The formation of solitary wave solutions and their propagation for Kuralay equation
In this paper, the main motive is to mathematical explore the Kuralay equation, which find applications in various fields such as ferromagnetic materials, nonlinear optics, and optical fibers. The objective of this study is to investigate different types of soliton solutions and analyze the integrab...
Saved in:
Published in | Results in physics Vol. 52; p. 106774 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, the main motive is to mathematical explore the Kuralay equation, which find applications in various fields such as ferromagnetic materials, nonlinear optics, and optical fibers. The objective of this study is to investigate different types of soliton solutions and analyze the integrable motion of induced space curves. This article appropriates the traveling wave transformation allowing the partial differential equation to be changed into an ordinary differential equation. To establish these soliton solutions, the study employs the new auxiliary equation method. As an outcome, a numerous types of soliton solutions like, Periodic pattern with anti-peaked crests and anti-troughs, singular solution, mixed complex solitary shock solution, mixed singular solution, mixed shock singular solution, mixed trigonometric solution, mixed periodic, periodic solution and mixed hyperbolic solution obtain via Mathematica. In order to visualize the graphical propagation of the obtained soliton solutions, 3D, 2D, and contour graphics are generated by choosing appropriate parametric values. The impact of parameter w is also graphically displayed on the propagation of solitons.
•New auxiliary equation method applied on Kuralay equation.•Mixed trigonometric solution, mixed periodic, periodic solution and mixed hyperbolic solution obtained via Mathematica.•The graphical visualization of obtained solution and propagating behaviors are presented. |
---|---|
AbstractList | In this paper, the main motive is to mathematical explore the Kuralay equation, which find applications in various fields such as ferromagnetic materials, nonlinear optics, and optical fibers. The objective of this study is to investigate different types of soliton solutions and analyze the integrable motion of induced space curves. This article appropriates the traveling wave transformation allowing the partial differential equation to be changed into an ordinary differential equation. To establish these soliton solutions, the study employs the new auxiliary equation method. As an outcome, a numerous types of soliton solutions like, Periodic pattern with anti-peaked crests and anti-troughs, singular solution, mixed complex solitary shock solution, mixed singular solution, mixed shock singular solution, mixed trigonometric solution, mixed periodic, periodic solution and mixed hyperbolic solution obtain via Mathematica. In order to visualize the graphical propagation of the obtained soliton solutions, 3D, 2D, and contour graphics are generated by choosing appropriate parametric values. The impact of parameter w is also graphically displayed on the propagation of solitons. In this paper, the main motive is to mathematical explore the Kuralay equation, which find applications in various fields such as ferromagnetic materials, nonlinear optics, and optical fibers. The objective of this study is to investigate different types of soliton solutions and analyze the integrable motion of induced space curves. This article appropriates the traveling wave transformation allowing the partial differential equation to be changed into an ordinary differential equation. To establish these soliton solutions, the study employs the new auxiliary equation method. As an outcome, a numerous types of soliton solutions like, Periodic pattern with anti-peaked crests and anti-troughs, singular solution, mixed complex solitary shock solution, mixed singular solution, mixed shock singular solution, mixed trigonometric solution, mixed periodic, periodic solution and mixed hyperbolic solution obtain via Mathematica. In order to visualize the graphical propagation of the obtained soliton solutions, 3D, 2D, and contour graphics are generated by choosing appropriate parametric values. The impact of parameter w is also graphically displayed on the propagation of solitons. •New auxiliary equation method applied on Kuralay equation.•Mixed trigonometric solution, mixed periodic, periodic solution and mixed hyperbolic solution obtained via Mathematica.•The graphical visualization of obtained solution and propagating behaviors are presented. |
ArticleNumber | 106774 |
Author | Myrzakulova, Zhaidary Bakar, Muhammad Abu El Din, Sayed M. Faridi, Waqas Ali Myrzakulov, Ratbay Akgül, Ali |
Author_xml | – sequence: 1 givenname: Waqas Ali orcidid: 0000-0003-0713-5365 surname: Faridi fullname: Faridi, Waqas Ali email: wa966142@gmail.com organization: Department of Mathematics, University of Management and Technology, Lahore, Pakistan – sequence: 2 givenname: Muhammad Abu surname: Bakar fullname: Bakar, Muhammad Abu organization: Department of Mathematics, University of Management and Technology, Lahore, Pakistan – sequence: 3 givenname: Zhaidary surname: Myrzakulova fullname: Myrzakulova, Zhaidary organization: Ratbay Myrzakulov Eurasian International Centre for Theoretical Physics, Astana, Kazakhstan – sequence: 4 givenname: Ratbay surname: Myrzakulov fullname: Myrzakulov, Ratbay organization: Ratbay Myrzakulov Eurasian International Centre for Theoretical Physics, Astana, Kazakhstan – sequence: 5 givenname: Ali surname: Akgül fullname: Akgül, Ali email: aliakgul@siirt.edu.tr organization: Department of Computer Science and Mathematics, Lebanese American University, Beirut 11022801, Lebanon – sequence: 6 givenname: Sayed M. surname: El Din fullname: El Din, Sayed M. organization: Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt |
BookMark | eNp9kMtOwzAQRS1UJF79AVb-gRY_4jiR2CDEowKJBbC2Js4YXIW4OGlR_x6nAQmx6MKyPaNzNXNOyKQNLRJyztmcM55fLOfRt6u5YEKmQq51dkCOheB8JnWpJ3_eR2TadUvGEpUpxfkxeX55R-pC_IDeh5YGR7vQ-B7iln7BBoffeuh0FNqa9u_oI13FsIK3EUgofVhHaGBL8XO9K56RQwdNh9Of-5S83t68XN_PHp_uFtdXjzObcdbPZFYLKYTLobSVdZqB05Lltk5drrW0pWJcpVNbrqAqAURRZRwtYo65VfKULMbcOsDSrKL_SGObAN7sCiG-GYi9tw0aKLjObF1Ip2SmnCixrlShmcxzlTGHKasYs2wMXRfRGZssDNv0EXxjODODa7M0g2szuDaj64SKf-jvKHuhyxHCJGjjMZrOemwt1j6i7dMGfh_-DZ4FmsQ |
CitedBy_id | crossref_primary_10_1088_1402_4896_ad999d crossref_primary_10_1016_j_asej_2024_103178 crossref_primary_10_1186_s13661_023_01792_5 crossref_primary_10_1038_s41598_024_56719_6 crossref_primary_10_1007_s11082_024_06378_8 crossref_primary_10_1142_S0217984924505122 crossref_primary_10_1007_s11082_023_05301_x crossref_primary_10_1007_s11071_024_10101_3 crossref_primary_10_1142_S0217984924503962 crossref_primary_10_1007_s11082_024_06635_w crossref_primary_10_1007_s11082_023_05649_0 crossref_primary_10_1016_j_ijleo_2024_171694 crossref_primary_10_1142_S0217984925500484 crossref_primary_10_3390_sym15101862 crossref_primary_10_1016_j_chaos_2024_114745 crossref_primary_10_1016_j_chaos_2024_114724 crossref_primary_10_1016_j_rinp_2023_107126 crossref_primary_10_33187_jmsm_1475211 crossref_primary_10_1142_S0217984924503548 crossref_primary_10_1007_s11082_024_06517_1 crossref_primary_10_1007_s11082_024_06701_3 crossref_primary_10_1007_s11082_023_06033_8 crossref_primary_10_3934_math_20241361 crossref_primary_10_1142_S0217984924503809 crossref_primary_10_1007_s10773_024_05559_1 crossref_primary_10_1007_s11071_023_09242_8 crossref_primary_10_3390_math13010084 crossref_primary_10_1016_j_sajce_2024_01_003 crossref_primary_10_1007_s11082_024_06367_x crossref_primary_10_1016_j_aej_2024_06_079 crossref_primary_10_1007_s11082_024_06413_8 crossref_primary_10_1007_s11082_024_06417_4 crossref_primary_10_1007_s11082_024_06851_4 crossref_primary_10_1142_S0217984924503676 crossref_primary_10_1016_j_chaos_2024_115540 crossref_primary_10_1007_s11082_024_06661_8 crossref_primary_10_1007_s10773_025_05929_3 crossref_primary_10_1140_epjp_s13360_024_05896_4 crossref_primary_10_2478_ama_2024_0041 crossref_primary_10_1016_j_rinp_2024_107678 crossref_primary_10_1088_1402_4896_ad85a9 crossref_primary_10_2478_ama_2024_0060 |
Cites_doi | 10.1016/j.chaos.2023.113226 10.1016/j.asej.2021.06.014 10.1016/j.heliyon.2023.e13511 10.1002/mma.8738 10.1016/j.chaos.2022.112399 10.1016/j.joes.2021.07.006 10.1007/s10444-023-10016-4 10.3934/math.2022462 10.1016/j.cnsns.2022.106818 10.3390/fractalfract6010004 10.1016/j.cnsns.2022.106660 10.1016/j.camwa.2022.03.031 10.1007/s11082-022-04488-9 10.1007/s12596-020-00671-x 10.1016/j.aej.2022.07.010 10.1016/j.chaos.2023.113184 10.1016/j.rinp.2022.106039 10.1007/s11082-023-04723-x 10.1016/j.ijleo.2022.170215 10.1140/epjp/s13360-023-03710-1 10.1016/j.joes.2021.08.009 10.3390/fractalfract7020191 10.1016/j.chaos.2023.113232 10.3116/16091833/24/1/46/2023 10.1016/j.aej.2022.05.037 10.1103/PhysRevE.107.025107 10.3390/fractalfract7010038 10.3934/math.2022623 10.1007/s11071-021-07076-w 10.3390/fractalfract7020136 10.1016/j.cjph.2021.10.026 10.1007/s11082-023-04647-6 10.3390/sym14071374 10.1016/j.rinp.2023.106306 10.1103/PhysRevLett.128.130602 10.1515/phys-2022-0014 10.1016/j.aej.2023.01.063 10.1016/j.rinp.2023.106227 10.1103/PhysRevD.105.103506 10.1016/j.rinp.2020.103476 10.1016/j.rinp.2021.104724 10.1007/s11082-023-04570-w 10.1016/j.chaos.2020.110578 10.1016/j.rinp.2022.105492 10.1080/00207160.2023.2186775 10.3390/fractalfract6060334 10.1016/j.matcom.2022.02.014 10.1142/S0217984921506235 10.1007/s11082-022-04077-w 10.1007/s11082-022-04402-3 |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rinp.2023.106774 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2211-3797 |
ExternalDocumentID | oai_doaj_org_article_a8174cd83f5345f29edb5870366540fe 10_1016_j_rinp_2023_106774 S2211379723005673 |
GroupedDBID | --K 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M48 M~E NCXOZ O-L O9- OK1 RIG ROL SES SSZ XH2 AAFWJ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPKN AFPUW AIGII AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c410t-34d2322f6a9cbcf70af7306cd4101773c95015501dc15ab9aa28b41ecee6e6c53 |
IEDL.DBID | M48 |
ISSN | 2211-3797 |
IngestDate | Wed Aug 27 01:25:04 EDT 2025 Tue Jul 01 02:27:50 EDT 2025 Thu Apr 24 22:51:35 EDT 2025 Wed Jun 26 17:52:50 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Kuralay equation (K-IIE) New auxiliary equation method (NAEM) Analytical solitary wave solutions |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-34d2322f6a9cbcf70af7306cd4101773c95015501dc15ab9aa28b41ecee6e6c53 |
ORCID | 0000-0003-0713-5365 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211379723005673 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a8174cd83f5345f29edb5870366540fe crossref_citationtrail_10_1016_j_rinp_2023_106774 crossref_primary_10_1016_j_rinp_2023_106774 elsevier_sciencedirect_doi_10_1016_j_rinp_2023_106774 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2023 2023-09-00 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
PublicationDecade | 2020 |
PublicationTitle | Results in physics |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Al-Tai, Al-Fayadh (b49) 2023 Sagidullayeva, Nugmanova, Myrzakulov, Serikbayev (b58) 2022; 14 Khatun, Akbar (b14) 2023; 46 Iqbal, Wang, Miah, Osman (b7) 2021; 6 Majid, Faridi, Asjad, AbdEl-Rahman, Eldin (b10) 2023; 7 Zulfiqar, Ahmad (b42) 2020; 19 Al Qarni, Bodaqah, Mohammed, Alshaery, Bakodah, Biswas (b21) 2023; 24 Singh, Ray (b9) 2023; 168 Bruè, De Lellis (b16) 2023 Asjad, Munawar, Muhammad, Hamoud, Emadifar, Hamasalh, Azizi, Khademi (b57) 2022; 7 Kumar, Malik, Rezazadeh, Akinyemi (b55) 2022; 107 Aksoy, Yenikaya (b32) 2023; 169 Muhamad, Tanriverdi, Mahmud, Baskonus (b11) 2023 Zahran, Bekir (b60) 2022; 36 Wang, Liu (b2) 2023; 138 Skipp, Laurie, Nazarenko (b1) 2023; 107 Bettelheim, Smith, Meerson (b50) 2022; 128 Eidinejad, Saadati, Li, Inc, Vahidi (b8) 2023 Baber, Seadway, Iqbal, Ahmed, Yasin, Ahmed (b30) 2022 Akinyemi, Şenol, Osman (b6) 2022; 7 Rani, Zulfiqar, Ahmad, Hassan (b44) 2021; 29 Khater, Zhang, Attia (b13) 2023; 45 Asjad, Faridi, Jhangeer, Aleem, Yusuf, Alshomrani, Baleanu (b27) 2022; 7 Ozdemir, Secer, Bayram (b36) 2023; 55 Zhang, Dang, Li, Chai (b52) 2022; 114 Almusawa, Jhangeer (b26) 2022; 6 Almusawa, Jhangeer (b38) 2022; 114 Bilal, Ahmad (b43) 2021; 25 Gonzalez-Gaxiola, Biswas, Ekici, Khan (b48) 2022; 51 Hosseini, Hincal, Salahshour, Mirzazadeh, Dehingia, Nath (b31) 2023; 272 Bruè, De Lellis (b19) 2023 Ali, Ahmad, Javed (b46) 2023; 69 Raheel, Zafar, Ali, Myrzakulova, Bekir, Myrzakulov (b61) 2023 Hess, Quaini, Rozza (b17) 2023; 49 Qureshi, Bilal, Khan, Akgül, Sultana, Botmart, ., Yahia (b22) 2022; 61 Ur Rahman, Faridi, El-Rahman, Taishiyeva, Myrzakulov, Az-Zo’bi (b56) 2023; 7 Akram, Ahmad, Sarwar, Ali (b45) 2023; 55 Kumar, Niwas (b15) 2023; 55 Zagorac, Sands, Padmanabhan, Easther (b51) 2022; 105 Jhangeer, Hussain, Junaid-U-Rehman, Baleanu, Riaz (b41) 2021; 143 Khater (b35) 2023; 169 Liu, Osman (b29) 2022; 77 Aniqa, Ahmad (b54) 2022; 13 Shah, Bilal, Akgül, Tekin, Botmart, Zahran, Yahia (b23) 2022; 61 Faridi, Asjad, Jarad (b12) 2022; 54 Abu Bakar, Owyed, Faridi, El-Rahman, Sallah (b5) 2023; 7 Al Alwan, Abu Bakar, Faridi, Turcu, Akgül, Sallah (b34) 2023; 7 Faridi, Asjad, Jarad (b24) 2022; 43 Asjad, Faridi, Jhangeer, Ahmad, Abdel-Khalek, Alshehri (b25) 2022; 20 Rafiq, Jhangeer, Raza (b37) 2023; 116 Jhangeer, Almusawa, Hussain (b39) 2022; 37 Fahim, Kundu, Islam, Akbar, Osman (b28) 2022; 7 Aniqa, Ahmad (b47) 2022; 13 Zahran, Bekir (b59) 2023; 46 Wu, Gao, Yu, Ding, Li (b20) 2022; 162 Raza, Jhangeer, Arshed, Inc (b40) 2021 Lange (b18) 2023 Asjad, Inc, Faridi, Bakar, Muhammad, Rezazadeh (b4) 2023; 55 Khater (b33) 2023; 9 He, Lü (b53) 2022; 197 Rizvi, Seadawy, Ahmed, Bashir (b3) 2023; 55 Asjad (10.1016/j.rinp.2023.106774_b4) 2023; 55 Bruè (10.1016/j.rinp.2023.106774_b19) 2023 Bruè (10.1016/j.rinp.2023.106774_b16) 2023 Bilal (10.1016/j.rinp.2023.106774_b43) 2021; 25 Gonzalez-Gaxiola (10.1016/j.rinp.2023.106774_b48) 2022; 51 Khater (10.1016/j.rinp.2023.106774_b13) 2023; 45 Al Qarni (10.1016/j.rinp.2023.106774_b21) 2023; 24 Iqbal (10.1016/j.rinp.2023.106774_b7) 2021; 6 Raza (10.1016/j.rinp.2023.106774_b40) 2021 Ur Rahman (10.1016/j.rinp.2023.106774_b56) 2023; 7 Wang (10.1016/j.rinp.2023.106774_b2) 2023; 138 Singh (10.1016/j.rinp.2023.106774_b9) 2023; 168 Almusawa (10.1016/j.rinp.2023.106774_b38) 2022; 114 Wu (10.1016/j.rinp.2023.106774_b20) 2022; 162 Khatun (10.1016/j.rinp.2023.106774_b14) 2023; 46 Faridi (10.1016/j.rinp.2023.106774_b24) 2022; 43 Shah (10.1016/j.rinp.2023.106774_b23) 2022; 61 Asjad (10.1016/j.rinp.2023.106774_b27) 2022; 7 Al Alwan (10.1016/j.rinp.2023.106774_b34) 2023; 7 Ozdemir (10.1016/j.rinp.2023.106774_b36) 2023; 55 Bettelheim (10.1016/j.rinp.2023.106774_b50) 2022; 128 Liu (10.1016/j.rinp.2023.106774_b29) 2022; 77 Hess (10.1016/j.rinp.2023.106774_b17) 2023; 49 Khater (10.1016/j.rinp.2023.106774_b33) 2023; 9 Abu Bakar (10.1016/j.rinp.2023.106774_b5) 2023; 7 Akinyemi (10.1016/j.rinp.2023.106774_b6) 2022; 7 He (10.1016/j.rinp.2023.106774_b53) 2022; 197 Aniqa (10.1016/j.rinp.2023.106774_b54) 2022; 13 Kumar (10.1016/j.rinp.2023.106774_b55) 2022; 107 Lange (10.1016/j.rinp.2023.106774_b18) 2023 Baber (10.1016/j.rinp.2023.106774_b30) 2022 Asjad (10.1016/j.rinp.2023.106774_b57) 2022; 7 Muhamad (10.1016/j.rinp.2023.106774_b11) 2023 Rizvi (10.1016/j.rinp.2023.106774_b3) 2023; 55 Zahran (10.1016/j.rinp.2023.106774_b59) 2023; 46 Aniqa (10.1016/j.rinp.2023.106774_b47) 2022; 13 Zagorac (10.1016/j.rinp.2023.106774_b51) 2022; 105 Ali (10.1016/j.rinp.2023.106774_b46) 2023; 69 Zulfiqar (10.1016/j.rinp.2023.106774_b42) 2020; 19 Akram (10.1016/j.rinp.2023.106774_b45) 2023; 55 Aksoy (10.1016/j.rinp.2023.106774_b32) 2023; 169 Rafiq (10.1016/j.rinp.2023.106774_b37) 2023; 116 Asjad (10.1016/j.rinp.2023.106774_b25) 2022; 20 Raheel (10.1016/j.rinp.2023.106774_b61) 2023 Rani (10.1016/j.rinp.2023.106774_b44) 2021; 29 Eidinejad (10.1016/j.rinp.2023.106774_b8) 2023 Khater (10.1016/j.rinp.2023.106774_b35) 2023; 169 Zhang (10.1016/j.rinp.2023.106774_b52) 2022; 114 Skipp (10.1016/j.rinp.2023.106774_b1) 2023; 107 Fahim (10.1016/j.rinp.2023.106774_b28) 2022; 7 Jhangeer (10.1016/j.rinp.2023.106774_b41) 2021; 143 Faridi (10.1016/j.rinp.2023.106774_b12) 2022; 54 Kumar (10.1016/j.rinp.2023.106774_b15) 2023; 55 Almusawa (10.1016/j.rinp.2023.106774_b26) 2022; 6 Majid (10.1016/j.rinp.2023.106774_b10) 2023; 7 Zahran (10.1016/j.rinp.2023.106774_b60) 2022; 36 Jhangeer (10.1016/j.rinp.2023.106774_b39) 2022; 37 Hosseini (10.1016/j.rinp.2023.106774_b31) 2023; 272 Al-Tai (10.1016/j.rinp.2023.106774_b49) 2023 Sagidullayeva (10.1016/j.rinp.2023.106774_b58) 2022; 14 Qureshi (10.1016/j.rinp.2023.106774_b22) 2022; 61 |
References_xml | – volume: 116 year: 2023 ident: b37 article-title: The analysis of solitonic, supernonlinear, periodic, quasiperiodic, bifurcation and chaotic patterns of perturbed Gerdjikov–Ivanov model with full nonlinearity publication-title: Commun Nonlinear Sci Numer Simul – volume: 169 year: 2023 ident: b35 article-title: A hybrid analytical and numerical analysis of ultra-short pulse phase shifts publication-title: Chaos Solitons Fractals – volume: 14 start-page: 1374 year: 2022 ident: b58 article-title: Integrable Kuralay equations: geometry, solutions and generalizations publication-title: Symmetry – volume: 114 year: 2022 ident: b38 article-title: Nonlinear self-adjointness, conserved quantities and Lie symmetry of dust size distribution on a shock wave in quantum dusty plasma publication-title: Commun Nonlinear Sci Numer Simul – volume: 24 start-page: 46 year: 2023 end-page: 61 ident: b21 article-title: Dark and singular cubic-quartic optical solitons with Lakshmanan–Porsezian–Daniel equation by the improved Adomian decomposition scheme publication-title: Ukr J Phys Opt – volume: 138 start-page: 1 year: 2023 end-page: 9 ident: b2 article-title: Diverse optical solitons to the nonlinear Schrödinger equation via two novel techniques publication-title: Eur Phys J Plus – volume: 13 year: 2022 ident: b47 article-title: Soliton solution of fractional Sharma–Tasso–Olever equation via an efficient publication-title: Ain Shams Eng J – volume: 55 start-page: 286 year: 2023 ident: b3 article-title: Optical soliton solutions and various breathers lump interaction solutions with periodic wave for nonlinear Schrödinger equation with quadratic nonlinear susceptibility publication-title: Opt Quantum Electron – volume: 168 year: 2023 ident: b9 article-title: Integrability and new periodic, kink-antikink and complex optical soliton solutions of publication-title: Chaos Solitons Fractals – volume: 46 year: 2023 ident: b14 article-title: New optical soliton solutions to the space–time fractional perturbed Chen–Lee–Liu equation publication-title: Results Phys – volume: 77 start-page: 1618 year: 2022 end-page: 1624 ident: b29 article-title: Nonlinear dynamics for different nonautonomous wave structures solutions of a 3D variable-coefficient generalized shallow water wave equation publication-title: Chinese J Phys – volume: 197 start-page: 327 year: 2022 end-page: 340 ident: b53 article-title: M-lump solution, soliton solution and rational solution to a (3+ 1)-dimensional nonlinear model publication-title: Math Comput Simulation – volume: 107 start-page: 2703 year: 2022 end-page: 2716 ident: b55 article-title: The integrable Boussinesq equation and it’s breather, lump and soliton solutions publication-title: Nonlinear Dynam – volume: 55 start-page: 313 year: 2023 ident: b36 article-title: Extraction of soliton waves from the longitudinal wave equation with local M-truncated derivatives publication-title: Opt Quantum Electron – volume: 45 year: 2023 ident: b13 article-title: Accurate computational simulations of perturbed Chen–Lee–Liu equation publication-title: Results Phys – volume: 9 year: 2023 ident: b33 article-title: Computational and numerical wave solutions of the Caudrey–Dodd–Gibbon equation publication-title: Heliyon – volume: 55 start-page: 450 year: 2023 ident: b45 article-title: Dynamics of soliton solutions in optical fibers modelled by perturbed nonlinear Schrödinger equation and stability analysis publication-title: Opt Quantum Electron – volume: 7 year: 2023 ident: b10 article-title: Explicit soliton structure formation for the Riemann wave equation and a sensitive demonstration publication-title: Fract Fract – year: 2023 ident: b49 article-title: Solving two dimensional coupled Burger’s equations using transform variational iteration method publication-title: AIP conference proceedings, Vol. 2414 – volume: 105 year: 2022 ident: b51 article-title: Schrödinger-Poisson solitons: Perturbation theory publication-title: Phys Rev D – volume: 20 start-page: 130 year: 2022 end-page: 141 ident: b25 article-title: Propagation of some new traveling wave patterns of the double dispersive equation publication-title: Open Phys – volume: 29 year: 2021 ident: b44 article-title: New soliton wave structures of fractional Gilson–Pickering equation using tanh-coth method and their applications publication-title: Results Phys – year: 2022 ident: b30 article-title: Comparative analysis of numerical and newly constructed soliton solutions of stochastic Fisher-type equations in a sufficiently long habitat publication-title: Internat J Modern Phys B – volume: 7 start-page: 8290 year: 2022 end-page: 8313 ident: b27 article-title: Nonlinear wave train in an inhomogeneous medium with the fractional theory in a plane self-focusing publication-title: AIMS Math – volume: 7 start-page: 11134 year: 2022 end-page: 11149 ident: b57 article-title: Traveling wave solutions to the Boussinesq equation via Sardar sub-equation technique publication-title: AIMS Math – start-page: 1 year: 2023 end-page: 26 ident: b18 article-title: Regularization by noise of an averaged version of the Navier–Stokes equations publication-title: J Dynam Differential Equations – volume: 7 start-page: 38 year: 2023 ident: b5 article-title: The first integral of the dissipative nonlinear Schrödinger equation with Nucci’s direct method and explicit wave profile formation publication-title: Fract Fract – start-page: 1 year: 2021 end-page: 15 ident: b40 article-title: The chaotic, supernonlinear, periodic, quasiperiodic wave solutions and solitons with cascaded system publication-title: Waves Random Complex Media – volume: 61 start-page: 11737 year: 2022 end-page: 11751 ident: b23 article-title: On analysis of magnetized viscous fluid flow in permeable channel with single wall carbon nano tubes dispersion by executing nano-layer approach publication-title: Alex Eng J – year: 2023 ident: b61 article-title: New analytical wave solutions to the M-fractional Kuralay-II equations based on three distinct schemes – volume: 43 year: 2022 ident: b24 article-title: The fractional wave propagation, dynamical investigation, and sensitive visualization of the continuum isotropic bi-quadratic heisenberg spin chain process publication-title: Results Phys – year: 2023 ident: b8 article-title: The multiple exp-function method to obtain soliton solutions of the conformable Date–Jimbo–Kashiwara–Miwa equations publication-title: Internat J Modern Phys B – volume: 7 start-page: 191 year: 2023 ident: b34 article-title: The propagating exact solitary waves formation of generalized Calogero–Bogoyavlenskii–Schiff equation with robust computational approaches publication-title: Fract Fract – volume: 55 start-page: 418 year: 2023 ident: b15 article-title: New optical soliton solutions and a variety of dynamical wave profiles to the perturbed Chen–Lee–Liu equation in optical fibers publication-title: Opt Quantum Electron – volume: 114 start-page: 95 year: 2022 end-page: 111 ident: b52 article-title: Performance of the radial point interpolation method (RPIM) with implicit time integration scheme for transient wave propagation dynamics publication-title: Comput Math Appl – volume: 107 year: 2023 ident: b1 article-title: Hamiltonian derivation of the point vortex model from the two-dimensional nonlinear Schrödinger equation publication-title: Phys Rev E – start-page: 1 year: 2023 end-page: 27 ident: b16 article-title: Anomalous dissipation for the forced 3D Navier–Stokes equations publication-title: Comm Math Phys – volume: 51 start-page: 29 year: 2022 end-page: 36 ident: b48 article-title: Highly dispersive optical solitons with quadratic–cubic law of refractive index by the variational iteration method publication-title: J Opt – start-page: 1 year: 2023 end-page: 27 ident: b19 article-title: Anomalous dissipation for the forced 3D Navier–Stokes equations publication-title: Comm Math Phys – volume: 6 start-page: 4 year: 2021 ident: b7 article-title: Study on Date–Jimbo–Kashiwara–Miwa equation with conformable derivative dependent on time parameter to find the exact dynamic wave solutions publication-title: Fract Fract – start-page: 1340 year: 2023 end-page: 1355 ident: b11 article-title: Interaction characteristics of the Riemann wave propagation in the (2+ 1)-dimensional generalized breaking soliton system publication-title: Int J Comput Math – volume: 169 year: 2023 ident: b32 article-title: Soliton wave parameter estimation with the help of artificial neural network by using the experimental data carried out on the nonlinear transmission line publication-title: Chaos Solitons Fractals – volume: 25 year: 2021 ident: b43 article-title: New exact solitary wave solutions for the 3D-FWBBM model in arising shallow water waves by two analytical methods publication-title: Results Phys – volume: 7 start-page: 143 year: 2022 end-page: 154 ident: b6 article-title: Analytical and approximate solutions of nonlinear Schrödinger equation with higher dimension in the anomalous dispersion regime publication-title: J Ocean Eng Sci – volume: 69 start-page: 121 year: 2023 end-page: 133 ident: b46 article-title: Solitary wave solutions for the originating waves that propagate of the fractional Wazwaz–Benjamin–Bona–Mahony system publication-title: Alex Eng J – volume: 13 year: 2022 ident: b54 article-title: Soliton solution of fractional Sharma–Tasso–Olever equation via an efficient publication-title: Ain Shams Eng J – volume: 46 start-page: 4055 year: 2023 end-page: 4069 ident: b59 article-title: Unexpected configurations for the optical solitons propagation in lossy fiber system with dispersion terms effect publication-title: Math Methods Appl Sci – volume: 272 year: 2023 ident: b31 article-title: On the dynamics of soliton waves in a generalized nonlinear Schrödinger equation publication-title: Optik – volume: 55 start-page: 1 year: 2023 end-page: 20 ident: b4 article-title: Optical solitonic structures with singular and non-singular kernel for nonlinear fractional model in quantum mechanics publication-title: Opt Quantum Electron – volume: 143 year: 2021 ident: b41 article-title: Quasi-periodic, chaotic and travelling wave structures of modified Gardner equation publication-title: Chaos Solitons Fractals – volume: 37 year: 2022 ident: b39 article-title: Bifurcation study and pattern formation analysis of a nonlinear dynamical system for chaotic behavior in traveling wave solution publication-title: Results Phys – volume: 61 start-page: 12925 year: 2022 end-page: 12941 ident: b22 article-title: Mathematical analysis about influence of Lorentz force and interfacial nano layers on nanofluids flow through orthogonal porous surfaces with injection of SWCNTs publication-title: Alex Eng J – volume: 36 year: 2022 ident: b60 article-title: New unexpected behavior to the soliton arising from the geophysical Korteweg–de Vries equation publication-title: Modern Phys Lett B – volume: 6 start-page: 334 year: 2022 ident: b26 article-title: A study of the soliton solutions with an intrinsic fractional discrete nonlinear electrical transmission line publication-title: Fract Fract – volume: 54 start-page: 1 year: 2022 end-page: 23 ident: b12 article-title: Non-linear soliton solutions of perturbed Chen–Lee–Liu model by publication-title: Opt Quantum Electron – volume: 7 start-page: 272 year: 2022 end-page: 279 ident: b28 article-title: Wave profile analysis of a couple of (3+ 1)-dimensional nonlinear evolution equations by sine-Gordon expansion approach publication-title: J Ocean Eng Sci – volume: 128 year: 2022 ident: b50 article-title: Inverse scattering method solves the problem of full statistics of nonstationary heat transfer in the Kipnis–Marchioro–Presutti model publication-title: Phys Rev Lett – volume: 49 start-page: 22 year: 2023 ident: b17 article-title: A data-driven surrogate modeling approach for time-dependent incompressible Navier–Stokes equations with dynamic mode decomposition and manifold interpolation publication-title: Adv Comput Math – volume: 162 year: 2022 ident: b20 article-title: Modified generalized Darboux transformation and solitons for a Lakshmanan–Porsezian–Daniel equation publication-title: Chaos Solitons Fractals – volume: 7 start-page: 136 year: 2023 ident: b56 article-title: The sensitive visualization and generalized fractional solitons’ construction for regularized long-wave governing model publication-title: Fract Fract – volume: 19 year: 2020 ident: b42 article-title: Soliton solutions of fractional modified unstable Schrödinger equation using exp-function method publication-title: Results Phys – volume: 169 year: 2023 ident: 10.1016/j.rinp.2023.106774_b32 article-title: Soliton wave parameter estimation with the help of artificial neural network by using the experimental data carried out on the nonlinear transmission line publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2023.113226 – volume: 13 issue: 1 year: 2022 ident: 10.1016/j.rinp.2023.106774_b54 article-title: Soliton solution of fractional Sharma–Tasso–Olever equation via an efficient (G′G)-expansion method publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2021.06.014 – volume: 7 issue: 102 year: 2023 ident: 10.1016/j.rinp.2023.106774_b10 article-title: Explicit soliton structure formation for the Riemann wave equation and a sensitive demonstration publication-title: Fract Fract – volume: 9 issue: 2 year: 2023 ident: 10.1016/j.rinp.2023.106774_b33 article-title: Computational and numerical wave solutions of the Caudrey–Dodd–Gibbon equation publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e13511 – volume: 46 start-page: 4055 issue: 4 year: 2023 ident: 10.1016/j.rinp.2023.106774_b59 article-title: Unexpected configurations for the optical solitons propagation in lossy fiber system with dispersion terms effect publication-title: Math Methods Appl Sci doi: 10.1002/mma.8738 – volume: 162 year: 2022 ident: 10.1016/j.rinp.2023.106774_b20 article-title: Modified generalized Darboux transformation and solitons for a Lakshmanan–Porsezian–Daniel equation publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2022.112399 – volume: 7 start-page: 143 issue: 2 year: 2022 ident: 10.1016/j.rinp.2023.106774_b6 article-title: Analytical and approximate solutions of nonlinear Schrödinger equation with higher dimension in the anomalous dispersion regime publication-title: J Ocean Eng Sci doi: 10.1016/j.joes.2021.07.006 – volume: 49 start-page: 22 issue: 2 year: 2023 ident: 10.1016/j.rinp.2023.106774_b17 article-title: A data-driven surrogate modeling approach for time-dependent incompressible Navier–Stokes equations with dynamic mode decomposition and manifold interpolation publication-title: Adv Comput Math doi: 10.1007/s10444-023-10016-4 – volume: 7 start-page: 8290 issue: 5 year: 2022 ident: 10.1016/j.rinp.2023.106774_b27 article-title: Nonlinear wave train in an inhomogeneous medium with the fractional theory in a plane self-focusing publication-title: AIMS Math doi: 10.3934/math.2022462 – volume: 116 year: 2023 ident: 10.1016/j.rinp.2023.106774_b37 article-title: The analysis of solitonic, supernonlinear, periodic, quasiperiodic, bifurcation and chaotic patterns of perturbed Gerdjikov–Ivanov model with full nonlinearity publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2022.106818 – volume: 6 start-page: 4 issue: 1 year: 2021 ident: 10.1016/j.rinp.2023.106774_b7 article-title: Study on Date–Jimbo–Kashiwara–Miwa equation with conformable derivative dependent on time parameter to find the exact dynamic wave solutions publication-title: Fract Fract doi: 10.3390/fractalfract6010004 – volume: 114 year: 2022 ident: 10.1016/j.rinp.2023.106774_b38 article-title: Nonlinear self-adjointness, conserved quantities and Lie symmetry of dust size distribution on a shock wave in quantum dusty plasma publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2022.106660 – volume: 114 start-page: 95 year: 2022 ident: 10.1016/j.rinp.2023.106774_b52 article-title: Performance of the radial point interpolation method (RPIM) with implicit time integration scheme for transient wave propagation dynamics publication-title: Comput Math Appl doi: 10.1016/j.camwa.2022.03.031 – volume: 55 start-page: 1 issue: 3 year: 2023 ident: 10.1016/j.rinp.2023.106774_b4 article-title: Optical solitonic structures with singular and non-singular kernel for nonlinear fractional model in quantum mechanics publication-title: Opt Quantum Electron doi: 10.1007/s11082-022-04488-9 – volume: 51 start-page: 29 issue: 1 year: 2022 ident: 10.1016/j.rinp.2023.106774_b48 article-title: Highly dispersive optical solitons with quadratic–cubic law of refractive index by the variational iteration method publication-title: J Opt doi: 10.1007/s12596-020-00671-x – volume: 61 start-page: 12925 issue: 12 year: 2022 ident: 10.1016/j.rinp.2023.106774_b22 article-title: Mathematical analysis about influence of Lorentz force and interfacial nano layers on nanofluids flow through orthogonal porous surfaces with injection of SWCNTs publication-title: Alex Eng J doi: 10.1016/j.aej.2022.07.010 – volume: 168 year: 2023 ident: 10.1016/j.rinp.2023.106774_b9 article-title: Integrability and new periodic, kink-antikink and complex optical soliton solutions of (3+1)-dimensional variable coefficient DJKM equation for the propagation of nonlinear dispersive waves in inhomogeneous media publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2023.113184 – volume: 43 year: 2022 ident: 10.1016/j.rinp.2023.106774_b24 article-title: The fractional wave propagation, dynamical investigation, and sensitive visualization of the continuum isotropic bi-quadratic heisenberg spin chain process publication-title: Results Phys doi: 10.1016/j.rinp.2022.106039 – start-page: 1 year: 2021 ident: 10.1016/j.rinp.2023.106774_b40 article-title: The chaotic, supernonlinear, periodic, quasiperiodic wave solutions and solitons with cascaded system publication-title: Waves Random Complex Media – volume: 25 year: 2021 ident: 10.1016/j.rinp.2023.106774_b43 article-title: New exact solitary wave solutions for the 3D-FWBBM model in arising shallow water waves by two analytical methods publication-title: Results Phys – volume: 55 start-page: 450 issue: 5 year: 2023 ident: 10.1016/j.rinp.2023.106774_b45 article-title: Dynamics of soliton solutions in optical fibers modelled by perturbed nonlinear Schrödinger equation and stability analysis publication-title: Opt Quantum Electron doi: 10.1007/s11082-023-04723-x – volume: 272 year: 2023 ident: 10.1016/j.rinp.2023.106774_b31 article-title: On the dynamics of soliton waves in a generalized nonlinear Schrödinger equation publication-title: Optik doi: 10.1016/j.ijleo.2022.170215 – volume: 13 issue: 1 year: 2022 ident: 10.1016/j.rinp.2023.106774_b47 article-title: Soliton solution of fractional Sharma–Tasso–Olever equation via an efficient G′G−expansion method publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2021.06.014 – year: 2023 ident: 10.1016/j.rinp.2023.106774_b49 article-title: Solving two dimensional coupled Burger’s equations using transform variational iteration method – volume: 138 start-page: 1 issue: 1 year: 2023 ident: 10.1016/j.rinp.2023.106774_b2 article-title: Diverse optical solitons to the nonlinear Schrödinger equation via two novel techniques publication-title: Eur Phys J Plus doi: 10.1140/epjp/s13360-023-03710-1 – volume: 7 start-page: 272 issue: 3 year: 2022 ident: 10.1016/j.rinp.2023.106774_b28 article-title: Wave profile analysis of a couple of (3+ 1)-dimensional nonlinear evolution equations by sine-Gordon expansion approach publication-title: J Ocean Eng Sci doi: 10.1016/j.joes.2021.08.009 – volume: 7 start-page: 191 issue: 2 year: 2023 ident: 10.1016/j.rinp.2023.106774_b34 article-title: The propagating exact solitary waves formation of generalized Calogero–Bogoyavlenskii–Schiff equation with robust computational approaches publication-title: Fract Fract doi: 10.3390/fractalfract7020191 – start-page: 1 year: 2023 ident: 10.1016/j.rinp.2023.106774_b19 article-title: Anomalous dissipation for the forced 3D Navier–Stokes equations publication-title: Comm Math Phys – volume: 169 year: 2023 ident: 10.1016/j.rinp.2023.106774_b35 article-title: A hybrid analytical and numerical analysis of ultra-short pulse phase shifts publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2023.113232 – volume: 24 start-page: 46 issue: 1 year: 2023 ident: 10.1016/j.rinp.2023.106774_b21 article-title: Dark and singular cubic-quartic optical solitons with Lakshmanan–Porsezian–Daniel equation by the improved Adomian decomposition scheme publication-title: Ukr J Phys Opt doi: 10.3116/16091833/24/1/46/2023 – year: 2022 ident: 10.1016/j.rinp.2023.106774_b30 article-title: Comparative analysis of numerical and newly constructed soliton solutions of stochastic Fisher-type equations in a sufficiently long habitat publication-title: Internat J Modern Phys B – volume: 61 start-page: 11737 issue: 12 year: 2022 ident: 10.1016/j.rinp.2023.106774_b23 article-title: On analysis of magnetized viscous fluid flow in permeable channel with single wall carbon nano tubes dispersion by executing nano-layer approach publication-title: Alex Eng J doi: 10.1016/j.aej.2022.05.037 – volume: 107 issue: 2 year: 2023 ident: 10.1016/j.rinp.2023.106774_b1 article-title: Hamiltonian derivation of the point vortex model from the two-dimensional nonlinear Schrödinger equation publication-title: Phys Rev E doi: 10.1103/PhysRevE.107.025107 – volume: 7 start-page: 38 issue: 1 year: 2023 ident: 10.1016/j.rinp.2023.106774_b5 article-title: The first integral of the dissipative nonlinear Schrödinger equation with Nucci’s direct method and explicit wave profile formation publication-title: Fract Fract doi: 10.3390/fractalfract7010038 – volume: 7 start-page: 11134 issue: 6 year: 2022 ident: 10.1016/j.rinp.2023.106774_b57 article-title: Traveling wave solutions to the Boussinesq equation via Sardar sub-equation technique publication-title: AIMS Math doi: 10.3934/math.2022623 – volume: 107 start-page: 2703 issue: 3 year: 2022 ident: 10.1016/j.rinp.2023.106774_b55 article-title: The integrable Boussinesq equation and it’s breather, lump and soliton solutions publication-title: Nonlinear Dynam doi: 10.1007/s11071-021-07076-w – volume: 7 start-page: 136 issue: 2 year: 2023 ident: 10.1016/j.rinp.2023.106774_b56 article-title: The sensitive visualization and generalized fractional solitons’ construction for regularized long-wave governing model publication-title: Fract Fract doi: 10.3390/fractalfract7020136 – volume: 77 start-page: 1618 year: 2022 ident: 10.1016/j.rinp.2023.106774_b29 article-title: Nonlinear dynamics for different nonautonomous wave structures solutions of a 3D variable-coefficient generalized shallow water wave equation publication-title: Chinese J Phys doi: 10.1016/j.cjph.2021.10.026 – year: 2023 ident: 10.1016/j.rinp.2023.106774_b8 article-title: The multiple exp-function method to obtain soliton solutions of the conformable Date–Jimbo–Kashiwara–Miwa equations publication-title: Internat J Modern Phys B – volume: 55 start-page: 418 issue: 5 year: 2023 ident: 10.1016/j.rinp.2023.106774_b15 article-title: New optical soliton solutions and a variety of dynamical wave profiles to the perturbed Chen–Lee–Liu equation in optical fibers publication-title: Opt Quantum Electron doi: 10.1007/s11082-023-04647-6 – volume: 14 start-page: 1374 issue: 7 year: 2022 ident: 10.1016/j.rinp.2023.106774_b58 article-title: Integrable Kuralay equations: geometry, solutions and generalizations publication-title: Symmetry doi: 10.3390/sym14071374 – volume: 46 year: 2023 ident: 10.1016/j.rinp.2023.106774_b14 article-title: New optical soliton solutions to the space–time fractional perturbed Chen–Lee–Liu equation publication-title: Results Phys doi: 10.1016/j.rinp.2023.106306 – start-page: 1 year: 2023 ident: 10.1016/j.rinp.2023.106774_b16 article-title: Anomalous dissipation for the forced 3D Navier–Stokes equations publication-title: Comm Math Phys – volume: 128 issue: 13 year: 2022 ident: 10.1016/j.rinp.2023.106774_b50 article-title: Inverse scattering method solves the problem of full statistics of nonstationary heat transfer in the Kipnis–Marchioro–Presutti model publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.128.130602 – volume: 20 start-page: 130 issue: 1 year: 2022 ident: 10.1016/j.rinp.2023.106774_b25 article-title: Propagation of some new traveling wave patterns of the double dispersive equation publication-title: Open Phys doi: 10.1515/phys-2022-0014 – volume: 69 start-page: 121 year: 2023 ident: 10.1016/j.rinp.2023.106774_b46 article-title: Solitary wave solutions for the originating waves that propagate of the fractional Wazwaz–Benjamin–Bona–Mahony system publication-title: Alex Eng J doi: 10.1016/j.aej.2023.01.063 – volume: 45 year: 2023 ident: 10.1016/j.rinp.2023.106774_b13 article-title: Accurate computational simulations of perturbed Chen–Lee–Liu equation publication-title: Results Phys doi: 10.1016/j.rinp.2023.106227 – volume: 105 issue: 10 year: 2022 ident: 10.1016/j.rinp.2023.106774_b51 article-title: Schrödinger-Poisson solitons: Perturbation theory publication-title: Phys Rev D doi: 10.1103/PhysRevD.105.103506 – volume: 19 year: 2020 ident: 10.1016/j.rinp.2023.106774_b42 article-title: Soliton solutions of fractional modified unstable Schrödinger equation using exp-function method publication-title: Results Phys doi: 10.1016/j.rinp.2020.103476 – volume: 29 year: 2021 ident: 10.1016/j.rinp.2023.106774_b44 article-title: New soliton wave structures of fractional Gilson–Pickering equation using tanh-coth method and their applications publication-title: Results Phys doi: 10.1016/j.rinp.2021.104724 – volume: 55 start-page: 313 issue: 4 year: 2023 ident: 10.1016/j.rinp.2023.106774_b36 article-title: Extraction of soliton waves from the longitudinal wave equation with local M-truncated derivatives publication-title: Opt Quantum Electron doi: 10.1007/s11082-023-04570-w – volume: 143 year: 2021 ident: 10.1016/j.rinp.2023.106774_b41 article-title: Quasi-periodic, chaotic and travelling wave structures of modified Gardner equation publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110578 – year: 2023 ident: 10.1016/j.rinp.2023.106774_b61 – start-page: 1 year: 2023 ident: 10.1016/j.rinp.2023.106774_b18 article-title: Regularization by noise of an averaged version of the Navier–Stokes equations publication-title: J Dynam Differential Equations – volume: 37 year: 2022 ident: 10.1016/j.rinp.2023.106774_b39 article-title: Bifurcation study and pattern formation analysis of a nonlinear dynamical system for chaotic behavior in traveling wave solution publication-title: Results Phys doi: 10.1016/j.rinp.2022.105492 – start-page: 1340 issue: 1 year: 2023 ident: 10.1016/j.rinp.2023.106774_b11 article-title: Interaction characteristics of the Riemann wave propagation in the (2+ 1)-dimensional generalized breaking soliton system publication-title: Int J Comput Math doi: 10.1080/00207160.2023.2186775 – volume: 6 start-page: 334 issue: 6 year: 2022 ident: 10.1016/j.rinp.2023.106774_b26 article-title: A study of the soliton solutions with an intrinsic fractional discrete nonlinear electrical transmission line publication-title: Fract Fract doi: 10.3390/fractalfract6060334 – volume: 197 start-page: 327 year: 2022 ident: 10.1016/j.rinp.2023.106774_b53 article-title: M-lump solution, soliton solution and rational solution to a (3+ 1)-dimensional nonlinear model publication-title: Math Comput Simulation doi: 10.1016/j.matcom.2022.02.014 – volume: 36 issue: 08 year: 2022 ident: 10.1016/j.rinp.2023.106774_b60 article-title: New unexpected behavior to the soliton arising from the geophysical Korteweg–de Vries equation publication-title: Modern Phys Lett B doi: 10.1142/S0217984921506235 – volume: 54 start-page: 1 issue: 10 year: 2022 ident: 10.1016/j.rinp.2023.106774_b12 article-title: Non-linear soliton solutions of perturbed Chen–Lee–Liu model by Φ6− ϕ 6-model expansion approach publication-title: Opt Quantum Electron doi: 10.1007/s11082-022-04077-w – volume: 55 start-page: 286 issue: 3 year: 2023 ident: 10.1016/j.rinp.2023.106774_b3 article-title: Optical soliton solutions and various breathers lump interaction solutions with periodic wave for nonlinear Schrödinger equation with quadratic nonlinear susceptibility publication-title: Opt Quantum Electron doi: 10.1007/s11082-022-04402-3 |
SSID | ssj0001645511 |
Score | 2.4874246 |
Snippet | In this paper, the main motive is to mathematical explore the Kuralay equation, which find applications in various fields such as ferromagnetic materials,... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 106774 |
SubjectTerms | Analytical solitary wave solutions Kuralay equation (K-IIE) New auxiliary equation method (NAEM) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgRn7i-yMGbVPtI2uSo4iKKXnRhbyXNA1akq7ursv_emaRb6mW9eOmh5FFmJjPfpJMvhJxBRFAQ5mxkLTyYEQyWlIgjIVRmhS7yWOFB4cen_G7I7kd81LnqC2vCAj1wENylEoCZtRGZ4xnjLpXWVFwgbVQOYMNZ9L4Q8zrJlN9dyRlAAcy20hR5-gpZNCdmQnHXdFwjWWWaXXgKNfYrKnny_k5w6gScwRbZbJAivQpfuE3WbL1D1n3Fpp7tkmdQMG2PHtKJozMsZVPTBf1WX5a2NkVVbaj_H0DBW4L_CB2gK31Azg21oPYjEH7vkeHg9uXmLmpuSIg0S-J5lDEDiCh1uZK60q6IlYMVm2vDcKUVmZbc5yCJ0QlXlVQqFRVLLETG3OaaZ_ukV09qe0AoZNgyTQW4O2cZaLDSskD9Smczbo3rk2QpoVI39OF4i8VbuawTey1RqiVKtQxS7ZPzts97IM9Y2foaBd-2ROJr_wLMoWzMofzLHPqEL9VWNhgiYAMYarxi8sP_mPyIbOCQoQTtmPTm0097AphlXp168_wB7PTn8A priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free and Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jIHgRP3F-kYM3qWubpE2PbihD0csc7FbSNJGJdHObyv5730s_3C47eCk05LXlvZf3kb73CyHX4BEUuDnjGQMXnksOS0r6npSKGanjyFfYKPz8Eg1G_HEsxi3Sr3thsKyysv2lTXfWuhrpVtzsziaT7jCE3IXFeGoW4lnGiPjJuHRNfOPe3z5LxCEowLwL53tIUPXOlGVe80mBsJUhu3VganzDPzkY_zU3teZ6HvbJXhUz0rvysw5IyxSHZMfVburFERmCqGnThEinli6wqE3NV_RHfRvaaBdVRU7dnwEKdhMsSUkApPQJ0TfUiprPEvr7mIwe7l_7A686K8HTPPCXHuM5xEahjVSiM21jX1lYu5HOOa65mOlEuGwkyHUgVJYoFcqMBwZ8ZGQiLdgJaRfTwpwSCrl2EoYSDJ81HGSZ6SRGSSfWMGFy2yFBzaFUV0DieJ7FR1pXjL2nyNUUuZqWXO2Qm4ZmVsJobJ3dQ8Y3MxEC2w1M529ppQOpkpBM6VwyKxgXNkxMngmJeGIRRKHWdIioxZZuaBQ8arLl5Wf_pDsnu3hX1p9dkPZy_mUuIWBZZldOI38BlI_ozA priority: 102 providerName: Elsevier |
Title | The formation of solitary wave solutions and their propagation for Kuralay equation |
URI | https://dx.doi.org/10.1016/j.rinp.2023.106774 https://doaj.org/article/a8174cd83f5345f29edb5870366540fe |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58IHgRn7g-lhy8SWXbJm16ENkVRV30oC7uraRpIop0tbs-9t87k3ZXBRG8BFqStMxkMt-0k28A9tAjKHRzxjMGG55LjiYlW56UKjRSx1FL0UHhy6vorMcv-qI_A5NyR7UAh7-GdlRPqlc-HXy8jI_Q4A-_crXKh4K4J4PwwDGi8VmYR88UU0WDyxruu28uEUeAQDFYEBB7X5zE9Tma36f54ascpf83l_XNDZ0uw1KNH1m7UvgKzJhiFRZcHqcersENqp1NDySygWVDSnBT5Zi9qzfDpiuNqSJn7i8Bwz0Ud5VqAA5lXWLiUGNmXioa8HXonZ7cHp95dd0ET3O_NfJCniNOCmykEp1pG7eURTuOdM7J_uJQJ8JFJn6ufaGyRKlAZtw36C8jE2kRbsBcMSjMJjCMu5MgkLgJWsNRr5lOYtJ6Yk0oTG4b4E8klOqaVJxqWzylk-yxx5SkmpJU00qqDdifjnmuKDX-7N0hwU97Eh22uzEo79PaulIlMbDSuQytCLmwQWLyTEjiFosQkVrTADFRW1ojiwox4FQPfzx861-vug2LdFVloO3A3Kh8NbsIWUZZE-bb3eu7btOF_Nie9ztNtzY_AaZD7EU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7xEIIF8RTl6YENhTaxnTgjIFB5Lm2lbpbj2KgIpVAKiH_PXZIWujCwZHBySXTvS-4-AxxjRDAY5lzgHB5ErgSalGoFShnulE3ilqFB4fuHuN0TN33Zn4OLySwMtVXWvr_y6aW3rleaNTebL4NBsxNh7cIT2jWL8CwTPg-LmA0kZJ3X_fOfDy2xwKyACi8iCIiiHp6p-rxGg4JwKyN-WqKpiZkAVeL4_4pTv2LP1Rqs1kkjO6veax3mXLEBS2Xzpn3bhA7Kmk2nENnQszfqajOjL_ZpPhybqhczRc7KXwMMHSe6kooASdktwW-YL-ZeK-zvLehdXXYv2kG9WUJgRdgaB1zkmBxFPjapzaxPWsaj8cY2F2R0CbepLMuRMLehNFlqTKQyEToMkrGLreTbsFAMC7cDDIvtNIoUej7vBAozs2lCok6949LlvgHhhEPa1kjitKHFs560jD1p4qomruqKqw04mdK8VDgaf159ToyfXkkY2OXCcPSoayXQRmE1ZXPFveRC-ih1eSYVAYrFmIZ61wA5EZueUSm81eCPh-_-k-4Iltvd-zt9d_1wuwcrdKZqRtuHhfHo3R1g9jLODkvt_AZR_-vs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+formation+of+solitary+wave+solutions+and+their+propagation+for+Kuralay+equation&rft.jtitle=Results+in+physics&rft.au=Faridi%2C+Waqas+Ali&rft.au=Bakar%2C+Muhammad+Abu&rft.au=Myrzakulova%2C+Zhaidary&rft.au=Myrzakulov%2C+Ratbay&rft.date=2023-09-01&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=52&rft.spage=106774&rft_id=info:doi/10.1016%2Fj.rinp.2023.106774&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rinp_2023_106774 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon |