A numerical investigation on the fire response of a steel girder bridge

The response of bridges subject to fire is an under researched topic despite the number of bridge failures caused by fire. Since available data shows that steel girder bridges are especially vulnerable to fire, this paper delves into their fire response by analyzing with a 3D numerical model the res...

Full description

Saved in:
Bibliographic Details
Published inJournal of constructional steel research Vol. 75; pp. 93 - 103
Main Authors Payá-Zaforteza, I., Garlock, M.E.M.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2012
Subjects
Online AccessGet full text
ISSN0143-974X
1873-5983
DOI10.1016/j.jcsr.2012.03.012

Cover

Loading…
Abstract The response of bridges subject to fire is an under researched topic despite the number of bridge failures caused by fire. Since available data shows that steel girder bridges are especially vulnerable to fire, this paper delves into their fire response by analyzing with a 3D numerical model the response of a typical bridge of 12.20m span length. A parametric study is performed considering: (1) two possibilities for the axial restraint of the bridge deck, (2) four types of structural steel for the girders (carbon steel and stainless steel grades 1.4301, 1.4401, and 1.4462), (3) three different constitutive models for carbon steel, (4) four live loads, and (5) two alternative fire loads (the hydrocarbon fire defined by Eurocode 1 and a fire corresponding to a real fire event). Results show that restraint to deck expansion coming from an adjacent span or abutment should be considered in the numerical model. In addition, times to collapse are very small when the bridge girders are built with carbon steel (between 8.5 and 18min) but they can almost double if stainless steel is used for the girders. Therefore, stainless steel is a material to consider for steel girder bridges in a high fire risk situation, especially if the bridge is located in a corrosive environment and its aesthetics deserves special attention. The methodology developed in this paper and the results obtained are useful for researchers and practitioners interested in developing and applying a performance-based approach for the design of bridges against fire. ► This paper contains a parametric study of the fire response of a steel girder bridge. ► Parameters are axial restraint, materials, constitutive models, live and fire loads. ► Times to collapse are small but they significantly increase if stainless steel is used. ► Restraint to deck expansion must be considered. Live loads have little influence. ► Research is useful for applying a performance-based approach for bridge fire design.
AbstractList The response of bridges subject to fire is an under researched topic despite the number of bridge failures caused by fire. Since available data shows that steel girder bridges are especially vulnerable to fire, this paper delves into their fire response by analyzing with a 3D numerical model the response of a typical bridge of 12.20m span length. A parametric study is performed considering: (1) two possibilities for the axial restraint of the bridge deck, (2) four types of structural steel for the girders (carbon steel and stainless steel grades 1.4301, 1.4401, and 1.4462), (3) three different constitutive models for carbon steel, (4) four live loads, and (5) two alternative fire loads (the hydrocarbon fire defined by Eurocode 1 and a fire corresponding to a real fire event). Results show that restraint to deck expansion coming from an adjacent span or abutment should be considered in the numerical model. In addition, times to collapse are very small when the bridge girders are built with carbon steel (between 8.5 and 18min) but they can almost double if stainless steel is used for the girders. Therefore, stainless steel is a material to consider for steel girder bridges in a high fire risk situation, especially if the bridge is located in a corrosive environment and its aesthetics deserves special attention. The methodology developed in this paper and the results obtained are useful for researchers and practitioners interested in developing and applying a performance-based approach for the design of bridges against fire.
The response of bridges subject to fire is an under researched topic despite the number of bridge failures caused by fire. Since available data shows that steel girder bridges are especially vulnerable to fire, this paper delves into their fire response by analyzing with a 3D numerical model the response of a typical bridge of 12.20m span length. A parametric study is performed considering: (1) two possibilities for the axial restraint of the bridge deck, (2) four types of structural steel for the girders (carbon steel and stainless steel grades 1.4301, 1.4401, and 1.4462), (3) three different constitutive models for carbon steel, (4) four live loads, and (5) two alternative fire loads (the hydrocarbon fire defined by Eurocode 1 and a fire corresponding to a real fire event). Results show that restraint to deck expansion coming from an adjacent span or abutment should be considered in the numerical model. In addition, times to collapse are very small when the bridge girders are built with carbon steel (between 8.5 and 18min) but they can almost double if stainless steel is used for the girders. Therefore, stainless steel is a material to consider for steel girder bridges in a high fire risk situation, especially if the bridge is located in a corrosive environment and its aesthetics deserves special attention. The methodology developed in this paper and the results obtained are useful for researchers and practitioners interested in developing and applying a performance-based approach for the design of bridges against fire. ► This paper contains a parametric study of the fire response of a steel girder bridge. ► Parameters are axial restraint, materials, constitutive models, live and fire loads. ► Times to collapse are small but they significantly increase if stainless steel is used. ► Restraint to deck expansion must be considered. Live loads have little influence. ► Research is useful for applying a performance-based approach for bridge fire design.
Author Payá-Zaforteza, I.
Garlock, M.E.M.
Author_xml – sequence: 1
  givenname: I.
  surname: Payá-Zaforteza
  fullname: Payá-Zaforteza, I.
  email: igpaza@cst.upv.es
  organization: ICITECH, Departamento de Ingeniería de la Construcción, Universitat Politècnica de València, Camino de Vera s/n, 46071 Valencia, Spain
– sequence: 2
  givenname: M.E.M.
  surname: Garlock
  fullname: Garlock, M.E.M.
  email: mgarlock@princeton.edu
  organization: Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 0854, USA
BookMark eNqFkEFLwzAYhoNMcJv-AU85emn90qRtCl7G0CkMvCh4C2n6daZ06Uy6gf_ezHnyoPDBe3mfl49nRiZucEjINYOUAStuu7QzwacZsCwFnsY4I1MmS57kleQTMgUmeFKV4u2CzELoAEBWXE7JakHdfoveGt1T6w4YRrvRox0cjTe-I22tR-ox7AYXkA4t1TSMiD3dWN-gp7W3zQYvyXmr-4BXPzknrw_3L8vHZP28elou1okRDMaEF1BXNeQcm6LgWYkMCmgLXpfYgGmhrEqdcS7q3OjKNHmjGaurSoARQtfA-JzcnHZ3fvjYx2_V1gaDfa8dDvugWCkLJhmA-L8KnGVxWuaxmp2qxg8heGzVztut9p-xpI6CVaeOgtVRsAKuYkRI_oKMHb_VjV7b_m_07oRiVHWw6FUwFp3BJso2o2oG-xf-Bfmrl6w
CitedBy_id crossref_primary_10_1155_2019_5154309
crossref_primary_10_1016_j_firesaf_2020_103146
crossref_primary_10_4028_www_scientific_net_AMM_361_363_1187
crossref_primary_10_1016_j_jcsr_2018_06_021
crossref_primary_10_3989_ic_13_077
crossref_primary_10_1016_j_engstruct_2024_117578
crossref_primary_10_1016_j_engstruct_2024_117810
crossref_primary_10_1007_s13369_024_09063_w
crossref_primary_10_1007_s11709_018_0452_z
crossref_primary_10_1061__ASCE_CF_1943_5509_0000977
crossref_primary_10_1016_j_engstruct_2019_04_055
crossref_primary_10_1016_j_istruc_2021_10_080
crossref_primary_10_1007_s10694_024_01628_3
crossref_primary_10_1016_j_engstruct_2023_116840
crossref_primary_10_1016_j_jcsr_2014_12_001
crossref_primary_10_1016_j_jcsr_2021_106671
crossref_primary_10_1061__ASCE_CF_1943_5509_0000731
crossref_primary_10_1016_j_engstruct_2024_119442
crossref_primary_10_1080_10168664_2023_2213257
crossref_primary_10_1016_j_engstruct_2024_119207
crossref_primary_10_1139_cjce_2018_0767
crossref_primary_10_1007_s10973_018_7689_6
crossref_primary_10_1016_j_firesaf_2015_03_004
crossref_primary_10_1016_j_advengsoft_2018_11_003
crossref_primary_10_1016_j_istruc_2021_04_071
crossref_primary_10_3389_fbuil_2020_580854
crossref_primary_10_1016_j_jcsr_2014_05_021
crossref_primary_10_1061__ASCE_BE_1943_5592_0001029
crossref_primary_10_1016_j_engstruct_2013_03_048
crossref_primary_10_1007_s13296_022_00578_2
crossref_primary_10_1061_JBENF2_BEENG_5790
crossref_primary_10_1016_j_firesaf_2021_103487
crossref_primary_10_1016_j_firesaf_2023_103883
crossref_primary_10_1155_2022_5889743
crossref_primary_10_25130_tjes_29_3_9
crossref_primary_10_1016_j_firesaf_2024_104138
crossref_primary_10_1038_s41467_024_49593_3
crossref_primary_10_1007_s40868_016_0014_y
crossref_primary_10_1016_j_engstruct_2021_113230
crossref_primary_10_1016_j_istruc_2021_09_087
crossref_primary_10_1177_1369433219898102
crossref_primary_10_1016_j_engstruct_2014_02_022
crossref_primary_10_1061_JSENDH_STENG_12645
crossref_primary_10_1007_s10694_016_0602_6
crossref_primary_10_1007_s13296_024_00905_9
crossref_primary_10_1016_j_engstruct_2019_01_028
crossref_primary_10_1061__ASCE_BE_1943_5592_0000707
crossref_primary_10_1016_j_engstruct_2024_118297
crossref_primary_10_1111_ijac_14966
crossref_primary_10_1016_j_engstruct_2021_112764
crossref_primary_10_1016_j_jcsr_2017_08_008
crossref_primary_10_1016_j_strusafe_2022_102294
crossref_primary_10_1061__ASCE_BE_1943_5592_0000870
crossref_primary_10_1061__ASCE_BE_1943_5592_0001244
crossref_primary_10_1002_cepa_2517
crossref_primary_10_1080_15732479_2020_1832535
crossref_primary_10_1016_j_compstruc_2015_06_003
crossref_primary_10_1016_j_jlp_2017_04_004
crossref_primary_10_1155_2016_8024043
crossref_primary_10_1007_s13349_023_00670_z
crossref_primary_10_1016_j_jcsr_2020_105996
crossref_primary_10_1016_j_jcsr_2022_107173
crossref_primary_10_1007_s10973_019_09039_1
crossref_primary_10_25130_tjes_29_4_2
Cites_doi 10.1016/j.jcsr.2011.06.012
10.1016/j.jcsr.2011.04.014
10.1016/j.jcsr.2011.05.006
10.1016/j.engstruct.2011.11.002
10.1061/(ASCE)ST.1943-541X.0000443
10.2749/101686606777962585
10.1016/j.tra.2010.07.001
10.1016/j.compstruc.2008.01.006
10.1016/j.jcsr.2008.07.011
10.1016/j.jcsr.2009.12.016
ContentType Journal Article
Copyright 2012 Elsevier Ltd
Copyright_xml – notice: 2012 Elsevier Ltd
DBID AAYXX
CITATION
7SE
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.jcsr.2012.03.012
DatabaseName CrossRef
Corrosion Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Corrosion Abstracts
METADEX
DatabaseTitleList Materials Research Database
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5983
EndPage 103
ExternalDocumentID 10_1016_j_jcsr_2012_03_012
S0143974X12000661
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
D-I
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSM
SST
SSZ
T5K
VH1
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SE
8BQ
8FD
EFKBS
FR3
JG9
KR7
ID FETCH-LOGICAL-c410t-360b9b053ed66327e1060f63b7ed0cf0797a2334b5ca9cd5da11b9940c44ab013
IEDL.DBID AIKHN
ISSN 0143-974X
IngestDate Thu Sep 04 22:04:30 EDT 2025
Thu Sep 04 20:32:00 EDT 2025
Tue Jul 01 03:27:37 EDT 2025
Thu Apr 24 22:59:21 EDT 2025
Fri Feb 23 02:31:01 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Performance-based approach
Carbon steel
Stainless steel
Bridge
Fire
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-360b9b053ed66327e1060f63b7ed0cf0797a2334b5ca9cd5da11b9940c44ab013
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0143974X12000661
PQID 1031294085
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1786181004
proquest_miscellaneous_1031294085
crossref_primary_10_1016_j_jcsr_2012_03_012
crossref_citationtrail_10_1016_j_jcsr_2012_03_012
elsevier_sciencedirect_doi_10_1016_j_jcsr_2012_03_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2012
2012-08-00
20120801
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: August 2012
PublicationDecade 2010
PublicationTitle Journal of constructional steel research
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Badoo (bb0090) 2008; 64
López-Colina, Serrano-López, Gayarre, del Coz-Díaz (bb0070) 2011; 67
Gardner, Insausti, Ng, Ashraf (bb0095) 2010; 66
Euro Inox (bb0085) 2004; 7
Santiago, da Silva, Vila (bb0055) 2008; 86
European Committee for Standardization (CEN) (bb0105) 2003
European Committee for Standardization (CEN) (bb0115) 2002
Stoddard (bb0125) 2004
Sobrino (bb0080) 2006; 16
Buchanan (bb0050) 2002
(bb0155) 2009
Euro Inox (bb0130) 2006
(bb0040) 2008
Luecke, McColskey, McCowan, Banovic, Fields, Foecke (bb0150) 2005
Quiel, Garlock, Paya-Zaforteza (bb0060) 2011; 137
European Committee for Standardization (CEN) (bb0145) 2005
Lu, Zhao, Han (bb0065) 2011; 67
European Committee for Standardization (CEN) (bb0140) 2004
Kodur, Gu, Garlock (bb0025) January 2010
Rosenfield (bb0110) 2009
Simulia (bb0135) 2009
American Association of State Highway and Transportation Officials (AASHTO) (bb0120) 2009
Zhu, Levinson, Liu, Harder (bb0010) 2010; 44
British Standard Institute (bb0160) 1987
Priestley, Seible, Calvi (bb0020) 1996
New York State Department of Transportation (bb0045) 2011
Romero, Moliner, Espinos, Ibañez, Hospitaler (bb0075) 2011; 67
Garlock, Paya-Zaforteza, Gu, Kodur (bb0030) 2012; 35
American Society for Testing and Materials (ASTM) (bb0100) 2004
Chang, Nojima (bb0005) 2001; 35
San Francisco Gate (bb0035) 2011
Ghosn, Moses, Wang (bb0015) 2003
Gardner (10.1016/j.jcsr.2012.03.012_bb0095) 2010; 66
Rosenfield (10.1016/j.jcsr.2012.03.012_bb0110) 2009
American Society for Testing and Materials (ASTM) (10.1016/j.jcsr.2012.03.012_bb0100) 2004
Buchanan (10.1016/j.jcsr.2012.03.012_bb0050) 2002
European Committee for Standardization (CEN) (10.1016/j.jcsr.2012.03.012_bb0105) 2003
Santiago (10.1016/j.jcsr.2012.03.012_bb0055) 2008; 86
New York State Department of Transportation (10.1016/j.jcsr.2012.03.012_bb0045) 2011
Chang (10.1016/j.jcsr.2012.03.012_bb0005) 2001; 35
European Committee for Standardization (CEN) (10.1016/j.jcsr.2012.03.012_bb0115) 2002
(10.1016/j.jcsr.2012.03.012_bb0040) 2008
(10.1016/j.jcsr.2012.03.012_bb0155) 2009
Sobrino (10.1016/j.jcsr.2012.03.012_bb0080) 2006; 16
San Francisco Gate (10.1016/j.jcsr.2012.03.012_bb0035)
Zhu (10.1016/j.jcsr.2012.03.012_bb0010) 2010; 44
Romero (10.1016/j.jcsr.2012.03.012_bb0075) 2011; 67
European Committee for Standardization (CEN) (10.1016/j.jcsr.2012.03.012_bb0140) 2004
Lu (10.1016/j.jcsr.2012.03.012_bb0065) 2011; 67
Euro Inox (10.1016/j.jcsr.2012.03.012_bb0085) 2004; 7
López-Colina (10.1016/j.jcsr.2012.03.012_bb0070) 2011; 67
British Standard Institute (10.1016/j.jcsr.2012.03.012_bb0160) 1987
Simulia (10.1016/j.jcsr.2012.03.012_bb0135) 2009
European Committee for Standardization (CEN) (10.1016/j.jcsr.2012.03.012_bb0145) 2005
Quiel (10.1016/j.jcsr.2012.03.012_bb0060) 2011; 137
Badoo (10.1016/j.jcsr.2012.03.012_bb0090) 2008; 64
Ghosn (10.1016/j.jcsr.2012.03.012_bb0015) 2003
Euro Inox (10.1016/j.jcsr.2012.03.012_bb0130) 2006
Priestley (10.1016/j.jcsr.2012.03.012_bb0020) 1996
Stoddard (10.1016/j.jcsr.2012.03.012_bb0125) 2004
Garlock (10.1016/j.jcsr.2012.03.012_bb0030) 2012; 35
Kodur (10.1016/j.jcsr.2012.03.012_bb0025) 2010
American Association of State Highway and Transportation Officials (AASHTO) (10.1016/j.jcsr.2012.03.012_bb0120) 2009
Luecke (10.1016/j.jcsr.2012.03.012_bb0150) 2005
References_xml – year: 2002
  ident: bb0115
  article-title: EN 1991-1-2:2002 Eurocode 1: Actions on structures—Part 1–2: general actions—actions on structures exposed to fire. Brussels, Belgium
– year: 2009
  ident: bb0120
  article-title: LRFD Bridge design specifications. Washington D.C., USA
– year: 2004
  ident: bb0125
  article-title: Inspection and repair of a fire damaged prestressed girder bridge
  publication-title: International Bridge Conference, Pittsburgh
– year: 2005
  ident: bb0150
  article-title: NIST NCSTAR 1-3D. Federal building and fire safety investigation of the World Trade Center disaster
  publication-title: Mechanical properties of structural steel
– year: 2003
  ident: bb0015
  article-title: NCHRP Report 489. Design of highway bridges for extreme events
– year: 2004
  ident: bb0100
  article-title: ASTM A6/A6M Standard Specification for Structural Steel (A36-/A36M-04a)
– year: 2005
  ident: bb0145
  article-title: EN 1993-1-2: 2005 Eurocode 3: design of steel structures
  publication-title: Part 1.2 General rules—structural fire design
– volume: 35
  start-page: 475
  year: 2001
  end-page: 484
  ident: bb0005
  article-title: Measuring post-disaster transportation system performance: the 1995 Kobe earthquake in comparative perspective
  publication-title: Transp Res A
– year: 1987
  ident: bb0160
  article-title: BS 476: fire tests on building materials and structures, part 21: methods for determination of the fire resistance of load-bearing elements of construction
– year: 2008
  ident: bb0040
  article-title: Accelerated bridge construction applications in California—a lessons learned
  publication-title: Report issued by the California Department of Transportation
– volume: 35
  start-page: 89
  year: 2012
  end-page: 98
  ident: bb0030
  article-title: Fire hazard in bridges: review, assessment and repair strategies
  publication-title: Eng Struct
– year: 2003
  ident: bb0105
  article-title: Eurocode 1 Actions on Structures, Part 2: traffic loads on bridges
– volume: 16
  start-page: 96
  year: 2006
  end-page: 100
  ident: bb0080
  article-title: Stainless Steel Road Bridge in Menorca, Spain
  publication-title: Struct Eng Int
– year: 2002
  ident: bb0050
  article-title: Structural design for fire safety
– year: 2009
  ident: bb0155
  publication-title: NISTIR 7563. Best practice guidelines for structural fire resistance design of concrete and steel buildings
– volume: 137
  start-page: 967
  year: 2011
  end-page: 976
  ident: bb0060
  article-title: Closed form procedure for predicting the capacity and demand of steel beam-columns under fire
  publication-title: ASCE J Struct Eng
– volume: 86
  start-page: 1619
  year: 2008
  end-page: 1632
  ident: bb0055
  article-title: Numerical study of a steel sub-frame in fire
  publication-title: Comput Struct
– year: 2011
  ident: bb0045
  article-title: Bridge fire incidents in New York State (Private Correspondence with Prof. M. Garlock)
– volume: 64
  start-page: 1199
  year: 2008
  end-page: 1206
  ident: bb0090
  article-title: Stainless steel in construction: a review of research, applications, challenges and opportunities
  publication-title: J Construct Steel Res
– year: 2011
  ident: bb0035
  article-title: The maze meltdown
– volume: 67
  start-page: 1835
  year: 2011
  end-page: 1842
  ident: bb0075
  article-title: Fire behavior of axially loaded slender high strength concrete-filled tubular columns
  publication-title: J Construct Steel Res
– year: 1996
  ident: bb0020
  article-title: Seismic design and retrofit of bridges
– year: 2006
  ident: bb0130
  article-title: Design manual for structural stainless steel
– volume: 7
  year: 2004
  ident: bb0085
  article-title: Pedestrian bridges in stainless steel
  publication-title: Building Series
– volume: 66
  start-page: 634
  year: 2010
  end-page: 647
  ident: bb0095
  article-title: Elevated temperature material properties of stainless steel alloys
  publication-title: J Construct Steel Res
– year: January 2010
  ident: bb0025
  article-title: Review and assessment of fire hazard in bridges
  publication-title: Proceedings of the TRB Annual Meeting, Washington D.C.
– volume: 67
  start-page: 1733
  year: 2011
  end-page: 1748
  ident: bb0065
  article-title: FE modelling and fire resistance design of concrete filled double skin tubular columns
  publication-title: J Construct Steel Res
– year: 2009
  ident: bb0110
  article-title: I-75 tanker explosion collapses nine mile rd overpass in metro DetroitABC News, July 15, 2009. Accessed November 23, 2009
– year: 2004
  ident: bb0140
  article-title: EN 1992-1-2: 2004 Eurocode 2: design of concrete structures
  publication-title: Part 1.2 General rules—structural fire design
– volume: 44
  start-page: 771
  year: 2010
  end-page: 784
  ident: bb0010
  article-title: The traffic and behavioral effects of the I-35 W Mississippi River bridge collapse
  publication-title: Transp Res A Policy Pract
– volume: 67
  start-page: 1953
  year: 2011
  end-page: 1965
  ident: bb0070
  article-title: Stiffness of the component ‘lateral faces of RHS’ at high temperature
  publication-title: J Construct Steel Res
– year: 2009
  ident: bb0135
  article-title: Abaqus/standard version 6.9 user's manual
– volume: 67
  start-page: 1835
  issue: 12
  year: 2011
  ident: 10.1016/j.jcsr.2012.03.012_bb0075
  article-title: Fire behavior of axially loaded slender high strength concrete-filled tubular columns
  publication-title: J Construct Steel Res
  doi: 10.1016/j.jcsr.2011.06.012
– volume: 67
  start-page: 1733
  year: 2011
  ident: 10.1016/j.jcsr.2012.03.012_bb0065
  article-title: FE modelling and fire resistance design of concrete filled double skin tubular columns
  publication-title: J Construct Steel Res
  doi: 10.1016/j.jcsr.2011.04.014
– year: 2009
  ident: 10.1016/j.jcsr.2012.03.012_bb0120
– volume: 7
  year: 2004
  ident: 10.1016/j.jcsr.2012.03.012_bb0085
  article-title: Pedestrian bridges in stainless steel
– volume: 67
  start-page: 1953
  issue: 12
  year: 2011
  ident: 10.1016/j.jcsr.2012.03.012_bb0070
  article-title: Stiffness of the component ‘lateral faces of RHS’ at high temperature
  publication-title: J Construct Steel Res
  doi: 10.1016/j.jcsr.2011.05.006
– volume: 35
  start-page: 89
  year: 2012
  ident: 10.1016/j.jcsr.2012.03.012_bb0030
  article-title: Fire hazard in bridges: review, assessment and repair strategies
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2011.11.002
– year: 2003
  ident: 10.1016/j.jcsr.2012.03.012_bb0105
– year: 2004
  ident: 10.1016/j.jcsr.2012.03.012_bb0125
  article-title: Inspection and repair of a fire damaged prestressed girder bridge
– ident: 10.1016/j.jcsr.2012.03.012_bb0035
– volume: 137
  start-page: 967
  year: 2011
  ident: 10.1016/j.jcsr.2012.03.012_bb0060
  article-title: Closed form procedure for predicting the capacity and demand of steel beam-columns under fire
  publication-title: ASCE J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0000443
– volume: 16
  start-page: 96
  issue: 2
  year: 2006
  ident: 10.1016/j.jcsr.2012.03.012_bb0080
  article-title: Stainless Steel Road Bridge in Menorca, Spain
  publication-title: Struct Eng Int
  doi: 10.2749/101686606777962585
– year: 2004
  ident: 10.1016/j.jcsr.2012.03.012_bb0140
  article-title: EN 1992-1-2: 2004 Eurocode 2: design of concrete structures
– year: 2009
  ident: 10.1016/j.jcsr.2012.03.012_bb0155
– year: 2002
  ident: 10.1016/j.jcsr.2012.03.012_bb0050
– volume: 44
  start-page: 771
  issue: 10
  year: 2010
  ident: 10.1016/j.jcsr.2012.03.012_bb0010
  article-title: The traffic and behavioral effects of the I-35 W Mississippi River bridge collapse
  publication-title: Transp Res A Policy Pract
  doi: 10.1016/j.tra.2010.07.001
– year: 2009
  ident: 10.1016/j.jcsr.2012.03.012_bb0135
– year: 2006
  ident: 10.1016/j.jcsr.2012.03.012_bb0130
– year: 2010
  ident: 10.1016/j.jcsr.2012.03.012_bb0025
  article-title: Review and assessment of fire hazard in bridges
– year: 2005
  ident: 10.1016/j.jcsr.2012.03.012_bb0150
  article-title: NIST NCSTAR 1-3D. Federal building and fire safety investigation of the World Trade Center disaster
– volume: 86
  start-page: 1619
  issue: 15–16
  year: 2008
  ident: 10.1016/j.jcsr.2012.03.012_bb0055
  article-title: Numerical study of a steel sub-frame in fire
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2008.01.006
– volume: 64
  start-page: 1199
  year: 2008
  ident: 10.1016/j.jcsr.2012.03.012_bb0090
  article-title: Stainless steel in construction: a review of research, applications, challenges and opportunities
  publication-title: J Construct Steel Res
  doi: 10.1016/j.jcsr.2008.07.011
– year: 2009
  ident: 10.1016/j.jcsr.2012.03.012_bb0110
– year: 1996
  ident: 10.1016/j.jcsr.2012.03.012_bb0020
– year: 2008
  ident: 10.1016/j.jcsr.2012.03.012_bb0040
  article-title: Accelerated bridge construction applications in California—a lessons learned
– year: 2003
  ident: 10.1016/j.jcsr.2012.03.012_bb0015
– year: 1987
  ident: 10.1016/j.jcsr.2012.03.012_bb0160
– volume: 35
  start-page: 475
  year: 2001
  ident: 10.1016/j.jcsr.2012.03.012_bb0005
  article-title: Measuring post-disaster transportation system performance: the 1995 Kobe earthquake in comparative perspective
  publication-title: Transp Res A
– year: 2004
  ident: 10.1016/j.jcsr.2012.03.012_bb0100
– year: 2011
  ident: 10.1016/j.jcsr.2012.03.012_bb0045
– year: 2002
  ident: 10.1016/j.jcsr.2012.03.012_bb0115
– volume: 66
  start-page: 634
  year: 2010
  ident: 10.1016/j.jcsr.2012.03.012_bb0095
  article-title: Elevated temperature material properties of stainless steel alloys
  publication-title: J Construct Steel Res
  doi: 10.1016/j.jcsr.2009.12.016
– year: 2005
  ident: 10.1016/j.jcsr.2012.03.012_bb0145
  article-title: EN 1993-1-2: 2005 Eurocode 3: design of steel structures
SSID ssj0008938
Score 2.3004386
Snippet The response of bridges subject to fire is an under researched topic despite the number of bridge failures caused by fire. Since available data shows that...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 93
SubjectTerms Bridge
Bridges (structures)
Carbon steel
Carbon steels
Fire
Fires
Girder bridges
Girders
Mathematical models
Performance-based approach
Stainless steel
Stainless steels
Structural steels
Title A numerical investigation on the fire response of a steel girder bridge
URI https://dx.doi.org/10.1016/j.jcsr.2012.03.012
https://www.proquest.com/docview/1031294085
https://www.proquest.com/docview/1786181004
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEBVpcmkPpStNl6BCb8WJF8nLMYSmaQs5NZCbkGS5uAQ7ZLn22zsT2ekCzaFgMBYStkfSmxnpzYiQuxAGTaxD7sTccIelnDkyiaQjYxkxKEMtjWyLcTiasOcpnzbIoI6FQVplhf0W0zdoXZX0Kmn25nneQ1oSKFM29TbRJugCtfwgCXmTtPpPL6PxFpBBJceWyRg42KCKnbE0r3e9xLSguCQYdF3P_0s__ULqjfoZHpHDym6kfftpx6RhihNy8C2b4Cl57NNibTdgZjT_yp9RFhQuMPRoBv9KF5YVa2iZUUmhk82MvuWYgZPa6K0zMhk-vA5GTnVOgqOZ566cIHRVomA2mRTsBz8y4Oa5WRioyKSuztwIhO8HAVNcy0SnPJWep5KEuZoxieug56RZlIW5IFQxHmWSKx_VfuwZxTLwN8BI0dpPQy7bxKulI3SVRBzPspiJmi32LlCiAiUq3EDArU3ut23mNoXGztq8Frr4MRAEYPzOdrd1DwmYIbjtIQtTrpcCD7LwE8zktqNOFIdg6wBiXP7z_VdkH58sN_CaNFeLtbkBe2WlOmSv--F1qlH5CeAm594
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA6lHtSDuGJdI3iTaWdJZjmWYq1ae2qht5BkMtJSpqXL1d_ue82MVcEehIGBTMLMvCRvSb73hZD7EAZNrEPuxNxwh6WcOTKJpCNjGTEoQyuNaIte2BmwlyEfVkirzIVBWGWh-61OX2vroqRRSLMxG40aCEsCY8qG3jrbBEOgHcaDCHF99Y8NzgMMcmxxjIGD1YvMGQvyGusFkoLigmBQdz3_L-v0S0-vjU_7kBwUXiNt2g87IhWTH5P9b1yCJ-SpSfOV3X6Z0NGGPWOaU7jAzaMZ_CmdW0ysodOMSgpdbCb0fYT8m9Tmbp2SQfux3-o4xSkJjmaeu3SC0FWJgrlkUvAe_MhAkOdmYaAik7o6cyMQvR8ETHEtE53yVHqeShLmasYkroKekWo-zc05oYrxKJNc-Wj0Y88olkG0AS6K1n4aclkjXikdoQsKcTzJYiJKrNhYoEQFSlS4gYBbjTx8tZlZAo2ttXkpdPFjGAjQ8Fvb3ZU9JGB-4KaHzM10tRB4jIWfII_bljpRHIKnA_ri4p_vvyW7nf5bV3Sfe6-XZA-fWJTgFaku5ytzDZ7LUt2sR-Yn0i3oqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+investigation+on+the+fire+response+of+a+steel+girder+bridge&rft.jtitle=Journal+of+constructional+steel+research&rft.au=Paya-Zaforteza%2C+I&rft.au=Garlock%2C+MEM&rft.date=2012-08-01&rft.issn=0143-974X&rft.volume=75&rft.spage=93&rft.epage=103&rft_id=info:doi/10.1016%2Fj.jcsr.2012.03.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-974X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-974X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-974X&client=summon