Performance analysis of a modified Newton method for parameterized dual fuzzy nonlinear equations and its application

In this paper, we are interested in the numerical solution of nonlinear equations, particularly, when the coefficients are fuzzy numbers rather than crisp numbers. These problems often arise in numerous applications and have recently been the subject of several studies, where many researchers parame...

Full description

Saved in:
Bibliographic Details
Published inResults in physics Vol. 33; p. 105140
Main Authors Sulaiman, Ibrahim Mohammed, Mamat, Mustafa, Malik, Maulana, Nisar, Kottakkaran Sooppy, Elfasakhany, Ashraf
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2022
Elsevier
Subjects
Online AccessGet full text
ISSN2211-3797
2211-3797
DOI10.1016/j.rinp.2021.105140

Cover

Abstract In this paper, we are interested in the numerical solution of nonlinear equations, particularly, when the coefficients are fuzzy numbers rather than crisp numbers. These problems often arise in numerous applications and have recently been the subject of several studies, where many researchers parameterized the fuzzy coefficients and proposed numerical method for obtaining the solutions. Most of the numerical methods applied for solving the parameterized fuzzy equations are Newton-like methods that require the computation of Jacobian matrix at every iteration or after every few iterations. However, the Newton search direction may not be a descent direction if the Jacobian J(xk) is not positive definite, and, when J(xk) is singular, the method may fail to converge. Also, there are limited literatures on numerical methods for solution of dual fuzzy nonlinear equations. This paper proposed a variant of Newton’s method for solving parameterized dual fuzzy nonlinear equations. This method introduces a new parameter μk to the Newton’s method to ensure that the search direction is a descent direction even when J(xk) is not positive definite. The proposed method was further applied to solve an application problem. Preliminary results on the considered benchmark and application problems show that the new algorithm effective and promising. •A modified Newton method was proposed for solving dual fuzzy nonlinear equations.•The proposed method introduces a parameter μk to the Newton method.•μk guarantee a descent search direction in the case the of positive definite Jacobian.•The convergence analysis of the proposed method was discussed under suitable conditions.•Preliminary results presented show that the proposed method is efficient and•In addition, the method can find wider application in real-life problems.
AbstractList In this paper, we are interested in the numerical solution of nonlinear equations, particularly, when the coefficients are fuzzy numbers rather than crisp numbers. These problems often arise in numerous applications and have recently been the subject of several studies, where many researchers parameterized the fuzzy coefficients and proposed numerical method for obtaining the solutions. Most of the numerical methods applied for solving the parameterized fuzzy equations are Newton-like methods that require the computation of Jacobian matrix at every iteration or after every few iterations. However, the Newton search direction may not be a descent direction if the Jacobian J ( x k ) is not positive definite, and, when J ( x k ) is singular, the method may fail to converge. Also, there are limited literatures on numerical methods for solution of dual fuzzy nonlinear equations. This paper proposed a variant of Newton’s method for solving parameterized dual fuzzy nonlinear equations. This method introduces a new parameter μ k to the Newton’s method to ensure that the search direction is a descent direction even when J ( x k ) is not positive definite. The proposed method was further applied to solve an application problem. Preliminary results on the considered benchmark and application problems show that the new algorithm effective and promising.
In this paper, we are interested in the numerical solution of nonlinear equations, particularly, when the coefficients are fuzzy numbers rather than crisp numbers. These problems often arise in numerous applications and have recently been the subject of several studies, where many researchers parameterized the fuzzy coefficients and proposed numerical method for obtaining the solutions. Most of the numerical methods applied for solving the parameterized fuzzy equations are Newton-like methods that require the computation of Jacobian matrix at every iteration or after every few iterations. However, the Newton search direction may not be a descent direction if the Jacobian J(xk) is not positive definite, and, when J(xk) is singular, the method may fail to converge. Also, there are limited literatures on numerical methods for solution of dual fuzzy nonlinear equations. This paper proposed a variant of Newton’s method for solving parameterized dual fuzzy nonlinear equations. This method introduces a new parameter μk to the Newton’s method to ensure that the search direction is a descent direction even when J(xk) is not positive definite. The proposed method was further applied to solve an application problem. Preliminary results on the considered benchmark and application problems show that the new algorithm effective and promising. •A modified Newton method was proposed for solving dual fuzzy nonlinear equations.•The proposed method introduces a parameter μk to the Newton method.•μk guarantee a descent search direction in the case the of positive definite Jacobian.•The convergence analysis of the proposed method was discussed under suitable conditions.•Preliminary results presented show that the proposed method is efficient and•In addition, the method can find wider application in real-life problems.
ArticleNumber 105140
Author Elfasakhany, Ashraf
Sulaiman, Ibrahim Mohammed
Mamat, Mustafa
Nisar, Kottakkaran Sooppy
Malik, Maulana
Author_xml – sequence: 1
  givenname: Ibrahim Mohammed
  orcidid: 0000-0001-5246-6636
  surname: Sulaiman
  fullname: Sulaiman, Ibrahim Mohammed
  email: i.mohammed.sulaiman@uum.edu.my
  organization: School of Quantitative Sciences, College of Arts and Sciences, Universiti Utara Malaysia, Kedah 06010, Malaysia
– sequence: 2
  givenname: Mustafa
  surname: Mamat
  fullname: Mamat, Mustafa
  organization: Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Besut Campus 22200, Terengganu, Malaysia
– sequence: 3
  givenname: Maulana
  surname: Malik
  fullname: Malik, Maulana
  organization: Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
– sequence: 4
  givenname: Kottakkaran Sooppy
  orcidid: 0000-0001-5769-4320
  surname: Nisar
  fullname: Nisar, Kottakkaran Sooppy
  organization: Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University, Wadi Aldawaser, 11991, Saudi Arabia
– sequence: 5
  givenname: Ashraf
  surname: Elfasakhany
  fullname: Elfasakhany, Ashraf
  organization: Mechanical Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
BookMark eNp9kc9uEzEQxi1UpJbSF-jJL5Bge9drr8QFVfypVAEHOFuz9hgm2qwXewNKnh4nqSrEoacZf-PfJ3u-V-xiShMydivFWgrZvdmsM03zWgklq6BlK16wK6WkXDWmNxf_9JfsppSNEJVqtZbyiu2-Yo4pb2HyyGGCcV-o8BQ58G0KFAkD_4x_ljTxLS4_U-D1Np8hQz1ipkOdhx2MPO4Ohz2vLxtpQsgcf-1goTSV6ho4LbXO80j-JL5mLyOMBW8e6zX7_uH9t7tPq4cvH-_v3j2sfCvFslLQhEYZ2xkDCr1WdrDe-zBIa7Q1_aChEQioLJq-saHHXjUq9h1EwCCG5prdn31Dgo2bM20h710Ccich5R8O8kJ-RCdRq27Qg1AwtKil9dp2HcYuWDDYmuqlzl4-p1Iyxic_KdwxB7dxxxzcMQd3zqFC9j_I03JawZKBxufRt2cU64J-E2ZXPGGNKVBGv9Qf0HP4XwavqCs
CitedBy_id crossref_primary_10_3390_sym14112248
crossref_primary_10_3390_axioms12020222
crossref_primary_10_1016_j_jenvman_2023_117514
crossref_primary_10_1108_EC_07_2024_0691
Cites_doi 10.1155/2019/1728965
10.1007/s40815-015-0111-7
10.1007/s00500-010-0546-6
10.1029/1999GL011192
10.1016/0165-0114(86)90026-6
10.1016/j.fss.2005.09.005
10.1016/j.cam.2008.04.013
10.1016/0165-0114(91)90099-C
10.1016/j.ijthermalsci.2017.06.022
10.1016/0165-0114(90)90099-R
10.1155/2010/763270
10.1190/1.1442390
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rinp.2021.105140
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2211-3797
ExternalDocumentID oai_doaj_org_article_1e526b5b02ab4e518c5866ef6d8a7e47
10_1016_j_rinp_2021_105140
S2211379721011037
GroupedDBID --K
0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
SES
SSZ
XH2
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c410t-2a3d3278677a2ec528b8cccdb1875879b5a30eae28e7938d9e9232f96afaed0b3
IEDL.DBID DOA
ISSN 2211-3797
IngestDate Wed Aug 27 01:15:23 EDT 2025
Tue Jul 01 02:27:42 EDT 2025
Thu Apr 24 22:52:41 EDT 2025
Tue Jul 25 20:58:22 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Nonlinear equation
Parametric form
94D05
65H20
Jacobian
Newton method
Fuzzy coefficient
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-2a3d3278677a2ec528b8cccdb1875879b5a30eae28e7938d9e9232f96afaed0b3
ORCID 0000-0001-5769-4320
0000-0001-5246-6636
OpenAccessLink https://doaj.org/article/1e526b5b02ab4e518c5866ef6d8a7e47
ParticipantIDs doaj_primary_oai_doaj_org_article_1e526b5b02ab4e518c5866ef6d8a7e47
crossref_primary_10_1016_j_rinp_2021_105140
crossref_citationtrail_10_1016_j_rinp_2021_105140
elsevier_sciencedirect_doi_10_1016_j_rinp_2021_105140
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle Results in physics
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Gómez-Treviño (b5) 1987; 52
Sulaiman, Mamat, Ghazali (b7) 2021; 11
Abbasbandy, Asady (b16) 2004; 159
Sulaiman, Waziri, Olowo, Talat (b21) 2018; 1
Dubois (b23) 1980
Buckley, Qu (b12) 1991; 39
Said Solaiman, Hashim (b3) 2019; 2019
Goetschel, Voxman (b10) 1986; 18
Kajani, Asady, Vencheh (b8) 2005; 167
Fan, Yuan (b28) 2001
Hueso, Martínez, Torregrosa (b25) 2009; 224
Kwak, Noh, Lee, Yook (b2) 2017; 120
Traub (b26) 1982
Zadeh (b9) 1996
Ramli, Abdullah, Mamat (b18) 2010; 2010
Hauser (b4) 2009
Sulaiman, Mamat, Omesa (b20) 2020
Umar, Waziri, Sulaiman (b19) 2018; 1
Buckley, Qu (b11) 1990; 38
Otadi, Mosleh (b29) 2011; 15
Sparrow, Eckert (b1) 1964
Kardashov, Eppelbaum, Vasilyev (b6) 2000; 27
Kelley (b24) 1986; 47
Yamashita, Fukushima (b27) 2001
Chong, Zak (b22) 2004
Sulaiman, Mamat, Waziri, Fadhilah, Kamfa (b14) 2016; 100
Abbasbandy, Jafarian (b15) 2006; 174
Waziri, Moyi (b17) 2016; 18
Muzzioli, Reynaerts (b13) 2006; 157
Umar (10.1016/j.rinp.2021.105140_b19) 2018; 1
Hueso (10.1016/j.rinp.2021.105140_b25) 2009; 224
Zadeh (10.1016/j.rinp.2021.105140_b9) 1996
Said Solaiman (10.1016/j.rinp.2021.105140_b3) 2019; 2019
Buckley (10.1016/j.rinp.2021.105140_b11) 1990; 38
Sulaiman (10.1016/j.rinp.2021.105140_b20) 2020
Kajani (10.1016/j.rinp.2021.105140_b8) 2005; 167
Kelley (10.1016/j.rinp.2021.105140_b24) 1986; 47
Kwak (10.1016/j.rinp.2021.105140_b2) 2017; 120
Traub (10.1016/j.rinp.2021.105140_b26) 1982
Kardashov (10.1016/j.rinp.2021.105140_b6) 2000; 27
Chong (10.1016/j.rinp.2021.105140_b22) 2004
Hauser (10.1016/j.rinp.2021.105140_b4) 2009
Sulaiman (10.1016/j.rinp.2021.105140_b7) 2021; 11
Goetschel (10.1016/j.rinp.2021.105140_b10) 1986; 18
Otadi (10.1016/j.rinp.2021.105140_b29) 2011; 15
Fan (10.1016/j.rinp.2021.105140_b28) 2001
Muzzioli (10.1016/j.rinp.2021.105140_b13) 2006; 157
Sulaiman (10.1016/j.rinp.2021.105140_b21) 2018; 1
Waziri (10.1016/j.rinp.2021.105140_b17) 2016; 18
Abbasbandy (10.1016/j.rinp.2021.105140_b15) 2006; 174
Yamashita (10.1016/j.rinp.2021.105140_b27) 2001
Sparrow (10.1016/j.rinp.2021.105140_b1) 1964
Gómez-Treviño (10.1016/j.rinp.2021.105140_b5) 1987; 52
Sulaiman (10.1016/j.rinp.2021.105140_b14) 2016; 100
Dubois (10.1016/j.rinp.2021.105140_b23) 1980
Buckley (10.1016/j.rinp.2021.105140_b12) 1991; 39
Ramli (10.1016/j.rinp.2021.105140_b18) 2010; 2010
Abbasbandy (10.1016/j.rinp.2021.105140_b16) 2004; 159
References_xml – start-page: 1
  year: 2009
  end-page: -15
  ident: b4
  article-title: Introduction to nonlinear engineering problems and models
  publication-title: Numerical methods for nonlinear engineering models
– volume: 1
  start-page: 11
  year: 2018
  end-page: 19
  ident: b21
  article-title: Solving fuzzy nonlinear equations with a new class of conjugate gradient method
  publication-title: Malays J Comput Appl Math
– volume: 224
  start-page: 77
  year: 2009
  end-page: 83
  ident: b25
  article-title: Modified Newton’s method for systems of nonlinear equations with singular Jacobian
  publication-title: J Comput Appl Math
– volume: 1
  start-page: 1
  year: 2018
  end-page: 9
  ident: b19
  article-title: Solving dual fuzzy nonlinear equations via a modification of Shamanskii steps
  publication-title: Malays J Comput Appl Math
– volume: 52
  start-page: 1297
  year: 1987
  end-page: -1302
  ident: b5
  article-title: Nonlinear integral equations for electromagnetic inverse problems
  publication-title: Geophysics
– volume: 27
  start-page: 2069
  year: 2000
  end-page: -2073
  ident: b6
  article-title: The role of nonlinear source terms in geophysics
  publication-title: Geophys Res Lett
– volume: 120
  start-page: 377
  year: 2017
  end-page: -385
  ident: b2
  article-title: Cooling performance of a radial heat sink with triangular fins on a circular base at various installation angles.
  publication-title: Int J Therm Sci
– volume: 39
  start-page: 291
  year: 1991
  end-page: 301
  ident: b12
  article-title: Solving fuzzy equations: a new solution concept
  publication-title: Fuzzy Sets and Systems
– start-page: 45
  year: 2020
  ident: b20
  article-title: A Shamanskii-like accelerated scheme for nonlinear systems of equations
  publication-title: Nonlinear Syst Theor Aspects Recent Appl
– start-page: 394
  year: 1996
  end-page: 432
  ident: b9
  article-title: Fuzzy sets
  publication-title: Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi a Zadeh
– volume: 174
  start-page: 669
  year: 2006
  end-page: 675
  ident: b15
  article-title: Steepest descent method for solving fuzzy nonlinear equations
  publication-title: Appl Math Comput
– volume: 2010
  start-page: 1
  year: 2010
  end-page: 6
  ident: b18
  article-title: Broyden’s method for solving fuzzy nonlinear equations
  publication-title: Adv Fuzzy Syst
– start-page: 104
  year: 1964
  end-page: -122
  ident: b1
  article-title: Nonlinear problems of combined conductive-radiative heat transfer
  publication-title: Nonlinear problems of engineering
– volume: 159
  start-page: 349
  year: 2004
  end-page: 356
  ident: b16
  article-title: Newton’s method for solving fuzzy nonlinear equations
  publication-title: Appl Math Comput
– volume: 100
  start-page: 873
  year: 2016
  end-page: 884
  ident: b14
  article-title: Regula falsi method for solving fuzzy nonlinear equation
  publication-title: Far East J Math Sci
– volume: 18
  start-page: 103
  year: 2016
  end-page: 107
  ident: b17
  article-title: An alternative approach for solving dual fuzzy nonlinear equations
  publication-title: Int J Fuzzy Syst
– volume: 15
  start-page: 187
  year: 2011
  end-page: 192
  ident: b29
  article-title: Solution of fuzzy polynomial equations by modified adomian decomposition method
  publication-title: Soft Comput
– year: 1980
  ident: b23
  article-title: Fuzzy sets and systems: Theory and applications, Vol. 144
– year: 1982
  ident: b26
  article-title: Iterative methods for the solution of equations, Vol. 312
– volume: 167
  start-page: 316
  year: 2005
  end-page: -323
  ident: b8
  article-title: An iterative method for solving dual fuzzy nonlinear equations
  publication-title: Appl Math Comput
– volume: 18
  start-page: 31
  year: 1986
  end-page: 43
  ident: b10
  article-title: Elementary fuzzy calculus
  publication-title: Fuzzy Sets and Systems
– volume: 2019
  start-page: p.e1728965
  year: 2019
  ident: b3
  article-title: Efficacy of optimal methods for nonlinear equations with chemical engineering applications
  publication-title: Math Probl Eng
– volume: 38
  start-page: 43
  year: 1990
  end-page: 59
  ident: b11
  article-title: Solving linear and quadratic fuzzy equations
  publication-title: Fuzzy Sets and Systems
– volume: 157
  start-page: 939
  year: 2006
  end-page: 951
  ident: b13
  article-title: Fuzzy linear systems of the form a1x+ b1
  publication-title: Fuzzy Sets and Systems
– volume: 47
  start-page: 609
  year: 1986
  end-page: 623
  ident: b24
  article-title: A Shamanskiĭ-like acceleration scheme for nonlinear equations at singular roots
  publication-title: Math Comp
– volume: 11
  start-page: 24
  year: 2021
  end-page: 29
  ident: b7
  article-title: Shamanskii method for solving parameterized fuzzy nonlinear equations.
  publication-title: Int J Optim Control: Theor Appl
– year: 2004
  ident: b22
  article-title: An introduction to optimization
– start-page: 239
  year: 2001
  end-page: 249
  ident: b27
  article-title: On the rate of convergence of the Levenberg-Marquardt method
  publication-title: Topics in numerical analysis
– start-page: 1
  year: 2001
  end-page: 11
  ident: b28
  article-title: On the convergence of a new Levenberg-Marquardt method
– volume: 2019
  start-page: p.e1728965
  year: 2019
  ident: 10.1016/j.rinp.2021.105140_b3
  article-title: Efficacy of optimal methods for nonlinear equations with chemical engineering applications
  publication-title: Math Probl Eng
  doi: 10.1155/2019/1728965
– start-page: 45
  year: 2020
  ident: 10.1016/j.rinp.2021.105140_b20
  article-title: A Shamanskii-like accelerated scheme for nonlinear systems of equations
  publication-title: Nonlinear Syst Theor Aspects Recent Appl
– year: 2004
  ident: 10.1016/j.rinp.2021.105140_b22
– volume: 159
  start-page: 349
  issue: 2
  year: 2004
  ident: 10.1016/j.rinp.2021.105140_b16
  article-title: Newton’s method for solving fuzzy nonlinear equations
  publication-title: Appl Math Comput
– volume: 18
  start-page: 103
  issue: 1
  year: 2016
  ident: 10.1016/j.rinp.2021.105140_b17
  article-title: An alternative approach for solving dual fuzzy nonlinear equations
  publication-title: Int J Fuzzy Syst
  doi: 10.1007/s40815-015-0111-7
– volume: 174
  start-page: 669
  issue: 1
  year: 2006
  ident: 10.1016/j.rinp.2021.105140_b15
  article-title: Steepest descent method for solving fuzzy nonlinear equations
  publication-title: Appl Math Comput
– start-page: 104
  year: 1964
  ident: 10.1016/j.rinp.2021.105140_b1
  article-title: Nonlinear problems of combined conductive-radiative heat transfer
– year: 1982
  ident: 10.1016/j.rinp.2021.105140_b26
– volume: 15
  start-page: 187
  issue: 1
  year: 2011
  ident: 10.1016/j.rinp.2021.105140_b29
  article-title: Solution of fuzzy polynomial equations by modified adomian decomposition method
  publication-title: Soft Comput
  doi: 10.1007/s00500-010-0546-6
– volume: 27
  start-page: 2069
  year: 2000
  ident: 10.1016/j.rinp.2021.105140_b6
  article-title: The role of nonlinear source terms in geophysics
  publication-title: Geophys Res Lett
  doi: 10.1029/1999GL011192
– volume: 18
  start-page: 31
  issue: 1
  year: 1986
  ident: 10.1016/j.rinp.2021.105140_b10
  article-title: Elementary fuzzy calculus
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/0165-0114(86)90026-6
– volume: 157
  start-page: 939
  issue: 7
  year: 2006
  ident: 10.1016/j.rinp.2021.105140_b13
  article-title: Fuzzy linear systems of the form a1x+ b1 = a2x+ b2
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2005.09.005
– volume: 224
  start-page: 77
  issue: 1
  year: 2009
  ident: 10.1016/j.rinp.2021.105140_b25
  article-title: Modified Newton’s method for systems of nonlinear equations with singular Jacobian
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2008.04.013
– start-page: 394
  year: 1996
  ident: 10.1016/j.rinp.2021.105140_b9
  article-title: Fuzzy sets
– volume: 1
  start-page: 1
  issue: 2
  year: 2018
  ident: 10.1016/j.rinp.2021.105140_b19
  article-title: Solving dual fuzzy nonlinear equations via a modification of Shamanskii steps
  publication-title: Malays J Comput Appl Math
– volume: 39
  start-page: 291
  issue: 3
  year: 1991
  ident: 10.1016/j.rinp.2021.105140_b12
  article-title: Solving fuzzy equations: a new solution concept
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/0165-0114(91)90099-C
– year: 1980
  ident: 10.1016/j.rinp.2021.105140_b23
– volume: 120
  start-page: 377
  year: 2017
  ident: 10.1016/j.rinp.2021.105140_b2
  article-title: Cooling performance of a radial heat sink with triangular fins on a circular base at various installation angles.
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2017.06.022
– volume: 167
  start-page: 316
  year: 2005
  ident: 10.1016/j.rinp.2021.105140_b8
  article-title: An iterative method for solving dual fuzzy nonlinear equations
  publication-title: Appl Math Comput
– volume: 1
  start-page: 11
  issue: 1
  year: 2018
  ident: 10.1016/j.rinp.2021.105140_b21
  article-title: Solving fuzzy nonlinear equations with a new class of conjugate gradient method
  publication-title: Malays J Comput Appl Math
– volume: 47
  start-page: 609
  issue: 176
  year: 1986
  ident: 10.1016/j.rinp.2021.105140_b24
  article-title: A Shamanskiĭ-like acceleration scheme for nonlinear equations at singular roots
  publication-title: Math Comp
– volume: 11
  start-page: 24
  issue: 1
  year: 2021
  ident: 10.1016/j.rinp.2021.105140_b7
  article-title: Shamanskii method for solving parameterized fuzzy nonlinear equations.
  publication-title: Int J Optim Control: Theor Appl
– start-page: 239
  year: 2001
  ident: 10.1016/j.rinp.2021.105140_b27
  article-title: On the rate of convergence of the Levenberg-Marquardt method
– volume: 38
  start-page: 43
  issue: 1
  year: 1990
  ident: 10.1016/j.rinp.2021.105140_b11
  article-title: Solving linear and quadratic fuzzy equations
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/0165-0114(90)90099-R
– start-page: 1
  year: 2009
  ident: 10.1016/j.rinp.2021.105140_b4
  article-title: Introduction to nonlinear engineering problems and models
– volume: 100
  start-page: 873
  issue: 6
  year: 2016
  ident: 10.1016/j.rinp.2021.105140_b14
  article-title: Regula falsi method for solving fuzzy nonlinear equation
  publication-title: Far East J Math Sci
– volume: 2010
  start-page: 1
  year: 2010
  ident: 10.1016/j.rinp.2021.105140_b18
  article-title: Broyden’s method for solving fuzzy nonlinear equations
  publication-title: Adv Fuzzy Syst
  doi: 10.1155/2010/763270
– volume: 52
  start-page: 1297
  year: 1987
  ident: 10.1016/j.rinp.2021.105140_b5
  article-title: Nonlinear integral equations for electromagnetic inverse problems
  publication-title: Geophysics
  doi: 10.1190/1.1442390
– start-page: 1
  year: 2001
  ident: 10.1016/j.rinp.2021.105140_b28
SSID ssj0001645511
Score 2.254753
Snippet In this paper, we are interested in the numerical solution of nonlinear equations, particularly, when the coefficients are fuzzy numbers rather than crisp...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 105140
SubjectTerms Fuzzy coefficient
Jacobian
Newton method
Nonlinear equation
Parametric form
SummonAdditionalLinks – databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhUOil9EnTFzr0VszqYT18bEJDKLQU2sDejB6j4tLsJpvdQ_fXd8bWZreXHHoyyCNZjKR5yDPfMPZeZmtLLrIBKXLTeoFHymrVJGEjAVZ1ZSza9-WrvbhsP8_N_Iid7XJhKKyyyv5Jpo_SurbMKjdn18Mw-67Qd9GO0GdIh2nKKKesUkrim5_u71lsi0YB-V1E31CHmjszhXmthgXBVipJFW8l3YEc6KcRxv9ATR2onvPH7FG1GfnHaVpP2BEsnrIHY-xmun3GNt_2wf88VJARviw88KtlHgoamRxlGRp5fKoXzZGaE-b3FcXCDFt8TxlZvGy22z98MYFnhBWHmwkH_BZHzXxY43P_u_s5uzz_9OPsoqnVFJrUSrFuVNBZK0f4dUFBMspHn1LKUaLL4l0XTdACAigPeGZ97gBtP1U6G0qALKJ-wY5xBvCScd0FmxwYF7JrwUVvcqeNFkFGLWJ0J0zueNinCjVOFS9-97uYsl898b0nvvcT30_Yh7s-1xPQxr3Up7Q0d5QEkj02LFc_-7pLeglG2WiiUCG2YKRPxlsLxWYfHLQ4TbNb2P6fPYdDDfd8_NV_9nvNHipKnhhjvt-w4_VqA2_RpFnHd-Oe_QtmhPRw
  priority: 102
  providerName: Elsevier
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZpQqCX0qYpTV_o0Ftx0MN6-FBKWxpCISWHLORm9BgVl2Q38e5Cs7--I1ubTSDk1JPBHkti5PF8Y898Q8hHHrVOMfEKOItVbRmalJaiCkz7TFjVpKFp38kvfTypf56r8y2ybndUFDh_MLTL_aQm_cXh3-ubL2jwnze5Wn03zdyTgue2tRgyPCE76Jl0DsZOCtwfvrnoGgFCjsGEyOx9pjGljubhYe75qoHS_47LuuOGjp6TZwU_0q_jhr8gWzDdI7tDHmeYvyTL000hAHWFcITOEnX0cha7hICT4nsNAR8de0dTlKaZ__sy58V0K7yeq7NoWq5WN3Q6Emm4nsL1yAk-x1Ej7RZ43Pz63ieTox9n34-r0lmhCjVni0o4GaUwmcvOCQhKWG9DCNFzDF-sabxykoEDYQHt18YGEAeK1GiXHETm5SuyjSuA14TKxulgQBkXTQ3GWxUbqSRz3EvmvTkgfK3DNhTa8dz94qJd55f9abPe26z3dtT7Afl0e8_VSLrxqPS3vDW3kpkwezgx63-3xf5aDkporzwTzteguA3Kag1JR-sM1LhMtd7YtmCPEVPgUN0jk7_5H5O_JU9FrqoYksHfke1Fv4T3iHUW_sPwAP8DRDr8zQ
  priority: 102
  providerName: Scholars Portal
Title Performance analysis of a modified Newton method for parameterized dual fuzzy nonlinear equations and its application
URI https://dx.doi.org/10.1016/j.rinp.2021.105140
https://doaj.org/article/1e526b5b02ab4e518c5866ef6d8a7e47
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcEE-xFJAP3FCEH_EjR4qoWqQiDlTaW-THWAqiW9juHthfz0ycbXNqL704UuLY1ngcf-PMfMPYB5mtLbnIBqTITesFLimrVZOEjURY1ZUxad_5d3t60X5bmuUs1Rf5hFV64Cq4TxKMstFEoUJswUifjLcWis0-OGjHOHLRiZkxNZ6u2BahAFlbShFPn-vcFDFTnbvWw4rIKpWkPLeSTj5mu9JI3j_bnGYbzslT9mRCivxzHeEz9ghWz9nh6LGZrl-w7Y9bl38eJmoRflV44JdXeSgILTl-wRDa8ZolmmNtTkzfl-QBM-zwOcVh8bLd7f7xVaXMCGsOfyv79zW2mvmwwevtT-6X7OLk688vp82UQ6FJrRSbRgWdtXLEWhcUJKN89CmlHCUaKt510QQtIIDygCvV5w4Q8anS2VACZBH1K3aAI4DXjOsu2OTAuJBdCy56kztttAgyahGjWzC5l2GfJoJxynPxu997kv3qSe49yb2vcl-wjzfv_Kn0GnfWPqapualJ1NjjDVSYflKY_j6FWTCzn9h-QhkVPWBTwx2dv3mIzo_YY0XxE6Pb91t2sFlv4R2imk18PyowlmfLYyzPW_8fXrX2Pg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKEYIL4ilaXj5wQ6v4sX7skVZUKbQVEq2Um-XXoq1oUtLk0Px6ZnadJlx64LSS1-O1xvY8vDPfEPKJJ63b1PIqc5aq2jI4UlqKKjIdELCqafuifadnenxRf5uoyQ45XOfCYFhlkf2DTO-ldWkZFW6Orrtu9FOA7yINos-gDpPmAXkI1oBGAP3jycHmokXXYBWg44UEFVKU5JkhzmveTRG3UnAsecvxEmRLQfU4_lt6akv3HD0jT4vRSL8M83pOdvL0BXnUB2_Gm5dk-WMT_U99QRmhs5Z6ejVLXQtWJgVhBlYeHQpGU-hNEfT7CoNhuhW8x5Qs2i5Xq1s6HdAz_JzmPwMQ-A2Mmmi3gOfmf_crcnH09fxwXJVyClWsOVtUwsskhUEAOy9yVMIGG2NMgYPPYk0TlJcs-yxshkNrU5PB-BNto33rc2JBvia7MIP8hlDZeB1NVsYnU2cTrEqNVJJ5HiQLwewRvuahiwVrHEte_HbroLJLh3x3yHc38H2PfL6juR6QNu7tfYBLc9cTUbL7htn8lyvbxPGshA4qMOFDnRW3UVmtc6uT9SbXME21Xlj3z6aDobp7Pr7_n3QfyePx-emJOzk--_6WPBGYSdEHgL8ju4v5Mr8H-2YRPvT79y_ByveU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+analysis+of+a+modified+Newton+method+for+parameterized+dual+fuzzy+nonlinear+equations+and+its+application&rft.jtitle=Results+in+physics&rft.au=Ibrahim+Mohammed+Sulaiman&rft.au=Mustafa+Mamat&rft.au=Maulana+Malik&rft.au=Kottakkaran+Sooppy+Nisar&rft.date=2022-02-01&rft.pub=Elsevier&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=33&rft.spage=105140&rft_id=info:doi/10.1016%2Fj.rinp.2021.105140&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1e526b5b02ab4e518c5866ef6d8a7e47
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon