Performance analysis of a modified Newton method for parameterized dual fuzzy nonlinear equations and its application
In this paper, we are interested in the numerical solution of nonlinear equations, particularly, when the coefficients are fuzzy numbers rather than crisp numbers. These problems often arise in numerous applications and have recently been the subject of several studies, where many researchers parame...
Saved in:
Published in | Results in physics Vol. 33; p. 105140 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2022
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2211-3797 2211-3797 |
DOI | 10.1016/j.rinp.2021.105140 |
Cover
Abstract | In this paper, we are interested in the numerical solution of nonlinear equations, particularly, when the coefficients are fuzzy numbers rather than crisp numbers. These problems often arise in numerous applications and have recently been the subject of several studies, where many researchers parameterized the fuzzy coefficients and proposed numerical method for obtaining the solutions. Most of the numerical methods applied for solving the parameterized fuzzy equations are Newton-like methods that require the computation of Jacobian matrix at every iteration or after every few iterations. However, the Newton search direction may not be a descent direction if the Jacobian J(xk) is not positive definite, and, when J(xk) is singular, the method may fail to converge. Also, there are limited literatures on numerical methods for solution of dual fuzzy nonlinear equations. This paper proposed a variant of Newton’s method for solving parameterized dual fuzzy nonlinear equations. This method introduces a new parameter μk to the Newton’s method to ensure that the search direction is a descent direction even when J(xk) is not positive definite. The proposed method was further applied to solve an application problem. Preliminary results on the considered benchmark and application problems show that the new algorithm effective and promising.
•A modified Newton method was proposed for solving dual fuzzy nonlinear equations.•The proposed method introduces a parameter μk to the Newton method.•μk guarantee a descent search direction in the case the of positive definite Jacobian.•The convergence analysis of the proposed method was discussed under suitable conditions.•Preliminary results presented show that the proposed method is efficient and•In addition, the method can find wider application in real-life problems. |
---|---|
AbstractList | In this paper, we are interested in the numerical solution of nonlinear equations, particularly, when the coefficients are fuzzy numbers rather than crisp numbers. These problems often arise in numerous applications and have recently been the subject of several studies, where many researchers parameterized the fuzzy coefficients and proposed numerical method for obtaining the solutions. Most of the numerical methods applied for solving the parameterized fuzzy equations are Newton-like methods that require the computation of Jacobian matrix at every iteration or after every few iterations. However, the Newton search direction may not be a descent direction if the Jacobian J ( x k ) is not positive definite, and, when J ( x k ) is singular, the method may fail to converge. Also, there are limited literatures on numerical methods for solution of dual fuzzy nonlinear equations. This paper proposed a variant of Newton’s method for solving parameterized dual fuzzy nonlinear equations. This method introduces a new parameter μ k to the Newton’s method to ensure that the search direction is a descent direction even when J ( x k ) is not positive definite. The proposed method was further applied to solve an application problem. Preliminary results on the considered benchmark and application problems show that the new algorithm effective and promising. In this paper, we are interested in the numerical solution of nonlinear equations, particularly, when the coefficients are fuzzy numbers rather than crisp numbers. These problems often arise in numerous applications and have recently been the subject of several studies, where many researchers parameterized the fuzzy coefficients and proposed numerical method for obtaining the solutions. Most of the numerical methods applied for solving the parameterized fuzzy equations are Newton-like methods that require the computation of Jacobian matrix at every iteration or after every few iterations. However, the Newton search direction may not be a descent direction if the Jacobian J(xk) is not positive definite, and, when J(xk) is singular, the method may fail to converge. Also, there are limited literatures on numerical methods for solution of dual fuzzy nonlinear equations. This paper proposed a variant of Newton’s method for solving parameterized dual fuzzy nonlinear equations. This method introduces a new parameter μk to the Newton’s method to ensure that the search direction is a descent direction even when J(xk) is not positive definite. The proposed method was further applied to solve an application problem. Preliminary results on the considered benchmark and application problems show that the new algorithm effective and promising. •A modified Newton method was proposed for solving dual fuzzy nonlinear equations.•The proposed method introduces a parameter μk to the Newton method.•μk guarantee a descent search direction in the case the of positive definite Jacobian.•The convergence analysis of the proposed method was discussed under suitable conditions.•Preliminary results presented show that the proposed method is efficient and•In addition, the method can find wider application in real-life problems. |
ArticleNumber | 105140 |
Author | Elfasakhany, Ashraf Sulaiman, Ibrahim Mohammed Mamat, Mustafa Nisar, Kottakkaran Sooppy Malik, Maulana |
Author_xml | – sequence: 1 givenname: Ibrahim Mohammed orcidid: 0000-0001-5246-6636 surname: Sulaiman fullname: Sulaiman, Ibrahim Mohammed email: i.mohammed.sulaiman@uum.edu.my organization: School of Quantitative Sciences, College of Arts and Sciences, Universiti Utara Malaysia, Kedah 06010, Malaysia – sequence: 2 givenname: Mustafa surname: Mamat fullname: Mamat, Mustafa organization: Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Besut Campus 22200, Terengganu, Malaysia – sequence: 3 givenname: Maulana surname: Malik fullname: Malik, Maulana organization: Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia – sequence: 4 givenname: Kottakkaran Sooppy orcidid: 0000-0001-5769-4320 surname: Nisar fullname: Nisar, Kottakkaran Sooppy organization: Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University, Wadi Aldawaser, 11991, Saudi Arabia – sequence: 5 givenname: Ashraf surname: Elfasakhany fullname: Elfasakhany, Ashraf organization: Mechanical Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia |
BookMark | eNp9kc9uEzEQxi1UpJbSF-jJL5Bge9drr8QFVfypVAEHOFuz9hgm2qwXewNKnh4nqSrEoacZf-PfJ3u-V-xiShMydivFWgrZvdmsM03zWgklq6BlK16wK6WkXDWmNxf_9JfsppSNEJVqtZbyiu2-Yo4pb2HyyGGCcV-o8BQ58G0KFAkD_4x_ljTxLS4_U-D1Np8hQz1ipkOdhx2MPO4Ohz2vLxtpQsgcf-1goTSV6ho4LbXO80j-JL5mLyOMBW8e6zX7_uH9t7tPq4cvH-_v3j2sfCvFslLQhEYZ2xkDCr1WdrDe-zBIa7Q1_aChEQioLJq-saHHXjUq9h1EwCCG5prdn31Dgo2bM20h710Ccich5R8O8kJ-RCdRq27Qg1AwtKil9dp2HcYuWDDYmuqlzl4-p1Iyxic_KdwxB7dxxxzcMQd3zqFC9j_I03JawZKBxufRt2cU64J-E2ZXPGGNKVBGv9Qf0HP4XwavqCs |
CitedBy_id | crossref_primary_10_3390_sym14112248 crossref_primary_10_3390_axioms12020222 crossref_primary_10_1016_j_jenvman_2023_117514 crossref_primary_10_1108_EC_07_2024_0691 |
Cites_doi | 10.1155/2019/1728965 10.1007/s40815-015-0111-7 10.1007/s00500-010-0546-6 10.1029/1999GL011192 10.1016/0165-0114(86)90026-6 10.1016/j.fss.2005.09.005 10.1016/j.cam.2008.04.013 10.1016/0165-0114(91)90099-C 10.1016/j.ijthermalsci.2017.06.022 10.1016/0165-0114(90)90099-R 10.1155/2010/763270 10.1190/1.1442390 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rinp.2021.105140 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2211-3797 |
ExternalDocumentID | oai_doaj_org_article_1e526b5b02ab4e518c5866ef6d8a7e47 10_1016_j_rinp_2021_105140 S2211379721011037 |
GroupedDBID | --K 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M48 M~E NCXOZ O-L O9- OK1 RIG ROL SES SSZ XH2 AAFWJ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPKN AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c410t-2a3d3278677a2ec528b8cccdb1875879b5a30eae28e7938d9e9232f96afaed0b3 |
IEDL.DBID | DOA |
ISSN | 2211-3797 |
IngestDate | Wed Aug 27 01:15:23 EDT 2025 Tue Jul 01 02:27:42 EDT 2025 Thu Apr 24 22:52:41 EDT 2025 Tue Jul 25 20:58:22 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nonlinear equation Parametric form 94D05 65H20 Jacobian Newton method Fuzzy coefficient |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-2a3d3278677a2ec528b8cccdb1875879b5a30eae28e7938d9e9232f96afaed0b3 |
ORCID | 0000-0001-5769-4320 0000-0001-5246-6636 |
OpenAccessLink | https://doaj.org/article/1e526b5b02ab4e518c5866ef6d8a7e47 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1e526b5b02ab4e518c5866ef6d8a7e47 crossref_primary_10_1016_j_rinp_2021_105140 crossref_citationtrail_10_1016_j_rinp_2021_105140 elsevier_sciencedirect_doi_10_1016_j_rinp_2021_105140 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationTitle | Results in physics |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Gómez-Treviño (b5) 1987; 52 Sulaiman, Mamat, Ghazali (b7) 2021; 11 Abbasbandy, Asady (b16) 2004; 159 Sulaiman, Waziri, Olowo, Talat (b21) 2018; 1 Dubois (b23) 1980 Buckley, Qu (b12) 1991; 39 Said Solaiman, Hashim (b3) 2019; 2019 Goetschel, Voxman (b10) 1986; 18 Kajani, Asady, Vencheh (b8) 2005; 167 Fan, Yuan (b28) 2001 Hueso, Martínez, Torregrosa (b25) 2009; 224 Kwak, Noh, Lee, Yook (b2) 2017; 120 Traub (b26) 1982 Zadeh (b9) 1996 Ramli, Abdullah, Mamat (b18) 2010; 2010 Hauser (b4) 2009 Sulaiman, Mamat, Omesa (b20) 2020 Umar, Waziri, Sulaiman (b19) 2018; 1 Buckley, Qu (b11) 1990; 38 Otadi, Mosleh (b29) 2011; 15 Sparrow, Eckert (b1) 1964 Kardashov, Eppelbaum, Vasilyev (b6) 2000; 27 Kelley (b24) 1986; 47 Yamashita, Fukushima (b27) 2001 Chong, Zak (b22) 2004 Sulaiman, Mamat, Waziri, Fadhilah, Kamfa (b14) 2016; 100 Abbasbandy, Jafarian (b15) 2006; 174 Waziri, Moyi (b17) 2016; 18 Muzzioli, Reynaerts (b13) 2006; 157 Umar (10.1016/j.rinp.2021.105140_b19) 2018; 1 Hueso (10.1016/j.rinp.2021.105140_b25) 2009; 224 Zadeh (10.1016/j.rinp.2021.105140_b9) 1996 Said Solaiman (10.1016/j.rinp.2021.105140_b3) 2019; 2019 Buckley (10.1016/j.rinp.2021.105140_b11) 1990; 38 Sulaiman (10.1016/j.rinp.2021.105140_b20) 2020 Kajani (10.1016/j.rinp.2021.105140_b8) 2005; 167 Kelley (10.1016/j.rinp.2021.105140_b24) 1986; 47 Kwak (10.1016/j.rinp.2021.105140_b2) 2017; 120 Traub (10.1016/j.rinp.2021.105140_b26) 1982 Kardashov (10.1016/j.rinp.2021.105140_b6) 2000; 27 Chong (10.1016/j.rinp.2021.105140_b22) 2004 Hauser (10.1016/j.rinp.2021.105140_b4) 2009 Sulaiman (10.1016/j.rinp.2021.105140_b7) 2021; 11 Goetschel (10.1016/j.rinp.2021.105140_b10) 1986; 18 Otadi (10.1016/j.rinp.2021.105140_b29) 2011; 15 Fan (10.1016/j.rinp.2021.105140_b28) 2001 Muzzioli (10.1016/j.rinp.2021.105140_b13) 2006; 157 Sulaiman (10.1016/j.rinp.2021.105140_b21) 2018; 1 Waziri (10.1016/j.rinp.2021.105140_b17) 2016; 18 Abbasbandy (10.1016/j.rinp.2021.105140_b15) 2006; 174 Yamashita (10.1016/j.rinp.2021.105140_b27) 2001 Sparrow (10.1016/j.rinp.2021.105140_b1) 1964 Gómez-Treviño (10.1016/j.rinp.2021.105140_b5) 1987; 52 Sulaiman (10.1016/j.rinp.2021.105140_b14) 2016; 100 Dubois (10.1016/j.rinp.2021.105140_b23) 1980 Buckley (10.1016/j.rinp.2021.105140_b12) 1991; 39 Ramli (10.1016/j.rinp.2021.105140_b18) 2010; 2010 Abbasbandy (10.1016/j.rinp.2021.105140_b16) 2004; 159 |
References_xml | – start-page: 1 year: 2009 end-page: -15 ident: b4 article-title: Introduction to nonlinear engineering problems and models publication-title: Numerical methods for nonlinear engineering models – volume: 1 start-page: 11 year: 2018 end-page: 19 ident: b21 article-title: Solving fuzzy nonlinear equations with a new class of conjugate gradient method publication-title: Malays J Comput Appl Math – volume: 224 start-page: 77 year: 2009 end-page: 83 ident: b25 article-title: Modified Newton’s method for systems of nonlinear equations with singular Jacobian publication-title: J Comput Appl Math – volume: 1 start-page: 1 year: 2018 end-page: 9 ident: b19 article-title: Solving dual fuzzy nonlinear equations via a modification of Shamanskii steps publication-title: Malays J Comput Appl Math – volume: 52 start-page: 1297 year: 1987 end-page: -1302 ident: b5 article-title: Nonlinear integral equations for electromagnetic inverse problems publication-title: Geophysics – volume: 27 start-page: 2069 year: 2000 end-page: -2073 ident: b6 article-title: The role of nonlinear source terms in geophysics publication-title: Geophys Res Lett – volume: 120 start-page: 377 year: 2017 end-page: -385 ident: b2 article-title: Cooling performance of a radial heat sink with triangular fins on a circular base at various installation angles. publication-title: Int J Therm Sci – volume: 39 start-page: 291 year: 1991 end-page: 301 ident: b12 article-title: Solving fuzzy equations: a new solution concept publication-title: Fuzzy Sets and Systems – start-page: 45 year: 2020 ident: b20 article-title: A Shamanskii-like accelerated scheme for nonlinear systems of equations publication-title: Nonlinear Syst Theor Aspects Recent Appl – start-page: 394 year: 1996 end-page: 432 ident: b9 article-title: Fuzzy sets publication-title: Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi a Zadeh – volume: 174 start-page: 669 year: 2006 end-page: 675 ident: b15 article-title: Steepest descent method for solving fuzzy nonlinear equations publication-title: Appl Math Comput – volume: 2010 start-page: 1 year: 2010 end-page: 6 ident: b18 article-title: Broyden’s method for solving fuzzy nonlinear equations publication-title: Adv Fuzzy Syst – start-page: 104 year: 1964 end-page: -122 ident: b1 article-title: Nonlinear problems of combined conductive-radiative heat transfer publication-title: Nonlinear problems of engineering – volume: 159 start-page: 349 year: 2004 end-page: 356 ident: b16 article-title: Newton’s method for solving fuzzy nonlinear equations publication-title: Appl Math Comput – volume: 100 start-page: 873 year: 2016 end-page: 884 ident: b14 article-title: Regula falsi method for solving fuzzy nonlinear equation publication-title: Far East J Math Sci – volume: 18 start-page: 103 year: 2016 end-page: 107 ident: b17 article-title: An alternative approach for solving dual fuzzy nonlinear equations publication-title: Int J Fuzzy Syst – volume: 15 start-page: 187 year: 2011 end-page: 192 ident: b29 article-title: Solution of fuzzy polynomial equations by modified adomian decomposition method publication-title: Soft Comput – year: 1980 ident: b23 article-title: Fuzzy sets and systems: Theory and applications, Vol. 144 – year: 1982 ident: b26 article-title: Iterative methods for the solution of equations, Vol. 312 – volume: 167 start-page: 316 year: 2005 end-page: -323 ident: b8 article-title: An iterative method for solving dual fuzzy nonlinear equations publication-title: Appl Math Comput – volume: 18 start-page: 31 year: 1986 end-page: 43 ident: b10 article-title: Elementary fuzzy calculus publication-title: Fuzzy Sets and Systems – volume: 2019 start-page: p.e1728965 year: 2019 ident: b3 article-title: Efficacy of optimal methods for nonlinear equations with chemical engineering applications publication-title: Math Probl Eng – volume: 38 start-page: 43 year: 1990 end-page: 59 ident: b11 article-title: Solving linear and quadratic fuzzy equations publication-title: Fuzzy Sets and Systems – volume: 157 start-page: 939 year: 2006 end-page: 951 ident: b13 article-title: Fuzzy linear systems of the form a1x+ b1 publication-title: Fuzzy Sets and Systems – volume: 47 start-page: 609 year: 1986 end-page: 623 ident: b24 article-title: A Shamanskiĭ-like acceleration scheme for nonlinear equations at singular roots publication-title: Math Comp – volume: 11 start-page: 24 year: 2021 end-page: 29 ident: b7 article-title: Shamanskii method for solving parameterized fuzzy nonlinear equations. publication-title: Int J Optim Control: Theor Appl – year: 2004 ident: b22 article-title: An introduction to optimization – start-page: 239 year: 2001 end-page: 249 ident: b27 article-title: On the rate of convergence of the Levenberg-Marquardt method publication-title: Topics in numerical analysis – start-page: 1 year: 2001 end-page: 11 ident: b28 article-title: On the convergence of a new Levenberg-Marquardt method – volume: 2019 start-page: p.e1728965 year: 2019 ident: 10.1016/j.rinp.2021.105140_b3 article-title: Efficacy of optimal methods for nonlinear equations with chemical engineering applications publication-title: Math Probl Eng doi: 10.1155/2019/1728965 – start-page: 45 year: 2020 ident: 10.1016/j.rinp.2021.105140_b20 article-title: A Shamanskii-like accelerated scheme for nonlinear systems of equations publication-title: Nonlinear Syst Theor Aspects Recent Appl – year: 2004 ident: 10.1016/j.rinp.2021.105140_b22 – volume: 159 start-page: 349 issue: 2 year: 2004 ident: 10.1016/j.rinp.2021.105140_b16 article-title: Newton’s method for solving fuzzy nonlinear equations publication-title: Appl Math Comput – volume: 18 start-page: 103 issue: 1 year: 2016 ident: 10.1016/j.rinp.2021.105140_b17 article-title: An alternative approach for solving dual fuzzy nonlinear equations publication-title: Int J Fuzzy Syst doi: 10.1007/s40815-015-0111-7 – volume: 174 start-page: 669 issue: 1 year: 2006 ident: 10.1016/j.rinp.2021.105140_b15 article-title: Steepest descent method for solving fuzzy nonlinear equations publication-title: Appl Math Comput – start-page: 104 year: 1964 ident: 10.1016/j.rinp.2021.105140_b1 article-title: Nonlinear problems of combined conductive-radiative heat transfer – year: 1982 ident: 10.1016/j.rinp.2021.105140_b26 – volume: 15 start-page: 187 issue: 1 year: 2011 ident: 10.1016/j.rinp.2021.105140_b29 article-title: Solution of fuzzy polynomial equations by modified adomian decomposition method publication-title: Soft Comput doi: 10.1007/s00500-010-0546-6 – volume: 27 start-page: 2069 year: 2000 ident: 10.1016/j.rinp.2021.105140_b6 article-title: The role of nonlinear source terms in geophysics publication-title: Geophys Res Lett doi: 10.1029/1999GL011192 – volume: 18 start-page: 31 issue: 1 year: 1986 ident: 10.1016/j.rinp.2021.105140_b10 article-title: Elementary fuzzy calculus publication-title: Fuzzy Sets and Systems doi: 10.1016/0165-0114(86)90026-6 – volume: 157 start-page: 939 issue: 7 year: 2006 ident: 10.1016/j.rinp.2021.105140_b13 article-title: Fuzzy linear systems of the form a1x+ b1 = a2x+ b2 publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2005.09.005 – volume: 224 start-page: 77 issue: 1 year: 2009 ident: 10.1016/j.rinp.2021.105140_b25 article-title: Modified Newton’s method for systems of nonlinear equations with singular Jacobian publication-title: J Comput Appl Math doi: 10.1016/j.cam.2008.04.013 – start-page: 394 year: 1996 ident: 10.1016/j.rinp.2021.105140_b9 article-title: Fuzzy sets – volume: 1 start-page: 1 issue: 2 year: 2018 ident: 10.1016/j.rinp.2021.105140_b19 article-title: Solving dual fuzzy nonlinear equations via a modification of Shamanskii steps publication-title: Malays J Comput Appl Math – volume: 39 start-page: 291 issue: 3 year: 1991 ident: 10.1016/j.rinp.2021.105140_b12 article-title: Solving fuzzy equations: a new solution concept publication-title: Fuzzy Sets and Systems doi: 10.1016/0165-0114(91)90099-C – year: 1980 ident: 10.1016/j.rinp.2021.105140_b23 – volume: 120 start-page: 377 year: 2017 ident: 10.1016/j.rinp.2021.105140_b2 article-title: Cooling performance of a radial heat sink with triangular fins on a circular base at various installation angles. publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2017.06.022 – volume: 167 start-page: 316 year: 2005 ident: 10.1016/j.rinp.2021.105140_b8 article-title: An iterative method for solving dual fuzzy nonlinear equations publication-title: Appl Math Comput – volume: 1 start-page: 11 issue: 1 year: 2018 ident: 10.1016/j.rinp.2021.105140_b21 article-title: Solving fuzzy nonlinear equations with a new class of conjugate gradient method publication-title: Malays J Comput Appl Math – volume: 47 start-page: 609 issue: 176 year: 1986 ident: 10.1016/j.rinp.2021.105140_b24 article-title: A Shamanskiĭ-like acceleration scheme for nonlinear equations at singular roots publication-title: Math Comp – volume: 11 start-page: 24 issue: 1 year: 2021 ident: 10.1016/j.rinp.2021.105140_b7 article-title: Shamanskii method for solving parameterized fuzzy nonlinear equations. publication-title: Int J Optim Control: Theor Appl – start-page: 239 year: 2001 ident: 10.1016/j.rinp.2021.105140_b27 article-title: On the rate of convergence of the Levenberg-Marquardt method – volume: 38 start-page: 43 issue: 1 year: 1990 ident: 10.1016/j.rinp.2021.105140_b11 article-title: Solving linear and quadratic fuzzy equations publication-title: Fuzzy Sets and Systems doi: 10.1016/0165-0114(90)90099-R – start-page: 1 year: 2009 ident: 10.1016/j.rinp.2021.105140_b4 article-title: Introduction to nonlinear engineering problems and models – volume: 100 start-page: 873 issue: 6 year: 2016 ident: 10.1016/j.rinp.2021.105140_b14 article-title: Regula falsi method for solving fuzzy nonlinear equation publication-title: Far East J Math Sci – volume: 2010 start-page: 1 year: 2010 ident: 10.1016/j.rinp.2021.105140_b18 article-title: Broyden’s method for solving fuzzy nonlinear equations publication-title: Adv Fuzzy Syst doi: 10.1155/2010/763270 – volume: 52 start-page: 1297 year: 1987 ident: 10.1016/j.rinp.2021.105140_b5 article-title: Nonlinear integral equations for electromagnetic inverse problems publication-title: Geophysics doi: 10.1190/1.1442390 – start-page: 1 year: 2001 ident: 10.1016/j.rinp.2021.105140_b28 |
SSID | ssj0001645511 |
Score | 2.254753 |
Snippet | In this paper, we are interested in the numerical solution of nonlinear equations, particularly, when the coefficients are fuzzy numbers rather than crisp... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 105140 |
SubjectTerms | Fuzzy coefficient Jacobian Newton method Nonlinear equation Parametric form |
SummonAdditionalLinks | – databaseName: ScienceDirect Free and Delayed Access Journal dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhUOil9EnTFzr0VszqYT18bEJDKLQU2sDejB6j4tLsJpvdQ_fXd8bWZreXHHoyyCNZjKR5yDPfMPZeZmtLLrIBKXLTeoFHymrVJGEjAVZ1ZSza9-WrvbhsP8_N_Iid7XJhKKyyyv5Jpo_SurbMKjdn18Mw-67Qd9GO0GdIh2nKKKesUkrim5_u71lsi0YB-V1E31CHmjszhXmthgXBVipJFW8l3YEc6KcRxv9ATR2onvPH7FG1GfnHaVpP2BEsnrIHY-xmun3GNt_2wf88VJARviw88KtlHgoamRxlGRp5fKoXzZGaE-b3FcXCDFt8TxlZvGy22z98MYFnhBWHmwkH_BZHzXxY43P_u_s5uzz_9OPsoqnVFJrUSrFuVNBZK0f4dUFBMspHn1LKUaLL4l0XTdACAigPeGZ97gBtP1U6G0qALKJ-wY5xBvCScd0FmxwYF7JrwUVvcqeNFkFGLWJ0J0zueNinCjVOFS9-97uYsl898b0nvvcT30_Yh7s-1xPQxr3Up7Q0d5QEkj02LFc_-7pLeglG2WiiUCG2YKRPxlsLxWYfHLQ4TbNb2P6fPYdDDfd8_NV_9nvNHipKnhhjvt-w4_VqA2_RpFnHd-Oe_QtmhPRw priority: 102 providerName: Elsevier – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZpQqCX0qYpTV_o0Ftx0MN6-FBKWxpCISWHLORm9BgVl2Q38e5Cs7--I1ubTSDk1JPBHkti5PF8Y898Q8hHHrVOMfEKOItVbRmalJaiCkz7TFjVpKFp38kvfTypf56r8y2ybndUFDh_MLTL_aQm_cXh3-ubL2jwnze5Wn03zdyTgue2tRgyPCE76Jl0DsZOCtwfvrnoGgFCjsGEyOx9pjGljubhYe75qoHS_47LuuOGjp6TZwU_0q_jhr8gWzDdI7tDHmeYvyTL000hAHWFcITOEnX0cha7hICT4nsNAR8de0dTlKaZ__sy58V0K7yeq7NoWq5WN3Q6Emm4nsL1yAk-x1Ej7RZ43Pz63ieTox9n34-r0lmhCjVni0o4GaUwmcvOCQhKWG9DCNFzDF-sabxykoEDYQHt18YGEAeK1GiXHETm5SuyjSuA14TKxulgQBkXTQ3GWxUbqSRz3EvmvTkgfK3DNhTa8dz94qJd55f9abPe26z3dtT7Afl0e8_VSLrxqPS3vDW3kpkwezgx63-3xf5aDkporzwTzteguA3Kag1JR-sM1LhMtd7YtmCPEVPgUN0jk7_5H5O_JU9FrqoYksHfke1Fv4T3iHUW_sPwAP8DRDr8zQ priority: 102 providerName: Scholars Portal |
Title | Performance analysis of a modified Newton method for parameterized dual fuzzy nonlinear equations and its application |
URI | https://dx.doi.org/10.1016/j.rinp.2021.105140 https://doaj.org/article/1e526b5b02ab4e518c5866ef6d8a7e47 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcEE-xFJAP3FCEH_EjR4qoWqQiDlTaW-THWAqiW9juHthfz0ycbXNqL704UuLY1ngcf-PMfMPYB5mtLbnIBqTITesFLimrVZOEjURY1ZUxad_5d3t60X5bmuUs1Rf5hFV64Cq4TxKMstFEoUJswUifjLcWis0-OGjHOHLRiZkxNZ6u2BahAFlbShFPn-vcFDFTnbvWw4rIKpWkPLeSTj5mu9JI3j_bnGYbzslT9mRCivxzHeEz9ghWz9nh6LGZrl-w7Y9bl38eJmoRflV44JdXeSgILTl-wRDa8ZolmmNtTkzfl-QBM-zwOcVh8bLd7f7xVaXMCGsOfyv79zW2mvmwwevtT-6X7OLk688vp82UQ6FJrRSbRgWdtXLEWhcUJKN89CmlHCUaKt510QQtIIDygCvV5w4Q8anS2VACZBH1K3aAI4DXjOsu2OTAuJBdCy56kztttAgyahGjWzC5l2GfJoJxynPxu997kv3qSe49yb2vcl-wjzfv_Kn0GnfWPqapualJ1NjjDVSYflKY_j6FWTCzn9h-QhkVPWBTwx2dv3mIzo_YY0XxE6Pb91t2sFlv4R2imk18PyowlmfLYyzPW_8fXrX2Pg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKEYIL4ilaXj5wQ6v4sX7skVZUKbQVEq2Um-XXoq1oUtLk0Px6ZnadJlx64LSS1-O1xvY8vDPfEPKJJ63b1PIqc5aq2jI4UlqKKjIdELCqafuifadnenxRf5uoyQ45XOfCYFhlkf2DTO-ldWkZFW6Orrtu9FOA7yINos-gDpPmAXkI1oBGAP3jycHmokXXYBWg44UEFVKU5JkhzmveTRG3UnAsecvxEmRLQfU4_lt6akv3HD0jT4vRSL8M83pOdvL0BXnUB2_Gm5dk-WMT_U99QRmhs5Z6ejVLXQtWJgVhBlYeHQpGU-hNEfT7CoNhuhW8x5Qs2i5Xq1s6HdAz_JzmPwMQ-A2Mmmi3gOfmf_crcnH09fxwXJVyClWsOVtUwsskhUEAOy9yVMIGG2NMgYPPYk0TlJcs-yxshkNrU5PB-BNto33rc2JBvia7MIP8hlDZeB1NVsYnU2cTrEqNVJJ5HiQLwewRvuahiwVrHEte_HbroLJLh3x3yHc38H2PfL6juR6QNu7tfYBLc9cTUbL7htn8lyvbxPGshA4qMOFDnRW3UVmtc6uT9SbXME21Xlj3z6aDobp7Pr7_n3QfyePx-emJOzk--_6WPBGYSdEHgL8ju4v5Mr8H-2YRPvT79y_ByveU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+analysis+of+a+modified+Newton+method+for+parameterized+dual+fuzzy+nonlinear+equations+and+its+application&rft.jtitle=Results+in+physics&rft.au=Ibrahim+Mohammed+Sulaiman&rft.au=Mustafa+Mamat&rft.au=Maulana+Malik&rft.au=Kottakkaran+Sooppy+Nisar&rft.date=2022-02-01&rft.pub=Elsevier&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=33&rft.spage=105140&rft_id=info:doi/10.1016%2Fj.rinp.2021.105140&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1e526b5b02ab4e518c5866ef6d8a7e47 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon |