Extended hyperbolic function method for the (2 +1)-dimensional nonlinear soliton equation

By employing the extended hyperbolic function method (EHFM), we extract the exact solutions of the (2+1)-dimensional nonlinear soliton equation (SE). A soliton equation is used for investigation of the dynamics of nonlinear waves in plasma physics and fluid dynamics. A various new techniques for fin...

Full description

Saved in:
Bibliographic Details
Published inResults in physics Vol. 40; p. 105802
Main Authors Rehman, Hamood Ur, Awan, Aziz Ullah, Tag-ElDin, ElSayed M., Alhazmi, Sharifah E., Yassen, Mansour F., Haider, Rizwan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract By employing the extended hyperbolic function method (EHFM), we extract the exact solutions of the (2+1)-dimensional nonlinear soliton equation (SE). A soliton equation is used for investigation of the dynamics of nonlinear waves in plasma physics and fluid dynamics. A various new techniques for finding exact solutions of the (2+1)-dimensional nonlinear SE are satisfactorily acquired with the help of EHFM. The EHFM presents various types of new solutions in the form of dark, singular, periodic, bright solitons and some rational function solutions. In addition, for the physical characterization of the acquired solutions of (2+1)-dimensional SE, some 2-dim and 3-dim plots are drawn. The attained results are novel for the considered equation, and results reveal that the method is concise, direct and competent which can be assembled in other complex phenomena. •By employing the extended hyperbolic function method, the exact solutions of the (2 +1)-dimensional nonlinear soliton equation are obtained.•A soliton equation is used for the investigation of the dynamics of nonlinear waves in plasma physics and fluid dynamics.•For the physical characterization of the acquired solutions of (2+1)-dimensional SE, some 2-dim and 3-dim plots are drawn.•The attained results are novel for the considered equation, and results reveal that the method is concise, direct, and competent which can be assembled in other complex phenomena.
AbstractList By employing the extended hyperbolic function method (EHFM), we extract the exact solutions of the (2+1)-dimensional nonlinear soliton equation (SE). A soliton equation is used for investigation of the dynamics of nonlinear waves in plasma physics and fluid dynamics. A various new techniques for finding exact solutions of the (2+1)-dimensional nonlinear SE are satisfactorily acquired with the help of EHFM. The EHFM presents various types of new solutions in the form of dark, singular, periodic, bright solitons and some rational function solutions. In addition, for the physical characterization of the acquired solutions of (2+1)-dimensional SE, some 2-dim and 3-dim plots are drawn. The attained results are novel for the considered equation, and results reveal that the method is concise, direct and competent which can be assembled in other complex phenomena.
By employing the extended hyperbolic function method (EHFM), we extract the exact solutions of the (2+1)-dimensional nonlinear soliton equation (SE). A soliton equation is used for investigation of the dynamics of nonlinear waves in plasma physics and fluid dynamics. A various new techniques for finding exact solutions of the (2+1)-dimensional nonlinear SE are satisfactorily acquired with the help of EHFM. The EHFM presents various types of new solutions in the form of dark, singular, periodic, bright solitons and some rational function solutions. In addition, for the physical characterization of the acquired solutions of (2+1)-dimensional SE, some 2-dim and 3-dim plots are drawn. The attained results are novel for the considered equation, and results reveal that the method is concise, direct and competent which can be assembled in other complex phenomena. •By employing the extended hyperbolic function method, the exact solutions of the (2 +1)-dimensional nonlinear soliton equation are obtained.•A soliton equation is used for the investigation of the dynamics of nonlinear waves in plasma physics and fluid dynamics.•For the physical characterization of the acquired solutions of (2+1)-dimensional SE, some 2-dim and 3-dim plots are drawn.•The attained results are novel for the considered equation, and results reveal that the method is concise, direct, and competent which can be assembled in other complex phenomena.
ArticleNumber 105802
Author Yassen, Mansour F.
Awan, Aziz Ullah
Tag-ElDin, ElSayed M.
Haider, Rizwan
Alhazmi, Sharifah E.
Rehman, Hamood Ur
Author_xml – sequence: 1
  givenname: Hamood Ur
  surname: Rehman
  fullname: Rehman, Hamood Ur
  organization: Department of Mathematics, University of Okara, Okara, Pakistan
– sequence: 2
  givenname: Aziz Ullah
  orcidid: 0000-0003-3184-3652
  surname: Awan
  fullname: Awan, Aziz Ullah
  email: aziz.math@pu.edu.pk
  organization: Department of Mathematics, University of the Punjab, Lahore 54590, Pakistan
– sequence: 3
  givenname: ElSayed M.
  surname: Tag-ElDin
  fullname: Tag-ElDin, ElSayed M.
  organization: Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11835, Egypt
– sequence: 4
  givenname: Sharifah E.
  surname: Alhazmi
  fullname: Alhazmi, Sharifah E.
  email: sehazmi@uqu.edu.sa
  organization: Department of Mathematics, Al-Qunfudah University College, Umm Al-Qura University, Mecca, Saudi Arabia
– sequence: 5
  givenname: Mansour F.
  surname: Yassen
  fullname: Yassen, Mansour F.
  organization: Department of Mathematics, College of Science and Humanities in Al-Aflaj, Prince Sattam Bin Abdulaziz University, Al-Aflaj 11912, Saudi Arabia
– sequence: 6
  givenname: Rizwan
  surname: Haider
  fullname: Haider, Rizwan
  organization: Department of Mathematics, University of Okara, Okara, Pakistan
BookMark eNp9kMFqGzEQhkVwIG6SF8hJx5ayjqRdWVropZgkDRhySQ45iVlpVMusJVerlObtK8ellB5ymmGG72fm-0BmMUUk5IqzBWd8eb1d5BD3C8GEqAOpmTghcyE4b1rVq9k__Rm5nKYtY5XqpOR8Tp5vfhWMDh3dvO4xD2kMlvqXaEtIke6wbJKjPmVaNkg_CvqZf2pc2GGc6h5GWk8ZQ0TIdKpoqQz-eIEDfEFOPYwTXv6p5-Tp9uZx9a1ZP9zdr76uG9txVhqhwQrlrNRWtwy7QWMP2iu2xHZwHjqlvWBt6yRIUEMPyrEOvWzRey6Bt-fk_pjrEmzNPocd5FeTIJi3QcrfDeQS7IjG9rofloMQ6KBjnQahfCsFV1zYgTNXs8Qxy-Y0TRn93zzOzMG12ZqDa3NwbY6uK6T_g2wobwpKhjC-j345olgF_QyYzWQDRosuZLSlfhDew38D3bOckw
CitedBy_id crossref_primary_10_1007_s12043_024_02767_6
crossref_primary_10_1186_s13661_023_01792_5
crossref_primary_10_1007_s11082_023_05850_1
crossref_primary_10_3390_sym15030650
crossref_primary_10_1088_1402_4896_ad1a32
crossref_primary_10_1016_j_rinp_2023_107160
crossref_primary_10_4236_am_2024_158033
crossref_primary_10_1007_s11082_024_07244_3
crossref_primary_10_1007_s10773_024_05768_8
crossref_primary_10_1016_j_asej_2023_102503
crossref_primary_10_1016_j_aej_2025_02_106
crossref_primary_10_1016_j_rinp_2024_107648
crossref_primary_10_1007_s11082_023_05411_6
crossref_primary_10_1016_j_rinp_2023_106632
crossref_primary_10_1016_j_asej_2023_102267
crossref_primary_10_1016_j_rinp_2023_107114
crossref_primary_10_1007_s40819_023_01660_x
crossref_primary_10_1016_j_rinp_2024_107370
crossref_primary_10_1002_mma_9860
crossref_primary_10_1016_j_heliyon_2024_e34416
crossref_primary_10_1016_j_rinp_2022_106049
crossref_primary_10_1016_j_asej_2023_102413
crossref_primary_10_1007_s12596_023_01403_7
crossref_primary_10_1016_j_rinp_2023_106787
crossref_primary_10_1016_j_rinp_2024_107467
crossref_primary_10_1016_j_rinp_2023_106690
crossref_primary_10_1088_1402_4896_ad9a12
crossref_primary_10_1007_s42452_024_05759_8
crossref_primary_10_3390_su142113875
crossref_primary_10_1142_S0217984923500896
crossref_primary_10_1016_j_asej_2024_103090
crossref_primary_10_1016_j_rinp_2022_105969
crossref_primary_10_1016_j_asej_2024_102808
crossref_primary_10_1007_s10773_025_05935_5
crossref_primary_10_3390_sym15030626
crossref_primary_10_21833_ijaas_2024_08_010
crossref_primary_10_1016_j_padiff_2023_100537
crossref_primary_10_1007_s12210_025_01302_y
crossref_primary_10_3390_universe8110592
crossref_primary_10_1016_j_rineng_2024_101861
crossref_primary_10_1016_j_padiff_2024_100633
crossref_primary_10_3934_math_20241203
crossref_primary_10_1016_j_ijleo_2023_171028
crossref_primary_10_1016_j_ijleo_2023_171305
crossref_primary_10_1007_s11082_023_06058_z
crossref_primary_10_1007_s11082_024_06432_5
crossref_primary_10_1016_j_rinp_2023_106769
crossref_primary_10_1016_j_rinp_2023_106521
crossref_primary_10_3390_math12030383
crossref_primary_10_1016_j_rinp_2022_105898
Cites_doi 10.1515/phys-2021-0078
10.1007/s10440-008-9262-y
10.1016/S0960-0779(03)00102-4
10.1088/0256-307X/28/4/040202
10.1007/s12043-019-1888-y
10.1016/j.ijleo.2019.04.045
10.1016/j.rinp.2018.04.064
10.1016/j.ijleo.2017.11.125
10.1016/j.ijleo.2018.07.098
10.14419/jacst.v1i4.384
10.1063/5.0038038
10.1007/s11071-018-4182-5
10.1016/j.chaos.2011.08.011
10.1016/j.ijleo.2019.03.112
10.1080/09500340.2013.850777
10.1016/j.ijleo.2020.165496
10.14419/ijamr.v1i1.1
10.1515/phys-2021-0099
10.1016/j.physleta.2006.09.022
10.1016/j.ijleo.2016.01.078
10.1142/S0217979221502866
10.7498/aps.53.2434
10.1016/j.camwa.2009.04.007
10.1016/S0960-0779(01)00247-8
10.1142/S0217984921504807
10.1016/j.rinp.2019.102491
10.3934/math.2020465
10.1016/j.euromechflu.2020.07.014
10.3934/math.2019.3.896
10.1016/S0375-9601(00)00725-8
10.1016/j.chaos.2006.07.007
10.1016/j.physleta.2006.03.034
10.1016/S0375-9601(03)00196-8
10.1016/j.ijleo.2019.03.167
10.1016/j.rinp.2021.105116
10.1016/j.chaos.2005.08.201
10.1088/1674-1056/19/8/080201
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rinp.2022.105802
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2211-3797
ExternalDocumentID oai_doaj_org_article_c989b6b22eda4048a27f3521712cb10d
10_1016_j_rinp_2022_105802
S2211379722004612
GroupedDBID --K
0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
SES
SSZ
XH2
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c410t-28ac27dc58c830e4b8e9a8f706e3bdfa478f2033d5a5a7b9a7d04ef53eff15a13
IEDL.DBID IXB
ISSN 2211-3797
IngestDate Wed Aug 27 01:10:36 EDT 2025
Thu Apr 24 23:07:40 EDT 2025
Tue Jul 01 02:27:45 EDT 2025
Tue Jul 25 20:55:47 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Nonlinear
Soliton equation
Extended hyperbolic function method
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-28ac27dc58c830e4b8e9a8f706e3bdfa478f2033d5a5a7b9a7d04ef53eff15a13
ORCID 0000-0003-3184-3652
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211379722004612
ParticipantIDs doaj_primary_oai_doaj_org_article_c989b6b22eda4048a27f3521712cb10d
crossref_primary_10_1016_j_rinp_2022_105802
crossref_citationtrail_10_1016_j_rinp_2022_105802
elsevier_sciencedirect_doi_10_1016_j_rinp_2022_105802
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Results in physics
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Khater, Lu (b8) 2022; 33
Zhao, Lu, Salama, Khater (b10) 2021; 19
Lu, Tariq, Osman, Baleanu, Younis, Khater (b31) 2019; 14
Gomez-Aguilar, Osman, Raza, Zubair, Arshed, Ghoneim (b18) 2021; 11
Shang, Huang, Yuan (b4) 2008; 200
Awan, Rehman (b43) 2020
Khater (b12) 2021; 35
Khater, Malfliet, Callebaut, Kamel (b38) 2002; 14
Darvishi, Najafi (b32) 2011; 28
Chen (b23) 2019; 184
Awan, Rehman, Tahir, Ramzan (b35) 2021; 227
Biswas, Mohamad Jawad, Zhou (b37) 2018; 157
Biswas, Yildirim, Yasar, Zhou, Moshokoa, Belic (b40) 2018; 173
Awan, Tahir, Abro (b41) 2021; 85
Sirendaoreji (b26) 2006; 356
Ye, Zhang (b6) 2011; 44
Seadawy, Kumar, Hosseini, Samadani (b14) 2018; 9
Sirendaoreji (b28) 2004; 19
Soliman (b16) 2008; 104
Kudryashov (b34) 2019; 185
Tahir, Awan (b42) 2020; 94
Huang, Zhang (b2) 2004; 53
Osman, Rezazadeh, Eslami, Neirameh, Mirzazadeh (b20) 2018; 80
Eslami, Mirzazadeh, Biswas (b19) 2013; 60
Arbabi, Najafi, Najafi (b7) 2012; 1
Fan (b17) 2000; 277
Awan, Ramzan (b44) 2021; 227
Darvishi, Khani (b33) 2009; 58
Sirendaoreji, Sun (b27) 2003; 309
Khater, Lu, Salama (b9) 2021; 19
Foroutan, Manafian, Ranjbaran (b30) 2018; 92
Sheng (b36) 2006; 30
Manafian (b15) 2016; 127
Zayed, Shohib (b22) 2019; 185
Yadong (b3) 2008; 36
Tascan, Bekir (b21) 2010; 19
Younis, Rehman, Iftikhar (b39) 2014; 249
Khater (b11) 2021; 35
Ma, Yu, Ge (b29) 2008; 203
Li, Wang (b13) 2007; 361
Habib, Shahadat Ali, Mamun Miah, Ali Akbar (b25) 2019; 4
Rehman, Ullah, Asjad, Akgul (b1) 2020
Darvishi, Najafi (b5) 2012; 1
Abdou, Ouahid, Owyed, Abdel-Baset, Inc, Akinlar (b24) 2020; 5
Manafian (10.1016/j.rinp.2022.105802_b15) 2016; 127
Zayed (10.1016/j.rinp.2022.105802_b22) 2019; 185
Sirendaoreji (10.1016/j.rinp.2022.105802_b27) 2003; 309
Foroutan (10.1016/j.rinp.2022.105802_b30) 2018; 92
Khater (10.1016/j.rinp.2022.105802_b12) 2021; 35
Rehman (10.1016/j.rinp.2022.105802_b1) 2020
Biswas (10.1016/j.rinp.2022.105802_b37) 2018; 157
Osman (10.1016/j.rinp.2022.105802_b20) 2018; 80
Shang (10.1016/j.rinp.2022.105802_b4) 2008; 200
Li (10.1016/j.rinp.2022.105802_b13) 2007; 361
Fan (10.1016/j.rinp.2022.105802_b17) 2000; 277
Tahir (10.1016/j.rinp.2022.105802_b42) 2020; 94
Chen (10.1016/j.rinp.2022.105802_b23) 2019; 184
Awan (10.1016/j.rinp.2022.105802_b41) 2021; 85
Awan (10.1016/j.rinp.2022.105802_b44) 2021; 227
Darvishi (10.1016/j.rinp.2022.105802_b33) 2009; 58
Abdou (10.1016/j.rinp.2022.105802_b24) 2020; 5
Sirendaoreji (10.1016/j.rinp.2022.105802_b26) 2006; 356
Ye (10.1016/j.rinp.2022.105802_b6) 2011; 44
Zhao (10.1016/j.rinp.2022.105802_b10) 2021; 19
Seadawy (10.1016/j.rinp.2022.105802_b14) 2018; 9
Ma (10.1016/j.rinp.2022.105802_b29) 2008; 203
Habib (10.1016/j.rinp.2022.105802_b25) 2019; 4
Awan (10.1016/j.rinp.2022.105802_b35) 2021; 227
Biswas (10.1016/j.rinp.2022.105802_b40) 2018; 173
Yadong (10.1016/j.rinp.2022.105802_b3) 2008; 36
Awan (10.1016/j.rinp.2022.105802_b43) 2020
Khater (10.1016/j.rinp.2022.105802_b38) 2002; 14
Khater (10.1016/j.rinp.2022.105802_b8) 2022; 33
Khater (10.1016/j.rinp.2022.105802_b11) 2021; 35
Sheng (10.1016/j.rinp.2022.105802_b36) 2006; 30
Tascan (10.1016/j.rinp.2022.105802_b21) 2010; 19
Kudryashov (10.1016/j.rinp.2022.105802_b34) 2019; 185
Huang (10.1016/j.rinp.2022.105802_b2) 2004; 53
Darvishi (10.1016/j.rinp.2022.105802_b5) 2012; 1
Khater (10.1016/j.rinp.2022.105802_b9) 2021; 19
Gomez-Aguilar (10.1016/j.rinp.2022.105802_b18) 2021; 11
Soliman (10.1016/j.rinp.2022.105802_b16) 2008; 104
Sirendaoreji (10.1016/j.rinp.2022.105802_b28) 2004; 19
Younis (10.1016/j.rinp.2022.105802_b39) 2014; 249
Lu (10.1016/j.rinp.2022.105802_b31) 2019; 14
Darvishi (10.1016/j.rinp.2022.105802_b32) 2011; 28
Arbabi (10.1016/j.rinp.2022.105802_b7) 2012; 1
Eslami (10.1016/j.rinp.2022.105802_b19) 2013; 60
References_xml – volume: 185
  start-page: 626
  year: 2019
  end-page: 635
  ident: b22
  article-title: Optical solitons and other solutions to Biswas-Arshed equation using the extended simplest equation method
  publication-title: Optik
– volume: 157
  start-page: 525
  year: 2018
  end-page: 531
  ident: b37
  article-title: Resonant optical solitons with anti-cubic nonlinearity
  publication-title: Optik
– volume: 356
  start-page: 124
  year: 2006
  end-page: 130
  ident: b26
  article-title: A new auxiliary equation and exact traveling wave solutions of nonlinear equations
  publication-title: Phys Lett A
– volume: 309
  start-page: 387
  year: 2003
  end-page: 396
  ident: b27
  article-title: Auxiliary equation method for solving nonlinear partial differential equations
  publication-title: Phys Lett A
– volume: 104
  start-page: 367
  year: 2008
  end-page: 383
  ident: b16
  article-title: Extended improved tanh-function method for solving the nonlinear physical problems
  publication-title: Acta Appl Math
– volume: 227
  year: 2021
  ident: b44
  article-title: Optical soliton solutions for resonant Schrodinger equation with anti-cubic nonlinearity
  publication-title: Optik
– volume: 60
  start-page: 1627
  year: 2013
  end-page: 1636
  ident: b19
  article-title: Soliton solutions of the resonant nonlinear Schrodinger equation in optical fibers with time dependent coefficients by simplest equation approach
  publication-title: J Modern Opt
– volume: 80
  start-page: 267
  year: 2018
  end-page: 278
  ident: b20
  article-title: Analytical study of solitons to benjamin-bona-mahony-peregrine equation with power law nonlinearity by using three methods
  publication-title: Univ Politehn Bucharest Sci Bull-Series A-Appl Math Phys
– volume: 184
  start-page: 412
  year: 2019
  end-page: 420
  ident: b23
  article-title: Singular solitons of Biswas-Arshed equation by the modified simple equation method
  publication-title: Optik
– volume: 58
  start-page: 360
  year: 2009
  end-page: 368
  ident: b33
  article-title: A series solution of the foam drainage equation
  publication-title: Comput Math Appl
– start-page: 1
  year: 2020
  end-page: 20
  ident: b1
  article-title: Exact solutions of (2+1)-dimensional Schrodinger’s hyperbolic equation using different techniques
  publication-title: Num Methods Part Differ Equ
– volume: 1
  start-page: 1
  year: 2012
  end-page: 7
  ident: b5
  article-title: He’s variational method for a (2+1)-dimensional soliton equation
  publication-title: Int J Appl Math Res
– volume: 19
  start-page: 147
  year: 2004
  end-page: 150
  ident: b28
  article-title: New exact travelling wave solutions for the Kawahara and modified Kawahara equations
  publication-title: Chaos Solitons Fractals
– volume: 28
  year: 2011
  ident: b32
  article-title: A modification of extended homoclinic test approach to solve the (3+1)-dimensional potential-YTSF equation
  publication-title: Chin Phys Lett
– volume: 36
  start-page: 762
  year: 2008
  end-page: 771
  ident: b3
  article-title: The extended hyperbolic function method and exact solutions of the long-short wave resonance equations
  publication-title: Chaos Solitons Fractals
– volume: 53
  start-page: 2434
  year: 2004
  end-page: 2438
  ident: b2
  article-title: Extended hyperbolic function method and new exact solitary wave solutions to Zakharov equations
  publication-title: Acta Phys Sin
– volume: 203
  start-page: 792
  year: 2008
  end-page: 798
  ident: b29
  article-title: New exact traveling wave solutions for the modified form of Degasperis-Procesi equation
  publication-title: Appl Math Comput
– volume: 249
  start-page: 81
  year: 2014
  end-page: 88
  ident: b39
  article-title: Traveling wave solutions to some time-space nonlinear evolution equations
  publication-title: Appl Math Comput
– volume: 30
  start-page: 1213
  year: 2006
  end-page: 1220
  ident: b36
  article-title: The periodic wave solutions for the (2+1)-dimensional Konopelchenko Dubrovsky equations
  publication-title: Chaos Solitons Fractals
– volume: 19
  start-page: 742
  year: 2021
  end-page: 752
  ident: b10
  article-title: Stable novel and accurate solitary wave solutions of an integrable equation: Qiao model
  publication-title: Open Phys
– volume: 11
  year: 2021
  ident: b18
  article-title: Optical solitons in birefringent fibers with quadratic-cubic nonlinearity using three integration architectures
  publication-title: AIP Adv
– volume: 94
  start-page: 29
  year: 2020
  ident: b42
  article-title: Optical travelling wave solutions for the Biswas-Arshed model in Kerr and non-Kerr law media
  publication-title: Pramana J Phys
– volume: 44
  start-page: 1063
  year: 2011
  end-page: 1069
  ident: b6
  article-title: New explicit solutions for (2 + 1)-dimensional soliton equation
  publication-title: Chaos Solitons Fractals
– volume: 227
  year: 2021
  ident: b35
  article-title: Optical soliton solutions for resonant Schrdinger equation with anti-cubic nonlinearity
  publication-title: Optik
– volume: 200
  start-page: 110
  year: 2008
  end-page: 122
  ident: b4
  article-title: The extended hyperbolic functions method and new exact solutions to the Zakharov equations
  publication-title: Appl Math Comput
– volume: 1
  start-page: 232
  year: 2012
  end-page: 239
  ident: b7
  article-title: New periodic and soliton solutions of (2+1)- dimensional soliton equation
  publication-title: J Adv Comput Sci Technol
– volume: 361
  start-page: 115
  year: 2007
  end-page: 118
  ident: b13
  article-title: A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with higher-order nonlinear terms
  publication-title: Phys Lett A
– volume: 92
  start-page: 2077
  year: 2018
  end-page: 2092
  ident: b30
  article-title: Lump solution and its interaction to (3+1)-D potential-YTSF equation
  publication-title: Nonlinear Dynam
– volume: 14
  start-page: 513
  year: 2002
  end-page: 522
  ident: b38
  article-title: The tanh method, a simple transformation and exact analytical solutions for nonlinear reaction–diffusion equations
  publication-title: Chaos Solitons Fractals
– volume: 4
  start-page: 896
  year: 2019
  end-page: 909
  ident: b25
  article-title: The generalized Kudryashov method for new closed form traveling wave solutions to some NLEEs
  publication-title: AIMS Math
– volume: 85
  start-page: 68
  year: 2021
  end-page: 75
  ident: b41
  article-title: Multiple soliton solutions with chiral nonlinear Schrodinger’s equation in (2+1)-dimensions
  publication-title: Eur J Mech
– volume: 35
  year: 2021
  ident: b11
  article-title: Numerical simulations of Zakharov’s (ZK) non-dimensionalequation arising in Langmuir and ion-acoustic waves
  publication-title: Modern Phys Lett B
– year: 2020
  ident: b43
  article-title: Singular and bright-singular combo optical solitons in birefringent fibers to the Biswas-Arshed equation, vol. 210
– volume: 19
  start-page: 843
  year: 2021
  end-page: 852
  ident: b9
  article-title: Abundant stable novel solutions of fractional-order epidemic model along with saturated treatment and disease transmission
  publication-title: Open Phys
– volume: 5
  start-page: 7272
  year: 2020
  end-page: 7284
  ident: b24
  article-title: Explicit solutions to the Sharma-Tasso-Olver equation
  publication-title: AIMS Math
– volume: 19
  year: 2010
  ident: b21
  article-title: Applications of the first integral method to nonlinear evolution equations
  publication-title: Chin Phys B
– volume: 127
  start-page: 4222
  year: 2016
  end-page: 4245
  ident: b15
  article-title: Optical soliton solutions for Schrodinger type nonlinear evolution equations by the tan(f/2)-expansion method
  publication-title: Optik
– volume: 14
  year: 2019
  ident: b31
  article-title: New analytical wave structures for the (3+ 1)-dimensional Kadomtsev–Petviashvili and the generalized Boussinesq models and their applications
  publication-title: Results Phys
– volume: 185
  start-page: 665
  year: 2019
  end-page: 671
  ident: b34
  article-title: First integrals and general solution of the traveling wave reduction for Schrodingerequation with anti-cubic nonlinearity
  publication-title: Optik
– volume: 277
  start-page: 212
  year: 2000
  end-page: 218
  ident: b17
  article-title: Extended tanh-function method and its applications to nonlinear equations
  publication-title: Phys Lett A
– volume: 173
  start-page: 21
  year: 2018
  end-page: 31
  ident: b40
  article-title: Optical soliton solutions to Fokas-lenells equation using some different methods
  publication-title: Optik
– volume: 33
  start-page: 105
  year: 2022
  end-page: 116
  ident: b8
  article-title: Diverse soliton wave solutions for the nonlinear potential Kadomtsev–Petviashvili and Degasperis equations
  publication-title: Results Phys
– volume: 35
  year: 2021
  ident: b12
  article-title: Analytical simulations of the Fokas system; extension (2 + 1)-dimensional Schrodinger equation
  publication-title: Internat J Modern Phys B
– volume: 9
  start-page: 1631
  year: 2018
  end-page: 1634
  ident: b14
  article-title: The system of equations for the ion sound and Langmuir waves and its new exact solutions
  publication-title: Results Phys
– volume: 19
  start-page: 742
  issue: 1
  year: 2021
  ident: 10.1016/j.rinp.2022.105802_b10
  article-title: Stable novel and accurate solitary wave solutions of an integrable equation: Qiao model
  publication-title: Open Phys
  doi: 10.1515/phys-2021-0078
– volume: 104
  start-page: 367
  issue: 3
  year: 2008
  ident: 10.1016/j.rinp.2022.105802_b16
  article-title: Extended improved tanh-function method for solving the nonlinear physical problems
  publication-title: Acta Appl Math
  doi: 10.1007/s10440-008-9262-y
– volume: 19
  start-page: 147
  issue: 1
  year: 2004
  ident: 10.1016/j.rinp.2022.105802_b28
  article-title: New exact travelling wave solutions for the Kawahara and modified Kawahara equations
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/S0960-0779(03)00102-4
– volume: 28
  issue: 4
  year: 2011
  ident: 10.1016/j.rinp.2022.105802_b32
  article-title: A modification of extended homoclinic test approach to solve the (3+1)-dimensional potential-YTSF equation
  publication-title: Chin Phys Lett
  doi: 10.1088/0256-307X/28/4/040202
– start-page: 1
  year: 2020
  ident: 10.1016/j.rinp.2022.105802_b1
  article-title: Exact solutions of (2+1)-dimensional Schrodinger’s hyperbolic equation using different techniques
  publication-title: Num Methods Part Differ Equ
– volume: 94
  start-page: 29
  year: 2020
  ident: 10.1016/j.rinp.2022.105802_b42
  article-title: Optical travelling wave solutions for the Biswas-Arshed model in Kerr and non-Kerr law media
  publication-title: Pramana J Phys
  doi: 10.1007/s12043-019-1888-y
– volume: 184
  start-page: 412
  year: 2019
  ident: 10.1016/j.rinp.2022.105802_b23
  article-title: Singular solitons of Biswas-Arshed equation by the modified simple equation method
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.04.045
– volume: 9
  start-page: 1631
  year: 2018
  ident: 10.1016/j.rinp.2022.105802_b14
  article-title: The system of equations for the ion sound and Langmuir waves and its new exact solutions
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2018.04.064
– volume: 249
  start-page: 81
  issue: 15
  year: 2014
  ident: 10.1016/j.rinp.2022.105802_b39
  article-title: Traveling wave solutions to some time-space nonlinear evolution equations
  publication-title: Appl Math Comput
– volume: 203
  start-page: 792
  issue: 2
  year: 2008
  ident: 10.1016/j.rinp.2022.105802_b29
  article-title: New exact traveling wave solutions for the modified form of Degasperis-Procesi equation
  publication-title: Appl Math Comput
– volume: 157
  start-page: 525
  year: 2018
  ident: 10.1016/j.rinp.2022.105802_b37
  article-title: Resonant optical solitons with anti-cubic nonlinearity
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.11.125
– volume: 173
  start-page: 21
  year: 2018
  ident: 10.1016/j.rinp.2022.105802_b40
  article-title: Optical soliton solutions to Fokas-lenells equation using some different methods
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.07.098
– volume: 1
  start-page: 232
  issue: 4
  year: 2012
  ident: 10.1016/j.rinp.2022.105802_b7
  article-title: New periodic and soliton solutions of (2+1)- dimensional soliton equation
  publication-title: J Adv Comput Sci Technol
  doi: 10.14419/jacst.v1i4.384
– volume: 11
  issue: 2
  year: 2021
  ident: 10.1016/j.rinp.2022.105802_b18
  article-title: Optical solitons in birefringent fibers with quadratic-cubic nonlinearity using three integration architectures
  publication-title: AIP Adv
  doi: 10.1063/5.0038038
– volume: 92
  start-page: 2077
  issue: 4
  year: 2018
  ident: 10.1016/j.rinp.2022.105802_b30
  article-title: Lump solution and its interaction to (3+1)-D potential-YTSF equation
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-018-4182-5
– volume: 44
  start-page: 1063
  year: 2011
  ident: 10.1016/j.rinp.2022.105802_b6
  article-title: New explicit solutions for (2 + 1)-dimensional soliton equation
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2011.08.011
– volume: 185
  start-page: 626
  year: 2019
  ident: 10.1016/j.rinp.2022.105802_b22
  article-title: Optical solitons and other solutions to Biswas-Arshed equation using the extended simplest equation method
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.03.112
– volume: 60
  start-page: 1627
  issue: 19
  year: 2013
  ident: 10.1016/j.rinp.2022.105802_b19
  article-title: Soliton solutions of the resonant nonlinear Schrodinger equation in optical fibers with time dependent coefficients by simplest equation approach
  publication-title: J Modern Opt
  doi: 10.1080/09500340.2013.850777
– year: 2020
  ident: 10.1016/j.rinp.2022.105802_b43
– volume: 227
  year: 2021
  ident: 10.1016/j.rinp.2022.105802_b44
  article-title: Optical soliton solutions for resonant Schrodinger equation with anti-cubic nonlinearity
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.165496
– volume: 1
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.rinp.2022.105802_b5
  article-title: He’s variational method for a (2+1)-dimensional soliton equation
  publication-title: Int J Appl Math Res
  doi: 10.14419/ijamr.v1i1.1
– volume: 19
  start-page: 843
  issue: 1
  year: 2021
  ident: 10.1016/j.rinp.2022.105802_b9
  article-title: Abundant stable novel solutions of fractional-order epidemic model along with saturated treatment and disease transmission
  publication-title: Open Phys
  doi: 10.1515/phys-2021-0099
– volume: 361
  start-page: 115
  issue: 1–2
  year: 2007
  ident: 10.1016/j.rinp.2022.105802_b13
  article-title: A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with higher-order nonlinear terms
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2006.09.022
– volume: 127
  start-page: 4222
  issue: 10
  year: 2016
  ident: 10.1016/j.rinp.2022.105802_b15
  article-title: Optical soliton solutions for Schrodinger type nonlinear evolution equations by the tan(f/2)-expansion method
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.01.078
– volume: 35
  issue: 28
  year: 2021
  ident: 10.1016/j.rinp.2022.105802_b12
  article-title: Analytical simulations of the Fokas system; extension (2 + 1)-dimensional Schrodinger equation
  publication-title: Internat J Modern Phys B
  doi: 10.1142/S0217979221502866
– volume: 53
  start-page: 2434
  issue: 8
  year: 2004
  ident: 10.1016/j.rinp.2022.105802_b2
  article-title: Extended hyperbolic function method and new exact solitary wave solutions to Zakharov equations
  publication-title: Acta Phys Sin
  doi: 10.7498/aps.53.2434
– volume: 58
  start-page: 360
  issue: 2
  year: 2009
  ident: 10.1016/j.rinp.2022.105802_b33
  article-title: A series solution of the foam drainage equation
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2009.04.007
– volume: 14
  start-page: 513
  issue: 3
  year: 2002
  ident: 10.1016/j.rinp.2022.105802_b38
  article-title: The tanh method, a simple transformation and exact analytical solutions for nonlinear reaction–diffusion equations
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/S0960-0779(01)00247-8
– volume: 35
  issue: 31
  year: 2021
  ident: 10.1016/j.rinp.2022.105802_b11
  article-title: Numerical simulations of Zakharov’s (ZK) non-dimensionalequation arising in Langmuir and ion-acoustic waves
  publication-title: Modern Phys Lett B
  doi: 10.1142/S0217984921504807
– volume: 14
  year: 2019
  ident: 10.1016/j.rinp.2022.105802_b31
  article-title: New analytical wave structures for the (3+ 1)-dimensional Kadomtsev–Petviashvili and the generalized Boussinesq models and their applications
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2019.102491
– volume: 5
  start-page: 7272
  issue: 6
  year: 2020
  ident: 10.1016/j.rinp.2022.105802_b24
  article-title: Explicit solutions to the Sharma-Tasso-Olver equation
  publication-title: AIMS Math
  doi: 10.3934/math.2020465
– volume: 80
  start-page: 267
  issue: 4
  year: 2018
  ident: 10.1016/j.rinp.2022.105802_b20
  article-title: Analytical study of solitons to benjamin-bona-mahony-peregrine equation with power law nonlinearity by using three methods
  publication-title: Univ Politehn Bucharest Sci Bull-Series A-Appl Math Phys
– volume: 85
  start-page: 68
  year: 2021
  ident: 10.1016/j.rinp.2022.105802_b41
  article-title: Multiple soliton solutions with chiral nonlinear Schrodinger’s equation in (2+1)-dimensions
  publication-title: Eur J Mech
  doi: 10.1016/j.euromechflu.2020.07.014
– volume: 4
  start-page: 896
  issue: 3
  year: 2019
  ident: 10.1016/j.rinp.2022.105802_b25
  article-title: The generalized Kudryashov method for new closed form traveling wave solutions to some NLEEs
  publication-title: AIMS Math
  doi: 10.3934/math.2019.3.896
– volume: 227
  year: 2021
  ident: 10.1016/j.rinp.2022.105802_b35
  article-title: Optical soliton solutions for resonant Schrdinger equation with anti-cubic nonlinearity
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.165496
– volume: 277
  start-page: 212
  issue: 4–5
  year: 2000
  ident: 10.1016/j.rinp.2022.105802_b17
  article-title: Extended tanh-function method and its applications to nonlinear equations
  publication-title: Phys Lett A
  doi: 10.1016/S0375-9601(00)00725-8
– volume: 36
  start-page: 762
  issue: 3
  year: 2008
  ident: 10.1016/j.rinp.2022.105802_b3
  article-title: The extended hyperbolic function method and exact solutions of the long-short wave resonance equations
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.07.007
– volume: 356
  start-page: 124
  issue: 2
  year: 2006
  ident: 10.1016/j.rinp.2022.105802_b26
  article-title: A new auxiliary equation and exact traveling wave solutions of nonlinear equations
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2006.03.034
– volume: 309
  start-page: 387
  issue: 5–6
  year: 2003
  ident: 10.1016/j.rinp.2022.105802_b27
  article-title: Auxiliary equation method for solving nonlinear partial differential equations
  publication-title: Phys Lett A
  doi: 10.1016/S0375-9601(03)00196-8
– volume: 185
  start-page: 665
  year: 2019
  ident: 10.1016/j.rinp.2022.105802_b34
  article-title: First integrals and general solution of the traveling wave reduction for Schrodingerequation with anti-cubic nonlinearity
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.03.167
– volume: 200
  start-page: 110
  issue: 1
  year: 2008
  ident: 10.1016/j.rinp.2022.105802_b4
  article-title: The extended hyperbolic functions method and new exact solutions to the Zakharov equations
  publication-title: Appl Math Comput
– volume: 33
  start-page: 105
  year: 2022
  ident: 10.1016/j.rinp.2022.105802_b8
  article-title: Diverse soliton wave solutions for the nonlinear potential Kadomtsev–Petviashvili and Degasperis equations
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2021.105116
– volume: 30
  start-page: 1213
  issue: 5
  year: 2006
  ident: 10.1016/j.rinp.2022.105802_b36
  article-title: The periodic wave solutions for the (2+1)-dimensional Konopelchenko Dubrovsky equations
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.08.201
– volume: 19
  issue: 8
  year: 2010
  ident: 10.1016/j.rinp.2022.105802_b21
  article-title: Applications of the first integral method to nonlinear evolution equations
  publication-title: Chin Phys B
  doi: 10.1088/1674-1056/19/8/080201
SSID ssj0001645511
Score 2.4793527
Snippet By employing the extended hyperbolic function method (EHFM), we extract the exact solutions of the (2+1)-dimensional nonlinear soliton equation (SE). A soliton...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 105802
SubjectTerms Extended hyperbolic function method
Nonlinear
Soliton equation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vcvCgLMW82qRHFUU8eFJYTyVPXJFFd9f_70zTLj3pxWtJJuXLkG8mTL4h5FzFSjpb2sLIZAtVOV84FXghOD7wkaWSsVX7fKoeXtTjpJwMWn1hTViWB87AXfna1K5yQsRgFbibFTqBFa658I6zgKcvcN4gmWpvVyoFoQBmW0KgTp-udfdiJhd3zaczFKsUAvvcmu5OpWelVrx_QE4DwrnfJltdpEiv8x_ukLU42yUbbcWmX-yR17vu-pq-QSo5d6jvS5GlEGmaG0NTiEgpRHj0QtAxvywCSvlnGQ46yxoZdk4XWAIHc-JXlv3eJy_3d8-3D0XXJ6HwirNlIYz1QgdfGm8ki8qZWFuTNKuidCFZpU0STMpQwqZoV1sdmIqplDElXlouD8g6LBoPCWUysspbCRsLmRaYCY4BowORKpOYdCPCe5wa34mIYy-Lj6avFntvENsGsW0ytiMyXs35zBIav46-QfhXI1H-uv0ATtF0TtH85RQjUvab13SRRI4QwNT0l8WP_mPxY7KJJnMh2glZX86_4ylELkt31jrpDxj36Rc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEA6DIngRd1WcfUgOe1CkJZ2kO-nDsujiIAt6ckBPTZ46IqP2jLD777eqk9FZEA977CYP-CpJfRUqXxHyTYZaWFOZQotoCllbV1jpy4KX-MBHVFKEXu3zoj4by19X1dWALModZQBnb4Z2WE9q3N0f_X768wM2_PfXXK1uMkXtSc6xbK1GbclV8EwKN-p5pvv9nUstgSBgDMY5qvepRuV3NG8P84-v6iX9l1zWkhsabZKNzB_pcTL4BzII049krc_jdLMtcn2aL7XpLQSYnUXVX4q-C_GnqVw0BZ5KgffRfU4Py4PCo8B_Eueg06ScYTo6w8Q46BOekhj4NhmPTi9_nhW5ekLhZMnmBdfGceVdpZ0WLEirQ2N0VKwOwvpopNKRMyF8BaZStjHKMxliJUKMZWVKsUNWYNKwSygTgdXOCDA3xF8wjLcM_Dy4V6kjE3ZIygVOrcvS4ljh4r5d5JDdtYhti9i2CdshOXzp85iENd5tfYLwv7REUez-x0N30-Y91rpGN7a2nAdvJJxMhqsICw7WAXe2ZH5IqoXx2swvEm-AoSbvTP7pP_t9Juv4lTLSvpCVefccvgKFmdu9fl3-BdEB7YM
  priority: 102
  providerName: Scholars Portal
Title Extended hyperbolic function method for the (2 +1)-dimensional nonlinear soliton equation
URI https://dx.doi.org/10.1016/j.rinp.2022.105802
https://doaj.org/article/c989b6b22eda4048a27f3521712cb10d
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxUxEA-lUPAi1g98WksOHpQSXr52kz3a0lIEvWjheVryqU_ktW5f___OJNnaXnrwsrAhk4TJMB9h5jeEvNepV951jlmVHdO9D8zrKJgUWOCjOq1SQfv82p9f6M-rbrVDTuZaGEyrbLq_6vSirdvIsnFzebVeL79JiF2UGYwsQV7pNKy0LUV8q-N_7yy9BqcA4y6cz5Cg1c7UNK9pvUHYSimx461tryuzfSow_vfM1D3Tc_aMPG0-I_1Uj7VPdtLmOdkruZvh-gX5cdoesukvCConj0i_FO0V8pzWFtEUfFMKvh79IOmR-MgigvpXQA66qWgZbqLXmAwHNOlvBQB_SS7OTr-fnLPWMYEFLfiWSeuCNDF0NljFk_Y2Dc5mw_ukfMxOG5slVyp2cD3GD85ErlPuVMpZdE6oV2QXNk2vCeUq8T44BVcMMRcsEz0H2w4mVdvMlV8QMfNpDA1OHLta_BnnvLHfI_J2RN6OlbcLcnRHc1XBNB6dfYzsv5uJQNhl4HL6OTZJGMNgB997KVN0GrSRkyaDkAkjZPCCxwXp5ssbH8gVLLV-ZPM3_0n3ljzBv5qFdkB2t9NNegduy9YflnD_sEgnfL9oewt6YuuJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQXBJSK5ekDh6LKWr8SO0datdpC6YVW2p4svwKL0FLS5f8zEzulXHrg6njs6PNoHtb4G0Le6dyq4BvPrOo9022ILOgkmBT4wEc1WuWR7fOsXVzoj8tmuUUOp7cwWFZZbX-x6aO1riPziub8arWaf5GQuyjTGTkmedhp-B5EAwb7N5wsD_5etLQaogJMvFCAoUR9PFPqvIbVGnkrpcSWt7Zer0wOauTxv-Wnbvme48fkUQ0a6YfyX0_IVl4_JffH4s14vUMuj-pNNv0GWeUQkOqXosNC0GnpEU0hOKUQ7NE9SffFe5aQ1b8wctB1ocvwA73GajiQyb8KA_gzcnF8dH64YLVlAota8A2T1kdpUmxstIpnHWzuvO0Nb7MKqffa2F5ypVID52NC503iOveNyn0vGi_ULtmGTfNzQrnKvI1ewRlD0gXLpMDBuYNP1bbnKsyImHBysfKJY1uLH24qHPvuEFuH2LqC7Yzs38hcFTaNO2cfIPw3M5EJexz4OXx1VRVc7GwX2iBlTl6DOfLS9KBlwggZg-BpRprp8Nw_igVLre7Y_MV_yr0lDxbnn0_d6cnZp5fkIX4pJWmvyPZm-J1fQwyzCW9GHf0DQgDs2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extended+hyperbolic+function+method+for+the+%282+%2B1%29-dimensional+nonlinear+soliton+equation&rft.jtitle=Results+in+physics&rft.au=Rehman%2C+Hamood+Ur&rft.au=Awan%2C+Aziz+Ullah&rft.au=Tag-ElDin%2C+ElSayed+M.&rft.au=Alhazmi%2C+Sharifah+E.&rft.date=2022-09-01&rft.pub=Elsevier+B.V&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=40&rft_id=info:doi/10.1016%2Fj.rinp.2022.105802&rft.externalDocID=S2211379722004612
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon