The gender-specific impact of starvation on mitotypes diversity in adults of Drosophila melanogaster

In animals, starvation can increase the level of reactive oxygen species (ROS) in some tissues. Mitochondrial DNA (mtDNA) is more vulnerable to being attacked by ROS due to the lack of histone protection, leading to oxidative damage. However, whether starvation is associated with the genetic diversi...

Full description

Saved in:
Bibliographic Details
Published inOpen biology Vol. 12; no. 9; p. 220108
Main Authors Wang, Tao, Li, Tian-Chu, Miao, Yun-Heng, Wu, Luo-Nan, Chen, Yu-Qiao, Huang, Da-Wei, Xiao, Jin-Hua
Format Journal Article
LanguageEnglish
Published The Royal Society 28.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In animals, starvation can increase the level of reactive oxygen species (ROS) in some tissues. Mitochondrial DNA (mtDNA) is more vulnerable to being attacked by ROS due to the lack of histone protection, leading to oxidative damage. However, whether starvation is associated with the genetic diversity of mtDNA remains unclear. Here, by using adult individuals of Drosophila melanogaster under three different feeding treatments (starvation, with the provision of only water, and normal feeding), based on the high-throughput sequencing results of the PCR amplicons of the partial sequences of the mitochondrial gene cytochrome c oxidase subunit I ( mt-cox1 ), no significant difference in the mean number of mitochondrial haplotypes and the mean genetic distance of haplotypes within individuals were identified between the three treatment groups. Coupled with the low proportion of heterogeneous mt-cox1 sequences within each individual, it suggested that starvation had a limited impact on mitotype genetic diversity and mitochondrial function. Nevertheless, starvation could significantly increase the sequence number of haplotypes containing specific mutations, and for males with higher levels of mitochondrial heteroplasmy than females in the normal feeding group, starvation could further increase their mitochondrial heteroplasmy.
AbstractList In animals, starvation can increase the level of reactive oxygen species (ROS) in some tissues. Mitochondrial DNA (mtDNA) is more vulnerable to being attacked by ROS due to the lack of histone protection, leading to oxidative damage. However, whether starvation is associated with the genetic diversity of mtDNA remains unclear. Here, by using adult individuals of Drosophila melanogaster under three different feeding treatments (starvation, with the provision of only water, and normal feeding), based on the high-throughput sequencing results of the PCR amplicons of the partial sequences of the mitochondrial gene cytochrome c oxidase subunit I (mt-cox1), no significant difference in the mean number of mitochondrial haplotypes and the mean genetic distance of haplotypes within individuals were identified between the three treatment groups. Coupled with the low proportion of heterogeneous mt-cox1 sequences within each individual, it suggested that starvation had a limited impact on mitotype genetic diversity and mitochondrial function. Nevertheless, starvation could significantly increase the sequence number of haplotypes containing specific mutations, and for males with higher levels of mitochondrial heteroplasmy than females in the normal feeding group, starvation could further increase their mitochondrial heteroplasmy.
In animals, starvation can increase the level of reactive oxygen species (ROS) in some tissues. Mitochondrial DNA (mtDNA) is more vulnerable to being attacked by ROS due to the lack of histone protection, leading to oxidative damage. However, whether starvation is associated with the genetic diversity of mtDNA remains unclear. Here, by using adult individuals of Drosophila melanogaster under three different feeding treatments (starvation, with the provision of only water, and normal feeding), based on the high-throughput sequencing results of the PCR amplicons of the partial sequences of the mitochondrial gene cytochrome c oxidase subunit I ( mt-cox1 ), no significant difference in the mean number of mitochondrial haplotypes and the mean genetic distance of haplotypes within individuals were identified between the three treatment groups. Coupled with the low proportion of heterogeneous mt-cox1 sequences within each individual, it suggested that starvation had a limited impact on mitotype genetic diversity and mitochondrial function. Nevertheless, starvation could significantly increase the sequence number of haplotypes containing specific mutations, and for males with higher levels of mitochondrial heteroplasmy than females in the normal feeding group, starvation could further increase their mitochondrial heteroplasmy.
In animals, starvation can increase the level of reactive oxygen species (ROS) in some tissues. Mitochondrial DNA (mtDNA) is more vulnerable to being attacked by ROS due to the lack of histone protection, leading to oxidative damage. However, whether starvation is associated with the genetic diversity of mtDNA remains unclear. Here, by using adult individuals of Drosophila melanogaster under three different feeding treatments (starvation, with the provision of only water, and normal feeding), based on the high-throughput sequencing results of the PCR amplicons of the partial sequences of the mitochondrial gene cytochrome c oxidase subunit I (mt-cox1), no significant difference in the mean number of mitochondrial haplotypes and the mean genetic distance of haplotypes within individuals were identified between the three treatment groups. Coupled with the low proportion of heterogeneous mt-cox1 sequences within each individual, it suggested that starvation had a limited impact on mitotype genetic diversity and mitochondrial function. Nevertheless, starvation could significantly increase the sequence number of haplotypes containing specific mutations, and for males with higher levels of mitochondrial heteroplasmy than females in the normal feeding group, starvation could further increase their mitochondrial heteroplasmy.In animals, starvation can increase the level of reactive oxygen species (ROS) in some tissues. Mitochondrial DNA (mtDNA) is more vulnerable to being attacked by ROS due to the lack of histone protection, leading to oxidative damage. However, whether starvation is associated with the genetic diversity of mtDNA remains unclear. Here, by using adult individuals of Drosophila melanogaster under three different feeding treatments (starvation, with the provision of only water, and normal feeding), based on the high-throughput sequencing results of the PCR amplicons of the partial sequences of the mitochondrial gene cytochrome c oxidase subunit I (mt-cox1), no significant difference in the mean number of mitochondrial haplotypes and the mean genetic distance of haplotypes within individuals were identified between the three treatment groups. Coupled with the low proportion of heterogeneous mt-cox1 sequences within each individual, it suggested that starvation had a limited impact on mitotype genetic diversity and mitochondrial function. Nevertheless, starvation could significantly increase the sequence number of haplotypes containing specific mutations, and for males with higher levels of mitochondrial heteroplasmy than females in the normal feeding group, starvation could further increase their mitochondrial heteroplasmy.
Author Miao, Yun-Heng
Li, Tian-Chu
Wu, Luo-Nan
Huang, Da-Wei
Wang, Tao
Chen, Yu-Qiao
Xiao, Jin-Hua
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0000-0002-8714-2452
  surname: Wang
  fullname: Wang, Tao
  organization: College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
– sequence: 2
  givenname: Tian-Chu
  surname: Li
  fullname: Li, Tian-Chu
  organization: College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
– sequence: 3
  givenname: Yun-Heng
  surname: Miao
  fullname: Miao, Yun-Heng
  organization: College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
– sequence: 4
  givenname: Luo-Nan
  surname: Wu
  fullname: Wu, Luo-Nan
  organization: College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
– sequence: 5
  givenname: Yu-Qiao
  surname: Chen
  fullname: Chen, Yu-Qiao
  organization: College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
– sequence: 6
  givenname: Da-Wei
  surname: Huang
  fullname: Huang, Da-Wei
  organization: College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
– sequence: 7
  givenname: Jin-Hua
  orcidid: 0000-0001-6105-8976
  surname: Xiao
  fullname: Xiao, Jin-Hua
  organization: College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
BookMark eNptUVtLJTEMLovCuuqTf6CPC8toepmezuOi6wUEX_S5ZHo5Vmams22PcP69czy7IGIISQhfPpJ8P8jBlCZPyBmDcwadvsgl9eecAwP9jRxxkKrhUrKDD_V3clrKCyzWKtZJdkTc47Onaz85n5syextDtDSOM9pKU6ClYn7FGtNEFx9jTXU7-0JdfPW5xLqlcaLoNkMtO_hVTiXNz3FAOvoBp7TGUn0-IYcBh-JP_-Vj8nT95_Hytrl_uLm7_H3fWMmgNlzwAEwz7hm0IjAZWit0t0TNnejROi4tKtmD0CiF7LRDx0KnFPJWcxTH5G7P6xK-mDnHEfPWJIzmvZHy2mCu0Q7eQN-2qge7akFL6HstQK0CCMa5VO3KLlw_91xzTn83vlQzxmL9sFzl06YYvmK6U6CEXKBsD7XL-SX7YGys70-rGeNgGJidQGYnkNkLtMz8-jTzf92v0G8fkZPr
CitedBy_id crossref_primary_10_1098_rsob_220108
Cites_doi 10.7717/peerj.2760
10.1093/molbev/msx248
10.3897/BDJ.8.e50124
10.1016/j.jgg.2017.05.006
10.1534/genetics.105.046342
10.1371/journal.pone.0074636
10.1093/gbe/evx247
10.1111/ele.12195
10.1534/genetics.167.1.311
10.1093/molbev/msy096
10.1007/978-981-13-8367-0_13
10.1073/pnas.80.22.6942
10.1111/syen.12500
10.3390/antiox10030415
10.1038/s41467-019-11933-z
10.1016/j.cell.2020.04.049
10.1111/1755-0998.12951
10.1007/s00114-021-01729-x
10.1098/rstb.2005.1727
10.1111/eva.12694
10.1016/j.cell.2017.12.039
10.1098/rspb.2002.2218
10.1038/s41576-020-00284-x
10.1007/s00248-021-01703-0
10.1007/s12038-020-00055-0
10.1016/j.cell.2005.02.001
10.3390/life11070633
10.3390/ijms20112770
10.1002/ece3.434
10.1007/s00227-012-2099-y
10.1111/1755-0998.12904
10.1016/j.cub.2019.10.060
10.1186/s12862-020-1581-2
10.1073/pnas.95.5.2372
10.1038/hdy.2012.60
10.1016/j.cels.2017.06.004
10.1016/j.cub.2010.05.029
10.1002/adma.202008065
10.1038/s41598-020-59194-x
10.1038/hdy.1997.207
10.1038/s41586-019-1213-4
10.1111/mec.12256
10.1038/s41598-019-56918-6
10.1371/journal.pbio.2006409
10.1098/rsbl.2003.0025
10.1016/j.cbpb.2021.110591
10.1093/oxfordjournals.molbev.a026036
10.1111/jzs.12096
10.1038/nrg3966
10.1098/rsob.220108
10.1002/ece3.1069
10.1111/jzs.12386
10.7717/peerj.4644
10.1038/nature08802
10.1002/ece3.7460
10.1111/2041-210X.13276
10.1073/pnas.89.23.11528
10.1038/s41586-019-1034-5
10.3390/antiox9060472
10.1111/j.1471-8286.2007.01678.x
ContentType Journal Article
DBID AAYXX
CITATION
7X8
DOA
DOI 10.1098/rsob.220108
DatabaseName CrossRef
MEDLINE - Academic
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals(FREE)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2046-2441
ExternalDocumentID oai_doaj_org_article_0b556b0c750840bb83067f031224657c
10_1098_rsob_220108
GroupedDBID 53G
5VS
88I
AAFWJ
AAYXX
ABUWG
ACQIA
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALAEF
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BTFSW
CCPQU
CITATION
DIK
DWQXO
EBS
EJD
FRP
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HYE
ICLEN
KQ8
M2P
M48
M7P
M~E
OK1
OP1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
7X8
ID FETCH-LOGICAL-c410t-232f01812e1053f14f5c389f5c82d3bacd24ca64b038a43498dad1f966a2582a3
IEDL.DBID M48
ISSN 2046-2441
IngestDate Wed Aug 27 01:24:18 EDT 2025
Thu Jul 10 18:08:23 EDT 2025
Tue Jul 01 04:21:43 EDT 2025
Thu Apr 24 23:03:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-232f01812e1053f14f5c389f5c82d3bacd24ca64b038a43498dad1f966a2582a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6105-8976
0000-0002-8714-2452
OpenAccessLink https://doaj.org/article/0b556b0c750840bb83067f031224657c
PQID 2718960634
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_0b556b0c750840bb83067f031224657c
proquest_miscellaneous_2718960634
crossref_citationtrail_10_1098_rsob_220108
crossref_primary_10_1098_rsob_220108
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-28
PublicationDateYYYYMMDD 2022-09-28
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-28
  day: 28
PublicationDecade 2020
PublicationTitle Open biology
PublicationYear 2022
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References e_1_3_6_30_2
e_1_3_6_51_2
e_1_3_6_53_2
e_1_3_6_19_2
e_1_3_6_13_2
e_1_3_6_59_2
e_1_3_6_11_2
e_1_3_6_17_2
e_1_3_6_34_2
e_1_3_6_55_2
e_1_3_6_15_2
e_1_3_6_36_2
e_1_3_6_57_2
e_1_3_6_40_2
e_1_3_6_65_2
e_1_3_6_21_2
e_1_3_6_42_2
e_1_3_6_63_2
e_1_3_6_4_2
e_1_3_6_2_2
e_1_3_6_8_2
e_1_3_6_6_2
e_1_3_6_27_2
e_1_3_6_48_2
e_1_3_6_29_2
e_1_3_6_23_2
e_1_3_6_44_2
e_1_3_6_25_2
e_1_3_6_46_2
e_1_3_6_52_2
e_1_3_6_31_2
Li TC (e_1_3_6_41_2)
e_1_3_6_54_2
e_1_3_6_10_2
e_1_3_6_50_2
Hall TA (e_1_3_6_61_2) 1999; 41
e_1_3_6_14_2
e_1_3_6_37_2
e_1_3_6_12_2
e_1_3_6_39_2
e_1_3_6_18_2
Baião CG (e_1_3_6_32_2) 2021
e_1_3_6_33_2
e_1_3_6_56_2
e_1_3_6_16_2
e_1_3_6_35_2
e_1_3_6_58_2
e_1_3_6_64_2
e_1_3_6_20_2
e_1_3_6_43_2
e_1_3_6_62_2
e_1_3_6_60_2
e_1_3_6_5_2
e_1_3_6_3_2
e_1_3_6_9_2
e_1_3_6_7_2
e_1_3_6_26_2
e_1_3_6_49_2
Folmer O (e_1_3_6_38_2) 1994; 3
e_1_3_6_28_2
e_1_3_6_22_2
e_1_3_6_45_2
e_1_3_6_24_2
e_1_3_6_47_2
References_xml – ident: e_1_3_6_22_2
  doi: 10.7717/peerj.2760
– ident: e_1_3_6_63_2
  doi: 10.1093/molbev/msx248
– ident: e_1_3_6_47_2
  doi: 10.3897/BDJ.8.e50124
– ident: e_1_3_6_7_2
  doi: 10.1016/j.jgg.2017.05.006
– ident: e_1_3_6_49_2
  doi: 10.1534/genetics.105.046342
– ident: e_1_3_6_18_2
  doi: 10.1371/journal.pone.0074636
– ident: e_1_3_6_52_2
  doi: 10.1093/gbe/evx247
– ident: e_1_3_6_50_2
  doi: 10.1111/ele.12195
– ident: e_1_3_6_6_2
  doi: 10.1534/genetics.167.1.311
– ident: e_1_3_6_62_2
  doi: 10.1093/molbev/msy096
– ident: e_1_3_6_55_2
  doi: 10.1007/978-981-13-8367-0_13
– ident: e_1_3_6_24_2
  doi: 10.1073/pnas.80.22.6942
– ident: e_1_3_6_41_2
  article-title: Impact of mitotype diversity on metabarcoding biodiversity estimations in Insecta and Arachnida using different sample preparation strategies
  publication-title: Mol. Ecol. Resour.
– ident: e_1_3_6_46_2
  doi: 10.1111/syen.12500
– ident: e_1_3_6_13_2
  doi: 10.3390/antiox10030415
– volume: 41
  start-page: 95
  year: 1999
  ident: e_1_3_6_61_2
  article-title: BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT
  publication-title: Nucl. Acids Symp. Ser.
– ident: e_1_3_6_4_2
  doi: 10.1038/s41467-019-11933-z
– ident: e_1_3_6_10_2
  doi: 10.1016/j.cell.2020.04.049
– ident: e_1_3_6_43_2
  doi: 10.1111/1755-0998.12951
– ident: e_1_3_6_53_2
  doi: 10.1007/s00114-021-01729-x
– ident: e_1_3_6_60_2
  doi: 10.1098/rstb.2005.1727
– ident: e_1_3_6_42_2
  doi: 10.1111/eva.12694
– ident: e_1_3_6_14_2
  doi: 10.1016/j.cell.2017.12.039
– ident: e_1_3_6_36_2
  doi: 10.1098/rspb.2002.2218
– ident: e_1_3_6_19_2
  doi: 10.1038/s41576-020-00284-x
– ident: e_1_3_6_59_2
  doi: 10.1007/s00248-021-01703-0
– ident: e_1_3_6_16_2
  doi: 10.1007/s12038-020-00055-0
– ident: e_1_3_6_11_2
  doi: 10.1016/j.cell.2005.02.001
– ident: e_1_3_6_21_2
  doi: 10.3390/life11070633
– ident: e_1_3_6_15_2
  doi: 10.3390/ijms20112770
– ident: e_1_3_6_51_2
  doi: 10.1002/ece3.434
– ident: e_1_3_6_57_2
  doi: 10.1007/s00227-012-2099-y
– ident: e_1_3_6_45_2
  doi: 10.1111/1755-0998.12904
– ident: e_1_3_6_34_2
  doi: 10.1016/j.cub.2019.10.060
– ident: e_1_3_6_54_2
  doi: 10.1186/s12862-020-1581-2
– ident: e_1_3_6_27_2
  doi: 10.1073/pnas.95.5.2372
– ident: e_1_3_6_31_2
  doi: 10.1038/hdy.2012.60
– ident: e_1_3_6_2_2
  doi: 10.1016/j.cels.2017.06.004
– ident: e_1_3_6_5_2
  doi: 10.1016/j.cub.2010.05.029
– ident: e_1_3_6_17_2
  doi: 10.1002/adma.202008065
– ident: e_1_3_6_30_2
  doi: 10.1038/s41598-020-59194-x
– ident: e_1_3_6_26_2
  doi: 10.1038/hdy.1997.207
– ident: e_1_3_6_35_2
  doi: 10.1038/s41586-019-1213-4
– ident: e_1_3_6_29_2
  doi: 10.1111/mec.12256
– ident: e_1_3_6_33_2
  doi: 10.1038/s41598-019-56918-6
– ident: e_1_3_6_8_2
  doi: 10.1371/journal.pbio.2006409
– ident: e_1_3_6_39_2
  doi: 10.1098/rsbl.2003.0025
– ident: e_1_3_6_3_2
  doi: 10.1016/j.cbpb.2021.110591
– ident: e_1_3_6_64_2
  doi: 10.1093/oxfordjournals.molbev.a026036
– ident: e_1_3_6_58_2
  doi: 10.1111/jzs.12096
– ident: e_1_3_6_56_2
  doi: 10.1038/nrg3966
– ident: e_1_3_6_65_2
  doi: 10.1098/rsob.220108
– year: 2021
  ident: e_1_3_6_32_2
  article-title: Persistence and invasiveness of high-level heteroplasmy through biparental transmission of a selfish mitochondrial genome in Drosophila
  publication-title: bioRxiv
– ident: e_1_3_6_28_2
  doi: 10.1002/ece3.1069
– ident: e_1_3_6_23_2
  doi: 10.1111/jzs.12386
– ident: e_1_3_6_48_2
  doi: 10.7717/peerj.4644
– ident: e_1_3_6_20_2
  doi: 10.1038/nature08802
– ident: e_1_3_6_44_2
  doi: 10.1002/ece3.7460
– ident: e_1_3_6_40_2
  doi: 10.1111/2041-210X.13276
– ident: e_1_3_6_25_2
  doi: 10.1073/pnas.89.23.11528
– ident: e_1_3_6_9_2
  doi: 10.1038/s41586-019-1034-5
– volume: 3
  start-page: 294
  year: 1994
  ident: e_1_3_6_38_2
  article-title: DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates
  publication-title: Mol. Mar. Biol. Biotechnol.
– ident: e_1_3_6_12_2
  doi: 10.3390/antiox9060472
– ident: e_1_3_6_37_2
  doi: 10.1111/j.1471-8286.2007.01678.x
SSID ssj0000561941
Score 2.2734954
Snippet In animals, starvation can increase the level of reactive oxygen species (ROS) in some tissues. Mitochondrial DNA (mtDNA) is more vulnerable to being attacked...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 220108
SubjectTerms fruit fly
genetic diversity
mitochondria
starved
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La8MwDDajMNhl7Mm6Fx70NMiaOE7qHPcqZbCdVujN-JVSaJPRx2H_fpKdlo4NdhmEHILAQbKtT5b1iZCOxXJJg2l3cE4R1y6LCq50FAuDa48lRmPt8OtbPhjyl1E22mr1hXfCAj1wUFw31lmW69iAZ4NYRGuBGLeEqYhMaFnP4O4LPm8rmAqs3hidJ01BXlyILsBXfccw9yu-uSDP1P9jI_bepX9A9htYSO_D7xySHVcdkd3QKPLzmFiwJh37rm8R1kbi_R4aChxpXVJAeM3RKoVnBosUT1YX1K4vXdBJRT3TxgLFn-a-ecFkqujMTVVVjxXSJZyQYf_5_XEQNf0RIsOTeBkBGCo935YDkJSWCS8zA_gD3oLZVCtjGTcq5zpOheIpL4RVNikhwFEsE0ylp6RV1ZU7I9S4HLSqkD9Oc8sT3TNc6NymrOCZ46ZNbtcqk6YhD8ceFlMZkthCon5l0G-bdDbCH4Ez43exB9T9RgSJrv0HML9szC__Mn-b3KwtJ2FhYLZDVa5eLSQDr4vhWcrP_2OgC7LHsPIBE1LikrSW85W7Ajyy1Nd-6n0B6fHcoQ
  priority: 102
  providerName: Directory of Open Access Journals
Title The gender-specific impact of starvation on mitotypes diversity in adults of Drosophila melanogaster
URI https://www.proquest.com/docview/2718960634
https://doaj.org/article/0b556b0c750840bb83067f031224657c
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60IngRn_gsK3gSUpPNJt0eRHxVEXwcLPQW9pVSqIk2Ldh_78wmKag9CGEPYQPLbCbzfTuZbwg5NVguqTHtDsHJ48pGXodL5flCo--xQCusHX56jh96_LEf9ZdI3YyzMmCxkNphP6neeNT6-pxdgsNflGJI4hyQqWoxTOuKZbICIamNHvpU4fxS5BvJOpIvBnzQg5AWVLV6v57_EZ2ciP-fb7QLPN0Nsl4hRnpVbvEmWbLZFlkte0jOtomBjaYD1xDOw7JJ_PWHlrWPNE8pgL_q1JXC9Q7-i4euBTX1_xh0mFEnwlHg9Nux62swHEn6bkcyywcSlRR2SK9793bz4FWtEzzNA3_iAU5KnRSXBfwUpgFPIw3QBEbBTKikNoxrGXPlh0LykHeEkSZIgftIFgkmw13SyPLM7hGqbRy3U4nScoobHqi25kLFJmQdHlmu98lZbbJEV7ri2N5ilJT5bZGgfZPSvvvkdD75o5TTWDztGm0_n4Ia2O5GPh4klUslvoqiWPkaMA-wVKUEsp8UPlKokRe1YWEn9c4l4DOYCJGZzadFwiAgI3ML-cH_1nNI1hiWPWA2ShyRxmQ8tccARiaq6Ug8jPf9oOleOhhfXoNvlsjfzQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+gender-specific+impact+of+starvation+on+mitotypes+diversity+in+adults+of+Drosophila+melanogaster&rft.jtitle=Open+biology&rft.au=Wang%2C+Tao&rft.au=Li%2C+Tian-Chu&rft.au=Miao%2C+Yun-Heng&rft.au=Wu%2C+Luo-Nan&rft.date=2022-09-28&rft.issn=2046-2441&rft.eissn=2046-2441&rft.volume=12&rft.issue=9&rft_id=info:doi/10.1098%2Frsob.220108&rft.externalDBID=n%2Fa&rft.externalDocID=10_1098_rsob_220108
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2441&client=summon