A numerical investigation on the fire response of a steel girder bridge
The response of bridges subject to fire is an under researched topic despite the number of bridge failures caused by fire. Since available data shows that steel girder bridges are especially vulnerable to fire, this paper delves into their fire response by analyzing with a 3D numerical model the res...
Saved in:
Published in | Journal of constructional steel research Vol. 75; pp. 93 - 103 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0143-974X 1873-5983 |
DOI | 10.1016/j.jcsr.2012.03.012 |
Cover
Loading…
Abstract | The response of bridges subject to fire is an under researched topic despite the number of bridge failures caused by fire. Since available data shows that steel girder bridges are especially vulnerable to fire, this paper delves into their fire response by analyzing with a 3D numerical model the response of a typical bridge of 12.20m span length. A parametric study is performed considering: (1) two possibilities for the axial restraint of the bridge deck, (2) four types of structural steel for the girders (carbon steel and stainless steel grades 1.4301, 1.4401, and 1.4462), (3) three different constitutive models for carbon steel, (4) four live loads, and (5) two alternative fire loads (the hydrocarbon fire defined by Eurocode 1 and a fire corresponding to a real fire event). Results show that restraint to deck expansion coming from an adjacent span or abutment should be considered in the numerical model. In addition, times to collapse are very small when the bridge girders are built with carbon steel (between 8.5 and 18min) but they can almost double if stainless steel is used for the girders. Therefore, stainless steel is a material to consider for steel girder bridges in a high fire risk situation, especially if the bridge is located in a corrosive environment and its aesthetics deserves special attention. The methodology developed in this paper and the results obtained are useful for researchers and practitioners interested in developing and applying a performance-based approach for the design of bridges against fire.
► This paper contains a parametric study of the fire response of a steel girder bridge. ► Parameters are axial restraint, materials, constitutive models, live and fire loads. ► Times to collapse are small but they significantly increase if stainless steel is used. ► Restraint to deck expansion must be considered. Live loads have little influence. ► Research is useful for applying a performance-based approach for bridge fire design. |
---|---|
AbstractList | The response of bridges subject to fire is an under researched topic despite the number of bridge failures caused by fire. Since available data shows that steel girder bridges are especially vulnerable to fire, this paper delves into their fire response by analyzing with a 3D numerical model the response of a typical bridge of 12.20m span length. A parametric study is performed considering: (1) two possibilities for the axial restraint of the bridge deck, (2) four types of structural steel for the girders (carbon steel and stainless steel grades 1.4301, 1.4401, and 1.4462), (3) three different constitutive models for carbon steel, (4) four live loads, and (5) two alternative fire loads (the hydrocarbon fire defined by Eurocode 1 and a fire corresponding to a real fire event). Results show that restraint to deck expansion coming from an adjacent span or abutment should be considered in the numerical model. In addition, times to collapse are very small when the bridge girders are built with carbon steel (between 8.5 and 18min) but they can almost double if stainless steel is used for the girders. Therefore, stainless steel is a material to consider for steel girder bridges in a high fire risk situation, especially if the bridge is located in a corrosive environment and its aesthetics deserves special attention. The methodology developed in this paper and the results obtained are useful for researchers and practitioners interested in developing and applying a performance-based approach for the design of bridges against fire. The response of bridges subject to fire is an under researched topic despite the number of bridge failures caused by fire. Since available data shows that steel girder bridges are especially vulnerable to fire, this paper delves into their fire response by analyzing with a 3D numerical model the response of a typical bridge of 12.20m span length. A parametric study is performed considering: (1) two possibilities for the axial restraint of the bridge deck, (2) four types of structural steel for the girders (carbon steel and stainless steel grades 1.4301, 1.4401, and 1.4462), (3) three different constitutive models for carbon steel, (4) four live loads, and (5) two alternative fire loads (the hydrocarbon fire defined by Eurocode 1 and a fire corresponding to a real fire event). Results show that restraint to deck expansion coming from an adjacent span or abutment should be considered in the numerical model. In addition, times to collapse are very small when the bridge girders are built with carbon steel (between 8.5 and 18min) but they can almost double if stainless steel is used for the girders. Therefore, stainless steel is a material to consider for steel girder bridges in a high fire risk situation, especially if the bridge is located in a corrosive environment and its aesthetics deserves special attention. The methodology developed in this paper and the results obtained are useful for researchers and practitioners interested in developing and applying a performance-based approach for the design of bridges against fire. ► This paper contains a parametric study of the fire response of a steel girder bridge. ► Parameters are axial restraint, materials, constitutive models, live and fire loads. ► Times to collapse are small but they significantly increase if stainless steel is used. ► Restraint to deck expansion must be considered. Live loads have little influence. ► Research is useful for applying a performance-based approach for bridge fire design. |
Author | Payá-Zaforteza, I. Garlock, M.E.M. |
Author_xml | – sequence: 1 givenname: I. surname: Payá-Zaforteza fullname: Payá-Zaforteza, I. email: igpaza@cst.upv.es organization: ICITECH, Departamento de Ingeniería de la Construcción, Universitat Politècnica de València, Camino de Vera s/n, 46071 Valencia, Spain – sequence: 2 givenname: M.E.M. surname: Garlock fullname: Garlock, M.E.M. email: mgarlock@princeton.edu organization: Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 0854, USA |
BookMark | eNqFkEFLwzAYhoNMcJv-AU85emn90qRtCl7G0CkMvCh4C2n6daZ06Uy6gf_ezHnyoPDBe3mfl49nRiZucEjINYOUAStuu7QzwacZsCwFnsY4I1MmS57kleQTMgUmeFKV4u2CzELoAEBWXE7JakHdfoveGt1T6w4YRrvRox0cjTe-I22tR-ox7AYXkA4t1TSMiD3dWN-gp7W3zQYvyXmr-4BXPzknrw_3L8vHZP28elou1okRDMaEF1BXNeQcm6LgWYkMCmgLXpfYgGmhrEqdcS7q3OjKNHmjGaurSoARQtfA-JzcnHZ3fvjYx2_V1gaDfa8dDvugWCkLJhmA-L8KnGVxWuaxmp2qxg8heGzVztut9p-xpI6CVaeOgtVRsAKuYkRI_oKMHb_VjV7b_m_07oRiVHWw6FUwFp3BJso2o2oG-xf-Bfmrl6w |
CitedBy_id | crossref_primary_10_1155_2019_5154309 crossref_primary_10_1016_j_firesaf_2020_103146 crossref_primary_10_4028_www_scientific_net_AMM_361_363_1187 crossref_primary_10_1016_j_jcsr_2018_06_021 crossref_primary_10_3989_ic_13_077 crossref_primary_10_1016_j_engstruct_2024_117578 crossref_primary_10_1016_j_engstruct_2024_117810 crossref_primary_10_1007_s13369_024_09063_w crossref_primary_10_1007_s11709_018_0452_z crossref_primary_10_1061__ASCE_CF_1943_5509_0000977 crossref_primary_10_1016_j_engstruct_2019_04_055 crossref_primary_10_1016_j_istruc_2021_10_080 crossref_primary_10_1007_s10694_024_01628_3 crossref_primary_10_1016_j_engstruct_2023_116840 crossref_primary_10_1016_j_jcsr_2014_12_001 crossref_primary_10_1016_j_jcsr_2021_106671 crossref_primary_10_1061__ASCE_CF_1943_5509_0000731 crossref_primary_10_1016_j_engstruct_2024_119442 crossref_primary_10_1080_10168664_2023_2213257 crossref_primary_10_1016_j_engstruct_2024_119207 crossref_primary_10_1139_cjce_2018_0767 crossref_primary_10_1007_s10973_018_7689_6 crossref_primary_10_1016_j_firesaf_2015_03_004 crossref_primary_10_1016_j_advengsoft_2018_11_003 crossref_primary_10_1016_j_istruc_2021_04_071 crossref_primary_10_3389_fbuil_2020_580854 crossref_primary_10_1016_j_jcsr_2014_05_021 crossref_primary_10_1061__ASCE_BE_1943_5592_0001029 crossref_primary_10_1016_j_engstruct_2013_03_048 crossref_primary_10_1007_s13296_022_00578_2 crossref_primary_10_1061_JBENF2_BEENG_5790 crossref_primary_10_1016_j_firesaf_2021_103487 crossref_primary_10_1016_j_firesaf_2023_103883 crossref_primary_10_1155_2022_5889743 crossref_primary_10_25130_tjes_29_3_9 crossref_primary_10_1016_j_firesaf_2024_104138 crossref_primary_10_1038_s41467_024_49593_3 crossref_primary_10_1007_s40868_016_0014_y crossref_primary_10_1016_j_engstruct_2021_113230 crossref_primary_10_1016_j_istruc_2021_09_087 crossref_primary_10_1177_1369433219898102 crossref_primary_10_1016_j_engstruct_2014_02_022 crossref_primary_10_1061_JSENDH_STENG_12645 crossref_primary_10_1007_s10694_016_0602_6 crossref_primary_10_1007_s13296_024_00905_9 crossref_primary_10_1016_j_engstruct_2019_01_028 crossref_primary_10_1061__ASCE_BE_1943_5592_0000707 crossref_primary_10_1016_j_engstruct_2024_118297 crossref_primary_10_1111_ijac_14966 crossref_primary_10_1016_j_engstruct_2021_112764 crossref_primary_10_1016_j_jcsr_2017_08_008 crossref_primary_10_1016_j_strusafe_2022_102294 crossref_primary_10_1061__ASCE_BE_1943_5592_0000870 crossref_primary_10_1061__ASCE_BE_1943_5592_0001244 crossref_primary_10_1002_cepa_2517 crossref_primary_10_1080_15732479_2020_1832535 crossref_primary_10_1016_j_compstruc_2015_06_003 crossref_primary_10_1016_j_jlp_2017_04_004 crossref_primary_10_1155_2016_8024043 crossref_primary_10_1007_s13349_023_00670_z crossref_primary_10_1016_j_jcsr_2020_105996 crossref_primary_10_1016_j_jcsr_2022_107173 crossref_primary_10_1007_s10973_019_09039_1 crossref_primary_10_25130_tjes_29_4_2 |
Cites_doi | 10.1016/j.jcsr.2011.06.012 10.1016/j.jcsr.2011.04.014 10.1016/j.jcsr.2011.05.006 10.1016/j.engstruct.2011.11.002 10.1061/(ASCE)ST.1943-541X.0000443 10.2749/101686606777962585 10.1016/j.tra.2010.07.001 10.1016/j.compstruc.2008.01.006 10.1016/j.jcsr.2008.07.011 10.1016/j.jcsr.2009.12.016 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd |
Copyright_xml | – notice: 2012 Elsevier Ltd |
DBID | AAYXX CITATION 7SE 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.jcsr.2012.03.012 |
DatabaseName | CrossRef Corrosion Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Corrosion Abstracts METADEX |
DatabaseTitleList | Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-5983 |
EndPage | 103 |
ExternalDocumentID | 10_1016_j_jcsr_2012_03_012 S0143974X12000661 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 D-I EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSM SST SSZ T5K VH1 WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SE 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c410t-360b9b053ed66327e1060f63b7ed0cf0797a2334b5ca9cd5da11b9940c44ab013 |
IEDL.DBID | AIKHN |
ISSN | 0143-974X |
IngestDate | Thu Sep 04 22:04:30 EDT 2025 Thu Sep 04 20:32:00 EDT 2025 Tue Jul 01 03:27:37 EDT 2025 Thu Apr 24 22:59:21 EDT 2025 Fri Feb 23 02:31:01 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Performance-based approach Carbon steel Stainless steel Bridge Fire |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-360b9b053ed66327e1060f63b7ed0cf0797a2334b5ca9cd5da11b9940c44ab013 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0143974X12000661 |
PQID | 1031294085 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1786181004 proquest_miscellaneous_1031294085 crossref_primary_10_1016_j_jcsr_2012_03_012 crossref_citationtrail_10_1016_j_jcsr_2012_03_012 elsevier_sciencedirect_doi_10_1016_j_jcsr_2012_03_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2012 2012-08-00 20120801 |
PublicationDateYYYYMMDD | 2012-08-01 |
PublicationDate_xml | – month: 08 year: 2012 text: August 2012 |
PublicationDecade | 2010 |
PublicationTitle | Journal of constructional steel research |
PublicationYear | 2012 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Badoo (bb0090) 2008; 64 López-Colina, Serrano-López, Gayarre, del Coz-Díaz (bb0070) 2011; 67 Gardner, Insausti, Ng, Ashraf (bb0095) 2010; 66 Euro Inox (bb0085) 2004; 7 Santiago, da Silva, Vila (bb0055) 2008; 86 European Committee for Standardization (CEN) (bb0105) 2003 European Committee for Standardization (CEN) (bb0115) 2002 Stoddard (bb0125) 2004 Sobrino (bb0080) 2006; 16 Buchanan (bb0050) 2002 (bb0155) 2009 Euro Inox (bb0130) 2006 (bb0040) 2008 Luecke, McColskey, McCowan, Banovic, Fields, Foecke (bb0150) 2005 Quiel, Garlock, Paya-Zaforteza (bb0060) 2011; 137 European Committee for Standardization (CEN) (bb0145) 2005 Lu, Zhao, Han (bb0065) 2011; 67 European Committee for Standardization (CEN) (bb0140) 2004 Kodur, Gu, Garlock (bb0025) January 2010 Rosenfield (bb0110) 2009 Simulia (bb0135) 2009 American Association of State Highway and Transportation Officials (AASHTO) (bb0120) 2009 Zhu, Levinson, Liu, Harder (bb0010) 2010; 44 British Standard Institute (bb0160) 1987 Priestley, Seible, Calvi (bb0020) 1996 New York State Department of Transportation (bb0045) 2011 Romero, Moliner, Espinos, Ibañez, Hospitaler (bb0075) 2011; 67 Garlock, Paya-Zaforteza, Gu, Kodur (bb0030) 2012; 35 American Society for Testing and Materials (ASTM) (bb0100) 2004 Chang, Nojima (bb0005) 2001; 35 San Francisco Gate (bb0035) 2011 Ghosn, Moses, Wang (bb0015) 2003 Gardner (10.1016/j.jcsr.2012.03.012_bb0095) 2010; 66 Rosenfield (10.1016/j.jcsr.2012.03.012_bb0110) 2009 American Society for Testing and Materials (ASTM) (10.1016/j.jcsr.2012.03.012_bb0100) 2004 Buchanan (10.1016/j.jcsr.2012.03.012_bb0050) 2002 European Committee for Standardization (CEN) (10.1016/j.jcsr.2012.03.012_bb0105) 2003 Santiago (10.1016/j.jcsr.2012.03.012_bb0055) 2008; 86 New York State Department of Transportation (10.1016/j.jcsr.2012.03.012_bb0045) 2011 Chang (10.1016/j.jcsr.2012.03.012_bb0005) 2001; 35 European Committee for Standardization (CEN) (10.1016/j.jcsr.2012.03.012_bb0115) 2002 (10.1016/j.jcsr.2012.03.012_bb0040) 2008 (10.1016/j.jcsr.2012.03.012_bb0155) 2009 Sobrino (10.1016/j.jcsr.2012.03.012_bb0080) 2006; 16 San Francisco Gate (10.1016/j.jcsr.2012.03.012_bb0035) Zhu (10.1016/j.jcsr.2012.03.012_bb0010) 2010; 44 Romero (10.1016/j.jcsr.2012.03.012_bb0075) 2011; 67 European Committee for Standardization (CEN) (10.1016/j.jcsr.2012.03.012_bb0140) 2004 Lu (10.1016/j.jcsr.2012.03.012_bb0065) 2011; 67 Euro Inox (10.1016/j.jcsr.2012.03.012_bb0085) 2004; 7 López-Colina (10.1016/j.jcsr.2012.03.012_bb0070) 2011; 67 British Standard Institute (10.1016/j.jcsr.2012.03.012_bb0160) 1987 Simulia (10.1016/j.jcsr.2012.03.012_bb0135) 2009 European Committee for Standardization (CEN) (10.1016/j.jcsr.2012.03.012_bb0145) 2005 Quiel (10.1016/j.jcsr.2012.03.012_bb0060) 2011; 137 Badoo (10.1016/j.jcsr.2012.03.012_bb0090) 2008; 64 Ghosn (10.1016/j.jcsr.2012.03.012_bb0015) 2003 Euro Inox (10.1016/j.jcsr.2012.03.012_bb0130) 2006 Priestley (10.1016/j.jcsr.2012.03.012_bb0020) 1996 Stoddard (10.1016/j.jcsr.2012.03.012_bb0125) 2004 Garlock (10.1016/j.jcsr.2012.03.012_bb0030) 2012; 35 Kodur (10.1016/j.jcsr.2012.03.012_bb0025) 2010 American Association of State Highway and Transportation Officials (AASHTO) (10.1016/j.jcsr.2012.03.012_bb0120) 2009 Luecke (10.1016/j.jcsr.2012.03.012_bb0150) 2005 |
References_xml | – year: 2002 ident: bb0115 article-title: EN 1991-1-2:2002 Eurocode 1: Actions on structures—Part 1–2: general actions—actions on structures exposed to fire. Brussels, Belgium – year: 2009 ident: bb0120 article-title: LRFD Bridge design specifications. Washington D.C., USA – year: 2004 ident: bb0125 article-title: Inspection and repair of a fire damaged prestressed girder bridge publication-title: International Bridge Conference, Pittsburgh – year: 2005 ident: bb0150 article-title: NIST NCSTAR 1-3D. Federal building and fire safety investigation of the World Trade Center disaster publication-title: Mechanical properties of structural steel – year: 2003 ident: bb0015 article-title: NCHRP Report 489. Design of highway bridges for extreme events – year: 2004 ident: bb0100 article-title: ASTM A6/A6M Standard Specification for Structural Steel (A36-/A36M-04a) – year: 2005 ident: bb0145 article-title: EN 1993-1-2: 2005 Eurocode 3: design of steel structures publication-title: Part 1.2 General rules—structural fire design – volume: 35 start-page: 475 year: 2001 end-page: 484 ident: bb0005 article-title: Measuring post-disaster transportation system performance: the 1995 Kobe earthquake in comparative perspective publication-title: Transp Res A – year: 1987 ident: bb0160 article-title: BS 476: fire tests on building materials and structures, part 21: methods for determination of the fire resistance of load-bearing elements of construction – year: 2008 ident: bb0040 article-title: Accelerated bridge construction applications in California—a lessons learned publication-title: Report issued by the California Department of Transportation – volume: 35 start-page: 89 year: 2012 end-page: 98 ident: bb0030 article-title: Fire hazard in bridges: review, assessment and repair strategies publication-title: Eng Struct – year: 2003 ident: bb0105 article-title: Eurocode 1 Actions on Structures, Part 2: traffic loads on bridges – volume: 16 start-page: 96 year: 2006 end-page: 100 ident: bb0080 article-title: Stainless Steel Road Bridge in Menorca, Spain publication-title: Struct Eng Int – year: 2002 ident: bb0050 article-title: Structural design for fire safety – year: 2009 ident: bb0155 publication-title: NISTIR 7563. Best practice guidelines for structural fire resistance design of concrete and steel buildings – volume: 137 start-page: 967 year: 2011 end-page: 976 ident: bb0060 article-title: Closed form procedure for predicting the capacity and demand of steel beam-columns under fire publication-title: ASCE J Struct Eng – volume: 86 start-page: 1619 year: 2008 end-page: 1632 ident: bb0055 article-title: Numerical study of a steel sub-frame in fire publication-title: Comput Struct – year: 2011 ident: bb0045 article-title: Bridge fire incidents in New York State (Private Correspondence with Prof. M. Garlock) – volume: 64 start-page: 1199 year: 2008 end-page: 1206 ident: bb0090 article-title: Stainless steel in construction: a review of research, applications, challenges and opportunities publication-title: J Construct Steel Res – year: 2011 ident: bb0035 article-title: The maze meltdown – volume: 67 start-page: 1835 year: 2011 end-page: 1842 ident: bb0075 article-title: Fire behavior of axially loaded slender high strength concrete-filled tubular columns publication-title: J Construct Steel Res – year: 1996 ident: bb0020 article-title: Seismic design and retrofit of bridges – year: 2006 ident: bb0130 article-title: Design manual for structural stainless steel – volume: 7 year: 2004 ident: bb0085 article-title: Pedestrian bridges in stainless steel publication-title: Building Series – volume: 66 start-page: 634 year: 2010 end-page: 647 ident: bb0095 article-title: Elevated temperature material properties of stainless steel alloys publication-title: J Construct Steel Res – year: January 2010 ident: bb0025 article-title: Review and assessment of fire hazard in bridges publication-title: Proceedings of the TRB Annual Meeting, Washington D.C. – volume: 67 start-page: 1733 year: 2011 end-page: 1748 ident: bb0065 article-title: FE modelling and fire resistance design of concrete filled double skin tubular columns publication-title: J Construct Steel Res – year: 2009 ident: bb0110 article-title: I-75 tanker explosion collapses nine mile rd overpass in metro DetroitABC News, July 15, 2009. Accessed November 23, 2009 – year: 2004 ident: bb0140 article-title: EN 1992-1-2: 2004 Eurocode 2: design of concrete structures publication-title: Part 1.2 General rules—structural fire design – volume: 44 start-page: 771 year: 2010 end-page: 784 ident: bb0010 article-title: The traffic and behavioral effects of the I-35 W Mississippi River bridge collapse publication-title: Transp Res A Policy Pract – volume: 67 start-page: 1953 year: 2011 end-page: 1965 ident: bb0070 article-title: Stiffness of the component ‘lateral faces of RHS’ at high temperature publication-title: J Construct Steel Res – year: 2009 ident: bb0135 article-title: Abaqus/standard version 6.9 user's manual – volume: 67 start-page: 1835 issue: 12 year: 2011 ident: 10.1016/j.jcsr.2012.03.012_bb0075 article-title: Fire behavior of axially loaded slender high strength concrete-filled tubular columns publication-title: J Construct Steel Res doi: 10.1016/j.jcsr.2011.06.012 – volume: 67 start-page: 1733 year: 2011 ident: 10.1016/j.jcsr.2012.03.012_bb0065 article-title: FE modelling and fire resistance design of concrete filled double skin tubular columns publication-title: J Construct Steel Res doi: 10.1016/j.jcsr.2011.04.014 – year: 2009 ident: 10.1016/j.jcsr.2012.03.012_bb0120 – volume: 7 year: 2004 ident: 10.1016/j.jcsr.2012.03.012_bb0085 article-title: Pedestrian bridges in stainless steel – volume: 67 start-page: 1953 issue: 12 year: 2011 ident: 10.1016/j.jcsr.2012.03.012_bb0070 article-title: Stiffness of the component ‘lateral faces of RHS’ at high temperature publication-title: J Construct Steel Res doi: 10.1016/j.jcsr.2011.05.006 – volume: 35 start-page: 89 year: 2012 ident: 10.1016/j.jcsr.2012.03.012_bb0030 article-title: Fire hazard in bridges: review, assessment and repair strategies publication-title: Eng Struct doi: 10.1016/j.engstruct.2011.11.002 – year: 2003 ident: 10.1016/j.jcsr.2012.03.012_bb0105 – year: 2004 ident: 10.1016/j.jcsr.2012.03.012_bb0125 article-title: Inspection and repair of a fire damaged prestressed girder bridge – ident: 10.1016/j.jcsr.2012.03.012_bb0035 – volume: 137 start-page: 967 year: 2011 ident: 10.1016/j.jcsr.2012.03.012_bb0060 article-title: Closed form procedure for predicting the capacity and demand of steel beam-columns under fire publication-title: ASCE J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0000443 – volume: 16 start-page: 96 issue: 2 year: 2006 ident: 10.1016/j.jcsr.2012.03.012_bb0080 article-title: Stainless Steel Road Bridge in Menorca, Spain publication-title: Struct Eng Int doi: 10.2749/101686606777962585 – year: 2004 ident: 10.1016/j.jcsr.2012.03.012_bb0140 article-title: EN 1992-1-2: 2004 Eurocode 2: design of concrete structures – year: 2009 ident: 10.1016/j.jcsr.2012.03.012_bb0155 – year: 2002 ident: 10.1016/j.jcsr.2012.03.012_bb0050 – volume: 44 start-page: 771 issue: 10 year: 2010 ident: 10.1016/j.jcsr.2012.03.012_bb0010 article-title: The traffic and behavioral effects of the I-35 W Mississippi River bridge collapse publication-title: Transp Res A Policy Pract doi: 10.1016/j.tra.2010.07.001 – year: 2009 ident: 10.1016/j.jcsr.2012.03.012_bb0135 – year: 2006 ident: 10.1016/j.jcsr.2012.03.012_bb0130 – year: 2010 ident: 10.1016/j.jcsr.2012.03.012_bb0025 article-title: Review and assessment of fire hazard in bridges – year: 2005 ident: 10.1016/j.jcsr.2012.03.012_bb0150 article-title: NIST NCSTAR 1-3D. Federal building and fire safety investigation of the World Trade Center disaster – volume: 86 start-page: 1619 issue: 15–16 year: 2008 ident: 10.1016/j.jcsr.2012.03.012_bb0055 article-title: Numerical study of a steel sub-frame in fire publication-title: Comput Struct doi: 10.1016/j.compstruc.2008.01.006 – volume: 64 start-page: 1199 year: 2008 ident: 10.1016/j.jcsr.2012.03.012_bb0090 article-title: Stainless steel in construction: a review of research, applications, challenges and opportunities publication-title: J Construct Steel Res doi: 10.1016/j.jcsr.2008.07.011 – year: 2009 ident: 10.1016/j.jcsr.2012.03.012_bb0110 – year: 1996 ident: 10.1016/j.jcsr.2012.03.012_bb0020 – year: 2008 ident: 10.1016/j.jcsr.2012.03.012_bb0040 article-title: Accelerated bridge construction applications in California—a lessons learned – year: 2003 ident: 10.1016/j.jcsr.2012.03.012_bb0015 – year: 1987 ident: 10.1016/j.jcsr.2012.03.012_bb0160 – volume: 35 start-page: 475 year: 2001 ident: 10.1016/j.jcsr.2012.03.012_bb0005 article-title: Measuring post-disaster transportation system performance: the 1995 Kobe earthquake in comparative perspective publication-title: Transp Res A – year: 2004 ident: 10.1016/j.jcsr.2012.03.012_bb0100 – year: 2011 ident: 10.1016/j.jcsr.2012.03.012_bb0045 – year: 2002 ident: 10.1016/j.jcsr.2012.03.012_bb0115 – volume: 66 start-page: 634 year: 2010 ident: 10.1016/j.jcsr.2012.03.012_bb0095 article-title: Elevated temperature material properties of stainless steel alloys publication-title: J Construct Steel Res doi: 10.1016/j.jcsr.2009.12.016 – year: 2005 ident: 10.1016/j.jcsr.2012.03.012_bb0145 article-title: EN 1993-1-2: 2005 Eurocode 3: design of steel structures |
SSID | ssj0008938 |
Score | 2.3004386 |
Snippet | The response of bridges subject to fire is an under researched topic despite the number of bridge failures caused by fire. Since available data shows that... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 93 |
SubjectTerms | Bridge Bridges (structures) Carbon steel Carbon steels Fire Fires Girder bridges Girders Mathematical models Performance-based approach Stainless steel Stainless steels Structural steels |
Title | A numerical investigation on the fire response of a steel girder bridge |
URI | https://dx.doi.org/10.1016/j.jcsr.2012.03.012 https://www.proquest.com/docview/1031294085 https://www.proquest.com/docview/1786181004 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEBVpcmkPpStNl6BCb8WJF8nLMYSmaQs5NZCbkGS5uAQ7ZLn22zsT2ekCzaFgMBYStkfSmxnpzYiQuxAGTaxD7sTccIelnDkyiaQjYxkxKEMtjWyLcTiasOcpnzbIoI6FQVplhf0W0zdoXZX0Kmn25nneQ1oSKFM29TbRJugCtfwgCXmTtPpPL6PxFpBBJceWyRg42KCKnbE0r3e9xLSguCQYdF3P_0s__ULqjfoZHpHDym6kfftpx6RhihNy8C2b4Cl57NNibTdgZjT_yp9RFhQuMPRoBv9KF5YVa2iZUUmhk82MvuWYgZPa6K0zMhk-vA5GTnVOgqOZ566cIHRVomA2mRTsBz8y4Oa5WRioyKSuztwIhO8HAVNcy0SnPJWep5KEuZoxieug56RZlIW5IFQxHmWSKx_VfuwZxTLwN8BI0dpPQy7bxKulI3SVRBzPspiJmi32LlCiAiUq3EDArU3ut23mNoXGztq8Frr4MRAEYPzOdrd1DwmYIbjtIQtTrpcCD7LwE8zktqNOFIdg6wBiXP7z_VdkH58sN_CaNFeLtbkBe2WlOmSv--F1qlH5CeAm594 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA6lHtSDuGJdI3iTaWdJZjmWYq1ae2qht5BkMtJSpqXL1d_ue82MVcEehIGBTMLMvCRvSb73hZD7EAZNrEPuxNxwh6WcOTKJpCNjGTEoQyuNaIte2BmwlyEfVkirzIVBWGWh-61OX2vroqRRSLMxG40aCEsCY8qG3jrbBEOgHcaDCHF99Y8NzgMMcmxxjIGD1YvMGQvyGusFkoLigmBQdz3_L-v0S0-vjU_7kBwUXiNt2g87IhWTH5P9b1yCJ-SpSfOV3X6Z0NGGPWOaU7jAzaMZ_CmdW0ysodOMSgpdbCb0fYT8m9Tmbp2SQfux3-o4xSkJjmaeu3SC0FWJgrlkUvAe_MhAkOdmYaAik7o6cyMQvR8ETHEtE53yVHqeShLmasYkroKekWo-zc05oYrxKJNc-Wj0Y88olkG0AS6K1n4aclkjXikdoQsKcTzJYiJKrNhYoEQFSlS4gYBbjTx8tZlZAo2ttXkpdPFjGAjQ8Fvb3ZU9JGB-4KaHzM10tRB4jIWfII_bljpRHIKnA_ri4p_vvyW7nf5bV3Sfe6-XZA-fWJTgFaku5ytzDZ7LUt2sR-Yn0i3oqQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+investigation+on+the+fire+response+of+a+steel+girder+bridge&rft.jtitle=Journal+of+constructional+steel+research&rft.au=Paya-Zaforteza%2C+I&rft.au=Garlock%2C+MEM&rft.date=2012-08-01&rft.issn=0143-974X&rft.volume=75&rft.spage=93&rft.epage=103&rft_id=info:doi/10.1016%2Fj.jcsr.2012.03.012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-974X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-974X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-974X&client=summon |