Room-temperature thermoelectric materials: Challenges and a new paradigm
Room-temperature thermoelectric materials provide promising solutions for energy harvesting from the environment, and deliver a maintenance-free power supply for the internet-of-things (IoTs). The currently available Bi2Te3 family discovered in the 1950s, still dominates industrial applications, how...
Saved in:
Published in | Journal of Materiomics Vol. 8; no. 2; pp. 427 - 436 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Room-temperature thermoelectric materials provide promising solutions for energy harvesting from the environment, and deliver a maintenance-free power supply for the internet-of-things (IoTs). The currently available Bi2Te3 family discovered in the 1950s, still dominates industrial applications, however, it has serious disadvantages of brittleness and the resource shortage of tellurium (1 × 10−3 ppm in the earth's crust). The novel Mg3Sb2 family has received increasing attention as a promising alternative for room-temperature thermoelectric materials. In this review, the development timeline and fabrication strategies of the Mg3Sb2 family are depicted. Moreover, an insightful comparison between the crystallinity and band structures of Mg3Sb2 and Bi2Te3 is drawn. An outlook is presented to discuss challenges and new paradigms in designing room-temperature thermoelectric materials.
[Display omitted]
•Similarities between Mg3Sb2 and Bi2Te3.•Quasi “melting” of chemical bonds.•Zintl compounds for promising TE materials. |
---|---|
AbstractList | Room-temperature thermoelectric materials provide promising solutions for energy harvesting from the environment, and deliver a maintenance-free power supply for the internet-of-things (IoTs). The currently available Bi2Te3 family discovered in the 1950s, still dominates industrial applications, however, it has serious disadvantages of brittleness and the resource shortage of tellurium (1 × 10−3 ppm in the earth's crust). The novel Mg3Sb2 family has received increasing attention as a promising alternative for room-temperature thermoelectric materials. In this review, the development timeline and fabrication strategies of the Mg3Sb2 family are depicted. Moreover, an insightful comparison between the crystallinity and band structures of Mg3Sb2 and Bi2Te3 is drawn. An outlook is presented to discuss challenges and new paradigms in designing room-temperature thermoelectric materials.
[Display omitted]
•Similarities between Mg3Sb2 and Bi2Te3.•Quasi “melting” of chemical bonds.•Zintl compounds for promising TE materials. Room-temperature thermoelectric materials provide promising solutions for energy harvesting from the environment, and deliver a maintenance-free power supply for the internet-of-things (IoTs). The currently available Bi2Te3 family discovered in the 1950s, still dominates industrial applications, however, it has serious disadvantages of brittleness and the resource shortage of tellurium (1 × 10−3 ppm in the earth's crust). The novel Mg3Sb2 family has received increasing attention as a promising alternative for room-temperature thermoelectric materials. In this review, the development timeline and fabrication strategies of the Mg3Sb2 family are depicted. Moreover, an insightful comparison between the crystallinity and band structures of Mg3Sb2 and Bi2Te3 is drawn. An outlook is presented to discuss challenges and new paradigms in designing room-temperature thermoelectric materials. |
Author | Zhang, Bo-Ping Jiang, Feng Li, Jing-Feng Li, Jing-Wei Han, Zhijia Xia, Jiating Liu, Weishu |
Author_xml | – sequence: 1 givenname: Zhijia orcidid: 0000-0002-8659-9338 surname: Han fullname: Han, Zhijia organization: The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China – sequence: 2 givenname: Jing-Wei surname: Li fullname: Li, Jing-Wei organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China – sequence: 3 givenname: Feng surname: Jiang fullname: Jiang, Feng organization: Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China – sequence: 4 givenname: Jiating surname: Xia fullname: Xia, Jiating organization: Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China – sequence: 5 givenname: Bo-Ping surname: Zhang fullname: Zhang, Bo-Ping email: bpzhang@ustb.edu.cn organization: The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China – sequence: 6 givenname: Jing-Feng surname: Li fullname: Li, Jing-Feng email: jingfeng@mail.tsinghua.edu.cn organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China – sequence: 7 givenname: Weishu surname: Liu fullname: Liu, Weishu email: liuws@sustech.edu.cn organization: Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China |
BookMark | eNp9kE1r3DAQhnVIoPn6Azn5D9iR5LFkh17K0iaBQKC0ZzEejzdabGuRlYb--2qz6SWHnAaG93mZec7FyRIWFuJayUpJZW521W7GVGmpVSVtJSWciDNdN7pswbZfxNW6-l4CWIDO2jNx_zOEuUw87zlieolcpGeOc-CJKUVPRW7j6HFab4vNM04TL1teC1yGAouFX4s9Rhz8dr4Up2NO8dX7vBC_f3z_tbkvH5_uHjbfHksCJVOph14pqhnbrmOj20FhY3qg2pBSZlR93TWawPAIOQhkR9YGLJIhqIexry_Ew7F3CLhz--hnjH9dQO_eFiFuHcbkaWInoYemaXuLIKHFvoPGmsbCSHWjiDl3tccuimFdI4-OfMLkw5Ii-skp6Q5S3c4dpLqDVCety1Izqj-g_0_5FPp6hDgL-uM5upU8L8SDj1l3_sB_hv8DadSVDw |
CitedBy_id | crossref_primary_10_1021_acsbiomaterials_3c01633 crossref_primary_10_1016_j_jmat_2023_12_002 crossref_primary_10_54227_mlab_20230003 crossref_primary_10_1007_s10854_023_10900_1 crossref_primary_10_1016_j_mtnano_2023_100340 crossref_primary_10_1016_j_mtphys_2024_101491 crossref_primary_10_1002_aenm_202400408 crossref_primary_10_1063_5_0074419 crossref_primary_10_1016_j_pmatsci_2024_101420 crossref_primary_10_1016_j_tca_2022_179327 crossref_primary_10_1016_j_cej_2022_141024 crossref_primary_10_1021_acsnano_4c11732 crossref_primary_10_1007_s12613_024_2973_x crossref_primary_10_1002_adma_202304219 crossref_primary_10_1038_s41467_023_44318_4 crossref_primary_10_1016_j_jmst_2023_08_049 crossref_primary_10_1002_advs_202409788 crossref_primary_10_54227_mlab_20230011 crossref_primary_10_1002_aesr_202300216 crossref_primary_10_1021_acs_jpcc_4c06477 crossref_primary_10_1016_j_jmat_2024_100938 crossref_primary_10_1016_j_surfin_2023_103759 crossref_primary_10_1039_D4NR03712J crossref_primary_10_1007_s12598_023_02302_3 crossref_primary_10_1039_D3TC00209H crossref_primary_10_1002_aenm_202304029 crossref_primary_10_1016_j_jmat_2025_101044 crossref_primary_10_1016_j_solidstatesciences_2024_107784 crossref_primary_10_1016_j_carbon_2024_119149 crossref_primary_10_3389_fmats_2023_1004889 crossref_primary_10_1016_j_jmat_2024_02_014 crossref_primary_10_1039_D3MA01190A crossref_primary_10_1016_j_apsusc_2024_161766 crossref_primary_10_1002_smsc_202400284 crossref_primary_10_1016_j_jmat_2024_02_010 crossref_primary_10_1002_adma_202209119 crossref_primary_10_1016_j_jssc_2024_125175 crossref_primary_10_1016_j_jmat_2024_03_018 crossref_primary_10_1021_jacs_4c01161 crossref_primary_10_1038_s41467_024_48268_3 crossref_primary_10_1116_6_0002635 crossref_primary_10_1016_j_cej_2023_141274 crossref_primary_10_1016_j_jmat_2023_10_004 crossref_primary_10_1063_5_0143678 crossref_primary_10_1016_j_mtphys_2023_101167 crossref_primary_10_3390_en15249589 crossref_primary_10_1016_j_applthermaleng_2024_124526 crossref_primary_10_1002_adfm_202304173 crossref_primary_10_1016_j_jmat_2023_10_009 crossref_primary_10_1016_j_jmst_2022_07_048 crossref_primary_10_1016_j_joule_2023_12_020 crossref_primary_10_1021_acsami_3c11235 crossref_primary_10_1021_acsaelm_3c00385 crossref_primary_10_1016_j_jmst_2024_12_086 crossref_primary_10_1002_aenm_202303473 |
Cites_doi | 10.1039/C5CP07482G 10.1002/adma.201908218 10.1016/j.jssc.2008.09.028 10.1088/0508-3443/5/11/303 10.1016/j.cej.2020.125360 10.1038/s41467-020-20095-2 10.1039/C8TA03344G 10.1002/adma.201605884 10.1016/j.mtphys.2020.100336 10.1016/j.jpowsour.2019.01.022 10.1039/c3ra40457a 10.1063/1.5081833 10.1016/j.mtphys.2018.12.004 10.1002/aelm.201901391 10.1016/j.jmat.2020.06.004 10.1016/j.nanoen.2011.10.001 10.1038/s41467-018-06980-x 10.1002/adfm.201807235 10.1063/1.5000053 10.1002/advs.202001362 10.1016/j.jmat.2019.08.002 10.1039/C8EE03374A 10.1021/acs.cgd.8b00605 10.1002/aelm.201800904 10.1039/C5TA02155C 10.1016/j.jmat.2019.12.007 10.1016/0025-5408(93)90055-I 10.1039/C4TA02386B 10.1039/C5EE02600H 10.1016/S0022-3697(97)00187-X 10.1063/1.1728842 10.1016/j.actamat.2015.04.023 10.1039/C5MH00021A 10.1039/C9TA11328B 10.1002/adma.201905703 10.1088/0953-8984/5/41/003 10.1016/0038-1098(76)90868-1 10.1021/acs.chemmater.9b03156 10.1002/jcc.20950 10.1039/C4RA04889J 10.1002/anie.201912909 10.1021/acsami.0c01004 10.1002/aenm.201100149 10.1002/jcc.25822 10.1021/acs.chemrev.6b00255 10.1002/admi.201900429 10.1021/acs.jpcc.9b05859 10.1107/S0365110X64000019 10.1107/S0567740874006285 10.1016/j.pmatsci.2018.04.005 10.1021/ic049720n 10.1088/0022-3727/39/2/020 10.1002/aenm.201500411 10.1126/science.1158899 10.1016/j.mseb.2005.12.001 10.1002/advs.201802286 10.1126/science.aax7792 10.1080/00018732.2018.1551715 10.1126/science.aaq1479 10.1016/j.nantod.2020.100938 10.1093/nsr/nwaa259 10.1016/j.jmat.2019.09.002 10.1039/C8TA08975B 10.1002/aenm.201702776 10.1039/C7EE01737E 10.1039/c2ee21536e 10.1016/j.jmat.2020.03.003 10.1007/s10854-019-01893-x 10.1002/adfm.201900677 10.1039/D0EE00838A 10.1016/j.joule.2017.11.005 10.1063/1.342976 10.1038/ncomms13901 10.1016/j.nanoen.2014.04.012 10.1021/acsami.0c22558 10.1088/0305-4608/14/1/014 10.1021/acsenergylett.7b00742 10.1039/C8TA07285J 10.1002/adma.201903387 10.1039/C7EE00098G 10.1002/adma.201902337 10.1002/zaac.201400403 10.1007/s11664-012-2417-7 10.1016/bs.hpcre.2016.05.003 10.1021/ja111199y 10.1002/adma.201603955 10.1016/j.cej.2019.123513 10.1021/acs.chemmater.7b01746 10.1016/j.actamat.2020.10.035 10.1038/ncomms4525 10.1039/C9EE03921J 10.1126/science.aaz5045 10.1039/C9EE02044F 10.1016/j.actamat.2020.07.058 10.1039/C6TA06832D 10.1073/pnas.1711725114 10.1021/cm5041826 10.1063/1.5016488 10.1007/s10854-020-03308-8 10.1038/npjcompumats.2015.15 10.1021/acsami.9b23059 10.1016/j.nanoen.2018.07.059 |
ContentType | Journal Article |
Copyright | 2022 The Chinese Ceramic Society |
Copyright_xml | – notice: 2022 The Chinese Ceramic Society |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jmat.2021.07.004 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EndPage | 436 |
ExternalDocumentID | oai_doaj_org_article_04b4558b7a4048ab94576574fc351cee 10_1016_j_jmat_2021_07_004 S2352847821001167 |
GroupedDBID | 6I. AAFTH ALMA_UNASSIGNED_HOLDINGS M~E AAYXX CITATION GROUPED_DOAJ |
ID | FETCH-LOGICAL-c410t-2db11c3ea899e628d1a56b4c36c116f1b3952c46ef4b114c7fe2647ac6c43dfb3 |
IEDL.DBID | DOA |
ISSN | 2352-8478 |
IngestDate | Wed Aug 27 01:08:56 EDT 2025 Tue Jul 01 03:14:48 EDT 2025 Thu Apr 24 22:56:55 EDT 2025 Thu Jul 20 20:11:52 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Bi2Te3 Thermoelectric materials Mg3Sb2 Chemical bond engineering |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-2db11c3ea899e628d1a56b4c36c116f1b3952c46ef4b114c7fe2647ac6c43dfb3 |
ORCID | 0000-0002-8659-9338 |
OpenAccessLink | https://doaj.org/article/04b4558b7a4048ab94576574fc351cee |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_04b4558b7a4048ab94576574fc351cee crossref_citationtrail_10_1016_j_jmat_2021_07_004 crossref_primary_10_1016_j_jmat_2021_07_004 elsevier_sciencedirect_doi_10_1016_j_jmat_2021_07_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Materiomics |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Xin, Qin, Zhu, Zhang, Kong (bib40) 2006; 128 Xu, Kleinke (bib106) 2008; 29 Zhang, Song, Mamakhel, Jørgensen, Iversen (bib30) 2017; 29 Busch, Hulliger, Winkler (bib34) 1954; 27 Tani, Ishikawa (bib63) 2019 Shi, Yang, Salvador, Chi, Cho, Wang (bib114) 2011; 133 Goldsmid, Douglas (bib8) 1954; 5 Zhai, Wu, Zhu, Zhao (bib10) 2018; 18 Gorai, Toberer, Stevanovic (bib81) 2019; 125 Lenoir, Dauscher, Cassart, Ravich, Scherrer (bib117) 1998; 59 Ying, Liu, Fu, Yue, Xie, Zhao (bib19) 2015; 27 Zhu, Liu, Fu, Heremans, Snyder, Zhao (bib15) 2017; 29 Simon (bib23) 1962; 33 Tang, Zhang, Zhang, Wang, Lu, Han (bib51) 2020; 12 Qiu, Yan, Luo, Tang, Yao, Zhang (bib6) 2019; 12 Zhang, Song, Pedersen, Yin, Hung, Iversen (bib55) 2017; 8 Tan GJ, Shi FY, Hao SQ, Zhao L-D, Chi H, Zhang XM, et al. Nat Commun 26;7(1):12167. Zhang, Song, Iversen (bib66) 2021; 13 Song, Mao, Bordelon, He, Wang, Shuai (bib64) 2019; 8 Pearson (bib107) 1964; 17 Tan, Zhao, Kanatzidis (bib16) 2016; 116 Hu, Wu, Zhu, Fu, He, Ying (bib118) 2015; 5 Mao, Liu, Zhou, Zhu, Zhang, Chen (bib14) 2018; 67 Liu, Zhang, Lan, Chen, Yan, Zhang (bib68) 2011; 1 Bhardwaj, Misra (bib47) 2014; 4 Shi, Zhao, Zhang, Sun, Chen, Lin (bib82) 2019; 31 Liu, Zhou, Jie, Li, Kim, Bao (bib104) 2016; 9 Han, Qian, Li, Deng, Zhu, Han (bib2) 2020; 368 Kuo, Wood, Slade, Kanatzidis, Snyder (bib90) 2020; 13 Imasato, Fu, Pan, Wood, Kuo, Felser (bib70) 2020; 32 Bringans, Sutton (bib35) 1976; 19 Ponnambalam, Morelli (bib42) 2013; 42 Sun, Shi, Zheng, Chen, Li (bib109) 2019; 5 Liu, Yan, Chen, Ren (bib112) 2012; 1 Wang, Cao, Takagiwa, Snyder (bib78) 2015; 2 Feutelais, Legendre, Rodier, Agafonov (bib26) 1993; 28 Harrison (bib105) 1989 Liu, Yang, Chen, Zou (bib12) 2020; 32 Fang, Li, Hu, Zhang, Yang, Zhang (bib29) 2019; 29 Zhao, Sui, Tang, Lan, Jie, Kraemer (bib18) 2014; 7 Watson, Marshall, Cardoso (bib36) 1984; 14 Hong, Gu, Seo, Wang, Liu, Meng (bib5) 2019; 5 Mao, Zhu, Ding, Liu, Gamage, Chen (bib97) 2019; 365 Wood, Imasato, Anand, Yang, Snyder (bib95) 2020; 8 Nunna, Qiu, Yin, Chen, Hanus, Song (bib115) 2017; 10 Chen, Wu, Cui, Xiao, Zhang, He (bib58) 2018; 52 Li, Zheng, Ge, Lin, Zhang, Chen (bib116) 2017; 29 Hu, Guo, Guo, Zhu, Chen, Zhang (bib49) 2020; 6 Zhu, Ren (bib100) 2020 Imasato, Kang, Snyder (bib22) 2019; 12 Zhu, Song, Zhu, Ren (bib102) 2019; 414 Bhardwaj, Rajput, Shukla, Pulikkotil, Srivastava, Dhar (bib41) 2013; 3 Mao, Wu, Song, Zhu, Shuai, Liu (bib87) 2017; 2 Pan, Yao, Hong, Zhu, Fan, Imasato (bib71) 2020; 13 Zhang, Song, Borup, Jorgensen, Iversen (bib75) 2018; 8 Kanno, Tamaki, Sato, Kang, Ohno, Imasato (bib89) 2018; 112 Zhang, Song, Sist, Tolborg, Iversen (bib28) 2018; 9 Chang, Wu, He, Pei, Wu-F (bib120) 2018; 360 Mahan (bib24) 1989; 65 Wood, Kuo, Imasato (bib93) 2019; 31 Wang, Liu, Shi, Hong, Wang, Li (bib9) 2020; 391 Xu, Degroot, Vanderlugt (bib37) 1993; 5 Kajikawa, Kimura, Yokoyama (bib39) 2003 Pei, Cai, Zhuang, Li (bib11) 2020; 7 Li, Zhang, Wang, Liu, Yue, Lu (bib98) 2018; 6 Zhang, Qin, Xin, Li, Zhang (bib46) 2009; 484 Liang, Yang, Liu, Miao, Chen, Zhu (bib76) 2020; 12 Kazem, Kauzlarich (bib33) 2016; vol. 50 Li, Zhang, Zheng, Zhang, Wang, Chen (bib77) 2019; 123 Zheng, Li, Sun, Shi, Zhang, Pei (bib32) 2019 Ying, He, Mao, Zhang, Reith, Sui (bib101) 2021; 12 Shuai, Wang, Kim, Liu, Sun, Chen (bib48) 2015; 93 Bell (bib1) 2008; 321 Tani, Ishikawa (bib60) 2020; 31 Scientific and Technical Aerospace Reports (bib38) 1966 Wang, Zhang, Liu, Wang, Zhang, Yue (bib52) 2020 Imasato, Wood, Kuo, Snyder (bib59) 2018; 6 Kuo, Yu, Kang, Cojocaru-Miredin, Wuttig, Snyder (bib91) 2019; 6 Chen, Shi, Zhao, Zou (bib13) 2018; 97 Tamaki, Sato, Kanno (bib54) 2016; 28 Shi, Sun, Zhang, Chen, Lin, Li (bib83) 2019; 31 Liu, Yang, Chen (bib20) 2020; 35 Zhang, Chen, Li, Yin, Yu, Sui (bib61) 2020; 6 Cui, Zhang, Duan, Li, Yang, Wang (bib86) 2019; 30 Bhardwaj, Chauhan, Goel, Singh, Pulikkotil, Senguttuvan (bib45) 2016; 18 Wang, Hong, Liu, Shi, Xu, Sun (bib4) 2020; 397 Kauzlarich, Condron, Wassei, Ikeda, Snyder (bib73) 2009; 182 Shang, Liang, Xu, Song, Huang, Gu (bib103) 2020; 201 Zhang, Song, Iversen (bib62) 2020; 59 Bhardwaj, Chauhan, Misra (bib43) 2015; 3 Imai, Abe, Yamada (bib72) 2004; 43 Li, Xie, Yang (bib50) 2020; 127 Dargusch, Liu, Chen (bib3) 2020; 7 Yin, Chen, Zhang, Li, Bai, Zhang (bib99) 2020; 198 Zhang, Wang, Liu, Chen, Yao, Yin (bib108) 2019; 5 Gorai, Ortiz, Toberer, Stevanovic (bib80) 2018; 6 Shi, Sun, Bu, Zhang, Wu, Lin (bib69) 2019; 6 Ohno, Imasato, Anand, Tamaki, Kang, Gorai (bib74) 2018; 2 Gorai, Toberer, Stevanovic (bib85) 2019; 125 Witting, Chasapis, Ricci, Peters, Heinz, Hautier (bib25) 2019; 5 Liu, Geng, Mao, Shuai, He, Wang (bib119) 2016; 4 Ioffe (bib7) 1957 Lee, Esfarjani, Luo, Zhou, Tian, Chen (bib27) 2014; 5 Xia, Cui, Chen (bib84) 2020; 6 Yang, Xi, Qiu, Wu, Shi, Chen (bib111) 2016; 2 Mao, Shuai, Song, Wu, Dally, Zhou (bib56) 2017; 114 Pei, LaLonde, Wang, Snyder (bib79) 2012; 5 Nesper (bib110) 2014; 640 Xu, Liang, Shang, Wang, Wang, Ding (bib67) 2021; 17 Liu, Zhao, Zhang, Zhang, Li (bib94) 2008; 93 Song, Mao, Shuai, Zhu, Ren, Saparamadu (bib88) 2018; 112 Shuai, Mao, Song, Zhu, Sun, Wang (bib57) 2017; 10 Sun, Li, Yang, Xi, Nelson, Ertural (bib92) 2019; 40 Martinez-Ripoll, Haase, Brauer (bib31) 1974; 30 Xin, Qin, Zhu, Liu (bib44) 2006; 39 Kim, Kim, Hong, Onimaru, Suekuni, Takabatake (bib53) 2014; 2 Wang, Zhang, Liu, Wang, Liu, Zhang (bib65) 2020; 6 Tang, Chen, McCuskey, Chen, Bazan, Liang (bib17) 2019; 5 Shu, Zhou, Wang, Han, Zhu, Liu (bib21) 2019; 29 Han, Gui, Zhu, Qin, Zhang, Zhang (bib96) 2020 10.1016/j.jmat.2021.07.004_bib113 Shi (10.1016/j.jmat.2021.07.004_bib82) 2019; 31 Tamaki (10.1016/j.jmat.2021.07.004_bib54) 2016; 28 Liu (10.1016/j.jmat.2021.07.004_bib94) 2008; 93 Zheng (10.1016/j.jmat.2021.07.004_bib32) 2019 Cui (10.1016/j.jmat.2021.07.004_bib86) 2019; 30 Chen (10.1016/j.jmat.2021.07.004_bib13) 2018; 97 Wang (10.1016/j.jmat.2021.07.004_bib65) 2020; 6 Gorai (10.1016/j.jmat.2021.07.004_bib85) 2019; 125 Song (10.1016/j.jmat.2021.07.004_bib88) 2018; 112 Pan (10.1016/j.jmat.2021.07.004_bib71) 2020; 13 Ohno (10.1016/j.jmat.2021.07.004_bib74) 2018; 2 Zhao (10.1016/j.jmat.2021.07.004_bib18) 2014; 7 Li (10.1016/j.jmat.2021.07.004_bib116) 2017; 29 Liu (10.1016/j.jmat.2021.07.004_bib112) 2012; 1 Zhu (10.1016/j.jmat.2021.07.004_bib100) 2020 Wang (10.1016/j.jmat.2021.07.004_bib4) 2020; 397 Hu (10.1016/j.jmat.2021.07.004_bib118) 2015; 5 Hu (10.1016/j.jmat.2021.07.004_bib49) 2020; 6 Kuo (10.1016/j.jmat.2021.07.004_bib91) 2019; 6 Xu (10.1016/j.jmat.2021.07.004_bib106) 2008; 29 Watson (10.1016/j.jmat.2021.07.004_bib36) 1984; 14 Wood (10.1016/j.jmat.2021.07.004_bib93) 2019; 31 Ying (10.1016/j.jmat.2021.07.004_bib101) 2021; 12 Qiu (10.1016/j.jmat.2021.07.004_bib6) 2019; 12 Bhardwaj (10.1016/j.jmat.2021.07.004_bib41) 2013; 3 Zhang (10.1016/j.jmat.2021.07.004_bib61) 2020; 6 Mao (10.1016/j.jmat.2021.07.004_bib87) 2017; 2 Shi (10.1016/j.jmat.2021.07.004_bib69) 2019; 6 Mao (10.1016/j.jmat.2021.07.004_bib97) 2019; 365 Imai (10.1016/j.jmat.2021.07.004_bib72) 2004; 43 Liang (10.1016/j.jmat.2021.07.004_bib76) 2020; 12 Pei (10.1016/j.jmat.2021.07.004_bib11) 2020; 7 Shi (10.1016/j.jmat.2021.07.004_bib114) 2011; 133 Kazem (10.1016/j.jmat.2021.07.004_bib33) 2016; vol. 50 Simon (10.1016/j.jmat.2021.07.004_bib23) 1962; 33 Bringans (10.1016/j.jmat.2021.07.004_bib35) 1976; 19 Zhang (10.1016/j.jmat.2021.07.004_bib46) 2009; 484 Zhang (10.1016/j.jmat.2021.07.004_bib55) 2017; 8 Pei (10.1016/j.jmat.2021.07.004_bib79) 2012; 5 Li (10.1016/j.jmat.2021.07.004_bib98) 2018; 6 Zhu (10.1016/j.jmat.2021.07.004_bib102) 2019; 414 Xu (10.1016/j.jmat.2021.07.004_bib37) 1993; 5 Xin (10.1016/j.jmat.2021.07.004_bib44) 2006; 39 Imasato (10.1016/j.jmat.2021.07.004_bib59) 2018; 6 Zhang (10.1016/j.jmat.2021.07.004_bib62) 2020; 59 Song (10.1016/j.jmat.2021.07.004_bib64) 2019; 8 Shi (10.1016/j.jmat.2021.07.004_bib83) 2019; 31 Nesper (10.1016/j.jmat.2021.07.004_bib110) 2014; 640 Li (10.1016/j.jmat.2021.07.004_bib50) 2020; 127 Bell (10.1016/j.jmat.2021.07.004_bib1) 2008; 321 Mahan (10.1016/j.jmat.2021.07.004_bib24) 1989; 65 Liu (10.1016/j.jmat.2021.07.004_bib119) 2016; 4 Kajikawa (10.1016/j.jmat.2021.07.004_bib39) 2003 Gorai (10.1016/j.jmat.2021.07.004_bib80) 2018; 6 Hong (10.1016/j.jmat.2021.07.004_bib5) 2019; 5 Mao (10.1016/j.jmat.2021.07.004_bib56) 2017; 114 Chang (10.1016/j.jmat.2021.07.004_bib120) 2018; 360 Ioffe (10.1016/j.jmat.2021.07.004_bib7) 1957 Tang (10.1016/j.jmat.2021.07.004_bib51) 2020; 12 Fang (10.1016/j.jmat.2021.07.004_bib29) 2019; 29 Wang (10.1016/j.jmat.2021.07.004_bib9) 2020; 391 Shang (10.1016/j.jmat.2021.07.004_bib103) 2020; 201 Shuai (10.1016/j.jmat.2021.07.004_bib57) 2017; 10 Yin (10.1016/j.jmat.2021.07.004_bib99) 2020; 198 Chen (10.1016/j.jmat.2021.07.004_bib58) 2018; 52 Yang (10.1016/j.jmat.2021.07.004_bib111) 2016; 2 Goldsmid (10.1016/j.jmat.2021.07.004_bib8) 1954; 5 Mao (10.1016/j.jmat.2021.07.004_bib14) 2018; 67 Shu (10.1016/j.jmat.2021.07.004_bib21) 2019; 29 Wang (10.1016/j.jmat.2021.07.004_bib52) 2020 Liu (10.1016/j.jmat.2021.07.004_bib68) 2011; 1 Dargusch (10.1016/j.jmat.2021.07.004_bib3) 2020; 7 Zhang (10.1016/j.jmat.2021.07.004_bib66) 2021; 13 Bhardwaj (10.1016/j.jmat.2021.07.004_bib43) 2015; 3 Ponnambalam (10.1016/j.jmat.2021.07.004_bib42) 2013; 42 Liu (10.1016/j.jmat.2021.07.004_bib12) 2020; 32 Tani (10.1016/j.jmat.2021.07.004_bib60) 2020; 31 Scientific and Technical Aerospace Reports (10.1016/j.jmat.2021.07.004_bib38) 1966 Feutelais (10.1016/j.jmat.2021.07.004_bib26) 1993; 28 Imasato (10.1016/j.jmat.2021.07.004_bib22) 2019; 12 Lee (10.1016/j.jmat.2021.07.004_bib27) 2014; 5 Wood (10.1016/j.jmat.2021.07.004_bib95) 2020; 8 Pearson (10.1016/j.jmat.2021.07.004_bib107) 1964; 17 Zhai (10.1016/j.jmat.2021.07.004_bib10) 2018; 18 Sun (10.1016/j.jmat.2021.07.004_bib109) 2019; 5 Li (10.1016/j.jmat.2021.07.004_bib77) 2019; 123 Ying (10.1016/j.jmat.2021.07.004_bib19) 2015; 27 Zhang (10.1016/j.jmat.2021.07.004_bib30) 2017; 29 Kanno (10.1016/j.jmat.2021.07.004_bib89) 2018; 112 Xin (10.1016/j.jmat.2021.07.004_bib40) 2006; 128 Imasato (10.1016/j.jmat.2021.07.004_bib70) 2020; 32 Bhardwaj (10.1016/j.jmat.2021.07.004_bib45) 2016; 18 Martinez-Ripoll (10.1016/j.jmat.2021.07.004_bib31) 1974; 30 Zhang (10.1016/j.jmat.2021.07.004_bib108) 2019; 5 Tani (10.1016/j.jmat.2021.07.004_bib63) 2019 Han (10.1016/j.jmat.2021.07.004_bib96) 2020 Witting (10.1016/j.jmat.2021.07.004_bib25) 2019; 5 Han (10.1016/j.jmat.2021.07.004_bib2) 2020; 368 Liu (10.1016/j.jmat.2021.07.004_bib104) 2016; 9 Kuo (10.1016/j.jmat.2021.07.004_bib90) 2020; 13 Bhardwaj (10.1016/j.jmat.2021.07.004_bib47) 2014; 4 Sun (10.1016/j.jmat.2021.07.004_bib92) 2019; 40 Xu (10.1016/j.jmat.2021.07.004_bib67) 2021; 17 Zhu (10.1016/j.jmat.2021.07.004_bib15) 2017; 29 Shuai (10.1016/j.jmat.2021.07.004_bib48) 2015; 93 Kim (10.1016/j.jmat.2021.07.004_bib53) 2014; 2 Gorai (10.1016/j.jmat.2021.07.004_bib81) 2019; 125 Nunna (10.1016/j.jmat.2021.07.004_bib115) 2017; 10 Liu (10.1016/j.jmat.2021.07.004_bib20) 2020; 35 Xia (10.1016/j.jmat.2021.07.004_bib84) 2020; 6 Busch (10.1016/j.jmat.2021.07.004_bib34) 1954; 27 Kauzlarich (10.1016/j.jmat.2021.07.004_bib73) 2009; 182 Tang (10.1016/j.jmat.2021.07.004_bib17) 2019; 5 Zhang (10.1016/j.jmat.2021.07.004_bib75) 2018; 8 Tan (10.1016/j.jmat.2021.07.004_bib16) 2016; 116 Wang (10.1016/j.jmat.2021.07.004_bib78) 2015; 2 Lenoir (10.1016/j.jmat.2021.07.004_bib117) 1998; 59 Zhang (10.1016/j.jmat.2021.07.004_bib28) 2018; 9 Harrison (10.1016/j.jmat.2021.07.004_bib105) 1989 |
References_xml | – volume: 1 start-page: 42 year: 2012 end-page: 56 ident: bib112 publication-title: Nanomater Energy – volume: vol. 50 start-page: 177 year: 2016 end-page: 208 ident: bib33 publication-title: Handbook on the physics and chemistry of rare earths – volume: 182 start-page: 240 year: 2009 end-page: 245 ident: bib73 publication-title: J Solid State Chem – volume: 321 start-page: 1457 year: 2008 end-page: 1461 ident: bib1 publication-title: Science – volume: 6 start-page: 274 year: 2020 end-page: 279 ident: bib84 publication-title: Journal of Materiomics – volume: 10 start-page: 799 year: 2017 end-page: 807 ident: bib57 publication-title: Energy Environ Sci – volume: 12 start-page: 3106 year: 2019 end-page: 3117 ident: bib6 publication-title: Energy Environ Sci – volume: 10 start-page: 1928 year: 2017 end-page: 1935 ident: bib115 publication-title: Energy Environ Sci – volume: 5 start-page: 583 year: 2019 end-page: 589 ident: bib108 publication-title: Journal of Materiomics – volume: 368 start-page: 1091 year: 2020 end-page: 1098 ident: bib2 publication-title: Science – volume: 4 start-page: 34552 year: 2014 end-page: 34560 ident: bib47 publication-title: RSC Adv – volume: 12 start-page: 6 year: 2021 ident: bib101 publication-title: Nat Commun – volume: 9 start-page: 4716 year: 2018 ident: bib28 publication-title: Nat Commun – volume: 6 start-page: 1802286 year: 2019 ident: bib69 publication-title: Adv Sci (Weinh) – volume: 2 start-page: 323 year: 2015 end-page: 329 ident: bib78 publication-title: Mater. Horizons – volume: 198 start-page: 25 year: 2020 end-page: 34 ident: bib99 publication-title: Acta Mater – start-page: 305 year: 2003 end-page: 308 ident: bib39 publication-title: Twenty-Second International Conference on Thermoelectrics, Proceedings Ict '03 – volume: 52 start-page: 246 year: 2018 end-page: 255 ident: bib58 publication-title: Nanomater Energy – volume: 93 start-page: 187 year: 2015 end-page: 193 ident: bib48 publication-title: Acta Mater – start-page: 3909 year: 1966 ident: bib38 publication-title: NASA, Office of Scientific and Technical Information – volume: 112 year: 2018 ident: bib89 publication-title: Appl Phys Lett – volume: 7 start-page: 2001362 year: 2020 ident: bib3 publication-title: Adv Sci – volume: 30 start-page: 2006 year: 1974 end-page: 2009 ident: bib31 publication-title: Acta Crystallogr Sect B Struct Crystallogr Cryst Chem – volume: 365 start-page: 495 year: 2019 end-page: 498 ident: bib97 publication-title: Science – volume: 8 start-page: 1702776 year: 2018 ident: bib75 publication-title: Adv. Energy Mater – volume: 19 start-page: 277 year: 1976 end-page: 279 ident: bib35 publication-title: Solid State Commun – volume: 31 start-page: 8987 year: 2019 end-page: 8994 ident: bib83 publication-title: Chem Mater – volume: 31 start-page: e1902337 year: 2019 ident: bib93 publication-title: Snyder, GJ. Adv. Mater – volume: 13 start-page: 10964 year: 2021 end-page: 10971 ident: bib66 publication-title: ACS Appl Mater Interfaces – volume: 6 start-page: 13806 year: 2018 end-page: 13815 ident: bib80 publication-title: J Mater Chem A – volume: 9 start-page: 530 year: 2016 end-page: 539 ident: bib104 publication-title: Energy Environ Sci – volume: 6 start-page: 20454 year: 2018 end-page: 20462 ident: bib98 publication-title: J Mater Chem A – volume: 29 start-page: 1807235 year: 2019 ident: bib21 publication-title: Adv Funct Mater – volume: 18 start-page: 6191 year: 2016 end-page: 6200 ident: bib45 publication-title: Phys Chem Chem Phys – volume: 12 start-page: 8359 year: 2020 end-page: 8365 ident: bib51 publication-title: ACS Appl Mater Interfaces – volume: 32 start-page: 1905703 year: 2020 ident: bib12 publication-title: Adv Mater – volume: 27 start-page: 249 year: 1954 end-page: 258 ident: bib34 publication-title: Helv Phys Acta – volume: 6 start-page: 729 year: 2020 end-page: 735 ident: bib49 publication-title: Journal of Materiomics – volume: 32 start-page: e1908218 year: 2020 ident: bib70 publication-title: Adv Mater – volume: 12 start-page: 21799 year: 2020 end-page: 21807 ident: bib76 publication-title: ACS Appl Mater Interfaces – volume: 29 start-page: 5371 year: 2017 end-page: 5383 ident: bib30 publication-title: Chem Mater – volume: 397 start-page: 125360 year: 2020 ident: bib4 publication-title: Chem Eng J – volume: 27 start-page: 909 year: 2015 end-page: 913 ident: bib19 publication-title: Chem Mater – volume: 3 start-page: 10777 year: 2015 end-page: 10786 ident: bib43 publication-title: Mater Chem A – year: 1957 ident: bib7 article-title: Infosearch – volume: 29 year: 2017 ident: bib116 publication-title: Adv Mater – volume: 8 start-page: 25 year: 2019 end-page: 33 ident: bib64 publication-title: Materials Today Physics – volume: 65 start-page: 1578 year: 1989 end-page: 1583 ident: bib24 publication-title: J Appl Phys – volume: 35 start-page: 100938 year: 2020 ident: bib20 publication-title: Nano Today – volume: 97 start-page: 283 year: 2018 end-page: 346 ident: bib13 publication-title: Prog Mater Sci – volume: 5 start-page: 1500411 year: 2015 ident: bib118 publication-title: Adv. Energy Mater – volume: 5 start-page: 3525 year: 2014 ident: bib27 publication-title: Nat Commun – volume: 6 start-page: 19941 year: 2018 end-page: 19946 ident: bib59 publication-title: J Mater Chem A – volume: 13 start-page: 1250 year: 2020 end-page: 1258 ident: bib90 publication-title: Energy Environ Sci – volume: 8 start-page: 13901 year: 2017 ident: bib55 publication-title: Nat Commun – volume: 128 start-page: 192 year: 2006 end-page: 200 ident: bib40 publication-title: Mater Sci Eng, B – volume: 17 start-page: 100336 year: 2021 ident: bib67 publication-title: Materials Today Physics – volume: 12 start-page: 965 year: 2019 end-page: 971 ident: bib22 publication-title: Energy Environ Sci – volume: 7 start-page: 1856 year: 2020 end-page: 1858 ident: bib11 publication-title: National Science Review – volume: 29 start-page: 2134 year: 2008 end-page: 2143 ident: bib106 publication-title: Comput Chem – volume: 114 start-page: 10548 year: 2017 end-page: 10553 ident: bib56 publication-title: Proc Natl Acad Sci U S A – volume: 93 year: 2008 ident: bib94 publication-title: Appl Phys Lett – volume: 112 year: 2018 ident: bib88 publication-title: Appl Phys Lett – volume: 28 start-page: 10182 year: 2016 end-page: 10187 ident: bib54 publication-title: Adv Mater – volume: 5 start-page: 386 year: 1954 end-page: 390 ident: bib8 publication-title: Br J Appl Phys – volume: 125 year: 2019 ident: bib81 publication-title: Appl Phys – start-page: 191 year: 2020 ident: bib100 publication-title: Energy – volume: 125 year: 2019 ident: bib85 publication-title: Appl Phys – volume: 30 start-page: 15206 year: 2019 end-page: 15213 ident: bib86 publication-title: J Mater Sci-Mater Electron – volume: 59 start-page: 4278 year: 2020 end-page: 4282 ident: bib62 publication-title: Angew Chem, Int Ed Engl – volume: 31 start-page: 7724 year: 2020 end-page: 7730 ident: bib60 publication-title: Mater. Sci.-Mater. Electron – volume: 6 year: 2019 ident: bib91 publication-title: Adv. Mater. Interfaces – volume: 6 start-page: 216 year: 2020 end-page: 223 ident: bib65 publication-title: Journal of Materiomics – volume: 127 year: 2020 ident: bib50 publication-title: Appl Phys – volume: 2 start-page: 12311 year: 2014 end-page: 12316 ident: bib53 publication-title: J Mater Chem A – volume: 17 start-page: 1 year: 1964 end-page: 14 ident: bib107 publication-title: Acta Crystallogr – volume: 5 start-page: 7963 year: 2012 end-page: 7969 ident: bib79 publication-title: Energy Environ Sci – volume: 2 start-page: 2245 year: 2017 end-page: 2250 ident: bib87 publication-title: Acs Energy Letters – year: 1989 ident: bib105 article-title: Electronic structure and the properties of solids: the physics of the chemical bond – volume: 42 start-page: 1307 year: 2013 end-page: 1312 ident: bib42 publication-title: J Electron Mater – volume: 43 start-page: 5186 year: 2004 end-page: 5188 ident: bib72 publication-title: Inorg Chem – volume: 5 start-page: 567 year: 2019 end-page: 573 ident: bib109 publication-title: Journal of Materiomics – volume: 5 start-page: 7551 year: 1993 end-page: 7562 ident: bib37 publication-title: J Phys Condens Matter – volume: 5 start-page: 15 year: 2019 ident: bib17 publication-title: Adv. Electron. Mater – volume: 484 start-page: 498 year: 2009 end-page: 504 ident: bib46 publication-title: Alloys Compd – volume: 201 start-page: 572 year: 2020 end-page: 579 ident: bib103 publication-title: Acta Mater – volume: 31 start-page: 1903387 year: 2019 ident: bib82 publication-title: Adv Mater – volume: 5 start-page: 11 year: 2019 ident: bib5 publication-title: Science Advances – volume: 28 start-page: 591 year: 1993 end-page: 596 ident: bib26 publication-title: Mater Res Bull – volume: 7 start-page: 97 year: 2014 end-page: 103 ident: bib18 publication-title: Nanomater Energy – volume: 2 start-page: 15015 year: 2016 ident: bib111 publication-title: npj Computational Materials – volume: 133 start-page: 7837 year: 2011 end-page: 7846 ident: bib114 publication-title: J Am Chem Soc – volume: 18 start-page: 4646 year: 2018 end-page: 4652 ident: bib10 publication-title: Cryst Growth Des – volume: 13 start-page: 1717 year: 2020 end-page: 1724 ident: bib71 publication-title: Energy Environ Sci – volume: 3 start-page: 8504 year: 2013 end-page: 8516 ident: bib41 publication-title: RSC Adv – start-page: 1672051 year: 2020 ident: bib96 publication-title: Research (Wash D C) – volume: 67 start-page: 69 year: 2018 end-page: 147 ident: bib14 publication-title: Adv Phys – volume: 123 start-page: 20781 year: 2019 end-page: 20788 ident: bib77 publication-title: J Phys Chem C – volume: 116 start-page: 12123 year: 2016 end-page: 12149 ident: bib16 publication-title: Chem Rev – volume: 4 start-page: 16834 year: 2016 end-page: 16840 ident: bib119 publication-title: J Mater Chem A – volume: 8 start-page: 2033 year: 2020 end-page: 2038 ident: bib95 publication-title: J Mater Chem A – volume: 391 start-page: 123513 year: 2020 ident: bib9 publication-title: Chem Eng J – volume: 6 year: 2020 ident: bib61 publication-title: Adv. Electron. Mater – volume: 33 start-page: 1830 year: 1962 end-page: 1841 ident: bib23 publication-title: Appl Phys – volume: 40 start-page: 1693 year: 2019 end-page: 1700 ident: bib92 publication-title: J Comput Chem – volume: 640 start-page: 2639 year: 2014 end-page: 2648 ident: bib110 publication-title: Anorg. Allg. Chem. – start-page: 153497 year: 2019 ident: bib32 publication-title: J Alloys Compd – start-page: 177 year: 2020 ident: bib52 publication-title: Vacuum – reference: Tan GJ, Shi FY, Hao SQ, Zhao L-D, Chi H, Zhang XM, et al. Nat Commun 26;7(1):12167. – volume: 360 start-page: 778 year: 2018 end-page: 783 ident: bib120 publication-title: Science – volume: 29 start-page: 1605884 year: 2017 ident: bib15 publication-title: Adv Mater – volume: 5 start-page: 1800904 year: 2019 ident: bib25 publication-title: Adv. Electron. Mater – volume: 59 start-page: 129 year: 1998 end-page: 134 ident: bib117 publication-title: Phys. Chem. Solids – volume: 29 start-page: 18 year: 2019 ident: bib29 publication-title: Adv Funct Mater – volume: 39 start-page: 375 year: 2006 end-page: 381 ident: bib44 publication-title: Phys. D: Appl Phys – volume: 2 start-page: 141 year: 2018 end-page: 154 ident: bib74 publication-title: Joule – start-page: 127056 year: 2019 ident: bib63 publication-title: Mater Lett – volume: 414 start-page: 393 year: 2019 end-page: 400 ident: bib102 publication-title: J Power Sources – volume: 14 start-page: 113 year: 1984 end-page: 121 ident: bib36 publication-title: J Phys F Met Phys – volume: 1 start-page: 577 year: 2011 end-page: 587 ident: bib68 publication-title: Adv. Energy Mater – volume: 18 start-page: 6191 issue: 8 year: 2016 ident: 10.1016/j.jmat.2021.07.004_bib45 publication-title: Phys Chem Chem Phys doi: 10.1039/C5CP07482G – volume: 32 start-page: e1908218 issue: 16 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib70 publication-title: Adv Mater doi: 10.1002/adma.201908218 – volume: 182 start-page: 240 issue: 2 year: 2009 ident: 10.1016/j.jmat.2021.07.004_bib73 publication-title: J Solid State Chem doi: 10.1016/j.jssc.2008.09.028 – volume: 5 start-page: 386 issue: Nov year: 1954 ident: 10.1016/j.jmat.2021.07.004_bib8 publication-title: Br J Appl Phys doi: 10.1088/0508-3443/5/11/303 – volume: 93 issue: 4 year: 2008 ident: 10.1016/j.jmat.2021.07.004_bib94 publication-title: Appl Phys Lett – volume: 397 start-page: 125360 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib4 publication-title: Chem Eng J doi: 10.1016/j.cej.2020.125360 – volume: 12 start-page: 6 issue: 1 year: 2021 ident: 10.1016/j.jmat.2021.07.004_bib101 publication-title: Nat Commun doi: 10.1038/s41467-020-20095-2 – volume: 6 start-page: 13806 issue: 28 year: 2018 ident: 10.1016/j.jmat.2021.07.004_bib80 publication-title: J Mater Chem A doi: 10.1039/C8TA03344G – volume: 29 start-page: 1605884 issue: 14 year: 2017 ident: 10.1016/j.jmat.2021.07.004_bib15 publication-title: Adv Mater doi: 10.1002/adma.201605884 – volume: 29 issue: 17 year: 2017 ident: 10.1016/j.jmat.2021.07.004_bib116 publication-title: Adv Mater – volume: 17 start-page: 100336 year: 2021 ident: 10.1016/j.jmat.2021.07.004_bib67 publication-title: Materials Today Physics doi: 10.1016/j.mtphys.2020.100336 – volume: 27 start-page: 249 issue: 3 year: 1954 ident: 10.1016/j.jmat.2021.07.004_bib34 publication-title: Helv Phys Acta – volume: 414 start-page: 393 year: 2019 ident: 10.1016/j.jmat.2021.07.004_bib102 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2019.01.022 – volume: 3 start-page: 8504 issue: 22 year: 2013 ident: 10.1016/j.jmat.2021.07.004_bib41 publication-title: RSC Adv doi: 10.1039/c3ra40457a – volume: 125 issue: 2 year: 2019 ident: 10.1016/j.jmat.2021.07.004_bib81 publication-title: Appl Phys doi: 10.1063/1.5081833 – volume: 8 start-page: 25 year: 2019 ident: 10.1016/j.jmat.2021.07.004_bib64 publication-title: Materials Today Physics doi: 10.1016/j.mtphys.2018.12.004 – volume: 6 issue: 3 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib61 publication-title: Adv. Electron. Mater doi: 10.1002/aelm.201901391 – volume: 6 start-page: 729 issue: 4 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib49 publication-title: Journal of Materiomics doi: 10.1016/j.jmat.2020.06.004 – volume: 1 start-page: 42 issue: 1 year: 2012 ident: 10.1016/j.jmat.2021.07.004_bib112 publication-title: Nanomater Energy doi: 10.1016/j.nanoen.2011.10.001 – volume: 9 start-page: 4716 issue: 1 year: 2018 ident: 10.1016/j.jmat.2021.07.004_bib28 publication-title: Nat Commun doi: 10.1038/s41467-018-06980-x – volume: 29 start-page: 1807235 issue: 4 year: 2019 ident: 10.1016/j.jmat.2021.07.004_bib21 publication-title: Adv Funct Mater doi: 10.1002/adfm.201807235 – volume: 112 issue: 9 year: 2018 ident: 10.1016/j.jmat.2021.07.004_bib88 publication-title: Appl Phys Lett doi: 10.1063/1.5000053 – volume: 484 start-page: 498 issue: 1–2 year: 2009 ident: 10.1016/j.jmat.2021.07.004_bib46 publication-title: Alloys Compd – volume: 7 start-page: 2001362 issue: 18 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib3 publication-title: Adv Sci doi: 10.1002/advs.202001362 – volume: 5 start-page: 583 issue: 4 year: 2019 ident: 10.1016/j.jmat.2021.07.004_bib108 publication-title: Journal of Materiomics doi: 10.1016/j.jmat.2019.08.002 – volume: 12 start-page: 965 issue: 3 year: 2019 ident: 10.1016/j.jmat.2021.07.004_bib22 publication-title: Energy Environ Sci doi: 10.1039/C8EE03374A – volume: 18 start-page: 4646 issue: 8 year: 2018 ident: 10.1016/j.jmat.2021.07.004_bib10 publication-title: Cryst Growth Des doi: 10.1021/acs.cgd.8b00605 – volume: 5 start-page: 1800904 issue: 6 year: 2019 ident: 10.1016/j.jmat.2021.07.004_bib25 publication-title: Adv. Electron. Mater doi: 10.1002/aelm.201800904 – volume: 3 start-page: 10777 issue: 20 year: 2015 ident: 10.1016/j.jmat.2021.07.004_bib43 publication-title: Mater Chem A doi: 10.1039/C5TA02155C – volume: 6 start-page: 216 issue: 1 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib65 publication-title: Journal of Materiomics doi: 10.1016/j.jmat.2019.12.007 – volume: 28 start-page: 591 issue: 6 year: 1993 ident: 10.1016/j.jmat.2021.07.004_bib26 publication-title: Mater Res Bull doi: 10.1016/0025-5408(93)90055-I – volume: 2 start-page: 12311 issue: 31 year: 2014 ident: 10.1016/j.jmat.2021.07.004_bib53 publication-title: J Mater Chem A doi: 10.1039/C4TA02386B – volume: 9 start-page: 530 issue: 2 year: 2016 ident: 10.1016/j.jmat.2021.07.004_bib104 publication-title: Energy Environ Sci doi: 10.1039/C5EE02600H – volume: 59 start-page: 129 issue: 1 year: 1998 ident: 10.1016/j.jmat.2021.07.004_bib117 publication-title: Phys. Chem. Solids doi: 10.1016/S0022-3697(97)00187-X – volume: 33 start-page: 1830 issue: 5 year: 1962 ident: 10.1016/j.jmat.2021.07.004_bib23 publication-title: Appl Phys doi: 10.1063/1.1728842 – volume: 93 start-page: 187 year: 2015 ident: 10.1016/j.jmat.2021.07.004_bib48 publication-title: Acta Mater doi: 10.1016/j.actamat.2015.04.023 – volume: 2 start-page: 323 issue: 3 year: 2015 ident: 10.1016/j.jmat.2021.07.004_bib78 publication-title: Mater. Horizons doi: 10.1039/C5MH00021A – volume: 8 start-page: 2033 issue: 4 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib95 publication-title: J Mater Chem A doi: 10.1039/C9TA11328B – volume: 32 start-page: 1905703 issue: 8 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib12 publication-title: Adv Mater doi: 10.1002/adma.201905703 – volume: 5 start-page: 7551 issue: 41 year: 1993 ident: 10.1016/j.jmat.2021.07.004_bib37 publication-title: J Phys Condens Matter doi: 10.1088/0953-8984/5/41/003 – volume: 19 start-page: 277 issue: 3 year: 1976 ident: 10.1016/j.jmat.2021.07.004_bib35 publication-title: Solid State Commun doi: 10.1016/0038-1098(76)90868-1 – volume: 31 start-page: 8987 issue: 21 year: 2019 ident: 10.1016/j.jmat.2021.07.004_bib83 publication-title: Chem Mater doi: 10.1021/acs.chemmater.9b03156 – volume: 29 start-page: 2134 issue: 13 year: 2008 ident: 10.1016/j.jmat.2021.07.004_bib106 publication-title: Comput Chem doi: 10.1002/jcc.20950 – start-page: 1672051 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib96 publication-title: Research (Wash D C) – volume: 4 start-page: 34552 issue: 65 year: 2014 ident: 10.1016/j.jmat.2021.07.004_bib47 publication-title: RSC Adv doi: 10.1039/C4RA04889J – volume: 59 start-page: 4278 issue: 11 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib62 publication-title: Angew Chem, Int Ed Engl doi: 10.1002/anie.201912909 – volume: 12 start-page: 21799 issue: 19 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib76 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c01004 – volume: 1 start-page: 577 issue: 4 year: 2011 ident: 10.1016/j.jmat.2021.07.004_bib68 publication-title: Adv. Energy Mater doi: 10.1002/aenm.201100149 – volume: 40 start-page: 1693 issue: 18 year: 2019 ident: 10.1016/j.jmat.2021.07.004_bib92 publication-title: J Comput Chem doi: 10.1002/jcc.25822 – volume: 116 start-page: 12123 issue: 19 year: 2016 ident: 10.1016/j.jmat.2021.07.004_bib16 publication-title: Chem Rev doi: 10.1021/acs.chemrev.6b00255 – volume: 6 issue: 13 year: 2019 ident: 10.1016/j.jmat.2021.07.004_bib91 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201900429 – volume: 123 start-page: 20781 issue: 34 year: 2019 ident: 10.1016/j.jmat.2021.07.004_bib77 publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.9b05859 – volume: 17 start-page: 1 issue: 1 year: 1964 ident: 10.1016/j.jmat.2021.07.004_bib107 publication-title: Acta Crystallogr doi: 10.1107/S0365110X64000019 – start-page: 305 year: 2003 ident: 10.1016/j.jmat.2021.07.004_bib39 publication-title: Twenty-Second International Conference on Thermoelectrics, Proceedings Ict '03 – volume: 30 start-page: 2006 issue: 8 year: 1974 ident: 10.1016/j.jmat.2021.07.004_bib31 publication-title: Acta Crystallogr Sect B Struct Crystallogr Cryst Chem doi: 10.1107/S0567740874006285 – volume: 97 start-page: 283 year: 2018 ident: 10.1016/j.jmat.2021.07.004_bib13 publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2018.04.005 – volume: 43 start-page: 5186 issue: 17 year: 2004 ident: 10.1016/j.jmat.2021.07.004_bib72 publication-title: Inorg Chem doi: 10.1021/ic049720n – volume: 5 start-page: 15 issue: 11 year: 2019 ident: 10.1016/j.jmat.2021.07.004_bib17 publication-title: Adv. Electron. Mater – volume: 39 start-page: 375 issue: 2 year: 2006 ident: 10.1016/j.jmat.2021.07.004_bib44 publication-title: Phys. D: Appl Phys doi: 10.1088/0022-3727/39/2/020 – start-page: 153497 year: 2019 ident: 10.1016/j.jmat.2021.07.004_bib32 publication-title: J Alloys Compd – volume: 5 start-page: 1500411 issue: 17 year: 2015 ident: 10.1016/j.jmat.2021.07.004_bib118 publication-title: Adv. Energy Mater doi: 10.1002/aenm.201500411 – volume: 127 issue: 19 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib50 publication-title: Appl Phys – volume: 321 start-page: 1457 issue: 5895 year: 2008 ident: 10.1016/j.jmat.2021.07.004_bib1 publication-title: Science doi: 10.1126/science.1158899 – volume: 128 start-page: 192 issue: 1–3 year: 2006 ident: 10.1016/j.jmat.2021.07.004_bib40 publication-title: Mater Sci Eng, B doi: 10.1016/j.mseb.2005.12.001 – volume: 6 start-page: 1802286 issue: 16 year: 2019 ident: 10.1016/j.jmat.2021.07.004_bib69 publication-title: Adv Sci (Weinh) doi: 10.1002/advs.201802286 – volume: 125 issue: 2 year: 2019 ident: 10.1016/j.jmat.2021.07.004_bib85 publication-title: Appl Phys doi: 10.1063/1.5081833 – volume: 365 start-page: 495 issue: 6452 year: 2019 ident: 10.1016/j.jmat.2021.07.004_bib97 publication-title: Science doi: 10.1126/science.aax7792 – volume: 67 start-page: 69 issue: 2 year: 2018 ident: 10.1016/j.jmat.2021.07.004_bib14 publication-title: Adv Phys doi: 10.1080/00018732.2018.1551715 – volume: 360 start-page: 778 issue: 6390 year: 2018 ident: 10.1016/j.jmat.2021.07.004_bib120 publication-title: Science doi: 10.1126/science.aaq1479 – volume: 35 start-page: 100938 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib20 publication-title: Nano Today doi: 10.1016/j.nantod.2020.100938 – volume: 7 start-page: 1856 issue: 12 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib11 publication-title: National Science Review doi: 10.1093/nsr/nwaa259 – volume: 5 start-page: 567 issue: 4 year: 2019 ident: 10.1016/j.jmat.2021.07.004_bib109 publication-title: Journal of Materiomics doi: 10.1016/j.jmat.2019.09.002 – volume: 6 start-page: 19941 issue: 41 year: 2018 ident: 10.1016/j.jmat.2021.07.004_bib59 publication-title: J Mater Chem A doi: 10.1039/C8TA08975B – volume: 8 start-page: 1702776 issue: 16 year: 2018 ident: 10.1016/j.jmat.2021.07.004_bib75 publication-title: Adv. Energy Mater doi: 10.1002/aenm.201702776 – volume: 10 start-page: 1928 issue: 9 year: 2017 ident: 10.1016/j.jmat.2021.07.004_bib115 publication-title: Energy Environ Sci doi: 10.1039/C7EE01737E – volume: 5 start-page: 7963 issue: 7 year: 2012 ident: 10.1016/j.jmat.2021.07.004_bib79 publication-title: Energy Environ Sci doi: 10.1039/c2ee21536e – volume: 6 start-page: 274 issue: 2 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib84 publication-title: Journal of Materiomics doi: 10.1016/j.jmat.2020.03.003 – volume: 30 start-page: 15206 issue: 16 year: 2019 ident: 10.1016/j.jmat.2021.07.004_bib86 publication-title: J Mater Sci-Mater Electron doi: 10.1007/s10854-019-01893-x – volume: 29 start-page: 18 issue: 28 year: 2019 ident: 10.1016/j.jmat.2021.07.004_bib29 publication-title: Adv Funct Mater doi: 10.1002/adfm.201900677 – volume: 13 start-page: 1717 issue: 6 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib71 publication-title: Energy Environ Sci doi: 10.1039/D0EE00838A – volume: 2 start-page: 141 issue: 1 year: 2018 ident: 10.1016/j.jmat.2021.07.004_bib74 publication-title: Joule doi: 10.1016/j.joule.2017.11.005 – volume: 65 start-page: 1578 issue: 4 year: 1989 ident: 10.1016/j.jmat.2021.07.004_bib24 publication-title: J Appl Phys doi: 10.1063/1.342976 – volume: 8 start-page: 13901 year: 2017 ident: 10.1016/j.jmat.2021.07.004_bib55 publication-title: Nat Commun doi: 10.1038/ncomms13901 – volume: 7 start-page: 97 year: 2014 ident: 10.1016/j.jmat.2021.07.004_bib18 publication-title: Nanomater Energy doi: 10.1016/j.nanoen.2014.04.012 – volume: 13 start-page: 10964 issue: 9 year: 2021 ident: 10.1016/j.jmat.2021.07.004_bib66 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c22558 – year: 1957 ident: 10.1016/j.jmat.2021.07.004_bib7 – start-page: 191 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib100 publication-title: Energy – volume: 5 start-page: 11 issue: 5 year: 2019 ident: 10.1016/j.jmat.2021.07.004_bib5 publication-title: Science Advances – volume: 14 start-page: 113 issue: 1 year: 1984 ident: 10.1016/j.jmat.2021.07.004_bib36 publication-title: J Phys F Met Phys doi: 10.1088/0305-4608/14/1/014 – volume: 2 start-page: 2245 issue: 10 year: 2017 ident: 10.1016/j.jmat.2021.07.004_bib87 publication-title: Acs Energy Letters doi: 10.1021/acsenergylett.7b00742 – volume: 6 start-page: 20454 issue: 41 year: 2018 ident: 10.1016/j.jmat.2021.07.004_bib98 publication-title: J Mater Chem A doi: 10.1039/C8TA07285J – start-page: 3909 year: 1966 ident: 10.1016/j.jmat.2021.07.004_bib38 publication-title: NASA, Office of Scientific and Technical Information – volume: 31 start-page: 1903387 issue: 36 year: 2019 ident: 10.1016/j.jmat.2021.07.004_bib82 publication-title: Adv Mater doi: 10.1002/adma.201903387 – volume: 10 start-page: 799 issue: 3 year: 2017 ident: 10.1016/j.jmat.2021.07.004_bib57 publication-title: Energy Environ Sci doi: 10.1039/C7EE00098G – start-page: 177 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib52 publication-title: Vacuum – start-page: 127056 year: 2019 ident: 10.1016/j.jmat.2021.07.004_bib63 publication-title: Mater Lett – volume: 31 start-page: e1902337 issue: 35 year: 2019 ident: 10.1016/j.jmat.2021.07.004_bib93 publication-title: Snyder, GJ. Adv. Mater doi: 10.1002/adma.201902337 – volume: 640 start-page: 2639 issue: 14 year: 2014 ident: 10.1016/j.jmat.2021.07.004_bib110 publication-title: Anorg. Allg. Chem. doi: 10.1002/zaac.201400403 – volume: 42 start-page: 1307 issue: 7 year: 2013 ident: 10.1016/j.jmat.2021.07.004_bib42 publication-title: J Electron Mater doi: 10.1007/s11664-012-2417-7 – volume: vol. 50 start-page: 177 year: 2016 ident: 10.1016/j.jmat.2021.07.004_bib33 doi: 10.1016/bs.hpcre.2016.05.003 – volume: 133 start-page: 7837 issue: 20 year: 2011 ident: 10.1016/j.jmat.2021.07.004_bib114 publication-title: J Am Chem Soc doi: 10.1021/ja111199y – volume: 28 start-page: 10182 issue: 46 year: 2016 ident: 10.1016/j.jmat.2021.07.004_bib54 publication-title: Adv Mater doi: 10.1002/adma.201603955 – ident: 10.1016/j.jmat.2021.07.004_bib113 – volume: 391 start-page: 123513 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib9 publication-title: Chem Eng J doi: 10.1016/j.cej.2019.123513 – volume: 29 start-page: 5371 issue: 12 year: 2017 ident: 10.1016/j.jmat.2021.07.004_bib30 publication-title: Chem Mater doi: 10.1021/acs.chemmater.7b01746 – volume: 201 start-page: 572 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib103 publication-title: Acta Mater doi: 10.1016/j.actamat.2020.10.035 – volume: 5 start-page: 3525 issue: 1 year: 2014 ident: 10.1016/j.jmat.2021.07.004_bib27 publication-title: Nat Commun doi: 10.1038/ncomms4525 – volume: 13 start-page: 1250 issue: 4 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib90 publication-title: Energy Environ Sci doi: 10.1039/C9EE03921J – volume: 368 start-page: 1091 issue: 6495 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib2 publication-title: Science doi: 10.1126/science.aaz5045 – volume: 12 start-page: 3106 issue: 10 year: 2019 ident: 10.1016/j.jmat.2021.07.004_bib6 publication-title: Energy Environ Sci doi: 10.1039/C9EE02044F – volume: 198 start-page: 25 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib99 publication-title: Acta Mater doi: 10.1016/j.actamat.2020.07.058 – year: 1989 ident: 10.1016/j.jmat.2021.07.004_bib105 – volume: 4 start-page: 16834 issue: 43 year: 2016 ident: 10.1016/j.jmat.2021.07.004_bib119 publication-title: J Mater Chem A doi: 10.1039/C6TA06832D – volume: 114 start-page: 10548 issue: 40 year: 2017 ident: 10.1016/j.jmat.2021.07.004_bib56 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1711725114 – volume: 27 start-page: 909 issue: 3 year: 2015 ident: 10.1016/j.jmat.2021.07.004_bib19 publication-title: Chem Mater doi: 10.1021/cm5041826 – volume: 112 issue: 3 year: 2018 ident: 10.1016/j.jmat.2021.07.004_bib89 publication-title: Appl Phys Lett doi: 10.1063/1.5016488 – volume: 31 start-page: 7724 issue: 10 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib60 publication-title: Mater. Sci.-Mater. Electron doi: 10.1007/s10854-020-03308-8 – volume: 2 start-page: 15015 issue: 1 year: 2016 ident: 10.1016/j.jmat.2021.07.004_bib111 publication-title: npj Computational Materials doi: 10.1038/npjcompumats.2015.15 – volume: 12 start-page: 8359 issue: 7 year: 2020 ident: 10.1016/j.jmat.2021.07.004_bib51 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b23059 – volume: 52 start-page: 246 year: 2018 ident: 10.1016/j.jmat.2021.07.004_bib58 publication-title: Nanomater Energy doi: 10.1016/j.nanoen.2018.07.059 |
SSID | ssib044744977 ssib044084538 |
Score | 2.4746473 |
SecondaryResourceType | review_article |
Snippet | Room-temperature thermoelectric materials provide promising solutions for energy harvesting from the environment, and deliver a maintenance-free power supply... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 427 |
SubjectTerms | Bi2Te3 Chemical bond engineering Mg3Sb2 Thermoelectric materials |
Title | Room-temperature thermoelectric materials: Challenges and a new paradigm |
URI | https://dx.doi.org/10.1016/j.jmat.2021.07.004 https://doaj.org/article/04b4558b7a4048ab94576574fc351cee |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwsCAaJ8yQMbsojjs5OwQdWqQioDolK3yHZs1Iq2CMrKb-ecOCVTWVgyRI4dXZ58z8rde4RcW-kEZnbPvKsEA5t7VjiQzIuMW5sK4-tG2vGTGk3gcSqnHauvUBPWyAM3gbtNwICUuck0INi0KQAZsszAWyE57vBh98Wc1zlMIZKCjTLIX2QBZABFbcOYIuNguCXnsYOmKfaaIz3Ew2LKayXP6NrWZqlazL-TrDoJaHhA9iNzpPfNGx-SHbc8IqNnJL4s6EtFcWQaCN1i1bjbzCzFFRuM3dF-65vySfWyopoio6ZB-ruavS6OyWQ4eOmPWDRHYBZ4smZpZTi3wmk8MDmV5hXXUhmwQlnOledGFDK1oJwHHAg28w65T6atsiAqb8QJ2V2ulu6U0OA4bJCG-dwJSKEyiXKJD_MWWgmb9Ahvg1HaqBweDCzeyrZEbF6GAJYhgGUSfmhDj9xsnnlvdDO2jn4IMd6MDJrX9Q1EQhmRUP6FhB6R7RcqI31oaAFONduy-Nl_LH5O9tLQGFFXp12Q3fXHl7tEurI2VzUy8Tr-HvwAhybkzA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Room-temperature+thermoelectric+materials%3A+Challenges+and+a+new+paradigm&rft.jtitle=Journal+of+Materiomics&rft.au=Zhijia+Han&rft.au=Jing-Wei+Li&rft.au=Feng+Jiang&rft.au=Jiating+Xia&rft.date=2022-03-01&rft.pub=Elsevier&rft.issn=2352-8478&rft.volume=8&rft.issue=2&rft.spage=427&rft.epage=436&rft_id=info:doi/10.1016%2Fj.jmat.2021.07.004&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_04b4558b7a4048ab94576574fc351cee |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-8478&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-8478&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-8478&client=summon |