH 1.5 to 12: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2003.10.018 – volume: 45 start-page: 6575 year: 2011 ident: 10.1016/j.chemosphere.2021.130766_bib183 article-title: Synergistic effect of coupling zero-valent iron with iron oxide-coated sand in columns for chromate and arsenate removal from groundwater: influences of humic acid and the reactive media configuration publication-title: Water Res. doi: 10.1016/j.watres.2011.10.002 – volume: 28 start-page: 559 year: 1988 ident: 10.1016/j.chemosphere.2021.130766_bib191 article-title: An XPS study of passive film formation on iron in chromate solutions Corros publication-title: Science – volume: 230 start-page: 113 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib356 article-title: Application of carboxymethyl cellulose-stabilized sulfidated nano zerovalent iron for removal of Cr(VI) in simulated groundwater publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-019-4166-1 – volume: 45 start-page: 4904 year: 2011 ident: 10.1016/j.chemosphere.2021.130766_bib302 article-title: Immobilization of 99Technetium(VII) by Fe(II)-Goethite and limited reoxidation publication-title: Environ. Sci. Technol. doi: 10.1021/es104343p – volume: 392 start-page: 122392 year: 2020 ident: 10.1016/j.chemosphere.2021.130766_bib122 article-title: Enhanced removal of vanadium(V) from groundwater by layered double hydroxide-supported nanoscale zerovalent iron publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.122392 – volume: 31 start-page: 343 year: 1997 ident: 10.1016/j.chemosphere.2021.130766_bib222 article-title: Removal of chlorine residues in aqueous media by metallic iron publication-title: Water Res. doi: 10.1016/S0043-1354(96)00240-0 – volume: 40 start-page: 5472 year: 2006 ident: 10.1016/j.chemosphere.2021.130766_bib254 article-title: Effect of organic co-contaminants on technetium and rhenium speciation and solubility under reducing conditions publication-title: Environ. Sci. Technol. doi: 10.1021/es061157f – volume: 104 start-page: 185 year: 2011 ident: 10.1016/j.chemosphere.2021.130766_bib344 article-title: Reduction and adsorption mechanisms of selenate by zero-valent iron and related iron corrosion publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2011.02.014 – volume: 229 start-page: 286 year: 2000 ident: 10.1016/j.chemosphere.2021.130766_bib317 article-title: Vibrational spectroscopy study of selenate and sulfate adsorption mechanisms on Fe and Al (hydr)oxide surfaces publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2000.6960 – volume: 47 start-page: 11002 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib18 article-title: Retention and multiphase transformation of selenium oxyanions during the formation of magnetite via iron(II) hydroxide and green rust publication-title: Dalton Trans. doi: 10.1039/C8DT01799A – volume: 77 start-page: 375 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib41 article-title: Remediation of arsenic(III) from aqueous solutions using zero-valent iron (ZVI) combined with potassium permanganate and ferrous ions publication-title: Water Sci. Technol. doi: 10.2166/wst.2017.512 – volume: 174 start-page: 466 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib327 article-title: Ultra-efficient removal of chromium from aqueous medium by biogenic iron based nanoparticles publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2016.10.047 – volume: 11 start-page: 1981 year: 2009 ident: 10.1016/j.chemosphere.2021.130766_bib224 article-title: As(V) remediation using electrochemically synthesized maghemite nanoparticles publication-title: J. Nano Res. doi: 10.1007/s11051-008-9558-x – volume: 40 start-page: 184 year: 2000 ident: 10.1016/j.chemosphere.2021.130766_bib258 article-title: Characterization of corrosion products in the permeable reactive barriers publication-title: Environ. Geol. doi: 10.1007/s002540000178 – volume: 154 start-page: 1537 year: 1974 ident: 10.1016/j.chemosphere.2021.130766_bib236 article-title: Atlas of electrochemical equilibria in aqueous solutions publication-title: Science – volume: 384 start-page: 123295 year: 2020 ident: 10.1016/j.chemosphere.2021.130766_bib336 article-title: Enhancing the dioxygen activation for arsenic removal by Cu0 nano-shell-decorated nZVI: synergistic effects and mechanisms publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123295 – volume: 378 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib161 article-title: Plant-mediated biosynthesis of iron nanoparticles-calcium alginate hydrogel membrane and its eminent performance in removal of Cr(VI) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122120 – volume: 6 start-page: 1259 year: 1972 ident: 10.1016/j.chemosphere.2021.130766_bib71 article-title: Review of arsenic cycle natural waters publication-title: Water Res. doi: 10.1016/0043-1354(72)90052-8 – volume: 116 start-page: 5303 year: 2012 ident: 10.1016/j.chemosphere.2021.130766_bib340 article-title: As(III) sequestration by iron nanoparticles: study of solid-phase redox transformations with X-ray photoelectron spectroscopy publication-title: J. Phys. Chem. C doi: 10.1021/jp208600n – volume: 136 start-page: 405 year: 2010 ident: 10.1016/j.chemosphere.2021.130766_bib260 article-title: Modeling arsenite adsorption on rusting metallic iron publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)EE.1943-7870.0000169 – volume: 100 start-page: 277 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib286 article-title: The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: a review publication-title: Water Res. doi: 10.1016/j.watres.2016.05.031 – volume: 298 start-page: 1 year: 2015 ident: 10.1016/j.chemosphere.2021.130766_bib202 article-title: Negative impact of oxygen molecular activation on Cr(VI) removal with core-shell Fe@Fe2O3 nanowires publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2015.05.008 – volume: 47 start-page: 6691 year: 2013 ident: 10.1016/j.chemosphere.2021.130766_bib171 article-title: Enhanced chitosan beads-supported Fe0-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers publication-title: Water Res. doi: 10.1016/j.watres.2013.09.006 – volume: 87 start-page: 1660 year: 2003 ident: 10.1016/j.chemosphere.2021.130766_bib348 article-title: Sorption of chromium oxy-anions onto cationized ligno-cellulosic material publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.11596 – volume: 102 start-page: 190 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib1 article-title: A novel MD-ZVI integrated approach for high arsenic groundwater decontamination and effluent immobilization publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2016.03.007 – volume: 243 start-page: 205 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib163 article-title: Removal of Pb(II) and Cr(VI) from aqueous solutions using the fly ash-based adsorbent material-supported zero-valent iron publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.08.004 – volume: 2 start-page: 1513 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib34 article-title: Dissolved selenium(VI) removal by zero-valent iron under oxic conditions: influence of sulfate and nitrate publication-title: ACS Omega doi: 10.1021/acsomega.6b00382 – volume: 3 start-page: 1457 year: 2011 ident: 10.1016/j.chemosphere.2021.130766_bib119 article-title: Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am200016v – volume: 57 start-page: 125 year: 2002 ident: 10.1016/j.chemosphere.2021.130766_bib73 article-title: Antimony in the environment: a review focused on natural waters I. Occurrence publication-title: Earth Sci. Rev. doi: 10.1016/S0012-8252(01)00070-8 – volume: 50 start-page: 11879 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib331 article-title: Effects of sulfidation, magnetization, and oxygenation on azo dye reduction by zerovalent iron publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b03184 – volume: 52 start-page: 10052 year: 2013 ident: 10.1016/j.chemosphere.2021.130766_bib292 article-title: Removal of arsenic(III) from water with clay-supported zerovalent iron nanoparticles synthesized with the help of tea liquor publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie400702k – volume: 156 start-page: 827 year: 2008 ident: 10.1016/j.chemosphere.2021.130766_bib28 article-title: In field arsenic removal from natural water by zero-valent iron assisted by solar radiation publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2008.05.022 – volume: 72 start-page: 1049 year: 2008 ident: 10.1016/j.chemosphere.2021.130766_bib97 article-title: Evaluation of the multiple-ion competition in the adsorption of As(V) onto reclaimed iron-oxide coated sands by fractional factorial design publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.03.060 – volume: 242 start-page: 125235 year: 2020 ident: 10.1016/j.chemosphere.2021.130766_bib361 article-title: Optimizing nanocarbon shell in zero-valent iron nanoparticles for improved electron utilization in Cr(VI) reduction publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125235 – volume: 33 start-page: 576 year: 2014 ident: 10.1016/j.chemosphere.2021.130766_bib162 article-title: Review on transformation of oxidized nanoscale zero valent iron in environment media publication-title: Environ. Chem. – volume: 174 start-page: 188 year: 2010 ident: 10.1016/j.chemosphere.2021.130766_bib136 article-title: Removal of nitrate by zero-valent iron and pillared bentonite publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2009.09.035 – volume: 12 start-page: 927 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib315 article-title: Removal of hazardous oxyanions from the environment using metal-oxide-based materials publication-title: Materials doi: 10.3390/ma12060927 – volume: 17 start-page: 212 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib234 article-title: Improvement of As(III) removal with diatomite overlay nanoscale zero-valent iron (nZVI-D): adsorption isotherm and adsorption kinetic studies publication-title: Water Sci. Technol. Water Supply doi: 10.2166/ws.2016.120 – volume: 271 start-page: 135 year: 2015 ident: 10.1016/j.chemosphere.2021.130766_bib13 article-title: Polyaniline/Fe0 composite nanofibers: an excellent adsorbent for the removal of arsenic from aqueous solutions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.02.079 – volume: 36 start-page: 5455 year: 2002 ident: 10.1016/j.chemosphere.2021.130766_bib186 article-title: Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products publication-title: Environ. Sci. Technol. doi: 10.1021/es0206846 – volume: 44 start-page: 3101 year: 2010 ident: 10.1016/j.chemosphere.2021.130766_bib98 article-title: Hexavalent chromium removal from near natural water by copper-iron bimetallic particles publication-title: Water Res. doi: 10.1016/j.watres.2010.02.037 – volume: 27 start-page: 16484 year: 2020 ident: 10.1016/j.chemosphere.2021.130766_bib94 article-title: Enhanced adsorption of antimonate by ball-milled microscale zero valent iron/pyrite composite: adsorption properties and mechanism insight publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-08163-y – volume: 274 start-page: 287 year: 2014 ident: 10.1016/j.chemosphere.2021.130766_bib72 article-title: Tailored zeolites for the removal of metal oxyanions: overcoming intrinsic limitations of zeolites publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2014.04.012 – volume: 75 start-page: 156 year: 2009 ident: 10.1016/j.chemosphere.2021.130766_bib250 article-title: Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.12.019 – volume: 34 start-page: 819 year: 2000 ident: 10.1016/j.chemosphere.2021.130766_bib253 article-title: Reduction of SeO42- anions and anoxic formation of iron(II)-iron(III) hydroxy selenate green rust publication-title: Environ. Sci. Technol. doi: 10.1021/es990376g – volume: 9 start-page: 122 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib252 article-title: Nano-Bio sequential removal of hexavalent chromium using polymer-nZVI composite film and sulfate reducing bacteria under anaerobic condition publication-title: Environ. Technol. Innov. doi: 10.1016/j.eti.2017.11.006 – volume: 47 start-page: 5846 year: 2013 ident: 10.1016/j.chemosphere.2021.130766_bib155 article-title: Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron publication-title: Water Res. doi: 10.1016/j.watres.2013.07.011 – volume: 43 start-page: 356 year: 2007 ident: 10.1016/j.chemosphere.2021.130766_bib300 article-title: Modeling of arsenic immobilization by zero valent iron publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2007.03.011 – volume: 353 start-page: 781 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib201 article-title: Activated carbon impregnated by zero-valent iron nanoparticles (AC/nZVI) optimized for simultaneous adsorption and reduction of aqueous hexavalent chromium: material characterizations and kinetic studies publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.07.170 – volume: 39 start-page: 763 year: 2005 ident: 10.1016/j.chemosphere.2021.130766_bib10 article-title: Chemical reactions between arsenic and zero-valent iron in water publication-title: Water Res. doi: 10.1016/j.watres.2004.12.022 – volume: 92 start-page: 1891 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib342 article-title: Adsorptive performance of nanosized zero-valent iron for V(V) removal from aqueous solutions publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.5209 – volume: 42 start-page: 1984 year: 2008 ident: 10.1016/j.chemosphere.2021.130766_bib264 article-title: Selenite reduction by mackinawite, magnetite and siderite: XAS characterization of nanosized redox products publication-title: Environ. Sci. Technol. doi: 10.1021/es071573f – volume: 297 start-page: 1 year: 2015 ident: 10.1016/j.chemosphere.2021.130766_bib116 article-title: Enhanced As(III) oxidation and removal by combined use of zero valent iron and hydrogen peroxide in aerated waters at neutral pH values publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2015.04.038 – volume: 43 start-page: 1970 year: 2009 ident: 10.1016/j.chemosphere.2021.130766_bib178 article-title: Treatment of arsenic, heavy metals, and acidity using a mixed ZVI-compost PRB publication-title: Environ. Sci. Technol. doi: 10.1021/es802394p – volume: 28 start-page: 2045 year: 1994 ident: 10.1016/j.chemosphere.2021.130766_bib190 article-title: Reductive dehalogenation of chlorinated methanes by iron metal publication-title: Environ. Sci. Technol. doi: 10.1021/es00061a012 – volume: 137 start-page: 762 year: 2006 ident: 10.1016/j.chemosphere.2021.130766_bib197 article-title: Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2006.06.060 – volume: 43 start-page: 4922 year: 2004 ident: 10.1016/j.chemosphere.2021.130766_bib198 article-title: Removal of selenate by Fe and NiFe nanosized particles publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie030715l – volume: 4 start-page: 1544 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib321 article-title: The double influence mechanism of pH on arsenic removal by nano zero valent iron: electrostatic interactions and the corrosion of Fe0 publication-title: Environ. Sci. Nano doi: 10.1039/C7EN00240H – volume: 150 start-page: 431 year: 2009 ident: 10.1016/j.chemosphere.2021.130766_bib298 article-title: Effect of operating conditions on iron corrosion rates in zero-valent iron systems for arsenic removal publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.01.029 – volume: 43 start-page: 2540 year: 2009 ident: 10.1016/j.chemosphere.2021.130766_bib170 article-title: Removal of co-present chromate and arsenate by zero-valent iron in groundwater with humic acid and bicarbonate publication-title: Water Res. doi: 10.1016/j.watres.2009.03.005 – volume: 373 start-page: 810 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib281 article-title: Synthesis and characterization of zeolite-based composites functionalized with nanoscale zero-valent iron for removing arsenic in the presence of selenium from water publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2019.03.125 – volume: 31 start-page: 3348 year: 1997 ident: 10.1016/j.chemosphere.2021.130766_bib17 article-title: In-situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls: laboratory studies publication-title: Environ. Sci. Technol. doi: 10.1021/es960844b – volume: 71 start-page: 2137 year: 2007 ident: 10.1016/j.chemosphere.2021.130766_bib346 article-title: Reduction of pertechnetate Tc(VII) by aqueous Fe(II) and the nature of solid phase redox products publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2006.10.025 – volume: 736 start-page: 139629 year: 2020 ident: 10.1016/j.chemosphere.2021.130766_bib167 article-title: Removal of Sb(III) by sulfidated nanoscale zerovalent iron: the mechanism and impact of environmental conditions publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139629 – volume: 174 start-page: 362 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib77 article-title: Fast and highly efficient removal of chromium(VI) using humus-supported nanoscale zero-valent iron: influencing factors, kinetics and mechanism publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2016.10.058 – volume: 395 start-page: 125168 year: 2020 ident: 10.1016/j.chemosphere.2021.130766_bib360 article-title: Combining high electron transfer efficiency and oxidation resistance in nZVI with coatings of microbial extracellular polymeric substances to enhance Sb (V) reduction and adsorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125168 – volume: 151 start-page: 276 year: 2015 ident: 10.1016/j.chemosphere.2021.130766_bib135 article-title: Effective Sb(V) immobilization from water by zero-valent iron with weak magnetic field publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2015.07.056 – volume: 169 start-page: 1081 year: 2009 ident: 10.1016/j.chemosphere.2021.130766_bib256 article-title: Reduction of hexavalent chromium mediated by micro- and nano-sized mixed metallic particles publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2009.04.062 – volume: 118 start-page: 165 year: 2010 ident: 10.1016/j.chemosphere.2021.130766_bib84 article-title: Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2010.07.011 – volume: 36 start-page: 2074 year: 2002 ident: 10.1016/j.chemosphere.2021.130766_bib193 article-title: Understanding soluble arsenate removal kinetics by zerovalent iron media publication-title: Environ. Sci. Technol. doi: 10.1021/es011250y – volume: 35 start-page: 2026 year: 2001 ident: 10.1016/j.chemosphere.2021.130766_bib67 article-title: Electrochemical and spectroscopic study of arsenate removal from water using zero-valent Iran media publication-title: Environ. Sci. Technol. doi: 10.1021/es0016710 – volume: 288 start-page: 789 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib144 article-title: Nanoscale zerovalent iron decorated on graphene nanosheets for Cr(VI) removal from aqueous solution: surface corrosion retard induced the enhanced performance publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.12.022 – volume: 151 start-page: 242 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib159 article-title: Controlled fabrication of functionalized nanoscale zero-valent iron/celluloses composite with silicon as protective layer for arsenic removal publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2019.09.020 – volume: 171 start-page: 502 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib4 article-title: Effective aqueous arsenic removal using zero valent iron doped MWCNT synthesized by in situ CVD method using natural α-Fe2O3 as a precursor publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.12.106 – volume: 40 start-page: 2375 year: 2006 ident: 10.1016/j.chemosphere.2021.130766_bib299 article-title: Arsenic removal from geothermal waters with zero-valent iron - effect of temperature, phosphate and nitrate publication-title: Water Res. doi: 10.1016/j.watres.2006.04.006 – volume: 6 start-page: 95865 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib196 article-title: Removal of antimonite (Sb(III)) and antimonate (Sb(V)) using zerovalent iron decorated functionalized carbon nanotubes publication-title: RSC Adv. doi: 10.1039/C6RA18965B – volume: 9 start-page: 725 year: 2007 ident: 10.1016/j.chemosphere.2021.130766_bib113 article-title: Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation publication-title: J. Nano Res. doi: 10.1007/s11051-007-9225-7 – volume: 113 start-page: 93 year: 2014 ident: 10.1016/j.chemosphere.2021.130766_bib120 article-title: Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.04.047 – volume: 38 start-page: 2948 year: 2004 ident: 10.1016/j.chemosphere.2021.130766_bib37 article-title: Sorption materials for arsenic removal from water: a comparative study publication-title: Water Res. doi: 10.1016/j.watres.2004.04.003 – volume: 208 start-page: 1409 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib305 article-title: Removal of critical metals from waste water by zero-valent iron publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.10.180 – volume: 33 start-page: 1244 year: 1999 ident: 10.1016/j.chemosphere.2021.130766_bib66 article-title: Electrosorption and reduction of pertechnetate by anodically polarized magnetite publication-title: Environ. Sci. Technol. doi: 10.1021/es980086k – volume: 122 start-page: 536 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib359 article-title: Column study of enhanced Cr(VI) removal and longevity by coupled abiotic and biotic processes using Fe0 and mixed anaerobic culture publication-title: Water Res. doi: 10.1016/j.watres.2017.05.043 – volume: 276 start-page: 339 year: 2014 ident: 10.1016/j.chemosphere.2021.130766_bib88 article-title: Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2014.05.025 – volume: 127 start-page: 39 year: 2011 ident: 10.1016/j.chemosphere.2021.130766_bib101 article-title: As(III) adsorption from drinking water on nanoscale zero-valent iron: kinetics and isotherm studies publication-title: Integrated Ferroelectrics Int. J. doi: 10.1080/10584587.2011.575629 – volume: 31 start-page: 1419 year: 1997 ident: 10.1016/j.chemosphere.2021.130766_bib296 article-title: Selenium redox reactions and transport between ponded waters and sediments publication-title: Environ. Sci. Technol. doi: 10.1021/es960665u – volume: 132 start-page: 1459 year: 2006 ident: 10.1016/j.chemosphere.2021.130766_bib345 article-title: Factors influencing arsenite removal by zero-valent iron publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)0733-9372(2006)132:11(1459) – volume: 85 start-page: 155 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib143 article-title: Zero valent iron as an electron transfer agent in a reaction system based on zero valent iron/magnetite nanocomposites for adsorption and oxidation of Sb(III) publication-title: J. Taiwan Inst. Chem. Eng doi: 10.1016/j.jtice.2018.01.032 – volume: 373 start-page: 176 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib179 article-title: Nanoscale zero valent iron supported on MgAl-LDH-decorated reduced graphene oxide: enhanced performance in Cr(VI) removal, mechanism and regeneration publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2019.03.091 – volume: 51 start-page: 8635 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib263 article-title: Reduction and simultaneous removal of 99Tc and Cr by Fe(OH)2(s) mineral transformation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b02278 – volume: 43 start-page: 6786 year: 2009 ident: 10.1016/j.chemosphere.2021.130766_bib75 article-title: Assessment of long-term performance and chromate reduction mechanisms in a field scale permeable reactive barrier publication-title: Environ. Sci. Technol. doi: 10.1021/es803526g – volume: 5 start-page: 1686 year: 2013 ident: 10.1016/j.chemosphere.2021.130766_bib165 article-title: Synthesizing the composites of graphene oxide-wrapped polyaniline hollow microspheres for high-performance supercapacitors publication-title: Sci. Adv. Mater. doi: 10.1166/sam.2013.1637 – volume: 19 start-page: 107 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib295 article-title: Colloidal behavior of goethite nanoparticles modified with humic acid and implications for aquifer reclamation publication-title: J. Nano Res. doi: 10.1007/s11051-017-3814-x – volume: 181 start-page: 17 year: 2015 ident: 10.1016/j.chemosphere.2021.130766_bib275 article-title: Methods for characterizing the fate and effects of nano zerovalent iron during groundwater remediation publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2015.03.004 – volume: 332 start-page: 42 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib343 article-title: Enhanced Cr(VI) removal from groundwater by Fe0-H2O system with bio-amended iron corrosion publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2017.02.045 – volume: 65 start-page: 24 year: 2006 ident: 10.1016/j.chemosphere.2021.130766_bib26 article-title: Bio-reduction of arsenate using a hydrogen-based membrane biofilm reactor publication-title: Chemosphere doi: 10.1016/j.chemosphere.2006.03.018 – volume: 51 start-page: 10100 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib229 article-title: Effect of arsenic on the formation and adsorption property of ferric hydroxide precipitates in ZVI treatment publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b02635 – volume: 100 start-page: 245 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib358 article-title: An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation publication-title: Water Res. doi: 10.1016/j.watres.2016.05.019 – volume: 404 year: 2021 ident: 10.1016/j.chemosphere.2021.130766_bib154 article-title: The removal of heavy metal cations by sulfidated nanoscale zero-valent iron (S-nZVI): the reaction mechanisms and the role of sulfur publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.124057 – volume: 491 year: 2020 ident: 10.1016/j.chemosphere.2021.130766_bib106 article-title: Developments and future prospects of reverse electrodialysis for salinity gradient power generation: influence of ion exchange membranes and electrodes publication-title: Desalination doi: 10.1016/j.desal.2020.114540 – volume: 189 start-page: 237 year: 2012 ident: 10.1016/j.chemosphere.2021.130766_bib21 article-title: Arsenic removal via ZVI in a hybrid spouted vessel/fixed bed filter system publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.02.063 – volume: 51 start-page: 104 year: 2013 ident: 10.1016/j.chemosphere.2021.130766_bib217 article-title: Nanoscale zero valent iron and bimetallic particles for contaminated site remediation publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2012.02.005 – volume: 197 start-page: 331 year: 2017 ident: 10.1016/j.chemosphere.2021.130766_bib269 article-title: Removal of chromium(VI) from water using nanoscale zerovalent iron particles supported on herb-residue biochar publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2017.03.085 – volume: 48 start-page: 7409 year: 2014 ident: 10.1016/j.chemosphere.2021.130766_bib60 article-title: Oxidative remobilization of technetium sequestered by sulfide-transformed nano zerovalent iron publication-title: Environ. Sci. Technol. doi: 10.1021/es501607s – volume: 6 start-page: 111 year: 1996 ident: 10.1016/j.chemosphere.2021.130766_bib153 article-title: Removal of technetium-99 from contaminated groundwater with sorbents and reductive materials publication-title: Sep. Technol. doi: 10.1016/0956-9618(96)00148-8 – volume: 31 start-page: 175 year: 2015 ident: 10.1016/j.chemosphere.2021.130766_bib70 article-title: Weak magnetic field accelerates chromate removal by zero-valent iron publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2014.10.017 – volume: 58 start-page: 275 year: 2013 ident: 10.1016/j.chemosphere.2021.130766_bib160 article-title: Reductive immobilization of perrhenate in soil and groundwater using starch-stabilized ZVI nanoparticles publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-012-5425-3 – volume: 193 start-page: 65 year: 2008 ident: 10.1016/j.chemosphere.2021.130766_bib280 article-title: Arsenate and arsenite sorption on magnetite: relations to groundwater arsenic treatment using zerovalent iron and natural attenuation publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-008-9668-1 – volume: 471 start-page: 7 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib44 article-title: Chromate removal by surface-modified nanoscale zero-valent iron: effect of different surface coatings and water chemistry publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2016.03.011 – volume: 34 start-page: 248 year: 2005 ident: 10.1016/j.chemosphere.2021.130766_bib110 article-title: Solubility of antimony and other elements in samples taken from shooting ranges publication-title: J. Environ. Qual. doi: 10.2134/jeq2005.0248 – volume: 360 start-page: 1 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib133 article-title: Pertechnetate (TcO4-) sequestration from groundwater by cost-effective organoclays and granular activated carbon under oxic environmental conditions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.146 – volume: 64 start-page: 1882 year: 1960 ident: 10.1016/j.chemosphere.2021.130766_bib23 article-title: The comparative roles of oxygen and inhibitors in the passivation of iron. II. The pertechnetate ion publication-title: J. Phys. Chem. doi: 10.1021/j100841a018 – volume: 78 start-page: 528 year: 2019 ident: 10.1016/j.chemosphere.2021.130766_bib35 article-title: Selenate removal by zero-valent iron under anoxic conditions: effects of nitrate and sulfate publication-title: Environ. Earth Sci. doi: 10.1007/s12665-019-8538-z – volume: 174 start-page: 329 year: 2015 ident: 10.1016/j.chemosphere.2021.130766_bib145 article-title: Synergetic effect of a pillared bentonite support on SE(VI) removal by nanoscale zero valent iron publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.03.025 – volume: 610 year: 2020 ident: 10.1016/j.chemosphere.2021.130766_bib62 article-title: Advancing the conductivity-permselectivity tradeoff of electrodialysis ion-exchange membranes with sulfonated CNT nanocomposites publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118259 – volume: 39 start-page: 3531 year: 2005 ident: 10.1016/j.chemosphere.2021.130766_bib51 article-title: Effect of humic acids on heavy metal removal by zero-valent iron in batch and continuous flow column systems publication-title: Water Res. doi: 10.1016/j.watres.2005.06.020 – volume: 148 start-page: 227 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib273 article-title: Enhanced sequestration of Cr(VI) by nanoscale zero-valent iron supported on layered double hydroxide by batch and XAFS study publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.01.035 – volume: 197 start-page: 49 year: 2009 ident: 10.1016/j.chemosphere.2021.130766_bib76 article-title: Reduction of hexavalent chromium in soil and ground water using zero-valent iron under batch and semi-batch conditions publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-008-9790-0 – volume: 253 start-page: 126702 year: 2020 ident: 10.1016/j.chemosphere.2021.130766_bib36 article-title: Ultra-high arsenic adsorption by graphene oxide iron nanohybrid: removal mechanisms and potential applications publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126702 – volume: 29 start-page: 909 year: 2008 ident: 10.1016/j.chemosphere.2021.130766_bib213 article-title: A critical review on the process of contaminant removal in Fe0-H2O systems publication-title: Environ. Technol. doi: 10.1080/09593330802131602 – volume: 6 start-page: 11119 year: 2018 ident: 10.1016/j.chemosphere.2021.130766_bib82 article-title: Triple layered core-shell ZVI@carbon@polyaniline composite enhanced electron utilization in Cr(VI) reduction publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03066A – volume: 47 start-page: 6064 year: 2013 ident: 10.1016/j.chemosphere.2021.130766_bib53 article-title: Bifunctional resin-ZVI composites for effective removal of arsenite through simultaneous adsorption and oxidation publication-title: Water Res. doi: 10.1016/j.watres.2013.07.020 – volume: 388 year: 2020 ident: 10.1016/j.chemosphere.2021.130766_bib93 article-title: Nanoscale zero-valent iron intercalated 2D titanium carbides for removal of Cr(VI) in aqueous solution and the mechanistic aspect publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2019.121761 – volume: 143 start-page: 261 year: 2009 ident: 10.1016/j.chemosphere.2021.130766_bib200 article-title: Arsenic (V) removal with nanoparticulate zerovalent iron: effect of UV light and humic acids publication-title: Catal. Today doi: 10.1016/j.cattod.2008.09.038 – volume: 31 start-page: 2492 year: 1997 ident: 10.1016/j.chemosphere.2021.130766_bib238 article-title: Products of chromate reduction on proposed subsurface remediation material publication-title: Environ. Sci. Technol. doi: 10.1021/es9607897 – volume: 168 start-page: 626 year: 2009 ident: 10.1016/j.chemosphere.2021.130766_bib47 article-title: Iron coated pottery granules for arsenic removal from drinking water publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2009.02.168 – volume: 6 start-page: 110288 year: 2016 ident: 10.1016/j.chemosphere.2021.130766_bib223 article-title: Electrospun membrane composed of poly acrylonitrile-co-(methyl acrylate)-co-(itaconic acid) terpolymer and ZVI nanoparticles and its application for the removal of arsenic from water publication-title: RSC Adv. doi: 10.1039/C6RA24036D – volume: 254 start-page: 115 year: 2014 ident: 10.1016/j.chemosphere.2021.130766_bib142 article-title: Zero-valent iron nanoparticles (nZVI) for the treatment of smelting wastewater: a pilot-scale demonstration publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.05.111 – volume: 249 start-page: 117161 year: 2020 ident: 10.1016/j.chemosphere.2021.130766_bib277 article-title: Lithium recovery from Li3PO4 leaching liquor: solvent extraction mechanism of saponified D2EHPA system publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2020.117161 – volume: 300 start-page: 835 year: 2014 ident: 10.1016/j.chemosphere.2021.130766_bib40 article-title: Cloud point extraction and simultaneous spectrophotometric determination of V(V), Co(II) and Cu(II) ions in water samples by 5-Br-PADAP using partial least squares regression publication-title: J. Radioanal. Nucl. Chem. doi: 10.1007/s10967-014-3062-9 |
SSID | ssj0001659 |
Score | 2.559841 |
SecondaryResourceType | review_article |
Snippet | Metal(loid) oxyanions in groundwater, surface water, and wastewater can have harmful effects on human or ecological health due to their high toxicity,... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 130766 |
SubjectTerms | Adsorption Coprecipitation corrosion environmental health Groundwater Humans Iron iron oxyhydroxides Kinetics Metal(loid) oxyanion Metals oxyanions Reduction Sequestration surface water toxicity wastewater wastewater treatment Water Pollutants, Chemical Zerovalent iron |
Title | Advances in metal(loid) oxyanion removal by zerovalent iron: Kinetics, pathways, and mechanisms |
URI | https://dx.doi.org/10.1016/j.chemosphere.2021.130766 https://www.ncbi.nlm.nih.gov/pubmed/34162087 https://www.proquest.com/docview/2544878419 https://www.proquest.com/docview/2574372806 |
Volume | 280 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEF_E0o-XUm2rtlZW6IOFpib7fdKX41CuFXxS8G3ZJLsQ8RK5nNTzoX97Z7KJttAWwTyETdhdlpnZnR_szG8I-WjK1BRZyBOWa5YIIWHPFYwnWvkiOOdVFjq2zxM1PRPfz-X5CpkMuTAYVtmf_fFM707r_s9-L839q6rCHF9EIwAgkKIK9glmsAuNVv7l532YR6ZkhMBCJtj7Gdm9j_ECucyaFvP3kTGTZVgbORIm_tVH_QuDdr7o6BV52YNIOo7rXCMrvl4nzydD7bZ18vSwI6NeviZ2HC_5W1rVdOYBau9dNlX5iTY3S1eDUugcFgfmRvMlvfVzbIIfopj9dkCPAYMij_NnipWLf7gltFxdwkSYMFy1s_YNOTs6PJ1Mk76oQlKILF0k3GXa4Us5L2XwppAB9aW95lnIitHIC1HC43kwTvHA0kKPjApGucBBgm_Jat3UfpPQ0nAvPOM5oBARTG58rqQsWcpLVnrBt4gZxGiLnnEcC19c2iG07ML-pgGLGrBRA1uE3Q29irQbDxn0ddCV_cOGLLiHhwzfHfRrQV14ceJq31y3FmncDF7Qjv7XR-MVqElhno1oHHcrB6SgWGr0u8ct8D15gV8xlHCbrC7m1_4DQKJFvtPZ_A55Mv52PD35BSGtDPw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5Shza9lDZ9pc8N9NBCRaR9aV16MSbBqVOfEshtWUm7oBJLwXJI3F_fGUtyW2hLoDoIIWmXYb99fDAz3wC8M0Vs8iRkEc9SHkmpcM3lXESp9nlwzuskrNU-Z3pyJr-cq_MtGPe5MBRW2e397Z6-3q27NwfdaB5cliXl-BIbQQJBElW4Tu7ANqlTqQFsj46nk9lmQ060almwVBE1uAf7P8O8cGjmdUMp_CSayRMqj9xqJv7xmPobDV0fR0cP4UHHI9moNfURbPlqF3bGffm2Xbh7uNajXj0GO2r9_A0rKzb3yLbfX9Rl8YHVNytXIS5sgcbhjGPZin33C3rEo4hRAtwnNkUaSlLOHxkVL752K3xyVYEdUc5w2cybJ3B2dHg6nkRdXYUol0m8jIRLUkc37bxSwZtcBYIs9alIQpIPh17KAi8vgnFaBB7n6dDoYLQLAkfwKQyquvLPgRVGeOm5yJCIyGAy4zOtVMFjUfDCS7EHph9Gm3ei41T74sL20WXf7C8IWELAtgjsAd80vWyVN27T6HOPlf1tGlk8IW7TfL_H1yJc5Dtxla-vGktKboZ8tMN__ZOSF9TE2M-zdnJsLEeyoHls0hf_Z-Bb2Jmcfj2xJ8ez6Uu4T1_ayMJXMFgurvxrZEjL7E23An4ASm4PrQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+metal%28loid%29+oxyanion+removal+by+zerovalent+iron%3A+Kinetics%2C+pathways%2C+and+mechanisms&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Wang%2C+Xiao&rft.au=Zhang%2C+Yue&rft.au=Wang%2C+Zhiwei&rft.au=Xu%2C+Chunhua&rft.date=2021-10-01&rft.pub=Elsevier+Ltd&rft.issn=0045-6535&rft.eissn=1879-1298&rft.volume=280&rft_id=info:doi/10.1016%2Fj.chemosphere.2021.130766&rft.externalDocID=S0045653521012376 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |