Viologen-based electrochromic materials and devices
Considerable interest is raised by organic materials owing to their exceptional performance in electronic and optoelectronic applications. Among these, electrochromic materials (EC) that can be switched between a distinct color and a bleached state exhibiting high contrast, multicolor and improved l...
Saved in:
Published in | Journal of materials chemistry. C, Materials for optical and electronic devices Vol. 7; no. 16; pp. 4622 - 4637 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Considerable interest is raised by organic materials owing to their exceptional performance in electronic and optoelectronic applications. Among these, electrochromic materials (EC) that can be switched between a distinct color and a bleached state exhibiting high contrast, multicolor and improved long-term stability are attractive in the fabrication of electrochromic devices (ECDs). Ionic materials, in particular, have received persistent attention owing to their tunable optical and electronic properties. 4,4′-Bipyridinium salts, commonly called viologens (V
2+
), are a well-recognized class of electrochromic materials that exhibit three reversible redox states, namely, V
2+
(dication, pale yellow colored/colorless) ↔ V
+
&z.rad; (radical cation, violet/blue/green) ↔ V
0
(neutral, colorless). The electrochromic properties of these materials can be modulated by varying the nitrogen substituents on the pyridyl 'N'; also, besides this, varying the counter ions with specific functionalities has been shown to enhance the electrochromic behavior, such as switching time, cycling stability and device performance. Although ECDs based on viologens are well regarded for their low operational voltages, they exhibit certain disadvantages such as low cycle life and poor efficiency of the device in the long term. Extensive efforts have been made to fine tune the EC properties of viologens, either through alteration or by adding suitable electrochromic counter electrode materials, which includes the incorporation of conducting polymers in the device set-up and/or the addition of complementary redox species. Optimization of the device parameters has shown that the addition of such external agents has a positive effect on the overall device performance. This review describes recent developments in the synthesis of viologen-based electrochromes with co-redox species and their ECD performance.
This review describes recent developments relating to the synthesis of viologen-based electrochromes with co-redox species and their ECD performance. |
---|---|
AbstractList | Considerable interest is raised by organic materials owing to their exceptional performance in electronic and optoelectronic applications. Among these, electrochromic materials (EC) that can be switched between a distinct color and a bleached state exhibiting high contrast, multicolor and improved long-term stability are attractive in the fabrication of electrochromic devices (ECDs). Ionic materials, in particular, have received persistent attention owing to their tunable optical and electronic properties. 4,4′-Bipyridinium salts, commonly called viologens (V
2+
), are a well-recognized class of electrochromic materials that exhibit three reversible redox states, namely, V
2+
(dication, pale yellow colored/colorless) ↔ V
+
&z.rad; (radical cation, violet/blue/green) ↔ V
0
(neutral, colorless). The electrochromic properties of these materials can be modulated by varying the nitrogen substituents on the pyridyl 'N'; also, besides this, varying the counter ions with specific functionalities has been shown to enhance the electrochromic behavior, such as switching time, cycling stability and device performance. Although ECDs based on viologens are well regarded for their low operational voltages, they exhibit certain disadvantages such as low cycle life and poor efficiency of the device in the long term. Extensive efforts have been made to fine tune the EC properties of viologens, either through alteration or by adding suitable electrochromic counter electrode materials, which includes the incorporation of conducting polymers in the device set-up and/or the addition of complementary redox species. Optimization of the device parameters has shown that the addition of such external agents has a positive effect on the overall device performance. This review describes recent developments in the synthesis of viologen-based electrochromes with co-redox species and their ECD performance.
This review describes recent developments relating to the synthesis of viologen-based electrochromes with co-redox species and their ECD performance. Considerable interest is raised by organic materials owing to their exceptional performance in electronic and optoelectronic applications. Among these, electrochromic materials (EC) that can be switched between a distinct color and a bleached state exhibiting high contrast, multicolor and improved long-term stability are attractive in the fabrication of electrochromic devices (ECDs). Ionic materials, in particular, have received persistent attention owing to their tunable optical and electronic properties. 4,4′-Bipyridinium salts, commonly called viologens (V 2+ ), are a well-recognized class of electrochromic materials that exhibit three reversible redox states, namely, V 2+ (dication, pale yellow colored/colorless) ↔ V + ˙ (radical cation, violet/blue/green) ↔ V 0 (neutral, colorless). The electrochromic properties of these materials can be modulated by varying the nitrogen substituents on the pyridyl ‘N’; also, besides this, varying the counter ions with specific functionalities has been shown to enhance the electrochromic behavior, such as switching time, cycling stability and device performance. Although ECDs based on viologens are well regarded for their low operational voltages, they exhibit certain disadvantages such as low cycle life and poor efficiency of the device in the long term. Extensive efforts have been made to fine tune the EC properties of viologens, either through alteration or by adding suitable electrochromic counter electrode materials, which includes the incorporation of conducting polymers in the device set-up and/or the addition of complementary redox species. Optimization of the device parameters has shown that the addition of such external agents has a positive effect on the overall device performance. This review describes recent developments in the synthesis of viologen-based electrochromes with co-redox species and their ECD performance. Considerable interest is raised by organic materials owing to their exceptional performance in electronic and optoelectronic applications. Among these, electrochromic materials (EC) that can be switched between a distinct color and a bleached state exhibiting high contrast, multicolor and improved long-term stability are attractive in the fabrication of electrochromic devices (ECDs). Ionic materials, in particular, have received persistent attention owing to their tunable optical and electronic properties. 4,4′-Bipyridinium salts, commonly called viologens (V2+), are a well-recognized class of electrochromic materials that exhibit three reversible redox states, namely, V2+ (dication, pale yellow colored/colorless) ↔ V+· (radical cation, violet/blue/green) ↔ V0 (neutral, colorless). The electrochromic properties of these materials can be modulated by varying the nitrogen substituents on the pyridyl ‘N’; also, besides this, varying the counter ions with specific functionalities has been shown to enhance the electrochromic behavior, such as switching time, cycling stability and device performance. Although ECDs based on viologens are well regarded for their low operational voltages, they exhibit certain disadvantages such as low cycle life and poor efficiency of the device in the long term. Extensive efforts have been made to fine tune the EC properties of viologens, either through alteration or by adding suitable electrochromic counter electrode materials, which includes the incorporation of conducting polymers in the device set-up and/or the addition of complementary redox species. Optimization of the device parameters has shown that the addition of such external agents has a positive effect on the overall device performance. This review describes recent developments in the synthesis of viologen-based electrochromes with co-redox species and their ECD performance. |
Author | Madasamy, Kanagaraj Ho, Kuo-Chuan Suryanarayanan, Vembu Velayutham, David Kathiresan, Murugavel |
AuthorAffiliation | CSIR - Central Electrochemical Research Institute Department of Chemical Engineering National Taiwan University AcSIR - Academy of Scientific & Innovative Research |
AuthorAffiliation_xml | – name: Department of Chemical Engineering – name: AcSIR - Academy of Scientific & Innovative Research – name: National Taiwan University – name: CSIR - Central Electrochemical Research Institute |
Author_xml | – sequence: 1 givenname: Kanagaraj surname: Madasamy fullname: Madasamy, Kanagaraj – sequence: 2 givenname: David surname: Velayutham fullname: Velayutham, David – sequence: 3 givenname: Vembu surname: Suryanarayanan fullname: Suryanarayanan, Vembu – sequence: 4 givenname: Murugavel surname: Kathiresan fullname: Kathiresan, Murugavel – sequence: 5 givenname: Kuo-Chuan surname: Ho fullname: Ho, Kuo-Chuan |
BookMark | eNp9kEtLAzEUhYNUsNZu3Asj7oTRPCbpZClDfYDgprodMjd3NGU6qUkq-O8drVQQ8W7ug--cC-eQjHrfIyHHjF4wKvQl6ASUFkzhHhlzKmk-k6IY7WauDsg0xiUdqmSqVHpMxJPznX_GPm9MRJthh5CCh5fgVw6ylUkYnOliZnqbWXxzgPGI7LfDCafffUIer-eL6ja_f7i5q67ucygYTbkoW2WpFKVsmJVoEJADGDVTXLbUUmFmetgQmDaFbmWjZwWwhjcWUBmQYkLOtr7r4F83GFO99JvQDy9rzhnXZSmFHqjzLQXBxxiwrdfBrUx4rxmtP3OpK72ovnKZDzD9BYNLJjnfp2Bc97fkdCsJEXbWP1HXa9sOzMl_jPgA-zJ76Q |
CitedBy_id | crossref_primary_10_1007_s12274_022_4928_8 crossref_primary_10_1016_j_est_2023_106714 crossref_primary_10_1021_acsami_0c15424 crossref_primary_10_1016_j_molstruc_2023_135769 crossref_primary_10_1016_j_eurpolymj_2025_113796 crossref_primary_10_1039_D4TA06028H crossref_primary_10_1021_acs_jpclett_0c02690 crossref_primary_10_1021_acsaelm_2c00107 crossref_primary_10_1016_j_colsurfa_2021_127535 crossref_primary_10_1016_j_solmat_2022_111712 crossref_primary_10_1002_cctc_202401625 crossref_primary_10_1002_smll_202402403 crossref_primary_10_1016_j_dyepig_2022_110316 crossref_primary_10_1039_D4TC00977K crossref_primary_10_1002_aelm_202000407 crossref_primary_10_1002_adfm_202311845 crossref_primary_10_1016_j_jorganchem_2023_122849 crossref_primary_10_1002_admt_202302080 crossref_primary_10_1016_j_dyepig_2023_111131 crossref_primary_10_1016_j_molstruc_2024_137786 crossref_primary_10_1016_j_jallcom_2024_176038 crossref_primary_10_1016_j_apmt_2024_102369 crossref_primary_10_1016_j_mtchem_2020_100289 crossref_primary_10_1039_D0TC00250J crossref_primary_10_1002_adma_202107013 crossref_primary_10_1016_j_jpowsour_2025_236692 crossref_primary_10_1016_j_mtchem_2025_102511 crossref_primary_10_1134_S207511332106023X crossref_primary_10_1002_adma_202305546 crossref_primary_10_1016_j_jphotochem_2024_115735 crossref_primary_10_1021_acsaom_3c00063 crossref_primary_10_1016_j_mattod_2021_06_015 crossref_primary_10_1016_j_pmatsci_2024_101374 crossref_primary_10_1139_cjc_2022_0268 crossref_primary_10_1016_j_optmat_2022_112292 crossref_primary_10_1016_j_solmat_2021_111429 crossref_primary_10_1021_acs_joc_1c02040 crossref_primary_10_3390_polym15132924 crossref_primary_10_3390_molecules29092006 crossref_primary_10_1039_D1MH01136G crossref_primary_10_1002_ange_202214203 crossref_primary_10_1002_chem_202100601 crossref_primary_10_1016_j_orgel_2024_107040 crossref_primary_10_1016_j_molstruc_2022_133073 crossref_primary_10_1107_S2056989024005127 crossref_primary_10_2139_ssrn_4180123 crossref_primary_10_1002_chem_202403273 crossref_primary_10_1088_2040_8986_ad584e crossref_primary_10_1002_adma_202106073 crossref_primary_10_1002_adma_202413665 crossref_primary_10_1002_vnl_22071 crossref_primary_10_1016_j_nanoms_2022_08_002 crossref_primary_10_1016_j_solmat_2022_111734 crossref_primary_10_1016_j_ccr_2021_214353 crossref_primary_10_1016_j_solmat_2022_111858 crossref_primary_10_1021_acsami_3c09595 crossref_primary_10_1016_j_dyepig_2022_110467 crossref_primary_10_1016_j_solmat_2022_112149 crossref_primary_10_1016_j_jiec_2020_07_033 crossref_primary_10_1039_D4NJ00190G crossref_primary_10_1016_j_electacta_2022_139839 crossref_primary_10_1016_j_cej_2024_153834 crossref_primary_10_1039_D1RA05488K crossref_primary_10_1002_adem_202000082 crossref_primary_10_1021_acsmaterialsau_3c00010 crossref_primary_10_1021_acsami_4c22554 crossref_primary_10_1021_acs_inorgchem_3c04625 crossref_primary_10_1016_j_tsf_2021_139067 crossref_primary_10_1002_cplu_202200171 crossref_primary_10_1039_D0NJ04323K crossref_primary_10_1038_s41570_021_00283_4 crossref_primary_10_1002_mame_202100977 crossref_primary_10_1016_j_dyepig_2022_110902 crossref_primary_10_1016_j_mser_2023_100747 crossref_primary_10_1039_D3TC01142A crossref_primary_10_1021_acs_cgd_4c00765 crossref_primary_10_1002_adpr_202400103 crossref_primary_10_1016_j_solmat_2021_111449 crossref_primary_10_1002_adom_202302976 crossref_primary_10_1002_anie_202105852 crossref_primary_10_35848_1347_4065_abb034 crossref_primary_10_1021_acs_chemmater_1c04415 crossref_primary_10_1002_adfm_202312587 crossref_primary_10_1039_C9NJ05286K crossref_primary_10_1016_j_orgel_2023_106962 crossref_primary_10_1039_C9NJ05520G crossref_primary_10_1002_cptc_201900284 crossref_primary_10_1039_D1NJ05816A crossref_primary_10_1016_j_jssc_2021_122762 crossref_primary_10_1016_j_matchemphys_2023_127593 crossref_primary_10_1016_j_optmat_2021_111675 crossref_primary_10_1002_slct_202402625 crossref_primary_10_1016_j_jallcom_2023_169812 crossref_primary_10_1016_j_apmt_2021_101073 crossref_primary_10_1016_j_pmatsci_2025_101461 crossref_primary_10_1016_j_synthmet_2024_117744 crossref_primary_10_1021_acsami_3c09856 crossref_primary_10_1002_adma_202312791 crossref_primary_10_1016_j_polymdegradstab_2022_110093 crossref_primary_10_1016_j_dyepig_2024_112419 crossref_primary_10_4150_KPMI_2020_27_1_58 crossref_primary_10_1039_C9TA08302B crossref_primary_10_1016_j_solmat_2023_112320 crossref_primary_10_1021_acs_macromol_2c02358 crossref_primary_10_3390_molecules25010001 crossref_primary_10_1002_aelm_202201042 crossref_primary_10_1021_acs_cgd_4c00030 crossref_primary_10_1016_j_orgel_2024_107016 crossref_primary_10_1016_j_solmat_2021_111070 crossref_primary_10_1038_s41467_024_46909_1 crossref_primary_10_1021_jacs_0c10183 crossref_primary_10_1039_D3SC00102D crossref_primary_10_28979_jarnas_1267768 crossref_primary_10_1039_D3QM00121K crossref_primary_10_1186_s40580_022_00313_x crossref_primary_10_1016_j_cej_2024_158494 crossref_primary_10_1021_acsami_4c17105 crossref_primary_10_1039_D2NJ00889K crossref_primary_10_1002_adfm_202210167 crossref_primary_10_1016_j_solmat_2020_110714 crossref_primary_10_1016_j_solmat_2020_110835 crossref_primary_10_1002_celc_202300479 crossref_primary_10_1002_elsa_202100022 crossref_primary_10_1002_adfm_202308989 crossref_primary_10_1039_C9RA09007J crossref_primary_10_1016_j_solmat_2023_112431 crossref_primary_10_1039_D0CC05627H crossref_primary_10_1039_D1GC04370F crossref_primary_10_1016_j_dyepig_2020_108338 crossref_primary_10_1021_acsami_3c16142 crossref_primary_10_1021_acs_energyfuels_3c02299 crossref_primary_10_1002_smll_202301742 crossref_primary_10_1016_j_cej_2023_147623 crossref_primary_10_1021_acs_cgd_1c01277 crossref_primary_10_1039_D1TC03142B crossref_primary_10_1021_acsaom_4c00108 crossref_primary_10_1016_j_solmat_2023_112669 crossref_primary_10_1002_smll_202207509 crossref_primary_10_1021_acs_cgd_4c00854 crossref_primary_10_1002_adpr_202400016 crossref_primary_10_1016_j_solmat_2025_113407 crossref_primary_10_1016_j_microc_2024_111698 crossref_primary_10_1021_acs_cgd_4c01268 crossref_primary_10_1149_1945_7111_abcd48 crossref_primary_10_1021_acs_inorgchem_5c00286 crossref_primary_10_1016_j_eurpolymj_2021_110938 crossref_primary_10_1016_j_molliq_2021_117801 crossref_primary_10_3390_molecules27238521 crossref_primary_10_1016_j_dyepig_2023_111157 crossref_primary_10_1021_acs_chemmater_4c03174 crossref_primary_10_1038_s41467_021_21086_7 crossref_primary_10_22349_1994_6716_2020_101_1_85_96 crossref_primary_10_1149_1945_7111_ac5305 crossref_primary_10_1002_chem_202401647 crossref_primary_10_1246_cl_190879 crossref_primary_10_1039_D0CE00167H crossref_primary_10_3390_electronicmat1010005 crossref_primary_10_1039_D3NR05277J crossref_primary_10_1007_s10800_022_01727_5 crossref_primary_10_1016_j_jics_2024_101170 crossref_primary_10_1016_j_electacta_2024_145156 crossref_primary_10_1016_j_jphotochem_2023_114969 crossref_primary_10_3390_polym15163347 crossref_primary_10_1016_j_cej_2024_149417 crossref_primary_10_1002_cctc_202201418 crossref_primary_10_1039_C9TC02919B crossref_primary_10_15541_jim20200412 crossref_primary_10_1016_j_reactfunctpolym_2022_105186 crossref_primary_10_1016_j_mser_2019_100524 crossref_primary_10_1016_j_mtcomm_2023_105832 crossref_primary_10_1039_D1CC00322D crossref_primary_10_1016_j_dyepig_2021_110010 crossref_primary_10_1039_D2SC02072F crossref_primary_10_1002_adom_202001847 crossref_primary_10_1038_s41428_021_00480_4 crossref_primary_10_1039_D3TA00289F crossref_primary_10_1016_j_ensm_2021_08_038 crossref_primary_10_1038_s41528_025_00398_4 crossref_primary_10_1016_j_cplett_2020_137434 crossref_primary_10_1002_adma_202108327 crossref_primary_10_1039_D0CS00317D crossref_primary_10_1016_j_jcis_2025_02_193 crossref_primary_10_1016_j_jssc_2022_123653 crossref_primary_10_1016_j_susc_2022_122122 crossref_primary_10_3390_nano11092376 crossref_primary_10_1002_admt_202301028 crossref_primary_10_1002_ejoc_202400404 crossref_primary_10_1021_acs_chemrev_1c01055 crossref_primary_10_1016_j_dyepig_2024_112100 crossref_primary_10_1039_D2NJ03647A crossref_primary_10_1016_j_cej_2024_157372 crossref_primary_10_1002_asia_202400236 crossref_primary_10_1016_j_jiec_2024_02_037 crossref_primary_10_1016_j_polymer_2023_125675 crossref_primary_10_1002_smsc_202100040 crossref_primary_10_1016_j_cap_2020_03_017 crossref_primary_10_3390_app10228108 crossref_primary_10_1021_acsnano_3c06621 crossref_primary_10_1039_D0TC04603E crossref_primary_10_1002_ange_202105852 crossref_primary_10_1016_j_surfcoat_2022_128124 crossref_primary_10_1021_acssuschemeng_3c06285 crossref_primary_10_1016_j_apsusc_2020_148498 crossref_primary_10_1016_j_cej_2022_135469 crossref_primary_10_1016_j_solmat_2024_113179 crossref_primary_10_1039_C9CC06920H crossref_primary_10_1007_s11164_024_05419_x crossref_primary_10_3390_molecules28041740 crossref_primary_10_1002_tcr_202200165 crossref_primary_10_1021_acs_cgd_3c00955 crossref_primary_10_1002_ajoc_201900341 crossref_primary_10_1016_j_cej_2021_130057 crossref_primary_10_1016_j_ccr_2024_216064 crossref_primary_10_1016_j_mtsust_2024_100878 crossref_primary_10_1016_j_dyepig_2021_109321 crossref_primary_10_1134_S2070205121050154 crossref_primary_10_1016_j_cclet_2019_12_039 crossref_primary_10_1002_chem_202004748 crossref_primary_10_1016_j_ceramint_2020_05_166 crossref_primary_10_3390_molecules29235611 crossref_primary_10_1039_D3DT00963G crossref_primary_10_1039_C9TC06753A crossref_primary_10_1002_adma_202302685 crossref_primary_10_1039_D2MH00374K crossref_primary_10_1039_D1QI01079D crossref_primary_10_3390_nano11020304 crossref_primary_10_1016_j_cej_2020_126402 crossref_primary_10_1016_j_bios_2022_114565 crossref_primary_10_1039_D4CC06804A crossref_primary_10_1021_acs_jpca_1c05435 crossref_primary_10_1016_j_cej_2021_130065 crossref_primary_10_1016_j_colsurfa_2024_135380 crossref_primary_10_1016_j_dyepig_2021_109233 crossref_primary_10_1021_acsapm_4c03599 crossref_primary_10_1016_j_solmat_2024_112862 crossref_primary_10_3390_M1817 crossref_primary_10_1002_smll_202208234 crossref_primary_10_1016_j_solmat_2023_112460 crossref_primary_10_1016_j_jiec_2021_12_010 crossref_primary_10_1016_j_mtener_2021_100676 crossref_primary_10_1016_j_jechem_2023_09_014 crossref_primary_10_1016_j_orgel_2021_106189 crossref_primary_10_1021_acsaenm_4c00253 crossref_primary_10_1021_acsami_0c05921 crossref_primary_10_1021_acsapm_3c00991 crossref_primary_10_1021_acs_chemmater_3c02167 crossref_primary_10_1016_j_cclet_2025_111021 crossref_primary_10_1016_j_cej_2020_124572 crossref_primary_10_1016_j_synthmet_2024_117632 crossref_primary_10_1021_acsami_3c01800 crossref_primary_10_1021_acs_chemmater_2c02054 crossref_primary_10_2139_ssrn_4052318 crossref_primary_10_1039_D0TC03680C crossref_primary_10_1007_s10008_022_05187_x crossref_primary_10_1002_chem_202001213 crossref_primary_10_1021_acsapm_4c00987 crossref_primary_10_1016_j_est_2025_115747 crossref_primary_10_1002_adom_202302344 crossref_primary_10_1002_adom_202302222 crossref_primary_10_1016_j_electacta_2020_137340 crossref_primary_10_1021_acsami_0c05918 crossref_primary_10_1039_D2CC02703H crossref_primary_10_1039_D4CE00652F crossref_primary_10_1002_adom_202202920 crossref_primary_10_1016_j_jelechem_2019_113447 crossref_primary_10_1021_acs_chemmater_1c00330 crossref_primary_10_1002_admi_202202463 crossref_primary_10_1021_acs_cgd_3c00497 crossref_primary_10_1016_j_cej_2020_124690 crossref_primary_10_1016_j_ccr_2022_214891 crossref_primary_10_1039_D4MA00182F crossref_primary_10_1002_chem_202303880 crossref_primary_10_1016_j_electacta_2019_134792 crossref_primary_10_1039_D2TC03053E crossref_primary_10_3390_ma13051206 crossref_primary_10_1002_elan_202100153 crossref_primary_10_1007_s40843_024_3060_1 crossref_primary_10_1002_asia_202401095 crossref_primary_10_1016_j_electacta_2020_137552 crossref_primary_10_1002_admi_202102223 crossref_primary_10_5802_crchim_182 crossref_primary_10_1007_s10853_020_04460_6 crossref_primary_10_1021_acssuschemeng_3c00381 crossref_primary_10_1039_D1RA05280B crossref_primary_10_1039_D2TA05973H crossref_primary_10_1002_asia_202100815 crossref_primary_10_1002_ange_202416046 crossref_primary_10_1016_j_jallcom_2021_160718 crossref_primary_10_1002_adma_202300179 crossref_primary_10_1039_D2RA02083A crossref_primary_10_1021_acs_chemmater_4c00399 crossref_primary_10_1088_1361_6528_ad18e2 crossref_primary_10_1016_j_eurpolymj_2024_113364 crossref_primary_10_1007_s43926_024_00086_1 crossref_primary_10_1021_acs_iecr_3c02086 crossref_primary_10_1016_j_ccr_2021_214304 crossref_primary_10_1002_aenm_202100441 crossref_primary_10_1039_D1TA07201C crossref_primary_10_1016_j_dyepig_2022_110129 crossref_primary_10_1002_chem_202301476 crossref_primary_10_1007_s12274_023_6322_6 crossref_primary_10_1039_D3TC03624C crossref_primary_10_1039_D1CC05350G crossref_primary_10_1002_macp_202300381 crossref_primary_10_1039_D2MH00845A crossref_primary_10_1039_D5CE00026B crossref_primary_10_1021_acs_inorgchem_3c04282 crossref_primary_10_1016_j_orgel_2020_105741 crossref_primary_10_1039_C9FD00137A crossref_primary_10_1002_anie_202416046 crossref_primary_10_1002_advs_202302652 crossref_primary_10_1016_j_solmat_2023_112270 crossref_primary_10_1016_j_synthmet_2022_117084 crossref_primary_10_1055_a_2446_3355 crossref_primary_10_1016_j_jcis_2024_05_064 crossref_primary_10_1002_adom_202201773 crossref_primary_10_1021_acsaelm_2c00921 crossref_primary_10_1039_D2CP04987B crossref_primary_10_1021_acsaelm_3c00214 crossref_primary_10_1002_advs_202407177 crossref_primary_10_1016_j_est_2023_110119 crossref_primary_10_1016_j_ceramint_2022_10_347 crossref_primary_10_1016_j_colsurfa_2024_133161 crossref_primary_10_1016_j_dyepig_2023_111556 crossref_primary_10_1016_j_cej_2022_139645 crossref_primary_10_1021_acs_inorgchem_3c02070 crossref_primary_10_1002_admt_202301092 crossref_primary_10_1016_j_cej_2022_140874 crossref_primary_10_1039_D1MA01030A crossref_primary_10_1002_batt_202200355 crossref_primary_10_1039_D4TC03113J crossref_primary_10_1002_anie_202214203 crossref_primary_10_1016_j_solmat_2024_113195 crossref_primary_10_1021_acsaom_4c00197 crossref_primary_10_1039_D0OB01085E crossref_primary_10_1002_chem_202101061 crossref_primary_10_1016_j_orgel_2021_106420 crossref_primary_10_1002_jcc_27207 crossref_primary_10_2139_ssrn_3994546 crossref_primary_10_1016_j_cej_2020_126794 crossref_primary_10_1016_j_seppur_2020_118198 crossref_primary_10_1038_s41598_024_56370_1 crossref_primary_10_1016_j_solmat_2024_112797 crossref_primary_10_1021_acs_chemmater_0c03132 crossref_primary_10_1039_D1PY01531A crossref_primary_10_1016_j_solmat_2023_112256 crossref_primary_10_1002_tcr_202100082 crossref_primary_10_1016_j_cej_2024_154835 crossref_primary_10_1016_j_solmat_2024_113088 crossref_primary_10_1038_s41598_023_34839_9 crossref_primary_10_1016_j_ceramint_2024_05_185 crossref_primary_10_3390_M1742 |
Cites_doi | 10.1021/acs.langmuir.6b02940 10.1021/acsami.7b00624 10.1039/c2jm33622g 10.1039/b816681c 10.1002/celc.201800113 10.1016/j.carbon.2015.03.020 10.1002/adma.200400198 10.1016/j.electacta.2017.07.049 10.1016/j.solmat.2017.05.004 10.1021/am503869b 10.1002/celc.201402265 10.1021/acsami.6b01911 10.1021/la026085u 10.1016/j.electacta.2017.10.096 10.1039/C4PY00718B 10.1039/C6CC09412K 10.1021/acsami.6b10152 10.1002/chem.201703348 10.1021/la1043816 10.1039/C5RA02368H 10.1016/j.orgel.2018.07.033 10.1038/s41598-018-19739-7 10.1039/b808638a 10.1021/jo050328g 10.1002/aenm.201602598 10.1039/C8PY00591E 10.1039/C7TC02913F 10.1021/acsami.6b01307 10.1016/j.orgel.2017.10.001 10.1021/acsami.7b04427 10.1021/acsami.5b11947 10.1002/adfm.200304307 10.1021/acsami.6b11321 10.1039/c1jm13069b 10.1002/macp.200700405 10.1021/jo701304g 10.1021/jacs.6b05038 10.1016/j.orgel.2013.11.018 10.1039/C2TA00126H 10.1039/C4RA11827H 10.1021/jacs.6b09311 10.1016/j.solmat.2009.06.003 10.1038/am.2017.57 10.1016/j.solmat.2015.11.044 10.1021/acsami.7b00946 10.1039/C5TC00456J 10.1039/C6CC08924K 10.1021/jm301337y 10.1016/j.solmat.2015.06.031 10.1039/C6CS00257A 10.1002/cplu.201402232 10.1021/jacs.5b06413 10.1016/j.orgel.2018.02.018 10.1021/ma900522w 10.1016/j.solmat.2014.08.034 10.1002/adom.201600989 10.1002/slct.201600102 10.1016/j.tetlet.2010.02.097 10.1039/C7GC00347A 10.1039/C6NR09220A 10.1039/C6RA11149A 10.1039/C5CC06961K 10.1016/j.solmat.2017.01.033 10.1039/C6TC04834J 10.1016/0927-0248(92)90072-W 10.1039/C7TC02953E 10.1039/c2jm31407j 10.1039/b316243p 10.1016/j.cplett.2013.06.037 10.1021/acs.jpcc.5b04388 10.3390/ma3125029 10.1039/C6RA13951E 10.1021/jp046404l 10.1021/jp053556n 10.1021/cm051492n 10.1002/chem.201304451 10.1021/jp012473d 10.1021/jacs.6b04343 10.1002/adma.201401201 10.1021/acs.chemmater.5b00026 10.1021/jp509931p 10.1038/s41598-018-22274-0 10.1039/cs9972600147 10.1002/app.40485 10.1021/la505005r 10.1021/cr980032t 10.1016/j.solmat.2015.02.014 10.1021/jp503740u 10.1021/acsami.8b15066 10.1016/j.electacta.2013.08.127 10.1021/ol035967x 10.1111/cote.12079 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1039/c9tc00416e |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2050-7534 |
EndPage | 4637 |
ExternalDocumentID | 10_1039_C9TC00416E c9tc00416e |
GroupedDBID | -JG 0-7 705 AAEMU AAIWI ABGFH ACLDK ADSRN AEFDR AFVBQ AGSTE AUDPV BSQNT C6K EE0 EF- GNO H~N J3I R7C RCNCU RPMJG RRC RSCEA SKA SKF SLH 0R~ 4.4 AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ADMRA AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT BLAPV CITATION EBS ECGLT EJD GGIMP H13 HZ~ O-G O9- RAOCF RNS 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c410t-38f6d05385b1d5eaece2cca67625f0d03a79a67ec19a49f5b974c1b2bdce6ac53 |
ISSN | 2050-7526 |
IngestDate | Sun Jun 29 12:44:49 EDT 2025 Tue Jul 01 02:08:54 EDT 2025 Thu Apr 24 23:03:34 EDT 2025 Wed Apr 24 06:32:11 EDT 2019 Thu May 30 17:34:43 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c410t-38f6d05385b1d5eaece2cca67625f0d03a79a67ec19a49f5b974c1b2bdce6ac53 |
Notes | 2 reduction and conversion to useful organics, metal organic frameworks and porous organic polymers for energy-related applications. Dr David Velayutham graduated from Madurai Kamaraj University with both Bachelor's (1982) and Master's degrees (1984). He joined the CSIR-Central Electrochemical Research Institute (CSIR-CECRI) as a Junior Scientist in 1987 and received his PhD from Alagappa University, Karaikudi, India, in 1993. He then moved to the University of Duisburg, Germany as a Post-Doctoral Fellow (1994) for 18 months, after which he resumed his duties at CSIR-CECRI. He is currently working as a Chief Scientist in the Electro Organic Division, CSIR-CECRI, Karaikudi, TamilNadu, India. His current research interests include electro-organic synthesis, electrochemical fluorination and the synthesis of ionic liquids for electrochemical applications, including super capacitors and lithium ion batteries. Dr Murugavel Kathiresan graduated from the University of Madras with both Bachelor's (2004) and Master's degrees (2006), and received his PhD from the University of Osnabrück, Germany, in 2010 under the guidance of Prof. Lorenz Walder. He then moved to the University of Basel, Switzerland, to conduct his postdoctoral research with Prof. Marcel Mayor. He was awarded the DST-INSPIRE Faculty award in December 2013. From March 2014 to April 2017, he worked as a DST-INSPIRE faculty member at the Electro Organic Division, CSIR-Central Electro Chemical Research Institute, Karaikudi, India. Since April 2017, he has been working as a Scientist in the same department. His current research interests include viologen-based supramolecular chemistry, along with the investigation of their applications towards photophysical and biological applications, electro-organic synthesis, electrochemical CO Dr Vembu Suryanarayanan, received his BSc and MSc degrees from the Department of Chemistry, Bharathidasan University, Trichy, India, in 1990 and 1992, respectively. He received his PhD (Electrochemical Fluorination) from Alagappa University, Karaikudi, India, in 1998. He completed his postdoctoral studies at the National Taiwan University, Taiwan, and Utsunomiya University, Japan, from 2003 to 2006. He has published about 78 papers in peer-reviewed journals and contributed a chapter to Diamond Electrochemistry (ed. A. Fujishima, et al., Elsevier, 2005). Currently, he is working as a Principal Scientist in the Electro Organic Division, CSIR-Central Electrochemical Research Institute, Karaikudi, India. His research interests include the synthesis of novel ionic liquids as well as their applications in various electrochemical devices, and nanomaterial composites for electrochemical sensing. Dr Kuo-Chuan Ho received his Bachelor's and Master's degrees from the Department of Chemical Engineering, National Cheng Kung University, Taiwan, in 1978 and 1980, respectively. He received his PhD in Chemical Engineering from the University of Rochester, USA, in 1986. Currently, he is a Distinguished Professor jointly appointed by the Department of Chemical Engineering and Institute of Polymer Science and Engineering at the National Taiwan University. His research interests mainly encompass applications of chemically modified electrodes to sensing and electro-optical devices, including electrochromic devices and dye-sensitized solar cells. Kanagaraj Madasamy graduated from the University of Madras with both Bachelor's and Master's degrees, and is currently doing a PhD at CSIR-Central Electrochemical Research Institute, Karaikudi, India, under the guidance of Dr Velayutham and co-guidance of Dr M. Kathiresan. His research interests include the synthesis of organic compounds and metal organic frameworks, and supramolecular chemistry. He is currently working on viologen-based supramolecular self-assemblies. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1208-5879 0000-0003-1123-3291 0000-0001-7501-1271 |
PQID | 2212988539 |
PQPubID | 2047521 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1039_C9TC00416E crossref_citationtrail_10_1039_C9TC00416E rsc_primary_c9tc00416e proquest_journals_2212988539 |
ProviderPackageCode | J3I ACLDK RRC AEFDR AAIWI GNO RCNCU SLH EE0 RSCEA AFVBQ C6K H~N 0-7 RPMJG SKA -JG AGSTE AUDPV EF- BSQNT SKF ADSRN ABGFH 705 AAEMU R7C CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-00-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. C, Materials for optical and electronic devices |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Wang (C9TC00416E-(cit21)/*[position()=1]) 2013; 579 Alesanco (C9TC00416E-(cit91)/*[position()=1]) 2017; 5 Ikeda (C9TC00416E-(cit23)/*[position()=1]) 2011; 27 Lu (C9TC00416E-(cit63)/*[position()=1]) 2016; 147 Shaikh (C9TC00416E-(cit12)/*[position()=1]) 2016; 6 Duffy (C9TC00416E-(cit7)/*[position()=1]) 2016; 45 Madasamy (C9TC00416E-(cit14)/*[position()=1]) 2018; 8 Madasamy (C9TC00416E-(cit31)/*[position()=1]) 2016; 1 Kim (C9TC00416E-(cit69)/*[position()=1]) 2018; 8 Liu (C9TC00416E-(cit71)/*[position()=1]) 2017; 9 Kao (C9TC00416E-(cit2)/*[position()=1]) 2015; 3 Guo (C9TC00416E-(cit42)/*[position()=1]) 2007; 72 Xu (C9TC00416E-(cit22)/*[position()=1]) 2013; 112 Lu (C9TC00416E-(cit37)/*[position()=1]) 2016; 8 Kim (C9TC00416E-(cit25)/*[position()=1]) 2005; 17 Chen (C9TC00416E-(cit54)/*[position()=1]) 2017; 53 Alesanco (C9TC00416E-(cit50)/*[position()=1]) 2016; 8 Tarábek (C9TC00416E-(cit40)/*[position()=1]) 2015; 119 Striepe (C9TC00416E-(cit59)/*[position()=1]) 2017; 23 Funston (C9TC00416E-(cit39)/*[position()=1]) 2005; 109 Monk (C9TC00416E-(cit1)/*[position()=1]) 2015 Huang (C9TC00416E-(cit56)/*[position()=1]) 2017; 5 Yamaguchi (C9TC00416E-(cit53)/*[position()=1]) 2009; 42 Moon (C9TC00416E-(cit82)/*[position()=1]) 2016; 8 Kathiresan (C9TC00416E-(cit47)/*[position()=1]) 2010; 51 Cai (C9TC00416E-(cit9)/*[position()=1]) 2017; 7 Fan (C9TC00416E-(cit62)/*[position()=1]) 2016; 145 Gadgil (C9TC00416E-(cit93)/*[position()=1]) 2015; 89 Jordão (C9TC00416E-(cit86)/*[position()=1]) 2015; 5 Nam (C9TC00416E-(cit57)/*[position()=1]) 2018; 9 Alesanco (C9TC00416E-(cit74)/*[position()=1]) 2016; 8 Li (C9TC00416E-(cit65)/*[position()=1]) 2016; 6 Liu (C9TC00416E-(cit67)/*[position()=1]) 2017; 9 Kao (C9TC00416E-(cit15)/*[position()=1]) 2016; 8 Baker (C9TC00416E-(cit36)/*[position()=1]) 2001; 105 Wang (C9TC00416E-(cit19)/*[position()=1]) 2004 Zhang (C9TC00416E-(cit26)/*[position()=1]) 2011; 21 Cruz (C9TC00416E-(cit33)/*[position()=1]) 2017; 19 Cheng (C9TC00416E-(cit51)/*[position()=1]) 2016; 138 Sydam (C9TC00416E-(cit64)/*[position()=1]) 2015; 132 Yasuda (C9TC00416E-(cit20)/*[position()=1]) 1992; 25 Reus (C9TC00416E-(cit55)/*[position()=1]) 2015; 137 Moon (C9TC00416E-(cit45)/*[position()=1]) 2004; 6 Wang (C9TC00416E-(cit61)/*[position()=1]) 2010; 3 Chidichimo (C9TC00416E-(cit72)/*[position()=1]) 2014; 118 Evanko (C9TC00416E-(cit46)/*[position()=1]) 2016; 138 Porter (C9TC00416E-(cit41)/*[position()=1]) 2005; 70 Palenzuela (C9TC00416E-(cit44)/*[position()=1]) 2014; 6 Mishra (C9TC00416E-(cit18)/*[position()=1]) 2017; 5 Welton (C9TC00416E-(cit76)/*[position()=1]) 1999; 99 Bodappa (C9TC00416E-(cit34)/*[position()=1]) 2015; 119 Danine (C9TC00416E-(cit87)/*[position()=1]) 2017; 258 Su (C9TC00416E-(cit89)/*[position()=1]) 2018; 5 Hwang (C9TC00416E-(cit92)/*[position()=1]) 2014; 26 Chen (C9TC00416E-(cit16)/*[position()=1]) 2014; 131 Yun (C9TC00416E-(cit8)/*[position()=1]) 2018; 10 Moon (C9TC00416E-(cit73)/*[position()=1]) 2015; 27 Li (C9TC00416E-(cit6)/*[position()=1]) 2009; 38 Alesanco (C9TC00416E-(cit90)/*[position()=1]) 2018; 177 Asaftei (C9TC00416E-(cit48)/*[position()=1]) 2012; 55 Jordão (C9TC00416E-(cit35)/*[position()=1]) 2014; 20 Kahlfuss (C9TC00416E-(cit52)/*[position()=1]) 2016; 138 Li (C9TC00416E-(cit68)/*[position()=1]) 2017; 248 Oh (C9TC00416E-(cit88)/*[position()=1]) 2017; 51 Yun (C9TC00416E-(cit85)/*[position()=1]) 2018; 56 Kim (C9TC00416E-(cit3)/*[position()=1]) 2012; 22 Chang (C9TC00416E-(cit70)/*[position()=1]) 2015; 143 Tahara (C9TC00416E-(cit79)/*[position()=1]) 2017; 53 Sharmoukh (C9TC00416E-(cit30)/*[position()=1]) 2008; 18 Alesanco (C9TC00416E-(cit66)/*[position()=1]) 2015; 2 Anthony (C9TC00416E-(cit81)/*[position()=1]) 2005; 109 Alkan (C9TC00416E-(cit24)/*[position()=1]) 2003; 13 Jain (C9TC00416E-(cit17)/*[position()=1]) 2008; 209 Mortimer (C9TC00416E-(cit5)/*[position()=1]) 1997; 26 Jordão (C9TC00416E-(cit13)/*[position()=1]) 2015; 80 Kim (C9TC00416E-(cit83)/*[position()=1]) 2017; 9 Möller (C9TC00416E-(cit49)/*[position()=1]) 2004; 16 Oh (C9TC00416E-(cit84)/*[position()=1]) 2017; 9 Santhosh (C9TC00416E-(cit4)/*[position()=1]) 2017; 33 Ye (C9TC00416E-(cit78)/*[position()=1]) 2013; 1 Gélinas (C9TC00416E-(cit80)/*[position()=1]) 2017; 9 Kuo (C9TC00416E-(cit10)/*[position()=1]) 2009; 93 Kim (C9TC00416E-(cit43)/*[position()=1]) 2018; 62 Li (C9TC00416E-(cit60)/*[position()=1]) 2014; 15 Xie (C9TC00416E-(cit11)/*[position()=1]) 2012; 22 Cheng (C9TC00416E-(cit38)/*[position()=1]) 2015; 31 Murugavel (C9TC00416E-(cit32)/*[position()=1]) 2014; 5 Kline (C9TC00416E-(cit58)/*[position()=1]) 2014; 130 Kathiresan (C9TC00416E-(cit77)/*[position()=1]) 2015; 51 Chang (C9TC00416E-(cit75)/*[position()=1]) 2018; 177 Camurlu (C9TC00416E-(cit27)/*[position()=1]) 2014; 4 Liu (C9TC00416E-(cit28)/*[position()=1]) 2002; 18 Ling (C9TC00416E-(cit29)/*[position()=1]) 2017; 5 |
References_xml | – issn: 2015 volume-title: Electrochromic Materials and Devices Based on Viologens publication-title: Electrochromic Materials and Devices doi: Monk Rosseinsky Mortimer – volume: 33 start-page: 19 year: 2017 ident: C9TC00416E-(cit4)/*[position()=1] publication-title: Langmuir doi: 10.1021/acs.langmuir.6b02940 – volume: 9 start-page: 7658 year: 2017 ident: C9TC00416E-(cit84)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b00624 – volume: 22 start-page: 19904 year: 2012 ident: C9TC00416E-(cit11)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm33622g – volume: 38 start-page: 2397 year: 2009 ident: C9TC00416E-(cit6)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b816681c – volume: 5 start-page: 1407 year: 2018 ident: C9TC00416E-(cit89)/*[position()=1] publication-title: ChemElectroChem doi: 10.1002/celc.201800113 – volume: 89 start-page: 53 year: 2015 ident: C9TC00416E-(cit93)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2015.03.020 – volume: 16 start-page: 1558 year: 2004 ident: C9TC00416E-(cit49)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200400198 – volume: 248 start-page: 206 year: 2017 ident: C9TC00416E-(cit68)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.07.049 – volume: 177 start-page: 75 year: 2018 ident: C9TC00416E-(cit75)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.05.004 – volume: 6 start-page: 14562 year: 2014 ident: C9TC00416E-(cit44)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am503869b – volume: 2 start-page: 218 year: 2015 ident: C9TC00416E-(cit66)/*[position()=1] publication-title: ChemElectroChem doi: 10.1002/celc.201402265 – volume: 8 start-page: 14795 year: 2016 ident: C9TC00416E-(cit74)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b01911 – volume: 18 start-page: 9041 year: 2002 ident: C9TC00416E-(cit28)/*[position()=1] publication-title: Langmuir doi: 10.1021/la026085u – volume: 258 start-page: 200 year: 2017 ident: C9TC00416E-(cit87)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.10.096 – volume: 5 start-page: 5873 year: 2014 ident: C9TC00416E-(cit32)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C4PY00718B – volume: 53 start-page: 2455 year: 2017 ident: C9TC00416E-(cit79)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC09412K – volume: 8 start-page: 30351 year: 2016 ident: C9TC00416E-(cit37)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10152 – volume: 23 start-page: 16924 year: 2017 ident: C9TC00416E-(cit59)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201703348 – volume: 27 start-page: 4184 year: 2011 ident: C9TC00416E-(cit23)/*[position()=1] publication-title: Langmuir doi: 10.1021/la1043816 – volume: 5 start-page: 27867 year: 2015 ident: C9TC00416E-(cit86)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA02368H – volume: 62 start-page: 151 year: 2018 ident: C9TC00416E-(cit43)/*[position()=1] publication-title: Org. Electron. doi: 10.1016/j.orgel.2018.07.033 – volume: 8 start-page: 1354 year: 2018 ident: C9TC00416E-(cit14)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-018-19739-7 – volume: 18 start-page: 4408 year: 2008 ident: C9TC00416E-(cit30)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/b808638a – volume: 70 start-page: 5028 year: 2005 ident: C9TC00416E-(cit41)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo050328g – volume: 7 start-page: 1602598 year: 2017 ident: C9TC00416E-(cit9)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602598 – volume: 9 start-page: 3662 year: 2018 ident: C9TC00416E-(cit57)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C8PY00591E – volume: 5 start-page: 9504 year: 2017 ident: C9TC00416E-(cit18)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C7TC02913F – volume: 8 start-page: 6252 year: 2016 ident: C9TC00416E-(cit82)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b01307 – volume: 51 start-page: 490 year: 2017 ident: C9TC00416E-(cit88)/*[position()=1] publication-title: Org. Electron. doi: 10.1016/j.orgel.2017.10.001 – volume: 9 start-page: 28726 year: 2017 ident: C9TC00416E-(cit80)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04427 – volume: 8 start-page: 4175 year: 2016 ident: C9TC00416E-(cit15)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b11947 – volume: 13 start-page: 331 year: 2003 ident: C9TC00416E-(cit24)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200304307 – volume: 8 start-page: 29619 year: 2016 ident: C9TC00416E-(cit50)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b11321 – volume: 21 start-page: 17316 year: 2011 ident: C9TC00416E-(cit26)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c1jm13069b – volume: 209 start-page: 150 year: 2008 ident: C9TC00416E-(cit17)/*[position()=1] publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.200700405 – volume: 72 start-page: 7775 year: 2007 ident: C9TC00416E-(cit42)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo701304g – volume: 138 start-page: 9373 year: 2016 ident: C9TC00416E-(cit46)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05038 – volume: 15 start-page: 428 year: 2014 ident: C9TC00416E-(cit60)/*[position()=1] publication-title: Org. Electron. doi: 10.1016/j.orgel.2013.11.018 – volume: 1 start-page: 2719 year: 2013 ident: C9TC00416E-(cit78)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C2TA00126H – volume: 4 start-page: 55832 year: 2014 ident: C9TC00416E-(cit27)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA11827H – volume: 138 start-page: 15234 year: 2016 ident: C9TC00416E-(cit52)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09311 – volume: 93 start-page: 1755 year: 2009 ident: C9TC00416E-(cit10)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2009.06.003 – volume: 9 start-page: e388 year: 2017 ident: C9TC00416E-(cit71)/*[position()=1] publication-title: NPG Asia Mater. doi: 10.1038/am.2017.57 – volume: 147 start-page: 75 year: 2016 ident: C9TC00416E-(cit63)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2015.11.044 – volume: 9 start-page: 18994 year: 2017 ident: C9TC00416E-(cit83)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b00946 – volume: 3 start-page: 3266 year: 2015 ident: C9TC00416E-(cit2)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C5TC00456J – volume: 53 start-page: 1595 year: 2017 ident: C9TC00416E-(cit54)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC08924K – volume: 55 start-page: 10405 year: 2012 ident: C9TC00416E-(cit48)/*[position()=1] publication-title: J. Med. Chem. doi: 10.1021/jm301337y – volume: 145 start-page: 35 year: 2016 ident: C9TC00416E-(cit62)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2015.06.031 – volume: 45 start-page: 5296 year: 2016 ident: C9TC00416E-(cit7)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00257A – volume: 80 start-page: 202 year: 2015 ident: C9TC00416E-(cit13)/*[position()=1] publication-title: ChemPlusChem doi: 10.1002/cplu.201402232 – volume: 137 start-page: 11710 year: 2015 ident: C9TC00416E-(cit55)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06413 – volume: 56 start-page: 178 year: 2018 ident: C9TC00416E-(cit85)/*[position()=1] publication-title: Org. Electron. doi: 10.1016/j.orgel.2018.02.018 – volume: 42 start-page: 4416 year: 2009 ident: C9TC00416E-(cit53)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma900522w – volume: 132 start-page: 148 year: 2015 ident: C9TC00416E-(cit64)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2014.08.034 – volume: 5 start-page: 1600989 year: 2017 ident: C9TC00416E-(cit91)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201600989 – volume: 1 start-page: 354 year: 2016 ident: C9TC00416E-(cit31)/*[position()=1] publication-title: ChemistrySelect doi: 10.1002/slct.201600102 – volume: 51 start-page: 2188 year: 2010 ident: C9TC00416E-(cit47)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2010.02.097 – volume: 19 start-page: 1653 year: 2017 ident: C9TC00416E-(cit33)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C7GC00347A – volume: 9 start-page: 2633 year: 2017 ident: C9TC00416E-(cit67)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR09220A – volume: 6 start-page: 60084 year: 2016 ident: C9TC00416E-(cit12)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA11149A – volume: 51 start-page: 17499 year: 2015 ident: C9TC00416E-(cit77)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC06961K – volume: 177 start-page: 110 year: 2018 ident: C9TC00416E-(cit90)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.01.033 – volume: 5 start-page: 290 year: 2017 ident: C9TC00416E-(cit29)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C6TC04834J – volume: 25 start-page: 257 year: 1992 ident: C9TC00416E-(cit20)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/0927-0248(92)90072-W – volume: 5 start-page: 9370 year: 2017 ident: C9TC00416E-(cit56)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C7TC02953E – volume: 22 start-page: 13558 year: 2012 ident: C9TC00416E-(cit3)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/c2jm31407j – start-page: 578 year: 2004 ident: C9TC00416E-(cit19)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b316243p – volume: 579 start-page: 105 year: 2013 ident: C9TC00416E-(cit21)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2013.06.037 – volume: 119 start-page: 18056 year: 2015 ident: C9TC00416E-(cit40)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b04388 – volume: 3 start-page: 5029 year: 2010 ident: C9TC00416E-(cit61)/*[position()=1] publication-title: Materials doi: 10.3390/ma3125029 – volume: 6 start-page: 72037 year: 2016 ident: C9TC00416E-(cit65)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA13951E – volume: 109 start-page: 6366 year: 2005 ident: C9TC00416E-(cit81)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp046404l – volume-title: Electrochromic Materials and Devices year: 2015 ident: C9TC00416E-(cit1)/*[position()=1] – volume: 109 start-page: 10862 year: 2005 ident: C9TC00416E-(cit39)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp053556n – volume: 17 start-page: 6381 year: 2005 ident: C9TC00416E-(cit25)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm051492n – volume: 20 start-page: 3982 year: 2014 ident: C9TC00416E-(cit35)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201304451 – volume: 105 start-page: 8885 year: 2001 ident: C9TC00416E-(cit36)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp012473d – volume: 138 start-page: 8288 year: 2016 ident: C9TC00416E-(cit51)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04343 – volume: 26 start-page: 5129 year: 2014 ident: C9TC00416E-(cit92)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201401201 – volume: 27 start-page: 1420 year: 2015 ident: C9TC00416E-(cit73)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b00026 – volume: 119 start-page: 1067 year: 2015 ident: C9TC00416E-(cit34)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp509931p – volume: 8 start-page: 3944 year: 2018 ident: C9TC00416E-(cit69)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-018-22274-0 – volume: 26 start-page: 147 year: 1997 ident: C9TC00416E-(cit5)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/cs9972600147 – volume: 131 start-page: 40485 year: 2014 ident: C9TC00416E-(cit16)/*[position()=1] publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.40485 – volume: 31 start-page: 2997 year: 2015 ident: C9TC00416E-(cit38)/*[position()=1] publication-title: Langmuir doi: 10.1021/la505005r – volume: 99 start-page: 2071 year: 1999 ident: C9TC00416E-(cit76)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr980032t – volume: 143 start-page: 606 year: 2015 ident: C9TC00416E-(cit70)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2015.02.014 – volume: 118 start-page: 13484 year: 2014 ident: C9TC00416E-(cit72)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp503740u – volume: 10 start-page: 43993 year: 2018 ident: C9TC00416E-(cit8)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b15066 – volume: 112 start-page: 95 year: 2013 ident: C9TC00416E-(cit22)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.08.127 – volume: 6 start-page: 185 year: 2004 ident: C9TC00416E-(cit45)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/ol035967x – volume: 130 start-page: 73 year: 2014 ident: C9TC00416E-(cit58)/*[position()=1] publication-title: Color. Technol. doi: 10.1111/cote.12079 |
SSID | ssj0000816869 |
Score | 2.6321933 |
SecondaryResourceType | review_article |
Snippet | Considerable interest is raised by organic materials owing to their exceptional performance in electronic and optoelectronic applications. Among these,... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4622 |
SubjectTerms | Bleaching Conducting polymers Electrochromic cells Electrochromism Electrode materials Nitrogen Optical properties Optimization Optoelectronics Organic materials Reagents Stability |
Title | Viologen-based electrochromic materials and devices |
URI | https://www.proquest.com/docview/2212988539 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7YLYI-iFaLW6sM6IuU0UySyU4eS1mpIj5tl74NuY0i7bbMzgr113uSyVwWV1Bfwm6SGYZ8yZdzknMBeEMs5TNqs5Txgqe84iYtrMUCiVBpYXD9BSvfL-L8gn-6zC-7DNnRu6TR78zPnX4l_4Mq1iGu3kv2H5DtX4oV-BvxxRIRxvKvMF4GXxO3Sv1eZE9iShvzrfauxicoi7YfES4IrAucMJxAW7VW1-2lvTeBUbX63jUu3ZW62zTRhXpk9u4vj-o77F4rXwbGWrprvel52xszogbfNiGKm6_qR7TKj2cLkbsC-VCSk3SW0ximelwXDx8je87Gk2RMhVy0DsdxW-WiDe7yG2UT5iOeGtkYH_tLuGFj6s0Fh8Y92KeoD9AJ7J_OFx8_98dpIX9ISGDYf3kXjJbJ98MLtsWPQafYq7uEL0GwWDyGR1EjSE5beJ_APbc6gIejOJEHcD_Y6Zr1U2DbkCfbkCc95AlCnkTIn8HFh_ni7DyNeS9SwzPSpKyohEVyLHKd2dwpZxzFhSb8uqmIJUzNJP5zJpOKyyrXqBOaTFNtjRPK5OwQJqublXvuPfINK5im0mnNlSaKW4cSIREK9QBj2RTedsNRmhgU3ucmuSqDcQKT5Zn0d084dPMpvO773rahUHb2Ou5GtYxLZV1SFJBkgZKhnMIhjnT__ADMFI52N5S3tjr601Mv4IGft-2Z2DFMmnrjXqKU2OhXcYb8Ao6KaOE |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Viologen-based+electrochromic+materials+and+devices&rft.au=Madasamy%2C+Kanagaraj&rft.au=Velayutham%2C+David&rft.au=Suryanarayanan%2C+Vembu&rft.au=Kathiresan%2C+Murugavel&rft.date=2019&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=7&rft.issue=16&rft.spage=4622&rft.epage=4637&rft_id=info:doi/10.1039%2Fc9tc00416e&rft.externalDocID=c9tc00416e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon |