Viologen-based electrochromic materials and devices

Considerable interest is raised by organic materials owing to their exceptional performance in electronic and optoelectronic applications. Among these, electrochromic materials (EC) that can be switched between a distinct color and a bleached state exhibiting high contrast, multicolor and improved l...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 7; no. 16; pp. 4622 - 4637
Main Authors Madasamy, Kanagaraj, Velayutham, David, Suryanarayanan, Vembu, Kathiresan, Murugavel, Ho, Kuo-Chuan
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Considerable interest is raised by organic materials owing to their exceptional performance in electronic and optoelectronic applications. Among these, electrochromic materials (EC) that can be switched between a distinct color and a bleached state exhibiting high contrast, multicolor and improved long-term stability are attractive in the fabrication of electrochromic devices (ECDs). Ionic materials, in particular, have received persistent attention owing to their tunable optical and electronic properties. 4,4′-Bipyridinium salts, commonly called viologens (V 2+ ), are a well-recognized class of electrochromic materials that exhibit three reversible redox states, namely, V 2+ (dication, pale yellow colored/colorless) ↔ V + &z.rad; (radical cation, violet/blue/green) ↔ V 0 (neutral, colorless). The electrochromic properties of these materials can be modulated by varying the nitrogen substituents on the pyridyl 'N'; also, besides this, varying the counter ions with specific functionalities has been shown to enhance the electrochromic behavior, such as switching time, cycling stability and device performance. Although ECDs based on viologens are well regarded for their low operational voltages, they exhibit certain disadvantages such as low cycle life and poor efficiency of the device in the long term. Extensive efforts have been made to fine tune the EC properties of viologens, either through alteration or by adding suitable electrochromic counter electrode materials, which includes the incorporation of conducting polymers in the device set-up and/or the addition of complementary redox species. Optimization of the device parameters has shown that the addition of such external agents has a positive effect on the overall device performance. This review describes recent developments in the synthesis of viologen-based electrochromes with co-redox species and their ECD performance. This review describes recent developments relating to the synthesis of viologen-based electrochromes with co-redox species and their ECD performance.
AbstractList Considerable interest is raised by organic materials owing to their exceptional performance in electronic and optoelectronic applications. Among these, electrochromic materials (EC) that can be switched between a distinct color and a bleached state exhibiting high contrast, multicolor and improved long-term stability are attractive in the fabrication of electrochromic devices (ECDs). Ionic materials, in particular, have received persistent attention owing to their tunable optical and electronic properties. 4,4′-Bipyridinium salts, commonly called viologens (V 2+ ), are a well-recognized class of electrochromic materials that exhibit three reversible redox states, namely, V 2+ (dication, pale yellow colored/colorless) ↔ V + &z.rad; (radical cation, violet/blue/green) ↔ V 0 (neutral, colorless). The electrochromic properties of these materials can be modulated by varying the nitrogen substituents on the pyridyl 'N'; also, besides this, varying the counter ions with specific functionalities has been shown to enhance the electrochromic behavior, such as switching time, cycling stability and device performance. Although ECDs based on viologens are well regarded for their low operational voltages, they exhibit certain disadvantages such as low cycle life and poor efficiency of the device in the long term. Extensive efforts have been made to fine tune the EC properties of viologens, either through alteration or by adding suitable electrochromic counter electrode materials, which includes the incorporation of conducting polymers in the device set-up and/or the addition of complementary redox species. Optimization of the device parameters has shown that the addition of such external agents has a positive effect on the overall device performance. This review describes recent developments in the synthesis of viologen-based electrochromes with co-redox species and their ECD performance. This review describes recent developments relating to the synthesis of viologen-based electrochromes with co-redox species and their ECD performance.
Considerable interest is raised by organic materials owing to their exceptional performance in electronic and optoelectronic applications. Among these, electrochromic materials (EC) that can be switched between a distinct color and a bleached state exhibiting high contrast, multicolor and improved long-term stability are attractive in the fabrication of electrochromic devices (ECDs). Ionic materials, in particular, have received persistent attention owing to their tunable optical and electronic properties. 4,4′-Bipyridinium salts, commonly called viologens (V 2+ ), are a well-recognized class of electrochromic materials that exhibit three reversible redox states, namely, V 2+ (dication, pale yellow colored/colorless) ↔ V + ˙ (radical cation, violet/blue/green) ↔ V 0 (neutral, colorless). The electrochromic properties of these materials can be modulated by varying the nitrogen substituents on the pyridyl ‘N’; also, besides this, varying the counter ions with specific functionalities has been shown to enhance the electrochromic behavior, such as switching time, cycling stability and device performance. Although ECDs based on viologens are well regarded for their low operational voltages, they exhibit certain disadvantages such as low cycle life and poor efficiency of the device in the long term. Extensive efforts have been made to fine tune the EC properties of viologens, either through alteration or by adding suitable electrochromic counter electrode materials, which includes the incorporation of conducting polymers in the device set-up and/or the addition of complementary redox species. Optimization of the device parameters has shown that the addition of such external agents has a positive effect on the overall device performance. This review describes recent developments in the synthesis of viologen-based electrochromes with co-redox species and their ECD performance.
Considerable interest is raised by organic materials owing to their exceptional performance in electronic and optoelectronic applications. Among these, electrochromic materials (EC) that can be switched between a distinct color and a bleached state exhibiting high contrast, multicolor and improved long-term stability are attractive in the fabrication of electrochromic devices (ECDs). Ionic materials, in particular, have received persistent attention owing to their tunable optical and electronic properties. 4,4′-Bipyridinium salts, commonly called viologens (V2+), are a well-recognized class of electrochromic materials that exhibit three reversible redox states, namely, V2+ (dication, pale yellow colored/colorless) ↔ V+· (radical cation, violet/blue/green) ↔ V0 (neutral, colorless). The electrochromic properties of these materials can be modulated by varying the nitrogen substituents on the pyridyl ‘N’; also, besides this, varying the counter ions with specific functionalities has been shown to enhance the electrochromic behavior, such as switching time, cycling stability and device performance. Although ECDs based on viologens are well regarded for their low operational voltages, they exhibit certain disadvantages such as low cycle life and poor efficiency of the device in the long term. Extensive efforts have been made to fine tune the EC properties of viologens, either through alteration or by adding suitable electrochromic counter electrode materials, which includes the incorporation of conducting polymers in the device set-up and/or the addition of complementary redox species. Optimization of the device parameters has shown that the addition of such external agents has a positive effect on the overall device performance. This review describes recent developments in the synthesis of viologen-based electrochromes with co-redox species and their ECD performance.
Author Madasamy, Kanagaraj
Ho, Kuo-Chuan
Suryanarayanan, Vembu
Velayutham, David
Kathiresan, Murugavel
AuthorAffiliation CSIR - Central Electrochemical Research Institute
Department of Chemical Engineering
National Taiwan University
AcSIR - Academy of Scientific & Innovative Research
AuthorAffiliation_xml – name: Department of Chemical Engineering
– name: AcSIR - Academy of Scientific & Innovative Research
– name: National Taiwan University
– name: CSIR - Central Electrochemical Research Institute
Author_xml – sequence: 1
  givenname: Kanagaraj
  surname: Madasamy
  fullname: Madasamy, Kanagaraj
– sequence: 2
  givenname: David
  surname: Velayutham
  fullname: Velayutham, David
– sequence: 3
  givenname: Vembu
  surname: Suryanarayanan
  fullname: Suryanarayanan, Vembu
– sequence: 4
  givenname: Murugavel
  surname: Kathiresan
  fullname: Kathiresan, Murugavel
– sequence: 5
  givenname: Kuo-Chuan
  surname: Ho
  fullname: Ho, Kuo-Chuan
BookMark eNp9kEtLAzEUhYNUsNZu3Asj7oTRPCbpZClDfYDgprodMjd3NGU6qUkq-O8drVQQ8W7ug--cC-eQjHrfIyHHjF4wKvQl6ASUFkzhHhlzKmk-k6IY7WauDsg0xiUdqmSqVHpMxJPznX_GPm9MRJthh5CCh5fgVw6ylUkYnOliZnqbWXxzgPGI7LfDCafffUIer-eL6ja_f7i5q67ucygYTbkoW2WpFKVsmJVoEJADGDVTXLbUUmFmetgQmDaFbmWjZwWwhjcWUBmQYkLOtr7r4F83GFO99JvQDy9rzhnXZSmFHqjzLQXBxxiwrdfBrUx4rxmtP3OpK72ovnKZDzD9BYNLJjnfp2Bc97fkdCsJEXbWP1HXa9sOzMl_jPgA-zJ76Q
CitedBy_id crossref_primary_10_1007_s12274_022_4928_8
crossref_primary_10_1016_j_est_2023_106714
crossref_primary_10_1021_acsami_0c15424
crossref_primary_10_1016_j_molstruc_2023_135769
crossref_primary_10_1016_j_eurpolymj_2025_113796
crossref_primary_10_1039_D4TA06028H
crossref_primary_10_1021_acs_jpclett_0c02690
crossref_primary_10_1021_acsaelm_2c00107
crossref_primary_10_1016_j_colsurfa_2021_127535
crossref_primary_10_1016_j_solmat_2022_111712
crossref_primary_10_1002_cctc_202401625
crossref_primary_10_1002_smll_202402403
crossref_primary_10_1016_j_dyepig_2022_110316
crossref_primary_10_1039_D4TC00977K
crossref_primary_10_1002_aelm_202000407
crossref_primary_10_1002_adfm_202311845
crossref_primary_10_1016_j_jorganchem_2023_122849
crossref_primary_10_1002_admt_202302080
crossref_primary_10_1016_j_dyepig_2023_111131
crossref_primary_10_1016_j_molstruc_2024_137786
crossref_primary_10_1016_j_jallcom_2024_176038
crossref_primary_10_1016_j_apmt_2024_102369
crossref_primary_10_1016_j_mtchem_2020_100289
crossref_primary_10_1039_D0TC00250J
crossref_primary_10_1002_adma_202107013
crossref_primary_10_1016_j_jpowsour_2025_236692
crossref_primary_10_1016_j_mtchem_2025_102511
crossref_primary_10_1134_S207511332106023X
crossref_primary_10_1002_adma_202305546
crossref_primary_10_1016_j_jphotochem_2024_115735
crossref_primary_10_1021_acsaom_3c00063
crossref_primary_10_1016_j_mattod_2021_06_015
crossref_primary_10_1016_j_pmatsci_2024_101374
crossref_primary_10_1139_cjc_2022_0268
crossref_primary_10_1016_j_optmat_2022_112292
crossref_primary_10_1016_j_solmat_2021_111429
crossref_primary_10_1021_acs_joc_1c02040
crossref_primary_10_3390_polym15132924
crossref_primary_10_3390_molecules29092006
crossref_primary_10_1039_D1MH01136G
crossref_primary_10_1002_ange_202214203
crossref_primary_10_1002_chem_202100601
crossref_primary_10_1016_j_orgel_2024_107040
crossref_primary_10_1016_j_molstruc_2022_133073
crossref_primary_10_1107_S2056989024005127
crossref_primary_10_2139_ssrn_4180123
crossref_primary_10_1002_chem_202403273
crossref_primary_10_1088_2040_8986_ad584e
crossref_primary_10_1002_adma_202106073
crossref_primary_10_1002_adma_202413665
crossref_primary_10_1002_vnl_22071
crossref_primary_10_1016_j_nanoms_2022_08_002
crossref_primary_10_1016_j_solmat_2022_111734
crossref_primary_10_1016_j_ccr_2021_214353
crossref_primary_10_1016_j_solmat_2022_111858
crossref_primary_10_1021_acsami_3c09595
crossref_primary_10_1016_j_dyepig_2022_110467
crossref_primary_10_1016_j_solmat_2022_112149
crossref_primary_10_1016_j_jiec_2020_07_033
crossref_primary_10_1039_D4NJ00190G
crossref_primary_10_1016_j_electacta_2022_139839
crossref_primary_10_1016_j_cej_2024_153834
crossref_primary_10_1039_D1RA05488K
crossref_primary_10_1002_adem_202000082
crossref_primary_10_1021_acsmaterialsau_3c00010
crossref_primary_10_1021_acsami_4c22554
crossref_primary_10_1021_acs_inorgchem_3c04625
crossref_primary_10_1016_j_tsf_2021_139067
crossref_primary_10_1002_cplu_202200171
crossref_primary_10_1039_D0NJ04323K
crossref_primary_10_1038_s41570_021_00283_4
crossref_primary_10_1002_mame_202100977
crossref_primary_10_1016_j_dyepig_2022_110902
crossref_primary_10_1016_j_mser_2023_100747
crossref_primary_10_1039_D3TC01142A
crossref_primary_10_1021_acs_cgd_4c00765
crossref_primary_10_1002_adpr_202400103
crossref_primary_10_1016_j_solmat_2021_111449
crossref_primary_10_1002_adom_202302976
crossref_primary_10_1002_anie_202105852
crossref_primary_10_35848_1347_4065_abb034
crossref_primary_10_1021_acs_chemmater_1c04415
crossref_primary_10_1002_adfm_202312587
crossref_primary_10_1039_C9NJ05286K
crossref_primary_10_1016_j_orgel_2023_106962
crossref_primary_10_1039_C9NJ05520G
crossref_primary_10_1002_cptc_201900284
crossref_primary_10_1039_D1NJ05816A
crossref_primary_10_1016_j_jssc_2021_122762
crossref_primary_10_1016_j_matchemphys_2023_127593
crossref_primary_10_1016_j_optmat_2021_111675
crossref_primary_10_1002_slct_202402625
crossref_primary_10_1016_j_jallcom_2023_169812
crossref_primary_10_1016_j_apmt_2021_101073
crossref_primary_10_1016_j_pmatsci_2025_101461
crossref_primary_10_1016_j_synthmet_2024_117744
crossref_primary_10_1021_acsami_3c09856
crossref_primary_10_1002_adma_202312791
crossref_primary_10_1016_j_polymdegradstab_2022_110093
crossref_primary_10_1016_j_dyepig_2024_112419
crossref_primary_10_4150_KPMI_2020_27_1_58
crossref_primary_10_1039_C9TA08302B
crossref_primary_10_1016_j_solmat_2023_112320
crossref_primary_10_1021_acs_macromol_2c02358
crossref_primary_10_3390_molecules25010001
crossref_primary_10_1002_aelm_202201042
crossref_primary_10_1021_acs_cgd_4c00030
crossref_primary_10_1016_j_orgel_2024_107016
crossref_primary_10_1016_j_solmat_2021_111070
crossref_primary_10_1038_s41467_024_46909_1
crossref_primary_10_1021_jacs_0c10183
crossref_primary_10_1039_D3SC00102D
crossref_primary_10_28979_jarnas_1267768
crossref_primary_10_1039_D3QM00121K
crossref_primary_10_1186_s40580_022_00313_x
crossref_primary_10_1016_j_cej_2024_158494
crossref_primary_10_1021_acsami_4c17105
crossref_primary_10_1039_D2NJ00889K
crossref_primary_10_1002_adfm_202210167
crossref_primary_10_1016_j_solmat_2020_110714
crossref_primary_10_1016_j_solmat_2020_110835
crossref_primary_10_1002_celc_202300479
crossref_primary_10_1002_elsa_202100022
crossref_primary_10_1002_adfm_202308989
crossref_primary_10_1039_C9RA09007J
crossref_primary_10_1016_j_solmat_2023_112431
crossref_primary_10_1039_D0CC05627H
crossref_primary_10_1039_D1GC04370F
crossref_primary_10_1016_j_dyepig_2020_108338
crossref_primary_10_1021_acsami_3c16142
crossref_primary_10_1021_acs_energyfuels_3c02299
crossref_primary_10_1002_smll_202301742
crossref_primary_10_1016_j_cej_2023_147623
crossref_primary_10_1021_acs_cgd_1c01277
crossref_primary_10_1039_D1TC03142B
crossref_primary_10_1021_acsaom_4c00108
crossref_primary_10_1016_j_solmat_2023_112669
crossref_primary_10_1002_smll_202207509
crossref_primary_10_1021_acs_cgd_4c00854
crossref_primary_10_1002_adpr_202400016
crossref_primary_10_1016_j_solmat_2025_113407
crossref_primary_10_1016_j_microc_2024_111698
crossref_primary_10_1021_acs_cgd_4c01268
crossref_primary_10_1149_1945_7111_abcd48
crossref_primary_10_1021_acs_inorgchem_5c00286
crossref_primary_10_1016_j_eurpolymj_2021_110938
crossref_primary_10_1016_j_molliq_2021_117801
crossref_primary_10_3390_molecules27238521
crossref_primary_10_1016_j_dyepig_2023_111157
crossref_primary_10_1021_acs_chemmater_4c03174
crossref_primary_10_1038_s41467_021_21086_7
crossref_primary_10_22349_1994_6716_2020_101_1_85_96
crossref_primary_10_1149_1945_7111_ac5305
crossref_primary_10_1002_chem_202401647
crossref_primary_10_1246_cl_190879
crossref_primary_10_1039_D0CE00167H
crossref_primary_10_3390_electronicmat1010005
crossref_primary_10_1039_D3NR05277J
crossref_primary_10_1007_s10800_022_01727_5
crossref_primary_10_1016_j_jics_2024_101170
crossref_primary_10_1016_j_electacta_2024_145156
crossref_primary_10_1016_j_jphotochem_2023_114969
crossref_primary_10_3390_polym15163347
crossref_primary_10_1016_j_cej_2024_149417
crossref_primary_10_1002_cctc_202201418
crossref_primary_10_1039_C9TC02919B
crossref_primary_10_15541_jim20200412
crossref_primary_10_1016_j_reactfunctpolym_2022_105186
crossref_primary_10_1016_j_mser_2019_100524
crossref_primary_10_1016_j_mtcomm_2023_105832
crossref_primary_10_1039_D1CC00322D
crossref_primary_10_1016_j_dyepig_2021_110010
crossref_primary_10_1039_D2SC02072F
crossref_primary_10_1002_adom_202001847
crossref_primary_10_1038_s41428_021_00480_4
crossref_primary_10_1039_D3TA00289F
crossref_primary_10_1016_j_ensm_2021_08_038
crossref_primary_10_1038_s41528_025_00398_4
crossref_primary_10_1016_j_cplett_2020_137434
crossref_primary_10_1002_adma_202108327
crossref_primary_10_1039_D0CS00317D
crossref_primary_10_1016_j_jcis_2025_02_193
crossref_primary_10_1016_j_jssc_2022_123653
crossref_primary_10_1016_j_susc_2022_122122
crossref_primary_10_3390_nano11092376
crossref_primary_10_1002_admt_202301028
crossref_primary_10_1002_ejoc_202400404
crossref_primary_10_1021_acs_chemrev_1c01055
crossref_primary_10_1016_j_dyepig_2024_112100
crossref_primary_10_1039_D2NJ03647A
crossref_primary_10_1016_j_cej_2024_157372
crossref_primary_10_1002_asia_202400236
crossref_primary_10_1016_j_jiec_2024_02_037
crossref_primary_10_1016_j_polymer_2023_125675
crossref_primary_10_1002_smsc_202100040
crossref_primary_10_1016_j_cap_2020_03_017
crossref_primary_10_3390_app10228108
crossref_primary_10_1021_acsnano_3c06621
crossref_primary_10_1039_D0TC04603E
crossref_primary_10_1002_ange_202105852
crossref_primary_10_1016_j_surfcoat_2022_128124
crossref_primary_10_1021_acssuschemeng_3c06285
crossref_primary_10_1016_j_apsusc_2020_148498
crossref_primary_10_1016_j_cej_2022_135469
crossref_primary_10_1016_j_solmat_2024_113179
crossref_primary_10_1039_C9CC06920H
crossref_primary_10_1007_s11164_024_05419_x
crossref_primary_10_3390_molecules28041740
crossref_primary_10_1002_tcr_202200165
crossref_primary_10_1021_acs_cgd_3c00955
crossref_primary_10_1002_ajoc_201900341
crossref_primary_10_1016_j_cej_2021_130057
crossref_primary_10_1016_j_ccr_2024_216064
crossref_primary_10_1016_j_mtsust_2024_100878
crossref_primary_10_1016_j_dyepig_2021_109321
crossref_primary_10_1134_S2070205121050154
crossref_primary_10_1016_j_cclet_2019_12_039
crossref_primary_10_1002_chem_202004748
crossref_primary_10_1016_j_ceramint_2020_05_166
crossref_primary_10_3390_molecules29235611
crossref_primary_10_1039_D3DT00963G
crossref_primary_10_1039_C9TC06753A
crossref_primary_10_1002_adma_202302685
crossref_primary_10_1039_D2MH00374K
crossref_primary_10_1039_D1QI01079D
crossref_primary_10_3390_nano11020304
crossref_primary_10_1016_j_cej_2020_126402
crossref_primary_10_1016_j_bios_2022_114565
crossref_primary_10_1039_D4CC06804A
crossref_primary_10_1021_acs_jpca_1c05435
crossref_primary_10_1016_j_cej_2021_130065
crossref_primary_10_1016_j_colsurfa_2024_135380
crossref_primary_10_1016_j_dyepig_2021_109233
crossref_primary_10_1021_acsapm_4c03599
crossref_primary_10_1016_j_solmat_2024_112862
crossref_primary_10_3390_M1817
crossref_primary_10_1002_smll_202208234
crossref_primary_10_1016_j_solmat_2023_112460
crossref_primary_10_1016_j_jiec_2021_12_010
crossref_primary_10_1016_j_mtener_2021_100676
crossref_primary_10_1016_j_jechem_2023_09_014
crossref_primary_10_1016_j_orgel_2021_106189
crossref_primary_10_1021_acsaenm_4c00253
crossref_primary_10_1021_acsami_0c05921
crossref_primary_10_1021_acsapm_3c00991
crossref_primary_10_1021_acs_chemmater_3c02167
crossref_primary_10_1016_j_cclet_2025_111021
crossref_primary_10_1016_j_cej_2020_124572
crossref_primary_10_1016_j_synthmet_2024_117632
crossref_primary_10_1021_acsami_3c01800
crossref_primary_10_1021_acs_chemmater_2c02054
crossref_primary_10_2139_ssrn_4052318
crossref_primary_10_1039_D0TC03680C
crossref_primary_10_1007_s10008_022_05187_x
crossref_primary_10_1002_chem_202001213
crossref_primary_10_1021_acsapm_4c00987
crossref_primary_10_1016_j_est_2025_115747
crossref_primary_10_1002_adom_202302344
crossref_primary_10_1002_adom_202302222
crossref_primary_10_1016_j_electacta_2020_137340
crossref_primary_10_1021_acsami_0c05918
crossref_primary_10_1039_D2CC02703H
crossref_primary_10_1039_D4CE00652F
crossref_primary_10_1002_adom_202202920
crossref_primary_10_1016_j_jelechem_2019_113447
crossref_primary_10_1021_acs_chemmater_1c00330
crossref_primary_10_1002_admi_202202463
crossref_primary_10_1021_acs_cgd_3c00497
crossref_primary_10_1016_j_cej_2020_124690
crossref_primary_10_1016_j_ccr_2022_214891
crossref_primary_10_1039_D4MA00182F
crossref_primary_10_1002_chem_202303880
crossref_primary_10_1016_j_electacta_2019_134792
crossref_primary_10_1039_D2TC03053E
crossref_primary_10_3390_ma13051206
crossref_primary_10_1002_elan_202100153
crossref_primary_10_1007_s40843_024_3060_1
crossref_primary_10_1002_asia_202401095
crossref_primary_10_1016_j_electacta_2020_137552
crossref_primary_10_1002_admi_202102223
crossref_primary_10_5802_crchim_182
crossref_primary_10_1007_s10853_020_04460_6
crossref_primary_10_1021_acssuschemeng_3c00381
crossref_primary_10_1039_D1RA05280B
crossref_primary_10_1039_D2TA05973H
crossref_primary_10_1002_asia_202100815
crossref_primary_10_1002_ange_202416046
crossref_primary_10_1016_j_jallcom_2021_160718
crossref_primary_10_1002_adma_202300179
crossref_primary_10_1039_D2RA02083A
crossref_primary_10_1021_acs_chemmater_4c00399
crossref_primary_10_1088_1361_6528_ad18e2
crossref_primary_10_1016_j_eurpolymj_2024_113364
crossref_primary_10_1007_s43926_024_00086_1
crossref_primary_10_1021_acs_iecr_3c02086
crossref_primary_10_1016_j_ccr_2021_214304
crossref_primary_10_1002_aenm_202100441
crossref_primary_10_1039_D1TA07201C
crossref_primary_10_1016_j_dyepig_2022_110129
crossref_primary_10_1002_chem_202301476
crossref_primary_10_1007_s12274_023_6322_6
crossref_primary_10_1039_D3TC03624C
crossref_primary_10_1039_D1CC05350G
crossref_primary_10_1002_macp_202300381
crossref_primary_10_1039_D2MH00845A
crossref_primary_10_1039_D5CE00026B
crossref_primary_10_1021_acs_inorgchem_3c04282
crossref_primary_10_1016_j_orgel_2020_105741
crossref_primary_10_1039_C9FD00137A
crossref_primary_10_1002_anie_202416046
crossref_primary_10_1002_advs_202302652
crossref_primary_10_1016_j_solmat_2023_112270
crossref_primary_10_1016_j_synthmet_2022_117084
crossref_primary_10_1055_a_2446_3355
crossref_primary_10_1016_j_jcis_2024_05_064
crossref_primary_10_1002_adom_202201773
crossref_primary_10_1021_acsaelm_2c00921
crossref_primary_10_1039_D2CP04987B
crossref_primary_10_1021_acsaelm_3c00214
crossref_primary_10_1002_advs_202407177
crossref_primary_10_1016_j_est_2023_110119
crossref_primary_10_1016_j_ceramint_2022_10_347
crossref_primary_10_1016_j_colsurfa_2024_133161
crossref_primary_10_1016_j_dyepig_2023_111556
crossref_primary_10_1016_j_cej_2022_139645
crossref_primary_10_1021_acs_inorgchem_3c02070
crossref_primary_10_1002_admt_202301092
crossref_primary_10_1016_j_cej_2022_140874
crossref_primary_10_1039_D1MA01030A
crossref_primary_10_1002_batt_202200355
crossref_primary_10_1039_D4TC03113J
crossref_primary_10_1002_anie_202214203
crossref_primary_10_1016_j_solmat_2024_113195
crossref_primary_10_1021_acsaom_4c00197
crossref_primary_10_1039_D0OB01085E
crossref_primary_10_1002_chem_202101061
crossref_primary_10_1016_j_orgel_2021_106420
crossref_primary_10_1002_jcc_27207
crossref_primary_10_2139_ssrn_3994546
crossref_primary_10_1016_j_cej_2020_126794
crossref_primary_10_1016_j_seppur_2020_118198
crossref_primary_10_1038_s41598_024_56370_1
crossref_primary_10_1016_j_solmat_2024_112797
crossref_primary_10_1021_acs_chemmater_0c03132
crossref_primary_10_1039_D1PY01531A
crossref_primary_10_1016_j_solmat_2023_112256
crossref_primary_10_1002_tcr_202100082
crossref_primary_10_1016_j_cej_2024_154835
crossref_primary_10_1016_j_solmat_2024_113088
crossref_primary_10_1038_s41598_023_34839_9
crossref_primary_10_1016_j_ceramint_2024_05_185
crossref_primary_10_3390_M1742
Cites_doi 10.1021/acs.langmuir.6b02940
10.1021/acsami.7b00624
10.1039/c2jm33622g
10.1039/b816681c
10.1002/celc.201800113
10.1016/j.carbon.2015.03.020
10.1002/adma.200400198
10.1016/j.electacta.2017.07.049
10.1016/j.solmat.2017.05.004
10.1021/am503869b
10.1002/celc.201402265
10.1021/acsami.6b01911
10.1021/la026085u
10.1016/j.electacta.2017.10.096
10.1039/C4PY00718B
10.1039/C6CC09412K
10.1021/acsami.6b10152
10.1002/chem.201703348
10.1021/la1043816
10.1039/C5RA02368H
10.1016/j.orgel.2018.07.033
10.1038/s41598-018-19739-7
10.1039/b808638a
10.1021/jo050328g
10.1002/aenm.201602598
10.1039/C8PY00591E
10.1039/C7TC02913F
10.1021/acsami.6b01307
10.1016/j.orgel.2017.10.001
10.1021/acsami.7b04427
10.1021/acsami.5b11947
10.1002/adfm.200304307
10.1021/acsami.6b11321
10.1039/c1jm13069b
10.1002/macp.200700405
10.1021/jo701304g
10.1021/jacs.6b05038
10.1016/j.orgel.2013.11.018
10.1039/C2TA00126H
10.1039/C4RA11827H
10.1021/jacs.6b09311
10.1016/j.solmat.2009.06.003
10.1038/am.2017.57
10.1016/j.solmat.2015.11.044
10.1021/acsami.7b00946
10.1039/C5TC00456J
10.1039/C6CC08924K
10.1021/jm301337y
10.1016/j.solmat.2015.06.031
10.1039/C6CS00257A
10.1002/cplu.201402232
10.1021/jacs.5b06413
10.1016/j.orgel.2018.02.018
10.1021/ma900522w
10.1016/j.solmat.2014.08.034
10.1002/adom.201600989
10.1002/slct.201600102
10.1016/j.tetlet.2010.02.097
10.1039/C7GC00347A
10.1039/C6NR09220A
10.1039/C6RA11149A
10.1039/C5CC06961K
10.1016/j.solmat.2017.01.033
10.1039/C6TC04834J
10.1016/0927-0248(92)90072-W
10.1039/C7TC02953E
10.1039/c2jm31407j
10.1039/b316243p
10.1016/j.cplett.2013.06.037
10.1021/acs.jpcc.5b04388
10.3390/ma3125029
10.1039/C6RA13951E
10.1021/jp046404l
10.1021/jp053556n
10.1021/cm051492n
10.1002/chem.201304451
10.1021/jp012473d
10.1021/jacs.6b04343
10.1002/adma.201401201
10.1021/acs.chemmater.5b00026
10.1021/jp509931p
10.1038/s41598-018-22274-0
10.1039/cs9972600147
10.1002/app.40485
10.1021/la505005r
10.1021/cr980032t
10.1016/j.solmat.2015.02.014
10.1021/jp503740u
10.1021/acsami.8b15066
10.1016/j.electacta.2013.08.127
10.1021/ol035967x
10.1111/cote.12079
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1039/c9tc00416e
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
CrossRef
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 4637
ExternalDocumentID 10_1039_C9TC00416E
c9tc00416e
GroupedDBID -JG
0-7
705
AAEMU
AAIWI
ABGFH
ACLDK
ADSRN
AEFDR
AFVBQ
AGSTE
AUDPV
BSQNT
C6K
EE0
EF-
GNO
H~N
J3I
R7C
RCNCU
RPMJG
RRC
RSCEA
SKA
SKF
SLH
0R~
4.4
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ADMRA
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
BLAPV
CITATION
EBS
ECGLT
EJD
GGIMP
H13
HZ~
O-G
O9-
RAOCF
RNS
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c410t-38f6d05385b1d5eaece2cca67625f0d03a79a67ec19a49f5b974c1b2bdce6ac53
ISSN 2050-7526
IngestDate Sun Jun 29 12:44:49 EDT 2025
Tue Jul 01 02:08:54 EDT 2025
Thu Apr 24 23:03:34 EDT 2025
Wed Apr 24 06:32:11 EDT 2019
Thu May 30 17:34:43 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c410t-38f6d05385b1d5eaece2cca67625f0d03a79a67ec19a49f5b974c1b2bdce6ac53
Notes 2
reduction and conversion to useful organics, metal organic frameworks and porous organic polymers for energy-related applications.
Dr David Velayutham graduated from Madurai Kamaraj University with both Bachelor's (1982) and Master's degrees (1984). He joined the CSIR-Central Electrochemical Research Institute (CSIR-CECRI) as a Junior Scientist in 1987 and received his PhD from Alagappa University, Karaikudi, India, in 1993. He then moved to the University of Duisburg, Germany as a Post-Doctoral Fellow (1994) for 18 months, after which he resumed his duties at CSIR-CECRI. He is currently working as a Chief Scientist in the Electro Organic Division, CSIR-CECRI, Karaikudi, TamilNadu, India. His current research interests include electro-organic synthesis, electrochemical fluorination and the synthesis of ionic liquids for electrochemical applications, including super capacitors and lithium ion batteries.
Dr Murugavel Kathiresan graduated from the University of Madras with both Bachelor's (2004) and Master's degrees (2006), and received his PhD from the University of Osnabrück, Germany, in 2010 under the guidance of Prof. Lorenz Walder. He then moved to the University of Basel, Switzerland, to conduct his postdoctoral research with Prof. Marcel Mayor. He was awarded the DST-INSPIRE Faculty award in December 2013. From March 2014 to April 2017, he worked as a DST-INSPIRE faculty member at the Electro Organic Division, CSIR-Central Electro Chemical Research Institute, Karaikudi, India. Since April 2017, he has been working as a Scientist in the same department. His current research interests include viologen-based supramolecular chemistry, along with the investigation of their applications towards photophysical and biological applications, electro-organic synthesis, electrochemical CO
Dr Vembu Suryanarayanan, received his BSc and MSc degrees from the Department of Chemistry, Bharathidasan University, Trichy, India, in 1990 and 1992, respectively. He received his PhD (Electrochemical Fluorination) from Alagappa University, Karaikudi, India, in 1998. He completed his postdoctoral studies at the National Taiwan University, Taiwan, and Utsunomiya University, Japan, from 2003 to 2006. He has published about 78 papers in peer-reviewed journals and contributed a chapter to Diamond Electrochemistry (ed. A. Fujishima, et al., Elsevier, 2005). Currently, he is working as a Principal Scientist in the Electro Organic Division, CSIR-Central Electrochemical Research Institute, Karaikudi, India. His research interests include the synthesis of novel ionic liquids as well as their applications in various electrochemical devices, and nanomaterial composites for electrochemical sensing.
Dr Kuo-Chuan Ho received his Bachelor's and Master's degrees from the Department of Chemical Engineering, National Cheng Kung University, Taiwan, in 1978 and 1980, respectively. He received his PhD in Chemical Engineering from the University of Rochester, USA, in 1986. Currently, he is a Distinguished Professor jointly appointed by the Department of Chemical Engineering and Institute of Polymer Science and Engineering at the National Taiwan University. His research interests mainly encompass applications of chemically modified electrodes to sensing and electro-optical devices, including electrochromic devices and dye-sensitized solar cells.
Kanagaraj Madasamy graduated from the University of Madras with both Bachelor's and Master's degrees, and is currently doing a PhD at CSIR-Central Electrochemical Research Institute, Karaikudi, India, under the guidance of Dr Velayutham and co-guidance of Dr M. Kathiresan. His research interests include the synthesis of organic compounds and metal organic frameworks, and supramolecular chemistry. He is currently working on viologen-based supramolecular self-assemblies.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1208-5879
0000-0003-1123-3291
0000-0001-7501-1271
PQID 2212988539
PQPubID 2047521
PageCount 16
ParticipantIDs crossref_primary_10_1039_C9TC00416E
crossref_citationtrail_10_1039_C9TC00416E
rsc_primary_c9tc00416e
proquest_journals_2212988539
ProviderPackageCode J3I
ACLDK
RRC
AEFDR
AAIWI
GNO
RCNCU
SLH
EE0
RSCEA
AFVBQ
C6K
H~N
0-7
RPMJG
SKA
-JG
AGSTE
AUDPV
EF-
BSQNT
SKF
ADSRN
ABGFH
705
AAEMU
R7C
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Wang (C9TC00416E-(cit21)/*[position()=1]) 2013; 579
Alesanco (C9TC00416E-(cit91)/*[position()=1]) 2017; 5
Ikeda (C9TC00416E-(cit23)/*[position()=1]) 2011; 27
Lu (C9TC00416E-(cit63)/*[position()=1]) 2016; 147
Shaikh (C9TC00416E-(cit12)/*[position()=1]) 2016; 6
Duffy (C9TC00416E-(cit7)/*[position()=1]) 2016; 45
Madasamy (C9TC00416E-(cit14)/*[position()=1]) 2018; 8
Madasamy (C9TC00416E-(cit31)/*[position()=1]) 2016; 1
Kim (C9TC00416E-(cit69)/*[position()=1]) 2018; 8
Liu (C9TC00416E-(cit71)/*[position()=1]) 2017; 9
Kao (C9TC00416E-(cit2)/*[position()=1]) 2015; 3
Guo (C9TC00416E-(cit42)/*[position()=1]) 2007; 72
Xu (C9TC00416E-(cit22)/*[position()=1]) 2013; 112
Lu (C9TC00416E-(cit37)/*[position()=1]) 2016; 8
Kim (C9TC00416E-(cit25)/*[position()=1]) 2005; 17
Chen (C9TC00416E-(cit54)/*[position()=1]) 2017; 53
Alesanco (C9TC00416E-(cit50)/*[position()=1]) 2016; 8
Tarábek (C9TC00416E-(cit40)/*[position()=1]) 2015; 119
Striepe (C9TC00416E-(cit59)/*[position()=1]) 2017; 23
Funston (C9TC00416E-(cit39)/*[position()=1]) 2005; 109
Monk (C9TC00416E-(cit1)/*[position()=1]) 2015
Huang (C9TC00416E-(cit56)/*[position()=1]) 2017; 5
Yamaguchi (C9TC00416E-(cit53)/*[position()=1]) 2009; 42
Moon (C9TC00416E-(cit82)/*[position()=1]) 2016; 8
Kathiresan (C9TC00416E-(cit47)/*[position()=1]) 2010; 51
Cai (C9TC00416E-(cit9)/*[position()=1]) 2017; 7
Fan (C9TC00416E-(cit62)/*[position()=1]) 2016; 145
Gadgil (C9TC00416E-(cit93)/*[position()=1]) 2015; 89
Jordão (C9TC00416E-(cit86)/*[position()=1]) 2015; 5
Nam (C9TC00416E-(cit57)/*[position()=1]) 2018; 9
Alesanco (C9TC00416E-(cit74)/*[position()=1]) 2016; 8
Li (C9TC00416E-(cit65)/*[position()=1]) 2016; 6
Liu (C9TC00416E-(cit67)/*[position()=1]) 2017; 9
Kao (C9TC00416E-(cit15)/*[position()=1]) 2016; 8
Baker (C9TC00416E-(cit36)/*[position()=1]) 2001; 105
Wang (C9TC00416E-(cit19)/*[position()=1]) 2004
Zhang (C9TC00416E-(cit26)/*[position()=1]) 2011; 21
Cruz (C9TC00416E-(cit33)/*[position()=1]) 2017; 19
Cheng (C9TC00416E-(cit51)/*[position()=1]) 2016; 138
Sydam (C9TC00416E-(cit64)/*[position()=1]) 2015; 132
Yasuda (C9TC00416E-(cit20)/*[position()=1]) 1992; 25
Reus (C9TC00416E-(cit55)/*[position()=1]) 2015; 137
Moon (C9TC00416E-(cit45)/*[position()=1]) 2004; 6
Wang (C9TC00416E-(cit61)/*[position()=1]) 2010; 3
Chidichimo (C9TC00416E-(cit72)/*[position()=1]) 2014; 118
Evanko (C9TC00416E-(cit46)/*[position()=1]) 2016; 138
Porter (C9TC00416E-(cit41)/*[position()=1]) 2005; 70
Palenzuela (C9TC00416E-(cit44)/*[position()=1]) 2014; 6
Mishra (C9TC00416E-(cit18)/*[position()=1]) 2017; 5
Welton (C9TC00416E-(cit76)/*[position()=1]) 1999; 99
Bodappa (C9TC00416E-(cit34)/*[position()=1]) 2015; 119
Danine (C9TC00416E-(cit87)/*[position()=1]) 2017; 258
Su (C9TC00416E-(cit89)/*[position()=1]) 2018; 5
Hwang (C9TC00416E-(cit92)/*[position()=1]) 2014; 26
Chen (C9TC00416E-(cit16)/*[position()=1]) 2014; 131
Yun (C9TC00416E-(cit8)/*[position()=1]) 2018; 10
Moon (C9TC00416E-(cit73)/*[position()=1]) 2015; 27
Li (C9TC00416E-(cit6)/*[position()=1]) 2009; 38
Alesanco (C9TC00416E-(cit90)/*[position()=1]) 2018; 177
Asaftei (C9TC00416E-(cit48)/*[position()=1]) 2012; 55
Jordão (C9TC00416E-(cit35)/*[position()=1]) 2014; 20
Kahlfuss (C9TC00416E-(cit52)/*[position()=1]) 2016; 138
Li (C9TC00416E-(cit68)/*[position()=1]) 2017; 248
Oh (C9TC00416E-(cit88)/*[position()=1]) 2017; 51
Yun (C9TC00416E-(cit85)/*[position()=1]) 2018; 56
Kim (C9TC00416E-(cit3)/*[position()=1]) 2012; 22
Chang (C9TC00416E-(cit70)/*[position()=1]) 2015; 143
Tahara (C9TC00416E-(cit79)/*[position()=1]) 2017; 53
Sharmoukh (C9TC00416E-(cit30)/*[position()=1]) 2008; 18
Alesanco (C9TC00416E-(cit66)/*[position()=1]) 2015; 2
Anthony (C9TC00416E-(cit81)/*[position()=1]) 2005; 109
Alkan (C9TC00416E-(cit24)/*[position()=1]) 2003; 13
Jain (C9TC00416E-(cit17)/*[position()=1]) 2008; 209
Mortimer (C9TC00416E-(cit5)/*[position()=1]) 1997; 26
Jordão (C9TC00416E-(cit13)/*[position()=1]) 2015; 80
Kim (C9TC00416E-(cit83)/*[position()=1]) 2017; 9
Möller (C9TC00416E-(cit49)/*[position()=1]) 2004; 16
Oh (C9TC00416E-(cit84)/*[position()=1]) 2017; 9
Santhosh (C9TC00416E-(cit4)/*[position()=1]) 2017; 33
Ye (C9TC00416E-(cit78)/*[position()=1]) 2013; 1
Gélinas (C9TC00416E-(cit80)/*[position()=1]) 2017; 9
Kuo (C9TC00416E-(cit10)/*[position()=1]) 2009; 93
Kim (C9TC00416E-(cit43)/*[position()=1]) 2018; 62
Li (C9TC00416E-(cit60)/*[position()=1]) 2014; 15
Xie (C9TC00416E-(cit11)/*[position()=1]) 2012; 22
Cheng (C9TC00416E-(cit38)/*[position()=1]) 2015; 31
Murugavel (C9TC00416E-(cit32)/*[position()=1]) 2014; 5
Kline (C9TC00416E-(cit58)/*[position()=1]) 2014; 130
Kathiresan (C9TC00416E-(cit77)/*[position()=1]) 2015; 51
Chang (C9TC00416E-(cit75)/*[position()=1]) 2018; 177
Camurlu (C9TC00416E-(cit27)/*[position()=1]) 2014; 4
Liu (C9TC00416E-(cit28)/*[position()=1]) 2002; 18
Ling (C9TC00416E-(cit29)/*[position()=1]) 2017; 5
References_xml – issn: 2015
  volume-title: Electrochromic Materials and Devices Based on Viologens
  publication-title: Electrochromic Materials and Devices
  doi: Monk Rosseinsky Mortimer
– volume: 33
  start-page: 19
  year: 2017
  ident: C9TC00416E-(cit4)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b02940
– volume: 9
  start-page: 7658
  year: 2017
  ident: C9TC00416E-(cit84)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b00624
– volume: 22
  start-page: 19904
  year: 2012
  ident: C9TC00416E-(cit11)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm33622g
– volume: 38
  start-page: 2397
  year: 2009
  ident: C9TC00416E-(cit6)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b816681c
– volume: 5
  start-page: 1407
  year: 2018
  ident: C9TC00416E-(cit89)/*[position()=1]
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201800113
– volume: 89
  start-page: 53
  year: 2015
  ident: C9TC00416E-(cit93)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.03.020
– volume: 16
  start-page: 1558
  year: 2004
  ident: C9TC00416E-(cit49)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200400198
– volume: 248
  start-page: 206
  year: 2017
  ident: C9TC00416E-(cit68)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.07.049
– volume: 177
  start-page: 75
  year: 2018
  ident: C9TC00416E-(cit75)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.05.004
– volume: 6
  start-page: 14562
  year: 2014
  ident: C9TC00416E-(cit44)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am503869b
– volume: 2
  start-page: 218
  year: 2015
  ident: C9TC00416E-(cit66)/*[position()=1]
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201402265
– volume: 8
  start-page: 14795
  year: 2016
  ident: C9TC00416E-(cit74)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b01911
– volume: 18
  start-page: 9041
  year: 2002
  ident: C9TC00416E-(cit28)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la026085u
– volume: 258
  start-page: 200
  year: 2017
  ident: C9TC00416E-(cit87)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.10.096
– volume: 5
  start-page: 5873
  year: 2014
  ident: C9TC00416E-(cit32)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/C4PY00718B
– volume: 53
  start-page: 2455
  year: 2017
  ident: C9TC00416E-(cit79)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC09412K
– volume: 8
  start-page: 30351
  year: 2016
  ident: C9TC00416E-(cit37)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10152
– volume: 23
  start-page: 16924
  year: 2017
  ident: C9TC00416E-(cit59)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201703348
– volume: 27
  start-page: 4184
  year: 2011
  ident: C9TC00416E-(cit23)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la1043816
– volume: 5
  start-page: 27867
  year: 2015
  ident: C9TC00416E-(cit86)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA02368H
– volume: 62
  start-page: 151
  year: 2018
  ident: C9TC00416E-(cit43)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2018.07.033
– volume: 8
  start-page: 1354
  year: 2018
  ident: C9TC00416E-(cit14)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-19739-7
– volume: 18
  start-page: 4408
  year: 2008
  ident: C9TC00416E-(cit30)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/b808638a
– volume: 70
  start-page: 5028
  year: 2005
  ident: C9TC00416E-(cit41)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo050328g
– volume: 7
  start-page: 1602598
  year: 2017
  ident: C9TC00416E-(cit9)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602598
– volume: 9
  start-page: 3662
  year: 2018
  ident: C9TC00416E-(cit57)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/C8PY00591E
– volume: 5
  start-page: 9504
  year: 2017
  ident: C9TC00416E-(cit18)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC02913F
– volume: 8
  start-page: 6252
  year: 2016
  ident: C9TC00416E-(cit82)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b01307
– volume: 51
  start-page: 490
  year: 2017
  ident: C9TC00416E-(cit88)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2017.10.001
– volume: 9
  start-page: 28726
  year: 2017
  ident: C9TC00416E-(cit80)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04427
– volume: 8
  start-page: 4175
  year: 2016
  ident: C9TC00416E-(cit15)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b11947
– volume: 13
  start-page: 331
  year: 2003
  ident: C9TC00416E-(cit24)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200304307
– volume: 8
  start-page: 29619
  year: 2016
  ident: C9TC00416E-(cit50)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b11321
– volume: 21
  start-page: 17316
  year: 2011
  ident: C9TC00416E-(cit26)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm13069b
– volume: 209
  start-page: 150
  year: 2008
  ident: C9TC00416E-(cit17)/*[position()=1]
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.200700405
– volume: 72
  start-page: 7775
  year: 2007
  ident: C9TC00416E-(cit42)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo701304g
– volume: 138
  start-page: 9373
  year: 2016
  ident: C9TC00416E-(cit46)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05038
– volume: 15
  start-page: 428
  year: 2014
  ident: C9TC00416E-(cit60)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2013.11.018
– volume: 1
  start-page: 2719
  year: 2013
  ident: C9TC00416E-(cit78)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C2TA00126H
– volume: 4
  start-page: 55832
  year: 2014
  ident: C9TC00416E-(cit27)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA11827H
– volume: 138
  start-page: 15234
  year: 2016
  ident: C9TC00416E-(cit52)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09311
– volume: 93
  start-page: 1755
  year: 2009
  ident: C9TC00416E-(cit10)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2009.06.003
– volume: 9
  start-page: e388
  year: 2017
  ident: C9TC00416E-(cit71)/*[position()=1]
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2017.57
– volume: 147
  start-page: 75
  year: 2016
  ident: C9TC00416E-(cit63)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.11.044
– volume: 9
  start-page: 18994
  year: 2017
  ident: C9TC00416E-(cit83)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b00946
– volume: 3
  start-page: 3266
  year: 2015
  ident: C9TC00416E-(cit2)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC00456J
– volume: 53
  start-page: 1595
  year: 2017
  ident: C9TC00416E-(cit54)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC08924K
– volume: 55
  start-page: 10405
  year: 2012
  ident: C9TC00416E-(cit48)/*[position()=1]
  publication-title: J. Med. Chem.
  doi: 10.1021/jm301337y
– volume: 145
  start-page: 35
  year: 2016
  ident: C9TC00416E-(cit62)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.06.031
– volume: 45
  start-page: 5296
  year: 2016
  ident: C9TC00416E-(cit7)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00257A
– volume: 80
  start-page: 202
  year: 2015
  ident: C9TC00416E-(cit13)/*[position()=1]
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201402232
– volume: 137
  start-page: 11710
  year: 2015
  ident: C9TC00416E-(cit55)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06413
– volume: 56
  start-page: 178
  year: 2018
  ident: C9TC00416E-(cit85)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2018.02.018
– volume: 42
  start-page: 4416
  year: 2009
  ident: C9TC00416E-(cit53)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma900522w
– volume: 132
  start-page: 148
  year: 2015
  ident: C9TC00416E-(cit64)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2014.08.034
– volume: 5
  start-page: 1600989
  year: 2017
  ident: C9TC00416E-(cit91)/*[position()=1]
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201600989
– volume: 1
  start-page: 354
  year: 2016
  ident: C9TC00416E-(cit31)/*[position()=1]
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201600102
– volume: 51
  start-page: 2188
  year: 2010
  ident: C9TC00416E-(cit47)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2010.02.097
– volume: 19
  start-page: 1653
  year: 2017
  ident: C9TC00416E-(cit33)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C7GC00347A
– volume: 9
  start-page: 2633
  year: 2017
  ident: C9TC00416E-(cit67)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR09220A
– volume: 6
  start-page: 60084
  year: 2016
  ident: C9TC00416E-(cit12)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA11149A
– volume: 51
  start-page: 17499
  year: 2015
  ident: C9TC00416E-(cit77)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC06961K
– volume: 177
  start-page: 110
  year: 2018
  ident: C9TC00416E-(cit90)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.01.033
– volume: 5
  start-page: 290
  year: 2017
  ident: C9TC00416E-(cit29)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC04834J
– volume: 25
  start-page: 257
  year: 1992
  ident: C9TC00416E-(cit20)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/0927-0248(92)90072-W
– volume: 5
  start-page: 9370
  year: 2017
  ident: C9TC00416E-(cit56)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC02953E
– volume: 22
  start-page: 13558
  year: 2012
  ident: C9TC00416E-(cit3)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c2jm31407j
– start-page: 578
  year: 2004
  ident: C9TC00416E-(cit19)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b316243p
– volume: 579
  start-page: 105
  year: 2013
  ident: C9TC00416E-(cit21)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2013.06.037
– volume: 119
  start-page: 18056
  year: 2015
  ident: C9TC00416E-(cit40)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b04388
– volume: 3
  start-page: 5029
  year: 2010
  ident: C9TC00416E-(cit61)/*[position()=1]
  publication-title: Materials
  doi: 10.3390/ma3125029
– volume: 6
  start-page: 72037
  year: 2016
  ident: C9TC00416E-(cit65)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA13951E
– volume: 109
  start-page: 6366
  year: 2005
  ident: C9TC00416E-(cit81)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp046404l
– volume-title: Electrochromic Materials and Devices
  year: 2015
  ident: C9TC00416E-(cit1)/*[position()=1]
– volume: 109
  start-page: 10862
  year: 2005
  ident: C9TC00416E-(cit39)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp053556n
– volume: 17
  start-page: 6381
  year: 2005
  ident: C9TC00416E-(cit25)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm051492n
– volume: 20
  start-page: 3982
  year: 2014
  ident: C9TC00416E-(cit35)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201304451
– volume: 105
  start-page: 8885
  year: 2001
  ident: C9TC00416E-(cit36)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp012473d
– volume: 138
  start-page: 8288
  year: 2016
  ident: C9TC00416E-(cit51)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04343
– volume: 26
  start-page: 5129
  year: 2014
  ident: C9TC00416E-(cit92)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401201
– volume: 27
  start-page: 1420
  year: 2015
  ident: C9TC00416E-(cit73)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00026
– volume: 119
  start-page: 1067
  year: 2015
  ident: C9TC00416E-(cit34)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp509931p
– volume: 8
  start-page: 3944
  year: 2018
  ident: C9TC00416E-(cit69)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22274-0
– volume: 26
  start-page: 147
  year: 1997
  ident: C9TC00416E-(cit5)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/cs9972600147
– volume: 131
  start-page: 40485
  year: 2014
  ident: C9TC00416E-(cit16)/*[position()=1]
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.40485
– volume: 31
  start-page: 2997
  year: 2015
  ident: C9TC00416E-(cit38)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la505005r
– volume: 99
  start-page: 2071
  year: 1999
  ident: C9TC00416E-(cit76)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr980032t
– volume: 143
  start-page: 606
  year: 2015
  ident: C9TC00416E-(cit70)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.02.014
– volume: 118
  start-page: 13484
  year: 2014
  ident: C9TC00416E-(cit72)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp503740u
– volume: 10
  start-page: 43993
  year: 2018
  ident: C9TC00416E-(cit8)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b15066
– volume: 112
  start-page: 95
  year: 2013
  ident: C9TC00416E-(cit22)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.08.127
– volume: 6
  start-page: 185
  year: 2004
  ident: C9TC00416E-(cit45)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/ol035967x
– volume: 130
  start-page: 73
  year: 2014
  ident: C9TC00416E-(cit58)/*[position()=1]
  publication-title: Color. Technol.
  doi: 10.1111/cote.12079
SSID ssj0000816869
Score 2.6321933
SecondaryResourceType review_article
Snippet Considerable interest is raised by organic materials owing to their exceptional performance in electronic and optoelectronic applications. Among these,...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4622
SubjectTerms Bleaching
Conducting polymers
Electrochromic cells
Electrochromism
Electrode materials
Nitrogen
Optical properties
Optimization
Optoelectronics
Organic materials
Reagents
Stability
Title Viologen-based electrochromic materials and devices
URI https://www.proquest.com/docview/2212988539
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7YLYI-iFaLW6sM6IuU0UySyU4eS1mpIj5tl74NuY0i7bbMzgr113uSyVwWV1Bfwm6SGYZ8yZdzknMBeEMs5TNqs5Txgqe84iYtrMUCiVBpYXD9BSvfL-L8gn-6zC-7DNnRu6TR78zPnX4l_4Mq1iGu3kv2H5DtX4oV-BvxxRIRxvKvMF4GXxO3Sv1eZE9iShvzrfauxicoi7YfES4IrAucMJxAW7VW1-2lvTeBUbX63jUu3ZW62zTRhXpk9u4vj-o77F4rXwbGWrprvel52xszogbfNiGKm6_qR7TKj2cLkbsC-VCSk3SW0ximelwXDx8je87Gk2RMhVy0DsdxW-WiDe7yG2UT5iOeGtkYH_tLuGFj6s0Fh8Y92KeoD9AJ7J_OFx8_98dpIX9ISGDYf3kXjJbJ98MLtsWPQafYq7uEL0GwWDyGR1EjSE5beJ_APbc6gIejOJEHcD_Y6Zr1U2DbkCfbkCc95AlCnkTIn8HFh_ni7DyNeS9SwzPSpKyohEVyLHKd2dwpZxzFhSb8uqmIJUzNJP5zJpOKyyrXqBOaTFNtjRPK5OwQJqublXvuPfINK5im0mnNlSaKW4cSIREK9QBj2RTedsNRmhgU3ucmuSqDcQKT5Zn0d084dPMpvO773rahUHb2Ou5GtYxLZV1SFJBkgZKhnMIhjnT__ADMFI52N5S3tjr601Mv4IGft-2Z2DFMmnrjXqKU2OhXcYb8Ao6KaOE
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Viologen-based+electrochromic+materials+and+devices&rft.au=Madasamy%2C+Kanagaraj&rft.au=Velayutham%2C+David&rft.au=Suryanarayanan%2C+Vembu&rft.au=Kathiresan%2C+Murugavel&rft.date=2019&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=7&rft.issue=16&rft.spage=4622&rft.epage=4637&rft_id=info:doi/10.1039%2Fc9tc00416e&rft.externalDocID=c9tc00416e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon