Extended hyperbolic function method for the (2 +1)-dimensional nonlinear soliton equation
By employing the extended hyperbolic function method (EHFM), we extract the exact solutions of the (2+1)-dimensional nonlinear soliton equation (SE). A soliton equation is used for investigation of the dynamics of nonlinear waves in plasma physics and fluid dynamics. A various new techniques for fin...
Saved in:
Published in | Results in physics Vol. 40; p. 105802 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | By employing the extended hyperbolic function method (EHFM), we extract the exact solutions of the (2+1)-dimensional nonlinear soliton equation (SE). A soliton equation is used for investigation of the dynamics of nonlinear waves in plasma physics and fluid dynamics. A various new techniques for finding exact solutions of the (2+1)-dimensional nonlinear SE are satisfactorily acquired with the help of EHFM. The EHFM presents various types of new solutions in the form of dark, singular, periodic, bright solitons and some rational function solutions. In addition, for the physical characterization of the acquired solutions of (2+1)-dimensional SE, some 2-dim and 3-dim plots are drawn. The attained results are novel for the considered equation, and results reveal that the method is concise, direct and competent which can be assembled in other complex phenomena.
•By employing the extended hyperbolic function method, the exact solutions of the (2 +1)-dimensional nonlinear soliton equation are obtained.•A soliton equation is used for the investigation of the dynamics of nonlinear waves in plasma physics and fluid dynamics.•For the physical characterization of the acquired solutions of (2+1)-dimensional SE, some 2-dim and 3-dim plots are drawn.•The attained results are novel for the considered equation, and results reveal that the method is concise, direct, and competent which can be assembled in other complex phenomena. |
---|---|
AbstractList | By employing the extended hyperbolic function method (EHFM), we extract the exact solutions of the (2+1)-dimensional nonlinear soliton equation (SE). A soliton equation is used for investigation of the dynamics of nonlinear waves in plasma physics and fluid dynamics. A various new techniques for finding exact solutions of the (2+1)-dimensional nonlinear SE are satisfactorily acquired with the help of EHFM. The EHFM presents various types of new solutions in the form of dark, singular, periodic, bright solitons and some rational function solutions. In addition, for the physical characterization of the acquired solutions of (2+1)-dimensional SE, some 2-dim and 3-dim plots are drawn. The attained results are novel for the considered equation, and results reveal that the method is concise, direct and competent which can be assembled in other complex phenomena. By employing the extended hyperbolic function method (EHFM), we extract the exact solutions of the (2+1)-dimensional nonlinear soliton equation (SE). A soliton equation is used for investigation of the dynamics of nonlinear waves in plasma physics and fluid dynamics. A various new techniques for finding exact solutions of the (2+1)-dimensional nonlinear SE are satisfactorily acquired with the help of EHFM. The EHFM presents various types of new solutions in the form of dark, singular, periodic, bright solitons and some rational function solutions. In addition, for the physical characterization of the acquired solutions of (2+1)-dimensional SE, some 2-dim and 3-dim plots are drawn. The attained results are novel for the considered equation, and results reveal that the method is concise, direct and competent which can be assembled in other complex phenomena. •By employing the extended hyperbolic function method, the exact solutions of the (2 +1)-dimensional nonlinear soliton equation are obtained.•A soliton equation is used for the investigation of the dynamics of nonlinear waves in plasma physics and fluid dynamics.•For the physical characterization of the acquired solutions of (2+1)-dimensional SE, some 2-dim and 3-dim plots are drawn.•The attained results are novel for the considered equation, and results reveal that the method is concise, direct, and competent which can be assembled in other complex phenomena. |
ArticleNumber | 105802 |
Author | Yassen, Mansour F. Awan, Aziz Ullah Tag-ElDin, ElSayed M. Haider, Rizwan Alhazmi, Sharifah E. Rehman, Hamood Ur |
Author_xml | – sequence: 1 givenname: Hamood Ur surname: Rehman fullname: Rehman, Hamood Ur organization: Department of Mathematics, University of Okara, Okara, Pakistan – sequence: 2 givenname: Aziz Ullah orcidid: 0000-0003-3184-3652 surname: Awan fullname: Awan, Aziz Ullah email: aziz.math@pu.edu.pk organization: Department of Mathematics, University of the Punjab, Lahore 54590, Pakistan – sequence: 3 givenname: ElSayed M. surname: Tag-ElDin fullname: Tag-ElDin, ElSayed M. organization: Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11835, Egypt – sequence: 4 givenname: Sharifah E. surname: Alhazmi fullname: Alhazmi, Sharifah E. email: sehazmi@uqu.edu.sa organization: Department of Mathematics, Al-Qunfudah University College, Umm Al-Qura University, Mecca, Saudi Arabia – sequence: 5 givenname: Mansour F. surname: Yassen fullname: Yassen, Mansour F. organization: Department of Mathematics, College of Science and Humanities in Al-Aflaj, Prince Sattam Bin Abdulaziz University, Al-Aflaj 11912, Saudi Arabia – sequence: 6 givenname: Rizwan surname: Haider fullname: Haider, Rizwan organization: Department of Mathematics, University of Okara, Okara, Pakistan |
BookMark | eNp9kMFqGzEQhkVwIG6SF8hJx5ayjqRdWVropZgkDRhySQ45iVlpVMusJVerlObtK8ellB5ymmGG72fm-0BmMUUk5IqzBWd8eb1d5BD3C8GEqAOpmTghcyE4b1rVq9k__Rm5nKYtY5XqpOR8Tp5vfhWMDh3dvO4xD2kMlvqXaEtIke6wbJKjPmVaNkg_CvqZf2pc2GGc6h5GWk8ZQ0TIdKpoqQz-eIEDfEFOPYwTXv6p5-Tp9uZx9a1ZP9zdr76uG9txVhqhwQrlrNRWtwy7QWMP2iu2xHZwHjqlvWBt6yRIUEMPyrEOvWzRey6Bt-fk_pjrEmzNPocd5FeTIJi3QcrfDeQS7IjG9rofloMQ6KBjnQahfCsFV1zYgTNXs8Qxy-Y0TRn93zzOzMG12ZqDa3NwbY6uK6T_g2wobwpKhjC-j345olgF_QyYzWQDRosuZLSlfhDew38D3bOckw |
CitedBy_id | crossref_primary_10_1007_s12043_024_02767_6 crossref_primary_10_1186_s13661_023_01792_5 crossref_primary_10_1007_s11082_023_05850_1 crossref_primary_10_3390_sym15030650 crossref_primary_10_1088_1402_4896_ad1a32 crossref_primary_10_1016_j_rinp_2023_107160 crossref_primary_10_4236_am_2024_158033 crossref_primary_10_1007_s11082_024_07244_3 crossref_primary_10_1007_s10773_024_05768_8 crossref_primary_10_1016_j_asej_2023_102503 crossref_primary_10_1016_j_aej_2025_02_106 crossref_primary_10_1016_j_rinp_2024_107648 crossref_primary_10_1007_s11082_023_05411_6 crossref_primary_10_1016_j_rinp_2023_106632 crossref_primary_10_1016_j_asej_2023_102267 crossref_primary_10_1016_j_rinp_2023_107114 crossref_primary_10_1007_s40819_023_01660_x crossref_primary_10_1016_j_rinp_2024_107370 crossref_primary_10_1002_mma_9860 crossref_primary_10_1016_j_heliyon_2024_e34416 crossref_primary_10_1016_j_rinp_2022_106049 crossref_primary_10_1016_j_asej_2023_102413 crossref_primary_10_1007_s12596_023_01403_7 crossref_primary_10_1016_j_rinp_2023_106787 crossref_primary_10_1016_j_rinp_2024_107467 crossref_primary_10_1016_j_rinp_2023_106690 crossref_primary_10_1088_1402_4896_ad9a12 crossref_primary_10_1007_s42452_024_05759_8 crossref_primary_10_3390_su142113875 crossref_primary_10_1142_S0217984923500896 crossref_primary_10_1016_j_asej_2024_103090 crossref_primary_10_1016_j_rinp_2022_105969 crossref_primary_10_1016_j_asej_2024_102808 crossref_primary_10_1007_s10773_025_05935_5 crossref_primary_10_3390_sym15030626 crossref_primary_10_21833_ijaas_2024_08_010 crossref_primary_10_1016_j_padiff_2023_100537 crossref_primary_10_1007_s12210_025_01302_y crossref_primary_10_3390_universe8110592 crossref_primary_10_1016_j_rineng_2024_101861 crossref_primary_10_1016_j_padiff_2024_100633 crossref_primary_10_3934_math_20241203 crossref_primary_10_1016_j_ijleo_2023_171028 crossref_primary_10_1016_j_ijleo_2023_171305 crossref_primary_10_1007_s11082_023_06058_z crossref_primary_10_1007_s11082_024_06432_5 crossref_primary_10_1016_j_rinp_2023_106769 crossref_primary_10_1016_j_rinp_2023_106521 crossref_primary_10_3390_math12030383 crossref_primary_10_1016_j_rinp_2022_105898 |
Cites_doi | 10.1515/phys-2021-0078 10.1007/s10440-008-9262-y 10.1016/S0960-0779(03)00102-4 10.1088/0256-307X/28/4/040202 10.1007/s12043-019-1888-y 10.1016/j.ijleo.2019.04.045 10.1016/j.rinp.2018.04.064 10.1016/j.ijleo.2017.11.125 10.1016/j.ijleo.2018.07.098 10.14419/jacst.v1i4.384 10.1063/5.0038038 10.1007/s11071-018-4182-5 10.1016/j.chaos.2011.08.011 10.1016/j.ijleo.2019.03.112 10.1080/09500340.2013.850777 10.1016/j.ijleo.2020.165496 10.14419/ijamr.v1i1.1 10.1515/phys-2021-0099 10.1016/j.physleta.2006.09.022 10.1016/j.ijleo.2016.01.078 10.1142/S0217979221502866 10.7498/aps.53.2434 10.1016/j.camwa.2009.04.007 10.1016/S0960-0779(01)00247-8 10.1142/S0217984921504807 10.1016/j.rinp.2019.102491 10.3934/math.2020465 10.1016/j.euromechflu.2020.07.014 10.3934/math.2019.3.896 10.1016/S0375-9601(00)00725-8 10.1016/j.chaos.2006.07.007 10.1016/j.physleta.2006.03.034 10.1016/S0375-9601(03)00196-8 10.1016/j.ijleo.2019.03.167 10.1016/j.rinp.2021.105116 10.1016/j.chaos.2005.08.201 10.1088/1674-1056/19/8/080201 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rinp.2022.105802 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2211-3797 |
ExternalDocumentID | oai_doaj_org_article_c989b6b22eda4048a27f3521712cb10d 10_1016_j_rinp_2022_105802 S2211379722004612 |
GroupedDBID | --K 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M48 M~E NCXOZ O-L O9- OK1 RIG ROL SES SSZ XH2 AAFWJ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPKN AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c410t-28ac27dc58c830e4b8e9a8f706e3bdfa478f2033d5a5a7b9a7d04ef53eff15a13 |
IEDL.DBID | IXB |
ISSN | 2211-3797 |
IngestDate | Wed Aug 27 01:10:36 EDT 2025 Thu Apr 24 23:07:40 EDT 2025 Tue Jul 01 02:27:45 EDT 2025 Tue Jul 25 20:55:47 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nonlinear Soliton equation Extended hyperbolic function method |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-28ac27dc58c830e4b8e9a8f706e3bdfa478f2033d5a5a7b9a7d04ef53eff15a13 |
ORCID | 0000-0003-3184-3652 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211379722004612 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c989b6b22eda4048a27f3521712cb10d crossref_primary_10_1016_j_rinp_2022_105802 crossref_citationtrail_10_1016_j_rinp_2022_105802 elsevier_sciencedirect_doi_10_1016_j_rinp_2022_105802 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 2022-09-00 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationTitle | Results in physics |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Khater, Lu (b8) 2022; 33 Zhao, Lu, Salama, Khater (b10) 2021; 19 Lu, Tariq, Osman, Baleanu, Younis, Khater (b31) 2019; 14 Gomez-Aguilar, Osman, Raza, Zubair, Arshed, Ghoneim (b18) 2021; 11 Shang, Huang, Yuan (b4) 2008; 200 Awan, Rehman (b43) 2020 Khater (b12) 2021; 35 Khater, Malfliet, Callebaut, Kamel (b38) 2002; 14 Darvishi, Najafi (b32) 2011; 28 Chen (b23) 2019; 184 Awan, Rehman, Tahir, Ramzan (b35) 2021; 227 Biswas, Mohamad Jawad, Zhou (b37) 2018; 157 Biswas, Yildirim, Yasar, Zhou, Moshokoa, Belic (b40) 2018; 173 Awan, Tahir, Abro (b41) 2021; 85 Sirendaoreji (b26) 2006; 356 Ye, Zhang (b6) 2011; 44 Seadawy, Kumar, Hosseini, Samadani (b14) 2018; 9 Sirendaoreji (b28) 2004; 19 Soliman (b16) 2008; 104 Kudryashov (b34) 2019; 185 Tahir, Awan (b42) 2020; 94 Huang, Zhang (b2) 2004; 53 Osman, Rezazadeh, Eslami, Neirameh, Mirzazadeh (b20) 2018; 80 Eslami, Mirzazadeh, Biswas (b19) 2013; 60 Arbabi, Najafi, Najafi (b7) 2012; 1 Fan (b17) 2000; 277 Awan, Ramzan (b44) 2021; 227 Darvishi, Khani (b33) 2009; 58 Sirendaoreji, Sun (b27) 2003; 309 Khater, Lu, Salama (b9) 2021; 19 Foroutan, Manafian, Ranjbaran (b30) 2018; 92 Sheng (b36) 2006; 30 Manafian (b15) 2016; 127 Zayed, Shohib (b22) 2019; 185 Yadong (b3) 2008; 36 Tascan, Bekir (b21) 2010; 19 Younis, Rehman, Iftikhar (b39) 2014; 249 Khater (b11) 2021; 35 Ma, Yu, Ge (b29) 2008; 203 Li, Wang (b13) 2007; 361 Habib, Shahadat Ali, Mamun Miah, Ali Akbar (b25) 2019; 4 Rehman, Ullah, Asjad, Akgul (b1) 2020 Darvishi, Najafi (b5) 2012; 1 Abdou, Ouahid, Owyed, Abdel-Baset, Inc, Akinlar (b24) 2020; 5 Manafian (10.1016/j.rinp.2022.105802_b15) 2016; 127 Zayed (10.1016/j.rinp.2022.105802_b22) 2019; 185 Sirendaoreji (10.1016/j.rinp.2022.105802_b27) 2003; 309 Foroutan (10.1016/j.rinp.2022.105802_b30) 2018; 92 Khater (10.1016/j.rinp.2022.105802_b12) 2021; 35 Rehman (10.1016/j.rinp.2022.105802_b1) 2020 Biswas (10.1016/j.rinp.2022.105802_b37) 2018; 157 Osman (10.1016/j.rinp.2022.105802_b20) 2018; 80 Shang (10.1016/j.rinp.2022.105802_b4) 2008; 200 Li (10.1016/j.rinp.2022.105802_b13) 2007; 361 Fan (10.1016/j.rinp.2022.105802_b17) 2000; 277 Tahir (10.1016/j.rinp.2022.105802_b42) 2020; 94 Chen (10.1016/j.rinp.2022.105802_b23) 2019; 184 Awan (10.1016/j.rinp.2022.105802_b41) 2021; 85 Awan (10.1016/j.rinp.2022.105802_b44) 2021; 227 Darvishi (10.1016/j.rinp.2022.105802_b33) 2009; 58 Abdou (10.1016/j.rinp.2022.105802_b24) 2020; 5 Sirendaoreji (10.1016/j.rinp.2022.105802_b26) 2006; 356 Ye (10.1016/j.rinp.2022.105802_b6) 2011; 44 Zhao (10.1016/j.rinp.2022.105802_b10) 2021; 19 Seadawy (10.1016/j.rinp.2022.105802_b14) 2018; 9 Ma (10.1016/j.rinp.2022.105802_b29) 2008; 203 Habib (10.1016/j.rinp.2022.105802_b25) 2019; 4 Awan (10.1016/j.rinp.2022.105802_b35) 2021; 227 Biswas (10.1016/j.rinp.2022.105802_b40) 2018; 173 Yadong (10.1016/j.rinp.2022.105802_b3) 2008; 36 Awan (10.1016/j.rinp.2022.105802_b43) 2020 Khater (10.1016/j.rinp.2022.105802_b38) 2002; 14 Khater (10.1016/j.rinp.2022.105802_b8) 2022; 33 Khater (10.1016/j.rinp.2022.105802_b11) 2021; 35 Sheng (10.1016/j.rinp.2022.105802_b36) 2006; 30 Tascan (10.1016/j.rinp.2022.105802_b21) 2010; 19 Kudryashov (10.1016/j.rinp.2022.105802_b34) 2019; 185 Huang (10.1016/j.rinp.2022.105802_b2) 2004; 53 Darvishi (10.1016/j.rinp.2022.105802_b5) 2012; 1 Khater (10.1016/j.rinp.2022.105802_b9) 2021; 19 Gomez-Aguilar (10.1016/j.rinp.2022.105802_b18) 2021; 11 Soliman (10.1016/j.rinp.2022.105802_b16) 2008; 104 Sirendaoreji (10.1016/j.rinp.2022.105802_b28) 2004; 19 Younis (10.1016/j.rinp.2022.105802_b39) 2014; 249 Lu (10.1016/j.rinp.2022.105802_b31) 2019; 14 Darvishi (10.1016/j.rinp.2022.105802_b32) 2011; 28 Arbabi (10.1016/j.rinp.2022.105802_b7) 2012; 1 Eslami (10.1016/j.rinp.2022.105802_b19) 2013; 60 |
References_xml | – volume: 185 start-page: 626 year: 2019 end-page: 635 ident: b22 article-title: Optical solitons and other solutions to Biswas-Arshed equation using the extended simplest equation method publication-title: Optik – volume: 157 start-page: 525 year: 2018 end-page: 531 ident: b37 article-title: Resonant optical solitons with anti-cubic nonlinearity publication-title: Optik – volume: 356 start-page: 124 year: 2006 end-page: 130 ident: b26 article-title: A new auxiliary equation and exact traveling wave solutions of nonlinear equations publication-title: Phys Lett A – volume: 309 start-page: 387 year: 2003 end-page: 396 ident: b27 article-title: Auxiliary equation method for solving nonlinear partial differential equations publication-title: Phys Lett A – volume: 104 start-page: 367 year: 2008 end-page: 383 ident: b16 article-title: Extended improved tanh-function method for solving the nonlinear physical problems publication-title: Acta Appl Math – volume: 227 year: 2021 ident: b44 article-title: Optical soliton solutions for resonant Schrodinger equation with anti-cubic nonlinearity publication-title: Optik – volume: 60 start-page: 1627 year: 2013 end-page: 1636 ident: b19 article-title: Soliton solutions of the resonant nonlinear Schrodinger equation in optical fibers with time dependent coefficients by simplest equation approach publication-title: J Modern Opt – volume: 80 start-page: 267 year: 2018 end-page: 278 ident: b20 article-title: Analytical study of solitons to benjamin-bona-mahony-peregrine equation with power law nonlinearity by using three methods publication-title: Univ Politehn Bucharest Sci Bull-Series A-Appl Math Phys – volume: 184 start-page: 412 year: 2019 end-page: 420 ident: b23 article-title: Singular solitons of Biswas-Arshed equation by the modified simple equation method publication-title: Optik – volume: 58 start-page: 360 year: 2009 end-page: 368 ident: b33 article-title: A series solution of the foam drainage equation publication-title: Comput Math Appl – start-page: 1 year: 2020 end-page: 20 ident: b1 article-title: Exact solutions of (2+1)-dimensional Schrodinger’s hyperbolic equation using different techniques publication-title: Num Methods Part Differ Equ – volume: 1 start-page: 1 year: 2012 end-page: 7 ident: b5 article-title: He’s variational method for a (2+1)-dimensional soliton equation publication-title: Int J Appl Math Res – volume: 19 start-page: 147 year: 2004 end-page: 150 ident: b28 article-title: New exact travelling wave solutions for the Kawahara and modified Kawahara equations publication-title: Chaos Solitons Fractals – volume: 28 year: 2011 ident: b32 article-title: A modification of extended homoclinic test approach to solve the (3+1)-dimensional potential-YTSF equation publication-title: Chin Phys Lett – volume: 36 start-page: 762 year: 2008 end-page: 771 ident: b3 article-title: The extended hyperbolic function method and exact solutions of the long-short wave resonance equations publication-title: Chaos Solitons Fractals – volume: 53 start-page: 2434 year: 2004 end-page: 2438 ident: b2 article-title: Extended hyperbolic function method and new exact solitary wave solutions to Zakharov equations publication-title: Acta Phys Sin – volume: 203 start-page: 792 year: 2008 end-page: 798 ident: b29 article-title: New exact traveling wave solutions for the modified form of Degasperis-Procesi equation publication-title: Appl Math Comput – volume: 249 start-page: 81 year: 2014 end-page: 88 ident: b39 article-title: Traveling wave solutions to some time-space nonlinear evolution equations publication-title: Appl Math Comput – volume: 30 start-page: 1213 year: 2006 end-page: 1220 ident: b36 article-title: The periodic wave solutions for the (2+1)-dimensional Konopelchenko Dubrovsky equations publication-title: Chaos Solitons Fractals – volume: 19 start-page: 742 year: 2021 end-page: 752 ident: b10 article-title: Stable novel and accurate solitary wave solutions of an integrable equation: Qiao model publication-title: Open Phys – volume: 11 year: 2021 ident: b18 article-title: Optical solitons in birefringent fibers with quadratic-cubic nonlinearity using three integration architectures publication-title: AIP Adv – volume: 94 start-page: 29 year: 2020 ident: b42 article-title: Optical travelling wave solutions for the Biswas-Arshed model in Kerr and non-Kerr law media publication-title: Pramana J Phys – volume: 44 start-page: 1063 year: 2011 end-page: 1069 ident: b6 article-title: New explicit solutions for (2 + 1)-dimensional soliton equation publication-title: Chaos Solitons Fractals – volume: 227 year: 2021 ident: b35 article-title: Optical soliton solutions for resonant Schrdinger equation with anti-cubic nonlinearity publication-title: Optik – volume: 200 start-page: 110 year: 2008 end-page: 122 ident: b4 article-title: The extended hyperbolic functions method and new exact solutions to the Zakharov equations publication-title: Appl Math Comput – volume: 1 start-page: 232 year: 2012 end-page: 239 ident: b7 article-title: New periodic and soliton solutions of (2+1)- dimensional soliton equation publication-title: J Adv Comput Sci Technol – volume: 361 start-page: 115 year: 2007 end-page: 118 ident: b13 article-title: A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with higher-order nonlinear terms publication-title: Phys Lett A – volume: 92 start-page: 2077 year: 2018 end-page: 2092 ident: b30 article-title: Lump solution and its interaction to (3+1)-D potential-YTSF equation publication-title: Nonlinear Dynam – volume: 14 start-page: 513 year: 2002 end-page: 522 ident: b38 article-title: The tanh method, a simple transformation and exact analytical solutions for nonlinear reaction–diffusion equations publication-title: Chaos Solitons Fractals – volume: 4 start-page: 896 year: 2019 end-page: 909 ident: b25 article-title: The generalized Kudryashov method for new closed form traveling wave solutions to some NLEEs publication-title: AIMS Math – volume: 85 start-page: 68 year: 2021 end-page: 75 ident: b41 article-title: Multiple soliton solutions with chiral nonlinear Schrodinger’s equation in (2+1)-dimensions publication-title: Eur J Mech – volume: 35 year: 2021 ident: b11 article-title: Numerical simulations of Zakharov’s (ZK) non-dimensionalequation arising in Langmuir and ion-acoustic waves publication-title: Modern Phys Lett B – year: 2020 ident: b43 article-title: Singular and bright-singular combo optical solitons in birefringent fibers to the Biswas-Arshed equation, vol. 210 – volume: 19 start-page: 843 year: 2021 end-page: 852 ident: b9 article-title: Abundant stable novel solutions of fractional-order epidemic model along with saturated treatment and disease transmission publication-title: Open Phys – volume: 5 start-page: 7272 year: 2020 end-page: 7284 ident: b24 article-title: Explicit solutions to the Sharma-Tasso-Olver equation publication-title: AIMS Math – volume: 19 year: 2010 ident: b21 article-title: Applications of the first integral method to nonlinear evolution equations publication-title: Chin Phys B – volume: 127 start-page: 4222 year: 2016 end-page: 4245 ident: b15 article-title: Optical soliton solutions for Schrodinger type nonlinear evolution equations by the tan(f/2)-expansion method publication-title: Optik – volume: 14 year: 2019 ident: b31 article-title: New analytical wave structures for the (3+ 1)-dimensional Kadomtsev–Petviashvili and the generalized Boussinesq models and their applications publication-title: Results Phys – volume: 185 start-page: 665 year: 2019 end-page: 671 ident: b34 article-title: First integrals and general solution of the traveling wave reduction for Schrodingerequation with anti-cubic nonlinearity publication-title: Optik – volume: 277 start-page: 212 year: 2000 end-page: 218 ident: b17 article-title: Extended tanh-function method and its applications to nonlinear equations publication-title: Phys Lett A – volume: 173 start-page: 21 year: 2018 end-page: 31 ident: b40 article-title: Optical soliton solutions to Fokas-lenells equation using some different methods publication-title: Optik – volume: 33 start-page: 105 year: 2022 end-page: 116 ident: b8 article-title: Diverse soliton wave solutions for the nonlinear potential Kadomtsev–Petviashvili and Degasperis equations publication-title: Results Phys – volume: 35 year: 2021 ident: b12 article-title: Analytical simulations of the Fokas system; extension (2 + 1)-dimensional Schrodinger equation publication-title: Internat J Modern Phys B – volume: 9 start-page: 1631 year: 2018 end-page: 1634 ident: b14 article-title: The system of equations for the ion sound and Langmuir waves and its new exact solutions publication-title: Results Phys – volume: 19 start-page: 742 issue: 1 year: 2021 ident: 10.1016/j.rinp.2022.105802_b10 article-title: Stable novel and accurate solitary wave solutions of an integrable equation: Qiao model publication-title: Open Phys doi: 10.1515/phys-2021-0078 – volume: 104 start-page: 367 issue: 3 year: 2008 ident: 10.1016/j.rinp.2022.105802_b16 article-title: Extended improved tanh-function method for solving the nonlinear physical problems publication-title: Acta Appl Math doi: 10.1007/s10440-008-9262-y – volume: 19 start-page: 147 issue: 1 year: 2004 ident: 10.1016/j.rinp.2022.105802_b28 article-title: New exact travelling wave solutions for the Kawahara and modified Kawahara equations publication-title: Chaos Solitons Fractals doi: 10.1016/S0960-0779(03)00102-4 – volume: 28 issue: 4 year: 2011 ident: 10.1016/j.rinp.2022.105802_b32 article-title: A modification of extended homoclinic test approach to solve the (3+1)-dimensional potential-YTSF equation publication-title: Chin Phys Lett doi: 10.1088/0256-307X/28/4/040202 – start-page: 1 year: 2020 ident: 10.1016/j.rinp.2022.105802_b1 article-title: Exact solutions of (2+1)-dimensional Schrodinger’s hyperbolic equation using different techniques publication-title: Num Methods Part Differ Equ – volume: 94 start-page: 29 year: 2020 ident: 10.1016/j.rinp.2022.105802_b42 article-title: Optical travelling wave solutions for the Biswas-Arshed model in Kerr and non-Kerr law media publication-title: Pramana J Phys doi: 10.1007/s12043-019-1888-y – volume: 184 start-page: 412 year: 2019 ident: 10.1016/j.rinp.2022.105802_b23 article-title: Singular solitons of Biswas-Arshed equation by the modified simple equation method publication-title: Optik doi: 10.1016/j.ijleo.2019.04.045 – volume: 9 start-page: 1631 year: 2018 ident: 10.1016/j.rinp.2022.105802_b14 article-title: The system of equations for the ion sound and Langmuir waves and its new exact solutions publication-title: Results Phys doi: 10.1016/j.rinp.2018.04.064 – volume: 249 start-page: 81 issue: 15 year: 2014 ident: 10.1016/j.rinp.2022.105802_b39 article-title: Traveling wave solutions to some time-space nonlinear evolution equations publication-title: Appl Math Comput – volume: 203 start-page: 792 issue: 2 year: 2008 ident: 10.1016/j.rinp.2022.105802_b29 article-title: New exact traveling wave solutions for the modified form of Degasperis-Procesi equation publication-title: Appl Math Comput – volume: 157 start-page: 525 year: 2018 ident: 10.1016/j.rinp.2022.105802_b37 article-title: Resonant optical solitons with anti-cubic nonlinearity publication-title: Optik doi: 10.1016/j.ijleo.2017.11.125 – volume: 173 start-page: 21 year: 2018 ident: 10.1016/j.rinp.2022.105802_b40 article-title: Optical soliton solutions to Fokas-lenells equation using some different methods publication-title: Optik doi: 10.1016/j.ijleo.2018.07.098 – volume: 1 start-page: 232 issue: 4 year: 2012 ident: 10.1016/j.rinp.2022.105802_b7 article-title: New periodic and soliton solutions of (2+1)- dimensional soliton equation publication-title: J Adv Comput Sci Technol doi: 10.14419/jacst.v1i4.384 – volume: 11 issue: 2 year: 2021 ident: 10.1016/j.rinp.2022.105802_b18 article-title: Optical solitons in birefringent fibers with quadratic-cubic nonlinearity using three integration architectures publication-title: AIP Adv doi: 10.1063/5.0038038 – volume: 92 start-page: 2077 issue: 4 year: 2018 ident: 10.1016/j.rinp.2022.105802_b30 article-title: Lump solution and its interaction to (3+1)-D potential-YTSF equation publication-title: Nonlinear Dynam doi: 10.1007/s11071-018-4182-5 – volume: 44 start-page: 1063 year: 2011 ident: 10.1016/j.rinp.2022.105802_b6 article-title: New explicit solutions for (2 + 1)-dimensional soliton equation publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2011.08.011 – volume: 185 start-page: 626 year: 2019 ident: 10.1016/j.rinp.2022.105802_b22 article-title: Optical solitons and other solutions to Biswas-Arshed equation using the extended simplest equation method publication-title: Optik doi: 10.1016/j.ijleo.2019.03.112 – volume: 60 start-page: 1627 issue: 19 year: 2013 ident: 10.1016/j.rinp.2022.105802_b19 article-title: Soliton solutions of the resonant nonlinear Schrodinger equation in optical fibers with time dependent coefficients by simplest equation approach publication-title: J Modern Opt doi: 10.1080/09500340.2013.850777 – year: 2020 ident: 10.1016/j.rinp.2022.105802_b43 – volume: 227 year: 2021 ident: 10.1016/j.rinp.2022.105802_b44 article-title: Optical soliton solutions for resonant Schrodinger equation with anti-cubic nonlinearity publication-title: Optik doi: 10.1016/j.ijleo.2020.165496 – volume: 1 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.rinp.2022.105802_b5 article-title: He’s variational method for a (2+1)-dimensional soliton equation publication-title: Int J Appl Math Res doi: 10.14419/ijamr.v1i1.1 – volume: 19 start-page: 843 issue: 1 year: 2021 ident: 10.1016/j.rinp.2022.105802_b9 article-title: Abundant stable novel solutions of fractional-order epidemic model along with saturated treatment and disease transmission publication-title: Open Phys doi: 10.1515/phys-2021-0099 – volume: 361 start-page: 115 issue: 1–2 year: 2007 ident: 10.1016/j.rinp.2022.105802_b13 article-title: A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with higher-order nonlinear terms publication-title: Phys Lett A doi: 10.1016/j.physleta.2006.09.022 – volume: 127 start-page: 4222 issue: 10 year: 2016 ident: 10.1016/j.rinp.2022.105802_b15 article-title: Optical soliton solutions for Schrodinger type nonlinear evolution equations by the tan(f/2)-expansion method publication-title: Optik doi: 10.1016/j.ijleo.2016.01.078 – volume: 35 issue: 28 year: 2021 ident: 10.1016/j.rinp.2022.105802_b12 article-title: Analytical simulations of the Fokas system; extension (2 + 1)-dimensional Schrodinger equation publication-title: Internat J Modern Phys B doi: 10.1142/S0217979221502866 – volume: 53 start-page: 2434 issue: 8 year: 2004 ident: 10.1016/j.rinp.2022.105802_b2 article-title: Extended hyperbolic function method and new exact solitary wave solutions to Zakharov equations publication-title: Acta Phys Sin doi: 10.7498/aps.53.2434 – volume: 58 start-page: 360 issue: 2 year: 2009 ident: 10.1016/j.rinp.2022.105802_b33 article-title: A series solution of the foam drainage equation publication-title: Comput Math Appl doi: 10.1016/j.camwa.2009.04.007 – volume: 14 start-page: 513 issue: 3 year: 2002 ident: 10.1016/j.rinp.2022.105802_b38 article-title: The tanh method, a simple transformation and exact analytical solutions for nonlinear reaction–diffusion equations publication-title: Chaos Solitons Fractals doi: 10.1016/S0960-0779(01)00247-8 – volume: 35 issue: 31 year: 2021 ident: 10.1016/j.rinp.2022.105802_b11 article-title: Numerical simulations of Zakharov’s (ZK) non-dimensionalequation arising in Langmuir and ion-acoustic waves publication-title: Modern Phys Lett B doi: 10.1142/S0217984921504807 – volume: 14 year: 2019 ident: 10.1016/j.rinp.2022.105802_b31 article-title: New analytical wave structures for the (3+ 1)-dimensional Kadomtsev–Petviashvili and the generalized Boussinesq models and their applications publication-title: Results Phys doi: 10.1016/j.rinp.2019.102491 – volume: 5 start-page: 7272 issue: 6 year: 2020 ident: 10.1016/j.rinp.2022.105802_b24 article-title: Explicit solutions to the Sharma-Tasso-Olver equation publication-title: AIMS Math doi: 10.3934/math.2020465 – volume: 80 start-page: 267 issue: 4 year: 2018 ident: 10.1016/j.rinp.2022.105802_b20 article-title: Analytical study of solitons to benjamin-bona-mahony-peregrine equation with power law nonlinearity by using three methods publication-title: Univ Politehn Bucharest Sci Bull-Series A-Appl Math Phys – volume: 85 start-page: 68 year: 2021 ident: 10.1016/j.rinp.2022.105802_b41 article-title: Multiple soliton solutions with chiral nonlinear Schrodinger’s equation in (2+1)-dimensions publication-title: Eur J Mech doi: 10.1016/j.euromechflu.2020.07.014 – volume: 4 start-page: 896 issue: 3 year: 2019 ident: 10.1016/j.rinp.2022.105802_b25 article-title: The generalized Kudryashov method for new closed form traveling wave solutions to some NLEEs publication-title: AIMS Math doi: 10.3934/math.2019.3.896 – volume: 227 year: 2021 ident: 10.1016/j.rinp.2022.105802_b35 article-title: Optical soliton solutions for resonant Schrdinger equation with anti-cubic nonlinearity publication-title: Optik doi: 10.1016/j.ijleo.2020.165496 – volume: 277 start-page: 212 issue: 4–5 year: 2000 ident: 10.1016/j.rinp.2022.105802_b17 article-title: Extended tanh-function method and its applications to nonlinear equations publication-title: Phys Lett A doi: 10.1016/S0375-9601(00)00725-8 – volume: 36 start-page: 762 issue: 3 year: 2008 ident: 10.1016/j.rinp.2022.105802_b3 article-title: The extended hyperbolic function method and exact solutions of the long-short wave resonance equations publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2006.07.007 – volume: 356 start-page: 124 issue: 2 year: 2006 ident: 10.1016/j.rinp.2022.105802_b26 article-title: A new auxiliary equation and exact traveling wave solutions of nonlinear equations publication-title: Phys Lett A doi: 10.1016/j.physleta.2006.03.034 – volume: 309 start-page: 387 issue: 5–6 year: 2003 ident: 10.1016/j.rinp.2022.105802_b27 article-title: Auxiliary equation method for solving nonlinear partial differential equations publication-title: Phys Lett A doi: 10.1016/S0375-9601(03)00196-8 – volume: 185 start-page: 665 year: 2019 ident: 10.1016/j.rinp.2022.105802_b34 article-title: First integrals and general solution of the traveling wave reduction for Schrodingerequation with anti-cubic nonlinearity publication-title: Optik doi: 10.1016/j.ijleo.2019.03.167 – volume: 200 start-page: 110 issue: 1 year: 2008 ident: 10.1016/j.rinp.2022.105802_b4 article-title: The extended hyperbolic functions method and new exact solutions to the Zakharov equations publication-title: Appl Math Comput – volume: 33 start-page: 105 year: 2022 ident: 10.1016/j.rinp.2022.105802_b8 article-title: Diverse soliton wave solutions for the nonlinear potential Kadomtsev–Petviashvili and Degasperis equations publication-title: Results Phys doi: 10.1016/j.rinp.2021.105116 – volume: 30 start-page: 1213 issue: 5 year: 2006 ident: 10.1016/j.rinp.2022.105802_b36 article-title: The periodic wave solutions for the (2+1)-dimensional Konopelchenko Dubrovsky equations publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2005.08.201 – volume: 19 issue: 8 year: 2010 ident: 10.1016/j.rinp.2022.105802_b21 article-title: Applications of the first integral method to nonlinear evolution equations publication-title: Chin Phys B doi: 10.1088/1674-1056/19/8/080201 |
SSID | ssj0001645511 |
Score | 2.4793527 |
Snippet | By employing the extended hyperbolic function method (EHFM), we extract the exact solutions of the (2+1)-dimensional nonlinear soliton equation (SE). A soliton... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 105802 |
SubjectTerms | Extended hyperbolic function method Nonlinear Soliton equation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vcvCgLMW82qRHFUU8eFJYTyVPXJFFd9f_70zTLj3pxWtJJuXLkG8mTL4h5FzFSjpb2sLIZAtVOV84FXghOD7wkaWSsVX7fKoeXtTjpJwMWn1hTViWB87AXfna1K5yQsRgFbibFTqBFa658I6zgKcvcN4gmWpvVyoFoQBmW0KgTp-udfdiJhd3zaczFKsUAvvcmu5OpWelVrx_QE4DwrnfJltdpEiv8x_ukLU42yUbbcWmX-yR17vu-pq-QSo5d6jvS5GlEGmaG0NTiEgpRHj0QtAxvywCSvlnGQ46yxoZdk4XWAIHc-JXlv3eJy_3d8-3D0XXJ6HwirNlIYz1QgdfGm8ki8qZWFuTNKuidCFZpU0STMpQwqZoV1sdmIqplDElXlouD8g6LBoPCWUysspbCRsLmRaYCY4BowORKpOYdCPCe5wa34mIYy-Lj6avFntvENsGsW0ytiMyXs35zBIav46-QfhXI1H-uv0ATtF0TtH85RQjUvab13SRRI4QwNT0l8WP_mPxY7KJJnMh2glZX86_4ylELkt31jrpDxj36Rc priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEA6DIngRd1WcfUgOe1CkJZ2kO-nDsujiIAt6ckBPTZ46IqP2jLD777eqk9FZEA977CYP-CpJfRUqXxHyTYZaWFOZQotoCllbV1jpy4KX-MBHVFKEXu3zoj4by19X1dWALModZQBnb4Z2WE9q3N0f_X768wM2_PfXXK1uMkXtSc6xbK1GbclV8EwKN-p5pvv9nUstgSBgDMY5qvepRuV3NG8P84-v6iX9l1zWkhsabZKNzB_pcTL4BzII049krc_jdLMtcn2aL7XpLQSYnUXVX4q-C_GnqVw0BZ5KgffRfU4Py4PCo8B_Eueg06ScYTo6w8Q46BOekhj4NhmPTi9_nhW5ekLhZMnmBdfGceVdpZ0WLEirQ2N0VKwOwvpopNKRMyF8BaZStjHKMxliJUKMZWVKsUNWYNKwSygTgdXOCDA3xF8wjLcM_Dy4V6kjE3ZIygVOrcvS4ljh4r5d5JDdtYhti9i2CdshOXzp85iENd5tfYLwv7REUez-x0N30-Y91rpGN7a2nAdvJJxMhqsICw7WAXe2ZH5IqoXx2swvEm-AoSbvTP7pP_t9Juv4lTLSvpCVefccvgKFmdu9fl3-BdEB7YM priority: 102 providerName: Scholars Portal |
Title | Extended hyperbolic function method for the (2 +1)-dimensional nonlinear soliton equation |
URI | https://dx.doi.org/10.1016/j.rinp.2022.105802 https://doaj.org/article/c989b6b22eda4048a27f3521712cb10d |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxUxEA-lUPAi1g98WksOHpQSXr52kz3a0lIEvWjheVryqU_ktW5f___OJNnaXnrwsrAhk4TJMB9h5jeEvNepV951jlmVHdO9D8zrKJgUWOCjOq1SQfv82p9f6M-rbrVDTuZaGEyrbLq_6vSirdvIsnFzebVeL79JiF2UGYwsQV7pNKy0LUV8q-N_7yy9BqcA4y6cz5Cg1c7UNK9pvUHYSimx461tryuzfSow_vfM1D3Tc_aMPG0-I_1Uj7VPdtLmOdkruZvh-gX5cdoesukvCConj0i_FO0V8pzWFtEUfFMKvh79IOmR-MgigvpXQA66qWgZbqLXmAwHNOlvBQB_SS7OTr-fnLPWMYEFLfiWSeuCNDF0NljFk_Y2Dc5mw_ukfMxOG5slVyp2cD3GD85ErlPuVMpZdE6oV2QXNk2vCeUq8T44BVcMMRcsEz0H2w4mVdvMlV8QMfNpDA1OHLta_BnnvLHfI_J2RN6OlbcLcnRHc1XBNB6dfYzsv5uJQNhl4HL6OTZJGMNgB997KVN0GrSRkyaDkAkjZPCCxwXp5ssbH8gVLLV-ZPM3_0n3ljzBv5qFdkB2t9NNegduy9YflnD_sEgnfL9oewt6YuuJ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQXBJSK5ekDh6LKWr8SO0datdpC6YVW2p4svwKL0FLS5f8zEzulXHrg6njs6PNoHtb4G0Le6dyq4BvPrOo9022ILOgkmBT4wEc1WuWR7fOsXVzoj8tmuUUOp7cwWFZZbX-x6aO1riPziub8arWaf5GQuyjTGTkmedhp-B5EAwb7N5wsD_5etLQaogJMvFCAoUR9PFPqvIbVGnkrpcSWt7Zer0wOauTxv-Wnbvme48fkUQ0a6YfyX0_IVl4_JffH4s14vUMuj-pNNv0GWeUQkOqXosNC0GnpEU0hOKUQ7NE9SffFe5aQ1b8wctB1ocvwA73GajiQyb8KA_gzcnF8dH64YLVlAota8A2T1kdpUmxstIpnHWzuvO0Nb7MKqffa2F5ypVID52NC503iOveNyn0vGi_ULtmGTfNzQrnKvI1ewRlD0gXLpMDBuYNP1bbnKsyImHBysfKJY1uLH24qHPvuEFuH2LqC7Yzs38hcFTaNO2cfIPw3M5EJexz4OXx1VRVc7GwX2iBlTl6DOfLS9KBlwggZg-BpRprp8Nw_igVLre7Y_MV_yr0lDxbnn0_d6cnZp5fkIX4pJWmvyPZm-J1fQwyzCW9GHf0DQgDs2Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extended+hyperbolic+function+method+for+the+%282+%2B1%29-dimensional+nonlinear+soliton+equation&rft.jtitle=Results+in+physics&rft.au=Rehman%2C+Hamood+Ur&rft.au=Awan%2C+Aziz+Ullah&rft.au=Tag-ElDin%2C+ElSayed+M.&rft.au=Alhazmi%2C+Sharifah+E.&rft.date=2022-09-01&rft.pub=Elsevier+B.V&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=40&rft_id=info:doi/10.1016%2Fj.rinp.2022.105802&rft.externalDocID=S2211379722004612 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon |