One-Pot Synthesis of Hydrophilic and Hydrophobic N-Doped Graphene Quantum Dots via Exfoliating and Disintegrating Graphite Flakes

Graphene quantum dots (GQDs) have drawn tremendous attention on account of their numerous alluring properties and a wide range of application potentials. Here, we report that hydrophilic and hydrophobic N-doped GQDs can be prepared via exfoliating and disintegrating graphite flakes. Various spectros...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 6; no. 1; p. 30426
Main Authors Kuo, Na-Jung, Chen, Yu-Syuan, Wu, Chien-Wei, Huang, Chun-Yuan, Chan, Yang-Hsiang, Chen, I-Wen Peter
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.07.2016
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphene quantum dots (GQDs) have drawn tremendous attention on account of their numerous alluring properties and a wide range of application potentials. Here, we report that hydrophilic and hydrophobic N-doped GQDs can be prepared via exfoliating and disintegrating graphite flakes. Various spectroscopic characterizations including TEM, AFM, FTIR, PL, XPS and Raman spectroscopy demonstrated that the hydrophilic N-doped GQDs (IN-GQDs) and the hydrophobic N-doped GQDs (ON-GQDs) are mono-layered and multi-layered, respectively. In terms of practical aspects, the supercapacitor of an ON-GQDs/SWCNTs composite paper electrode was fabricated and exhibited an areal capacitance of 114 mF/cm 2 , which is more than 250% higher than the best reported value to date for a GQDs/carbon nanotube hybrid composite. For IN-GQDs applications, bio-memristor devices of IN-GQDs-albumen combination exhibited on/off current ratios in excess of 10 4 accompanied by stable switching endurance of over 250 cycles. The resistance stability of the high resistance state and the low resistance state could be maintained for over 10 4 s. Moreover, the IN-GQDs exhibited a superior quantum yield (34%), excellent stability of cellular imaging and no cytotoxicity. Hence, the solution-based method for synchronized production of IN-GQDs and ON-GQDs is a facile and processable route that will bring GQDs-based electronics and composites closer to actualization.
AbstractList Graphene quantum dots (GQDs) have drawn tremendous attention on account of their numerous alluring properties and a wide range of application potentials. Here, we report that hydrophilic and hydrophobic N-doped GQDs can be prepared via exfoliating and disintegrating graphite flakes. Various spectroscopic characterizations including TEM, AFM, FTIR, PL, XPS and Raman spectroscopy demonstrated that the hydrophilic N-doped GQDs (IN-GQDs) and the hydrophobic N-doped GQDs (ON-GQDs) are mono-layered and multi-layered, respectively. In terms of practical aspects, the supercapacitor of an ON-GQDs/SWCNTs composite paper electrode was fabricated and exhibited an areal capacitance of 114 mF/cm 2 , which is more than 250% higher than the best reported value to date for a GQDs/carbon nanotube hybrid composite. For IN-GQDs applications, bio-memristor devices of IN-GQDs-albumen combination exhibited on/off current ratios in excess of 10 4 accompanied by stable switching endurance of over 250 cycles. The resistance stability of the high resistance state and the low resistance state could be maintained for over 10 4 s. Moreover, the IN-GQDs exhibited a superior quantum yield (34%), excellent stability of cellular imaging and no cytotoxicity. Hence, the solution-based method for synchronized production of IN-GQDs and ON-GQDs is a facile and processable route that will bring GQDs-based electronics and composites closer to actualization.
Graphene quantum dots (GQDs) have drawn tremendous attention on account of their numerous alluring properties and a wide range of application potentials. Here, we report that hydrophilic and hydrophobic N-doped GQDs can be prepared via exfoliating and disintegrating graphite flakes. Various spectroscopic characterizations including TEM, AFM, FTIR, PL, XPS, and Raman spectroscopy demonstrated that the hydrophilic N-doped GQDs (IN-GQDs) and the hydrophobic N-doped GQDs (ON-GQDs) are mono-layered and multi-layered, respectively. In terms of practical aspects, the supercapacitor of an ON-GQDs/SWCNTs composite paper electrode was fabricated and exhibited an areal capacitance of 114 mF/cm(2), which is more than 250% higher than the best reported value to date for a GQDs/carbon nanotube hybrid composite. For IN-GQDs applications, bio-memristor devices of IN-GQDs-albumen combination exhibited on/off current ratios in excess of 10(4) accompanied by stable switching endurance of over 250 cycles. The resistance stability of the high resistance state and the low resistance state could be maintained for over 10(4) s. Moreover, the IN-GQDs exhibited a superior quantum yield (34%), excellent stability of cellular imaging, and no cytotoxicity. Hence, the solution-based method for synchronized production of IN-GQDs and ON-GQDs is a facile and processable route that will bring GQDs-based electronics and composites closer to actualization.
Graphene quantum dots (GQDs) have drawn tremendous attention on account of their numerous alluring properties and a wide range of application potentials. Here, we report that hydrophilic and hydrophobic N-doped GQDs can be prepared via exfoliating and disintegrating graphite flakes. Various spectroscopic characterizations including TEM, AFM, FTIR, PL, XPS, and Raman spectroscopy demonstrated that the hydrophilic N-doped GQDs (IN-GQDs) and the hydrophobic N-doped GQDs (ON-GQDs) are mono-layered and multi-layered, respectively. In terms of practical aspects, the supercapacitor of an ON-GQDs/SWCNTs composite paper electrode was fabricated and exhibited an areal capacitance of 114 mF/cm(2), which is more than 250% higher than the best reported value to date for a GQDs/carbon nanotube hybrid composite. For IN-GQDs applications, bio-memristor devices of IN-GQDs-albumen combination exhibited on/off current ratios in excess of 10(4) accompanied by stable switching endurance of over 250 cycles. The resistance stability of the high resistance state and the low resistance state could be maintained for over 10(4) s. Moreover, the IN-GQDs exhibited a superior quantum yield (34%), excellent stability of cellular imaging, and no cytotoxicity. Hence, the solution-based method for synchronized production of IN-GQDs and ON-GQDs is a facile and processable route that will bring GQDs-based electronics and composites closer to actualization.Graphene quantum dots (GQDs) have drawn tremendous attention on account of their numerous alluring properties and a wide range of application potentials. Here, we report that hydrophilic and hydrophobic N-doped GQDs can be prepared via exfoliating and disintegrating graphite flakes. Various spectroscopic characterizations including TEM, AFM, FTIR, PL, XPS, and Raman spectroscopy demonstrated that the hydrophilic N-doped GQDs (IN-GQDs) and the hydrophobic N-doped GQDs (ON-GQDs) are mono-layered and multi-layered, respectively. In terms of practical aspects, the supercapacitor of an ON-GQDs/SWCNTs composite paper electrode was fabricated and exhibited an areal capacitance of 114 mF/cm(2), which is more than 250% higher than the best reported value to date for a GQDs/carbon nanotube hybrid composite. For IN-GQDs applications, bio-memristor devices of IN-GQDs-albumen combination exhibited on/off current ratios in excess of 10(4) accompanied by stable switching endurance of over 250 cycles. The resistance stability of the high resistance state and the low resistance state could be maintained for over 10(4) s. Moreover, the IN-GQDs exhibited a superior quantum yield (34%), excellent stability of cellular imaging, and no cytotoxicity. Hence, the solution-based method for synchronized production of IN-GQDs and ON-GQDs is a facile and processable route that will bring GQDs-based electronics and composites closer to actualization.
ArticleNumber 30426
Author Chan, Yang-Hsiang
Chen, I-Wen Peter
Chen, Yu-Syuan
Wu, Chien-Wei
Kuo, Na-Jung
Huang, Chun-Yuan
Author_xml – sequence: 1
  givenname: Na-Jung
  surname: Kuo
  fullname: Kuo, Na-Jung
  organization: Department of Applied Science, National Taitung University
– sequence: 2
  givenname: Yu-Syuan
  surname: Chen
  fullname: Chen, Yu-Syuan
  organization: Department of Applied Science, National Taitung University
– sequence: 3
  givenname: Chien-Wei
  surname: Wu
  fullname: Wu, Chien-Wei
  organization: Department of Chemistry, National Taiwan University
– sequence: 4
  givenname: Chun-Yuan
  surname: Huang
  fullname: Huang, Chun-Yuan
  organization: Department of Applied Science, National Taitung University
– sequence: 5
  givenname: Yang-Hsiang
  surname: Chan
  fullname: Chan, Yang-Hsiang
  organization: Department of Chemistry, National Sun Yat-sen University
– sequence: 6
  givenname: I-Wen Peter
  surname: Chen
  fullname: Chen, I-Wen Peter
  organization: Department of Applied Science, National Taitung University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27452118$$D View this record in MEDLINE/PubMed
BookMark eNptkU1vEzEQhi1URD8P_AHkIyAt9Wd294KEmn4gVZSq5Ww59mzisrG3trcix_5z3KapCqov9tjP-45nZhdt-eABofeUfKGEN4cpwsCJYJM3aIcRISvGGdt6cd5GByndkLIkawVt36FtVgvJKG120P2Fh-pnyPhq5fMCkks4dPhsZWMYFq53BmtvN3GYlfhHNQ0DWHwa9bAAD_hy1D6PSzwNOeE7p_Hxny70Tmfn54_qqUvOZ5jH9dWj0GXAJ73-DWkfve10n-Dgad9Dv06Or4_OqvOL0-9H384rIyjJFSdMdOXfQDrOCS-VaOi0tcwSMdGMkZpDKdBY0JpYzYk1spOUy5k0ttWU76Gva99hnC3BGvA56l4N0S11XKmgnfr3xbuFmoc7JVrZtM2kGHx8MojhdoSU1dIlA32vPYQxKdqQmtW1FLygH17mek6y6XsBDteAiSGVCXbKuFzaEx5Su15Roh6Gq56HWxSf_lNsTF9jP6_ZVBg_h6huwhh96e4r8F-BbLXI
CitedBy_id crossref_primary_10_1186_s11671_018_2761_5
crossref_primary_10_1016_j_ceramint_2017_11_034
crossref_primary_10_1039_C7NR08093J
crossref_primary_10_1002_slct_201702352
crossref_primary_10_1080_1536383X_2020_1746907
crossref_primary_10_1002_advs_202207229
crossref_primary_10_1021_acssuschemeng_1c08002
crossref_primary_10_1039_D2NA00445C
crossref_primary_10_1016_j_jallcom_2022_167115
crossref_primary_10_1002_slct_201601737
crossref_primary_10_1039_D3NR04893D
crossref_primary_10_3390_nano12223976
crossref_primary_10_1016_j_mtener_2021_100693
crossref_primary_10_1002_aenm_201702288
crossref_primary_10_1016_j_snb_2018_11_024
crossref_primary_10_1016_j_colsurfa_2021_128073
crossref_primary_10_3390_nano10010104
crossref_primary_10_1002_er_8602
crossref_primary_10_1007_s11051_020_04845_3
crossref_primary_10_1016_j_jece_2021_106898
crossref_primary_10_1016_j_molliq_2021_116136
crossref_primary_10_1002_adom_201700257
crossref_primary_10_1016_j_matchemphys_2019_122298
crossref_primary_10_1016_j_surfin_2024_105510
crossref_primary_10_1002_jccs_201900124
crossref_primary_10_1016_j_ijhydene_2017_11_157
crossref_primary_10_1016_j_ijoes_2023_100084
crossref_primary_10_1039_D4SU00153B
crossref_primary_10_1016_j_foodchem_2024_138533
crossref_primary_10_1021_acsomega_2c02984
crossref_primary_10_1021_acsomega_7b00603
crossref_primary_10_1088_1755_1315_1017_1_012009
crossref_primary_10_1016_j_jpowsour_2019_227009
crossref_primary_10_3390_nano11081879
crossref_primary_10_1038_s41467_017_01463_x
crossref_primary_10_1039_D1RA01506K
crossref_primary_10_1016_j_colsurfb_2018_05_032
crossref_primary_10_3390_nano12152714
crossref_primary_10_1002_eem2_12167
crossref_primary_10_1039_D1SE01280K
crossref_primary_10_1021_acsomega_3c04942
crossref_primary_10_1007_s10853_018_2723_4
crossref_primary_10_1016_j_chip_2024_100086
crossref_primary_10_1021_acsami_7b19716
crossref_primary_10_1021_acsanm_1c01398
crossref_primary_10_1016_j_mtchem_2022_100907
crossref_primary_10_1002_smll_201801479
crossref_primary_10_1021_acsami_7b15120
crossref_primary_10_1155_2017_7029731
crossref_primary_10_1016_j_jphotochem_2021_113741
crossref_primary_10_1016_j_electacta_2020_137018
crossref_primary_10_1016_j_snb_2017_02_026
crossref_primary_10_1002_cssc_201700910
crossref_primary_10_15251_DJNB_2023_183_1093
crossref_primary_10_3390_nano11010091
crossref_primary_10_1016_j_synthmet_2024_117753
crossref_primary_10_3390_nano12040691
crossref_primary_10_1016_j_carbon_2020_08_015
crossref_primary_10_1002_slct_202003014
crossref_primary_10_1016_S1872_5805_21_60036_7
crossref_primary_10_1021_acs_jpcc_4c04349
crossref_primary_10_1016_j_bios_2016_08_094
crossref_primary_10_1016_j_jphotochem_2018_06_047
crossref_primary_10_1021_acsomega_0c05416
crossref_primary_10_1016_j_jcis_2022_11_046
crossref_primary_10_1039_D1SE00409C
crossref_primary_10_1021_acs_chemrev_9b00730
Cites_doi 10.1021/ja204953k
10.1016/j.bios.2014.12.028
10.1021/nl404281h
10.1002/adma.201300233
10.1021/ja1009376
10.1039/c2ee22982j
10.1039/C1NJ20658C
10.1002/smll.201402648
10.1016/j.carbon.2004.03.005
10.1039/C0CC04812G
10.1016/j.carbon.2009.12.045
10.1039/C4CS00269E
10.1016/j.carbon.2014.09.084
10.1021/jp047495p
10.1039/C4NR03658A
10.1039/c1cc11122a
10.1039/c2nr33191h
10.1021/nl400368v
10.1038/srep10022
10.1088/0957-4484/24/19/195401
10.1039/c2gc16451e
10.1039/c4tb00216d
10.1038/ncomms6357
10.1002/adma.201201930
10.1039/c4ra03488k
10.1002/adfm.201201499
10.1039/c3nr33849e
10.1021/nn501796r
10.1039/C5TB00963D
10.1039/c2jm34690g
10.1039/c2cc30188a
10.1186/1556-276X-9-397
10.1039/C4NJ01185F
10.1021/ja2036749
10.1002/ppsc.201400189
10.1021/jp106211y
10.1039/C4NR05712K
10.1039/c3nr03623e
10.1007/s12274-014-0644-3
10.1038/nnano.2011.110
10.1016/j.orgel.2013.03.016
10.1039/C5NR00814J
10.1038/nnano.2011.30
10.1038/srep03928
10.1021/ar300128j
10.1002/adma.201003819
10.1016/j.orgel.2016.01.019
10.1021/nl200225j
10.1038/nchem.907
10.1126/science.1213003
10.1021/nn9012753
10.1002/ppsc.201300252
10.1002/adma.200902825
10.1021/jz100862f
10.1039/C4NR07005D
ContentType Journal Article
Copyright The Author(s) 2016
Copyright © 2016, The Author(s) 2016 The Author(s)
Copyright_xml – notice: The Author(s) 2016
– notice: Copyright © 2016, The Author(s) 2016 The Author(s)
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1038/srep30426
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID PMC4958986
27452118
10_1038_srep30426
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7X8
PPXIY
PQGLB
5PM
PJZUB
ID FETCH-LOGICAL-c410t-3024f274e0f3303294aefadd2d046a22073e052cdeaa0da30dc5f5135b5cd9a13
IEDL.DBID M48
ISSN 2045-2322
IngestDate Thu Aug 21 18:20:26 EDT 2025
Fri Jul 11 07:57:04 EDT 2025
Thu Apr 03 07:02:27 EDT 2025
Tue Jul 01 01:34:10 EDT 2025
Thu Apr 24 23:11:25 EDT 2025
Fri Feb 21 02:37:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-3024f274e0f3303294aefadd2d046a22073e052cdeaa0da30dc5f5135b5cd9a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/srep30426
PMID 27452118
PQID 1807277543
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4958986
proquest_miscellaneous_1807277543
pubmed_primary_27452118
crossref_citationtrail_10_1038_srep30426
crossref_primary_10_1038_srep30426
springer_journals_10_1038_srep30426
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160725
2016-07-25
PublicationDateYYYYMMDD 2016-07-25
PublicationDate_xml – month: 7
  year: 2016
  text: 20160725
  day: 25
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2016
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Jiang (CR37) 2013; 5
Xue (CR33) 2013; 5
Yoo (CR47) 2011; 11
Liu (CR32) 2013; 13
Cao, Meziani, Sahu, Sun (CR7) 2013; 46
Shin (CR49) 2015; 7
Zhang, Zhang, Chen, Qu (CR9) 2012; 5
Yan, Cui, Li (CR13) 2010; 132
Kwon (CR26) 2014; 14
Zheng, Ananthanarayanan, Luo, Chen (CR30) 2015; 11
Wang (CR31) 2014; 5
Gogotsi, Simon (CR46) 2011; 334
Zhu (CR51) 2015; 8
Li (CR5) 2014; 2
Kou, Li, Chen, Guo (CR53) 2013; 14
Loh, Bao, Eda, Chhowalla (CR34) 2010; 2
Liu (CR39) 2014; 9
Hu (CR45) 2013; 24
Liu, Wu, Feng, Müllen (CR21) 2011; 133
Estrade-Szwarckopf (CR36) 2004; 42
Kim, Hohman, Serino, Weiss (CR41) 2010; 114
Chen, Chen, Lin, Chen (CR42) 2004; 108
Zhu (CR52) 2012; 22
Shen (CR23) 2012; 36
Mao (CR43) 2015; 3
Liu (CR38) 2010; 48
Liu (CR24) 2013; 25
Umrao (CR40) 2015; 81
Li (CR22) 2011; 23
Bacon, Bradley, Nann (CR29) 2014; 31
Li, Kang, Liu, Lee (CR4) 2012; 22
Chen, Huang, Jhou, Zhang (CR27) 2014; 4
Lim, Shen, Gao (CR8) 2015; 44
Huang (CR44) 2014; 6
Zhu (CR2) 2011; 47
Chen (CR28) 2014; 4
Gupta (CR20) 2011; 133
Hsu, Shih, Lee, Chang (CR11) 2012; 14
Li (CR3) 2013; 5
Roy (CR6) 2015; 7
Onlaor, Thiwawong, Tunhoo (CR54) 2016; 31
Weng (CR16) 2015; 68
Shen (CR19) 2011; 47
Hsu, Chang (CR12) 2012; 48
Roy (CR17) 2014; 38
Gao (CR48) 2011; 6
Tang (CR35) 2014; 8
Pan, Zhang, Li, Wu (CR18) 2010; 22
Miao (CR10) 2015; 7
Gokus (CR15) 2009; 3
Lu (CR25) 2011; 6
Chen (CR55) 2015; 5
Tetsuka (CR14) 2012; 24
Li, Yan (CR1) 2010; 1
Sun (CR50) 2014; 32
Q Xue (BFsrep30426_CR33) 2013; 5
P Roy (BFsrep30426_CR6) 2015; 7
H Estrade-Szwarckopf (BFsrep30426_CR36) 2004; 42
Y Hu (BFsrep30426_CR45) 2013; 24
H Liu (BFsrep30426_CR38) 2010; 48
Y Shin (BFsrep30426_CR49) 2015; 7
L Kou (BFsrep30426_CR53) 2013; 14
P-C Hsu (BFsrep30426_CR12) 2012; 48
L Tang (BFsrep30426_CR35) 2014; 8
Z Huang (BFsrep30426_CR44) 2014; 6
V Gupta (BFsrep30426_CR20) 2011; 133
H Li (BFsrep30426_CR4) 2012; 22
C-I Weng (BFsrep30426_CR16) 2015; 68
F Jiang (BFsrep30426_CR37) 2013; 5
H Liu (BFsrep30426_CR39) 2014; 9
L-S Li (BFsrep30426_CR1) 2010; 1
I-WP Chen (BFsrep30426_CR27) 2014; 4
M Kim (BFsrep30426_CR41) 2010; 114
L Cao (BFsrep30426_CR7) 2013; 46
F Liu (BFsrep30426_CR24) 2013; 25
K Onlaor (BFsrep30426_CR54) 2016; 31
J Shen (BFsrep30426_CR23) 2012; 36
Z Zhang (BFsrep30426_CR9) 2012; 5
J Shen (BFsrep30426_CR19) 2011; 47
XT Zheng (BFsrep30426_CR30) 2015; 11
S Zhu (BFsrep30426_CR51) 2015; 8
W Gao (BFsrep30426_CR48) 2011; 6
P Roy (BFsrep30426_CR17) 2014; 38
W Kwon (BFsrep30426_CR26) 2014; 14
KP Loh (BFsrep30426_CR34) 2010; 2
I-WP Chen (BFsrep30426_CR42) 2004; 108
T Gokus (BFsrep30426_CR15) 2009; 3
L Wang (BFsrep30426_CR31) 2014; 5
P-C Hsu (BFsrep30426_CR11) 2012; 14
H Tetsuka (BFsrep30426_CR14) 2012; 24
Y Li (BFsrep30426_CR22) 2011; 23
J Sun (BFsrep30426_CR50) 2014; 32
X Yan (BFsrep30426_CR13) 2010; 132
Q Liu (BFsrep30426_CR32) 2013; 13
SY Lim (BFsrep30426_CR8) 2015; 44
J Lu (BFsrep30426_CR25) 2011; 6
P Miao (BFsrep30426_CR10) 2015; 7
Y-C Chen (BFsrep30426_CR55) 2015; 5
L Li (BFsrep30426_CR3) 2013; 5
C-L Li (BFsrep30426_CR5) 2014; 2
S Zhu (BFsrep30426_CR2) 2011; 47
JJ Yoo (BFsrep30426_CR47) 2011; 11
D Pan (BFsrep30426_CR18) 2010; 22
Q-X Mao (BFsrep30426_CR43) 2015; 3
S Zhu (BFsrep30426_CR52) 2012; 22
Y Gogotsi (BFsrep30426_CR46) 2011; 334
I-WP Chen (BFsrep30426_CR28) 2014; 4
R Liu (BFsrep30426_CR21) 2011; 133
M Bacon (BFsrep30426_CR29) 2014; 31
S Umrao (BFsrep30426_CR40) 2015; 81
References_xml – volume: 133
  start-page: 15221
  year: 2011
  end-page: 15223
  ident: CR21
  article-title: Bottom-Up Fabrication of Photoluminescent Graphene Quantum Dots with Uniform Morphology
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja204953k
– volume: 68
  start-page: 1
  year: 2015
  end-page: 6
  ident: CR16
  article-title: One-Step Synthesis of Biofunctional Carbon Quantum Dots for Bacterial Labeling
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2014.12.028
– volume: 14
  start-page: 1306
  year: 2014
  end-page: 1311
  ident: CR26
  article-title: Electroluminescence from Graphene Quantum Dots Prepared by Amidative Cutting of Tattered Graphite
  publication-title: Nano Lett.
  doi: 10.1021/nl404281h
– volume: 25
  start-page: 3657
  year: 2013
  end-page: 3662
  ident: CR24
  article-title: Facile Synthetic Method for Pristine Graphene Quantum Dots and Graphene Oxide Quantum Dots: Origin of Blue and Green Luminescence
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300233
– volume: 132
  start-page: 5944
  year: 2010
  end-page: 5945
  ident: CR13
  article-title: Synthesis of Large, Stable Colloidal Graphene Quantum Dots with Tunable Size
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1009376
– volume: 5
  start-page: 8869
  year: 2012
  end-page: 8890
  ident: CR9
  article-title: Graphene Quantum Dots: an Emerging Material for Energy-Related Applications and Beyond
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22982j
– volume: 36
  start-page: 97
  year: 2012
  end-page: 101
  ident: CR23
  article-title: One-Pot Hydrothermal Synthesis of Graphene Quantum Dots Surface-Passivated by Polyethylene Glycol and Their Photoelectric Conversion under Near-Infrared Light
  publication-title: New J. Chem.
  doi: 10.1039/C1NJ20658C
– volume: 11
  start-page: 1620
  year: 2015
  end-page: 1636
  ident: CR30
  article-title: Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses and Biological Applications
  publication-title: Small
  doi: 10.1002/smll.201402648
– volume: 42
  start-page: 1713
  year: 2004
  end-page: 1721
  ident: CR36
  article-title: XPS Photoemission in Carbonaceous Materials: A “Defect” Peak beside the Graphitic Asymmetric Peak
  publication-title: Carbon
  doi: 10.1016/j.carbon.2004.03.005
– volume: 47
  start-page: 2580
  year: 2011
  end-page: 2582
  ident: CR19
  article-title: Facile Preparation and Upconversion Luminescence of Graphene Quantum Dots
  publication-title: Chem. Commun.
  doi: 10.1039/C0CC04812G
– volume: 48
  start-page: 1498
  year: 2010
  end-page: 1507
  ident: CR38
  article-title: Structural and Morphological Control of Aligned Nitrogen Doped Carbon Nanotubes
  publication-title: Carbon
  doi: 10.1016/j.carbon.2009.12.045
– volume: 44
  start-page: 362
  year: 2015
  end-page: 381
  ident: CR8
  article-title: Carbon Quantum Dots and Their Applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00269E
– volume: 81
  start-page: 514
  year: 2015
  end-page: 524
  ident: CR40
  article-title: Microwave Bottom-Up Route for Size-Tunable and Switchable Photoluminescent Graphene Quantum Dots using Acetylacetone: New Platform for Enzyme-Free Detection of Hydrogen Peroxide
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.09.084
– volume: 108
  start-page: 17497
  year: 2004
  end-page: 17504
  ident: CR42
  article-title: Effect of Underpotentially Deposited Adlayers on Sulfur Bonding Schemes of Organothiols Self-Assembled on Polycrystalline Gold: sp or sp Hybridization
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047495p
– volume: 6
  start-page: 13043
  year: 2014
  end-page: 13052
  ident: CR44
  article-title: Facile Synthesis of Analogous Graphene Quantum Dots with sp Hybridized Carbon Atom Dominant Structures and Their Photovoltaic Application
  publication-title: Nanoscale
  doi: 10.1039/C4NR03658A
– volume: 47
  start-page: 6858
  year: 2011
  end-page: 6860
  ident: CR2
  article-title: Strongly Green-Photoluminescent Graphene Quantum Dots for Bioimaging Applications
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc11122a
– volume: 5
  start-page: 1137
  year: 2013
  end-page: 1142
  ident: CR37
  article-title: Eco-Friendly Synthesis of Size-Controllable Amine Functionalized Graphene Quantum Dots with Antimycoplasma Properties
  publication-title: Nanoscale
  doi: 10.1039/c2nr33191h
– volume: 13
  start-page: 2436
  year: 2013
  end-page: 2441
  ident: CR32
  article-title: Strong Two-Photon-Induced Fluorescence from Photostable, Biocompatible Nitrogen-Doped Graphene Quantum Dots for Cellular and Deep-Tissue Imaging
  publication-title: Nano Lett.
  doi: 10.1021/nl400368v
– volume: 5
  start-page: 10022
  year: 2015
  ident: CR55
  article-title: Nonvolatile Bio-Memristor Fabricated with Egg Albumen Film
  publication-title: Sci. Rep.
  doi: 10.1038/srep10022
– volume: 24
  start-page: 195401
  year: 2013
  ident: CR45
  article-title: Graphene Quantum Dots-Carbon Nanotube Hybrid Arrays for Supercapacitors
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/19/195401
– volume: 14
  start-page: 917
  year: 2012
  end-page: 920
  ident: CR11
  article-title: Synthesis and Analytical Applications of Photoluminescent Carbon Nanodots
  publication-title: Green Chem.
  doi: 10.1039/c2gc16451e
– volume: 2
  start-page: 4564
  year: 2014
  end-page: 4571
  ident: CR5
  article-title: Carbon Dots Prepared from Ginger Exhibiting Efficient Inhibition of Human Hepatocellular Carcinoma Cells
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c4tb00216d
– volume: 5
  start-page: 5357
  year: 2014
  ident: CR31
  article-title: Gram-Scale Synthesis of Single-Crystalline Graphene Quantum Dots with Superior Optical Properties
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6357
– volume: 24
  start-page: 5333
  year: 2012
  end-page: 5338
  ident: CR14
  article-title: Optically Tunable Amino-Functionalized Graphene Quantum Dots
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201930
– volume: 4
  start-page: 25916
  year: 2014
  end-page: 25919
  ident: CR28
  article-title: One Pot Synthesis of Graphene Quantum Disks Derived from Single-Layered Exfoliation Graphene Sheets and Their Application in Bioimaging
  publication-title: RSC Adv.
  doi: 10.1039/c4ra03488k
– volume: 22
  start-page: 4732
  year: 2012
  end-page: 4740
  ident: CR52
  article-title: Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to Up-Conversion Bioimaging Applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201201499
– volume: 5
  start-page: 4015
  year: 2013
  end-page: 4039
  ident: CR3
  article-title: Focusing on Luminescent Graphene Quantum Dots: Current Status and Future Perspectives
  publication-title: Nanoscale
  doi: 10.1039/c3nr33849e
– volume: 8
  start-page: 6312
  year: 2014
  end-page: 6320
  ident: CR35
  article-title: Deep Ultraviolet to Near-Infrared Emission and Photoresponse in Layered N-Doped Graphene Quantum Dots
  publication-title: ACS Nano
  doi: 10.1021/nn501796r
– volume: 3
  start-page: 6013
  year: 2015
  end-page: 6018
  ident: CR43
  article-title: The Regulation of Hydrophilicity and Hydrophobicity of Carbon Dots via a One-Pot Approach
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB00963D
– volume: 22
  start-page: 24230
  year: 2012
  end-page: 24253
  ident: CR4
  article-title: Carbon Nanodots: Synthesis, Properties and Applications
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm34690g
– volume: 48
  start-page: 3984
  year: 2012
  end-page: 3986
  ident: CR12
  article-title: Synthesis of High-Quality Carbon Nanodots from Hydrophilic Compounds: Role of Functional Groups
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc30188a
– volume: 9
  start-page: 397
  year: 2014
  ident: CR39
  article-title: A Multifunctional Ribonuclease A-Conjugated Carbon Dot Cluster Nanosystem for Synchronous Cancer Imaging and Therapy
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-9-397
– volume: 38
  start-page: 4946
  year: 2014
  end-page: 4951
  ident: CR17
  article-title: Plant Leaf-Derived Graphene Quantum Dots and Applications for White LEDs
  publication-title: New J. Chem.
  doi: 10.1039/C4NJ01185F
– volume: 133
  start-page: 9960
  year: 2011
  end-page: 9963
  ident: CR20
  article-title: Luminscent Graphene Quantum Dots for Organic Photovoltaic Devices
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2036749
– volume: 32
  start-page: 434
  year: 2014
  end-page: 440
  ident: CR50
  article-title: Ultra-High Quantum Yield of Graphene Quantum Dots: Aromatic-Nitrogen Doping and Photoluminescence Mechanism
  publication-title: Part. Part. Syst. Charact.
  doi: 10.1002/ppsc.201400189
– volume: 114
  start-page: 19744
  year: 2010
  end-page: 19751
  ident: CR41
  article-title: Structural Manipulation of Hydrogen-Bonding Networks in Amide-Containing Alkanethiolate Monolayers via Electrochemical Processing
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp106211y
– volume: 7
  start-page: 1586
  year: 2015
  end-page: 1595
  ident: CR10
  article-title: Recent Advances in Carbon Nanodots: Synthesis, Properties and Biomedical Applications
  publication-title: Nanoscale
  doi: 10.1039/C4NR05712K
– volume: 5
  start-page: 12098
  year: 2013
  end-page: 12103
  ident: CR33
  article-title: Nearly Monodisperse Graphene Quantum Dots Fabricated by Amine-Assisted Cutting and Ultrafiltration
  publication-title: Nanoscale
  doi: 10.1039/c3nr03623e
– volume: 8
  start-page: 355
  year: 2015
  end-page: 381
  ident: CR51
  article-title: The Photoluminescence Mechanism in Carbon Dots (Graphene Quantum Dots, Carbon Nanodots and Polymer Dots): Current State and Future Perspective
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0644-3
– volume: 6
  start-page: 496
  year: 2011
  end-page: 500
  ident: CR48
  article-title: Direct Laser Writing of Micro-Supercapacitors on Hydrated Graphite Oxide Films
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.110
– volume: 14
  start-page: 1447
  year: 2013
  end-page: 1451
  ident: CR53
  article-title: Synthesis of Blue Light-Emitting Graphene Quantum Dots and Their Application in Flexible Nonvolatile Memory
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2013.03.016
– volume: 7
  start-page: 5633
  year: 2015
  end-page: 5637
  ident: CR49
  article-title: Acid-Free and Oxone Oxidant-Assisted Solvothermal Synthesis of Graphene Quantum Dots using Various Natural Carbon Materials as Resources
  publication-title: Nanoscale
  doi: 10.1039/C5NR00814J
– volume: 6
  start-page: 247
  year: 2011
  end-page: 252
  ident: CR25
  article-title: Transforming C60 Molecules into Graphene Quantum Dots
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.30
– volume: 4
  start-page: 3928
  year: 2014
  ident: CR27
  article-title: Exfoliation and Performance Properties of Non-Oxidized Graphene in Water
  publication-title: Sci. Rep.
  doi: 10.1038/srep03928
– volume: 46
  start-page: 171
  year: 2013
  end-page: 180
  ident: CR7
  article-title: Photoluminescence Properties of Graphene versus Other Carbon Nanomaterials
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300128j
– volume: 23
  start-page: 776
  year: 2011
  end-page: 780
  ident: CR22
  article-title: An Electrochemical Avenue to Green-Luminescent Graphene Quantum Dots as Potential Electron-Acceptors for Photovoltaics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003819
– volume: 31
  start-page: 19
  year: 2016
  end-page: 24
  ident: CR54
  article-title: Bi-stable Switching Behaviors of ITO/EVA:ZnO NPs/ITO Transparent Memory Devices Fabricated using a Thermal Roll Lamination Technique
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2016.01.019
– volume: 11
  start-page: 1423
  year: 2011
  end-page: 1427
  ident: CR47
  article-title: Ultrathin Planar Graphene Supercapacitors
  publication-title: Nano Lett.
  doi: 10.1021/nl200225j
– volume: 2
  start-page: 1015
  year: 2010
  end-page: 1024
  ident: CR34
  article-title: Graphene Oxide as a Chemically Tunable Platform for Optical Applications
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.907
– volume: 334
  start-page: 917
  year: 2011
  end-page: 918
  ident: CR46
  article-title: True Performance Metrics in Electrochemical Energy Storage
  publication-title: Science
  doi: 10.1126/science.1213003
– volume: 3
  start-page: 3963
  year: 2009
  end-page: 3968
  ident: CR15
  article-title: Making Graphene Luminescent by Oxygen Plasma Treatment
  publication-title: ACS Nano
  doi: 10.1021/nn9012753
– volume: 31
  start-page: 415
  year: 2014
  end-page: 428
  ident: CR29
  article-title: Graphene Quantum Dots
  publication-title: Part. Part. Syst. Charact.
  doi: 10.1002/ppsc.201300252
– volume: 22
  start-page: 734
  year: 2010
  end-page: 738
  ident: CR18
  article-title: Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200902825
– volume: 1
  start-page: 2572
  year: 2010
  end-page: 2576
  ident: CR1
  article-title: Colloidal Graphene Quantum Dots
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz100862f
– volume: 7
  start-page: 2504
  year: 2015
  end-page: 2510
  ident: CR6
  article-title: Photoluminescent Graphene Quantum Dots for Imaging of Apoptotic Cells
  publication-title: Nanoscale
  doi: 10.1039/C4NR07005D
– volume: 7
  start-page: 2504
  year: 2015
  ident: BFsrep30426_CR6
  publication-title: Nanoscale
  doi: 10.1039/C4NR07005D
– volume: 48
  start-page: 3984
  year: 2012
  ident: BFsrep30426_CR12
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc30188a
– volume: 132
  start-page: 5944
  year: 2010
  ident: BFsrep30426_CR13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1009376
– volume: 3
  start-page: 6013
  year: 2015
  ident: BFsrep30426_CR43
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB00963D
– volume: 8
  start-page: 355
  year: 2015
  ident: BFsrep30426_CR51
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0644-3
– volume: 36
  start-page: 97
  year: 2012
  ident: BFsrep30426_CR23
  publication-title: New J. Chem.
  doi: 10.1039/C1NJ20658C
– volume: 5
  start-page: 5357
  year: 2014
  ident: BFsrep30426_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6357
– volume: 133
  start-page: 15221
  year: 2011
  ident: BFsrep30426_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja204953k
– volume: 108
  start-page: 17497
  year: 2004
  ident: BFsrep30426_CR42
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047495p
– volume: 5
  start-page: 4015
  year: 2013
  ident: BFsrep30426_CR3
  publication-title: Nanoscale
  doi: 10.1039/c3nr33849e
– volume: 5
  start-page: 8869
  year: 2012
  ident: BFsrep30426_CR9
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22982j
– volume: 38
  start-page: 4946
  year: 2014
  ident: BFsrep30426_CR17
  publication-title: New J. Chem.
  doi: 10.1039/C4NJ01185F
– volume: 24
  start-page: 195401
  year: 2013
  ident: BFsrep30426_CR45
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/19/195401
– volume: 14
  start-page: 917
  year: 2012
  ident: BFsrep30426_CR11
  publication-title: Green Chem.
  doi: 10.1039/c2gc16451e
– volume: 2
  start-page: 1015
  year: 2010
  ident: BFsrep30426_CR34
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.907
– volume: 14
  start-page: 1306
  year: 2014
  ident: BFsrep30426_CR26
  publication-title: Nano Lett.
  doi: 10.1021/nl404281h
– volume: 334
  start-page: 917
  year: 2011
  ident: BFsrep30426_CR46
  publication-title: Science
  doi: 10.1126/science.1213003
– volume: 22
  start-page: 734
  year: 2010
  ident: BFsrep30426_CR18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200902825
– volume: 5
  start-page: 1137
  year: 2013
  ident: BFsrep30426_CR37
  publication-title: Nanoscale
  doi: 10.1039/c2nr33191h
– volume: 1
  start-page: 2572
  year: 2010
  ident: BFsrep30426_CR1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz100862f
– volume: 11
  start-page: 1423
  year: 2011
  ident: BFsrep30426_CR47
  publication-title: Nano Lett.
  doi: 10.1021/nl200225j
– volume: 3
  start-page: 3963
  year: 2009
  ident: BFsrep30426_CR15
  publication-title: ACS Nano
  doi: 10.1021/nn9012753
– volume: 81
  start-page: 514
  year: 2015
  ident: BFsrep30426_CR40
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.09.084
– volume: 23
  start-page: 776
  year: 2011
  ident: BFsrep30426_CR22
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003819
– volume: 48
  start-page: 1498
  year: 2010
  ident: BFsrep30426_CR38
  publication-title: Carbon
  doi: 10.1016/j.carbon.2009.12.045
– volume: 6
  start-page: 247
  year: 2011
  ident: BFsrep30426_CR25
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.30
– volume: 24
  start-page: 5333
  year: 2012
  ident: BFsrep30426_CR14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201930
– volume: 5
  start-page: 12098
  year: 2013
  ident: BFsrep30426_CR33
  publication-title: Nanoscale
  doi: 10.1039/c3nr03623e
– volume: 22
  start-page: 4732
  year: 2012
  ident: BFsrep30426_CR52
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201201499
– volume: 22
  start-page: 24230
  year: 2012
  ident: BFsrep30426_CR4
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm34690g
– volume: 46
  start-page: 171
  year: 2013
  ident: BFsrep30426_CR7
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300128j
– volume: 9
  start-page: 397
  year: 2014
  ident: BFsrep30426_CR39
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-9-397
– volume: 8
  start-page: 6312
  year: 2014
  ident: BFsrep30426_CR35
  publication-title: ACS Nano
  doi: 10.1021/nn501796r
– volume: 4
  start-page: 25916
  year: 2014
  ident: BFsrep30426_CR28
  publication-title: RSC Adv.
  doi: 10.1039/c4ra03488k
– volume: 31
  start-page: 19
  year: 2016
  ident: BFsrep30426_CR54
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2016.01.019
– volume: 44
  start-page: 362
  year: 2015
  ident: BFsrep30426_CR8
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00269E
– volume: 7
  start-page: 5633
  year: 2015
  ident: BFsrep30426_CR49
  publication-title: Nanoscale
  doi: 10.1039/C5NR00814J
– volume: 114
  start-page: 19744
  year: 2010
  ident: BFsrep30426_CR41
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp106211y
– volume: 4
  start-page: 3928
  year: 2014
  ident: BFsrep30426_CR27
  publication-title: Sci. Rep.
  doi: 10.1038/srep03928
– volume: 5
  start-page: 10022
  year: 2015
  ident: BFsrep30426_CR55
  publication-title: Sci. Rep.
  doi: 10.1038/srep10022
– volume: 7
  start-page: 1586
  year: 2015
  ident: BFsrep30426_CR10
  publication-title: Nanoscale
  doi: 10.1039/C4NR05712K
– volume: 47
  start-page: 2580
  year: 2011
  ident: BFsrep30426_CR19
  publication-title: Chem. Commun.
  doi: 10.1039/C0CC04812G
– volume: 42
  start-page: 1713
  year: 2004
  ident: BFsrep30426_CR36
  publication-title: Carbon
  doi: 10.1016/j.carbon.2004.03.005
– volume: 11
  start-page: 1620
  year: 2015
  ident: BFsrep30426_CR30
  publication-title: Small
  doi: 10.1002/smll.201402648
– volume: 14
  start-page: 1447
  year: 2013
  ident: BFsrep30426_CR53
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2013.03.016
– volume: 47
  start-page: 6858
  year: 2011
  ident: BFsrep30426_CR2
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc11122a
– volume: 25
  start-page: 3657
  year: 2013
  ident: BFsrep30426_CR24
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300233
– volume: 2
  start-page: 4564
  year: 2014
  ident: BFsrep30426_CR5
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c4tb00216d
– volume: 133
  start-page: 9960
  year: 2011
  ident: BFsrep30426_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2036749
– volume: 6
  start-page: 13043
  year: 2014
  ident: BFsrep30426_CR44
  publication-title: Nanoscale
  doi: 10.1039/C4NR03658A
– volume: 31
  start-page: 415
  year: 2014
  ident: BFsrep30426_CR29
  publication-title: Part. Part. Syst. Charact.
  doi: 10.1002/ppsc.201300252
– volume: 6
  start-page: 496
  year: 2011
  ident: BFsrep30426_CR48
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.110
– volume: 13
  start-page: 2436
  year: 2013
  ident: BFsrep30426_CR32
  publication-title: Nano Lett.
  doi: 10.1021/nl400368v
– volume: 68
  start-page: 1
  year: 2015
  ident: BFsrep30426_CR16
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2014.12.028
– volume: 32
  start-page: 434
  year: 2014
  ident: BFsrep30426_CR50
  publication-title: Part. Part. Syst. Charact.
  doi: 10.1002/ppsc.201400189
SSID ssj0000529419
Score 2.4353297
Snippet Graphene quantum dots (GQDs) have drawn tremendous attention on account of their numerous alluring properties and a wide range of application potentials. Here,...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 30426
SubjectTerms 639/301
639/301/357/1017
Humanities and Social Sciences
multidisciplinary
Science
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwELZYENJeEM-lvOQFDlyijeM4OEfUUiqk5aFdJG6RHTu7FcWuSIrokX_OOC9UyoFjknHieGzPNx77G4SOXdpH4U70gHUDBwUAs8djGXqSBFoywnVWHh_7fRUN7sLLe3Zfk0Xn9bbKitKynKab3WG_wF6MnecdfUNLjrHddeZu1G2XU1zAKiRxwx1E-XuJWYszByPnd0N-CImWlqa_ilZqiIjPqkqtoQVt1tFylTRyuoFer432bmyB_0wNoLd8mGOb4cFUPdmxWx1JsTCqubYSrq-8nh1rhS8cOTXMbfh2Au05ecQ9W-T4eSjw-UtmR05J5l9ZujfMGx4Jd6ssCNgU90fiQeeb6K5__rc78OpECl4aEr_wKBjiDNxP7WcUTBa0lNAZTGyBAu9YBAEMcw0NmCothK8E9VXKMkYokyxVsSB0Cy0aa_Q2wmEqtVSUKcniMCU6jmRFo5aB38aV30EnTWMnac0y7pJdjJIy2k150uqlgw5b0XFFrfGZ0M9GYwl0fBfNEEbbSZ4Q7gP2OmUh7aAflQbb18C_AiwhvINOZ3TbCjhS7dknZvi_JNcGh5HHHL571PSCpB7V-Xztdr4ktYu-A8yK3IpwwPbQYvE00fsAZQp5UHbiN1Ab9ww
  priority: 102
  providerName: Springer Nature
Title One-Pot Synthesis of Hydrophilic and Hydrophobic N-Doped Graphene Quantum Dots via Exfoliating and Disintegrating Graphite Flakes
URI https://link.springer.com/article/10.1038/srep30426
https://www.ncbi.nlm.nih.gov/pubmed/27452118
https://www.proquest.com/docview/1807277543
https://pubmed.ncbi.nlm.nih.gov/PMC4958986
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7tQ0hcEO8tj8o8DlwCcRInzgGh0gdVpS0LS6XeIjt2oKI4pUnR9sg_Z5xHRekeOEV27CSesT3f2PE3AC9t2EdhT_SgdUMHBQGzw2MZOJJ6WjLKdVYdHzufhuNZMJmz-RG0MTYbARbXunY2ntRsvXx99XP7Dgf82_rIOH-DtmRlvfLwGE7RIEV2fJ43KL-m-PbigMYtr9DfNfat0QHEPPxT8p_t0soKjW7DrQY-kl6t7ztwpM1duFEHlNzeg98fjXYu8pJcbg0iu2JRkDwj461a5yu7cpISYVSbziWmp84AG6zIB0tcjfMe-bRBWW9-kEFeFuTXQpDhVZYvrQLN16r2YFG0HBM2q6qIuJWMluK7Lu7DbDT80h87TZAFJw2oWzo-GukMXVPtZj6aM5SU0BlOep5Cz1l4Hk4BGgWYKi2Eq4TvqpRljPpMslTFgvoP4MTkRp8BCVKppfKZkiwOUqrjUNYUaxn6dFy5HXjVCjtJGwZyGwhjmVQ74T5PdnrpwPNd0VVNu3FdoWetxhIcFHanQxidb4qEchdxWcQCvwMPaw3uHoNtRchCeQeiPd3uCljC7f07ZvGtIt5GZ5LHHN_7ou0FSdthD7_u0X-Vegw3EYKFdrXYY0_gpFxv9FOEOaXswnE0j7pw2utNLid4fT-cXnzG3H7Y71ZLB92qm_8BoSoGmA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BEaIXRHl1ebrAgUtEHMepc6x2u11ou4Bopd4iO3ZgxWKvmizqHvnnHeeFlu2BY5Jx4nhszzee8WeAd_7YR-l39KB1QwcFAXMgUhUHikZGcSpMUW8fO50mk_P40wW_aMmiyzatsqG0rKfpLjvsA9qLhfe8k9twByF24rO3hsmwX07xAauYph13EBN_S6xbnA0YuZkN-U9ItLY04wdwv4WI5KCp1A7cMvYh3G0OjVw9gj-frQm-uIp8W1lEb-WsJK4gk5W-dAu_OpITaXV37RReT4ORWxhNjjw5Nc5t5OsS23P5i4xcVZLfM0kOrwo390qy3-vSo1nZ8Uj4W3VBxKZkPJc_TfkYzseHZ8NJ0B6kEOQxDauAoSEu0P00YcHQZGFLSVPgxBZp9I5lFOEwN9iAuTZShlqyUOe84JRxxXOdSsqewJZ11uwCiXNllGZcK57GOTVpohoatQL9NqHDAbzvGjvLW5Zxf9jFPKuj3UxkvV4G8KYXXTTUGjcJ7XUay7Dj-2iGtMYty4yKELHXPo_ZAJ42Guxfg_-KsISKAeyv6bYX8KTa60_s7EdNro0Oo0gFfvdt1wuydlSXm7V79l9Sr-He5Oz0JDv5OD1-DtsIuRK_OhzxF7BVXS7NS4Q1lXpVd-hrFZn5-w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELb6EFUvCEqB5WmgBy4pcRynzhHtdlkKLEVQqbfIjm26YrGjJou6x_7zjvOqluXAMYmdODO25xuP_Q1CBz7to_AnesC6gYMCgDngqYwDSSItGeHa1MfHvkyTyVl8cs7O28PqZbutsqG0rKfpbnfYO7AXhfe8k8NCmU20DTA79L7WMBn2Syo-aBWTtOMPovy21qrVWYOS6zsi_wqL1tZmfA_dbWEift807D7a0HYP3WkSRy4foOuvVgenrsLflxYQXDkrsTN4slSXrvArJDkWVnXXTsL1NBi5Qiv8wRNUw_yGvy1ApovfeOSqEv-ZCXx8ZdzcK8r-rGuPZmXHJeFv1RUBn-LxXPzS5T46Gx__GE6CNplCkMckrAIKxtiAC6pDQ8FsgaSENjC5RQo8ZBFFMNQ1CDBXWohQCRqqnBlGKJMsV6kg9CHass7qxwjHudRSUaYkS-Oc6DSRDZWaAd-Nq3CA3nbCzvKWadwnvJhndcSb8qzXywC97osWDb3Gvwq96jSWQef3EQ1htVuUGeEh4K8jFtMBetRosH8N_CtAE8IH6GhFt30BT6y9-sTOLmqCbXAaecrhu2-6XpC1I7tcb92T_yr1Eu2cjsbZ54_TT0_RLqCuxC8QR-wZ2qouF_o5IJtKvqj78w2D5vsE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-Pot+Synthesis+of+Hydrophilic+and+Hydrophobic+N-Doped+Graphene+Quantum+Dots+via+Exfoliating+and+Disintegrating+Graphite+Flakes&rft.jtitle=Scientific+reports&rft.au=Kuo%2C+Na-Jung&rft.au=Chen%2C+Yu-Syuan&rft.au=Wu%2C+Chien-Wei&rft.au=Huang%2C+Chun-Yuan&rft.date=2016-07-25&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1038%2Fsrep30426&rft.externalDocID=10_1038_srep30426
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon