The gender-specific impact of starvation on mitotypes diversity in adults of Drosophila melanogaster
In animals, starvation can increase the level of reactive oxygen species (ROS) in some tissues. Mitochondrial DNA (mtDNA) is more vulnerable to being attacked by ROS due to the lack of histone protection, leading to oxidative damage. However, whether starvation is associated with the genetic diversi...
Saved in:
Published in | Open biology Vol. 12; no. 9; p. 220108 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
The Royal Society
28.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In animals, starvation can increase the level of reactive oxygen species (ROS) in some tissues. Mitochondrial DNA (mtDNA) is more vulnerable to being attacked by ROS due to the lack of histone protection, leading to oxidative damage. However, whether starvation is associated with the genetic diversity of mtDNA remains unclear. Here, by using adult individuals of
Drosophila melanogaster
under three different feeding treatments (starvation, with the provision of only water, and normal feeding), based on the high-throughput sequencing results of the PCR amplicons of the partial sequences of the mitochondrial gene cytochrome c oxidase subunit I (
mt-cox1
), no significant difference in the mean number of mitochondrial haplotypes and the mean genetic distance of haplotypes within individuals were identified between the three treatment groups. Coupled with the low proportion of heterogeneous
mt-cox1
sequences within each individual, it suggested that starvation had a limited impact on mitotype genetic diversity and mitochondrial function. Nevertheless, starvation could significantly increase the sequence number of haplotypes containing specific mutations, and for males with higher levels of mitochondrial heteroplasmy than females in the normal feeding group, starvation could further increase their mitochondrial heteroplasmy. |
---|---|
AbstractList | In animals, starvation can increase the level of reactive oxygen species (ROS) in some tissues. Mitochondrial DNA (mtDNA) is more vulnerable to being attacked by ROS due to the lack of histone protection, leading to oxidative damage. However, whether starvation is associated with the genetic diversity of mtDNA remains unclear. Here, by using adult individuals of Drosophila melanogaster under three different feeding treatments (starvation, with the provision of only water, and normal feeding), based on the high-throughput sequencing results of the PCR amplicons of the partial sequences of the mitochondrial gene cytochrome c oxidase subunit I (mt-cox1), no significant difference in the mean number of mitochondrial haplotypes and the mean genetic distance of haplotypes within individuals were identified between the three treatment groups. Coupled with the low proportion of heterogeneous mt-cox1 sequences within each individual, it suggested that starvation had a limited impact on mitotype genetic diversity and mitochondrial function. Nevertheless, starvation could significantly increase the sequence number of haplotypes containing specific mutations, and for males with higher levels of mitochondrial heteroplasmy than females in the normal feeding group, starvation could further increase their mitochondrial heteroplasmy. In animals, starvation can increase the level of reactive oxygen species (ROS) in some tissues. Mitochondrial DNA (mtDNA) is more vulnerable to being attacked by ROS due to the lack of histone protection, leading to oxidative damage. However, whether starvation is associated with the genetic diversity of mtDNA remains unclear. Here, by using adult individuals of Drosophila melanogaster under three different feeding treatments (starvation, with the provision of only water, and normal feeding), based on the high-throughput sequencing results of the PCR amplicons of the partial sequences of the mitochondrial gene cytochrome c oxidase subunit I ( mt-cox1 ), no significant difference in the mean number of mitochondrial haplotypes and the mean genetic distance of haplotypes within individuals were identified between the three treatment groups. Coupled with the low proportion of heterogeneous mt-cox1 sequences within each individual, it suggested that starvation had a limited impact on mitotype genetic diversity and mitochondrial function. Nevertheless, starvation could significantly increase the sequence number of haplotypes containing specific mutations, and for males with higher levels of mitochondrial heteroplasmy than females in the normal feeding group, starvation could further increase their mitochondrial heteroplasmy. In animals, starvation can increase the level of reactive oxygen species (ROS) in some tissues. Mitochondrial DNA (mtDNA) is more vulnerable to being attacked by ROS due to the lack of histone protection, leading to oxidative damage. However, whether starvation is associated with the genetic diversity of mtDNA remains unclear. Here, by using adult individuals of Drosophila melanogaster under three different feeding treatments (starvation, with the provision of only water, and normal feeding), based on the high-throughput sequencing results of the PCR amplicons of the partial sequences of the mitochondrial gene cytochrome c oxidase subunit I (mt-cox1), no significant difference in the mean number of mitochondrial haplotypes and the mean genetic distance of haplotypes within individuals were identified between the three treatment groups. Coupled with the low proportion of heterogeneous mt-cox1 sequences within each individual, it suggested that starvation had a limited impact on mitotype genetic diversity and mitochondrial function. Nevertheless, starvation could significantly increase the sequence number of haplotypes containing specific mutations, and for males with higher levels of mitochondrial heteroplasmy than females in the normal feeding group, starvation could further increase their mitochondrial heteroplasmy.In animals, starvation can increase the level of reactive oxygen species (ROS) in some tissues. Mitochondrial DNA (mtDNA) is more vulnerable to being attacked by ROS due to the lack of histone protection, leading to oxidative damage. However, whether starvation is associated with the genetic diversity of mtDNA remains unclear. Here, by using adult individuals of Drosophila melanogaster under three different feeding treatments (starvation, with the provision of only water, and normal feeding), based on the high-throughput sequencing results of the PCR amplicons of the partial sequences of the mitochondrial gene cytochrome c oxidase subunit I (mt-cox1), no significant difference in the mean number of mitochondrial haplotypes and the mean genetic distance of haplotypes within individuals were identified between the three treatment groups. Coupled with the low proportion of heterogeneous mt-cox1 sequences within each individual, it suggested that starvation had a limited impact on mitotype genetic diversity and mitochondrial function. Nevertheless, starvation could significantly increase the sequence number of haplotypes containing specific mutations, and for males with higher levels of mitochondrial heteroplasmy than females in the normal feeding group, starvation could further increase their mitochondrial heteroplasmy. |
Author | Miao, Yun-Heng Li, Tian-Chu Wu, Luo-Nan Huang, Da-Wei Wang, Tao Chen, Yu-Qiao Xiao, Jin-Hua |
Author_xml | – sequence: 1 givenname: Tao orcidid: 0000-0002-8714-2452 surname: Wang fullname: Wang, Tao organization: College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China – sequence: 2 givenname: Tian-Chu surname: Li fullname: Li, Tian-Chu organization: College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China – sequence: 3 givenname: Yun-Heng surname: Miao fullname: Miao, Yun-Heng organization: College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China – sequence: 4 givenname: Luo-Nan surname: Wu fullname: Wu, Luo-Nan organization: College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China – sequence: 5 givenname: Yu-Qiao surname: Chen fullname: Chen, Yu-Qiao organization: College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China – sequence: 6 givenname: Da-Wei surname: Huang fullname: Huang, Da-Wei organization: College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China – sequence: 7 givenname: Jin-Hua orcidid: 0000-0001-6105-8976 surname: Xiao fullname: Xiao, Jin-Hua organization: College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China |
BookMark | eNptUVtLJTEMLovCuuqTf6CPC8toepmezuOi6wUEX_S5ZHo5Vmams22PcP69czy7IGIISQhfPpJ8P8jBlCZPyBmDcwadvsgl9eecAwP9jRxxkKrhUrKDD_V3clrKCyzWKtZJdkTc47Onaz85n5syextDtDSOM9pKU6ClYn7FGtNEFx9jTXU7-0JdfPW5xLqlcaLoNkMtO_hVTiXNz3FAOvoBp7TGUn0-IYcBh-JP_-Vj8nT95_Hytrl_uLm7_H3fWMmgNlzwAEwz7hm0IjAZWit0t0TNnejROi4tKtmD0CiF7LRDx0KnFPJWcxTH5G7P6xK-mDnHEfPWJIzmvZHy2mCu0Q7eQN-2qge7akFL6HstQK0CCMa5VO3KLlw_91xzTn83vlQzxmL9sFzl06YYvmK6U6CEXKBsD7XL-SX7YGys70-rGeNgGJidQGYnkNkLtMz8-jTzf92v0G8fkZPr |
CitedBy_id | crossref_primary_10_1098_rsob_220108 |
Cites_doi | 10.7717/peerj.2760 10.1093/molbev/msx248 10.3897/BDJ.8.e50124 10.1016/j.jgg.2017.05.006 10.1534/genetics.105.046342 10.1371/journal.pone.0074636 10.1093/gbe/evx247 10.1111/ele.12195 10.1534/genetics.167.1.311 10.1093/molbev/msy096 10.1007/978-981-13-8367-0_13 10.1073/pnas.80.22.6942 10.1111/syen.12500 10.3390/antiox10030415 10.1038/s41467-019-11933-z 10.1016/j.cell.2020.04.049 10.1111/1755-0998.12951 10.1007/s00114-021-01729-x 10.1098/rstb.2005.1727 10.1111/eva.12694 10.1016/j.cell.2017.12.039 10.1098/rspb.2002.2218 10.1038/s41576-020-00284-x 10.1007/s00248-021-01703-0 10.1007/s12038-020-00055-0 10.1016/j.cell.2005.02.001 10.3390/life11070633 10.3390/ijms20112770 10.1002/ece3.434 10.1007/s00227-012-2099-y 10.1111/1755-0998.12904 10.1016/j.cub.2019.10.060 10.1186/s12862-020-1581-2 10.1073/pnas.95.5.2372 10.1038/hdy.2012.60 10.1016/j.cels.2017.06.004 10.1016/j.cub.2010.05.029 10.1002/adma.202008065 10.1038/s41598-020-59194-x 10.1038/hdy.1997.207 10.1038/s41586-019-1213-4 10.1111/mec.12256 10.1038/s41598-019-56918-6 10.1371/journal.pbio.2006409 10.1098/rsbl.2003.0025 10.1016/j.cbpb.2021.110591 10.1093/oxfordjournals.molbev.a026036 10.1111/jzs.12096 10.1038/nrg3966 10.1098/rsob.220108 10.1002/ece3.1069 10.1111/jzs.12386 10.7717/peerj.4644 10.1038/nature08802 10.1002/ece3.7460 10.1111/2041-210X.13276 10.1073/pnas.89.23.11528 10.1038/s41586-019-1034-5 10.3390/antiox9060472 10.1111/j.1471-8286.2007.01678.x |
ContentType | Journal Article |
DBID | AAYXX CITATION 7X8 DOA |
DOI | 10.1098/rsob.220108 |
DatabaseName | CrossRef MEDLINE - Academic Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals(FREE) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2046-2441 |
ExternalDocumentID | oai_doaj_org_article_0b556b0c750840bb83067f031224657c 10_1098_rsob_220108 |
GroupedDBID | 53G 5VS 88I AAFWJ AAYXX ABUWG ACQIA ADBBV ADRAZ AENEX AFKRA AFPKN ALAEF ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BTFSW CCPQU CITATION DIK DWQXO EBS EJD FRP GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HYE ICLEN KQ8 M2P M48 M7P M~E OK1 OP1 PGMZT PHGZM PHGZT PIMPY RPM 7X8 |
ID | FETCH-LOGICAL-c410t-232f01812e1053f14f5c389f5c82d3bacd24ca64b038a43498dad1f966a2582a3 |
IEDL.DBID | M48 |
ISSN | 2046-2441 |
IngestDate | Wed Aug 27 01:24:18 EDT 2025 Thu Jul 10 18:08:23 EDT 2025 Tue Jul 01 04:21:43 EDT 2025 Thu Apr 24 23:03:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-232f01812e1053f14f5c389f5c82d3bacd24ca64b038a43498dad1f966a2582a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6105-8976 0000-0002-8714-2452 |
OpenAccessLink | https://doaj.org/article/0b556b0c750840bb83067f031224657c |
PQID | 2718960634 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0b556b0c750840bb83067f031224657c proquest_miscellaneous_2718960634 crossref_citationtrail_10_1098_rsob_220108 crossref_primary_10_1098_rsob_220108 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-28 |
PublicationDateYYYYMMDD | 2022-09-28 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | Open biology |
PublicationYear | 2022 |
Publisher | The Royal Society |
Publisher_xml | – name: The Royal Society |
References | e_1_3_6_30_2 e_1_3_6_51_2 e_1_3_6_53_2 e_1_3_6_19_2 e_1_3_6_13_2 e_1_3_6_59_2 e_1_3_6_11_2 e_1_3_6_17_2 e_1_3_6_34_2 e_1_3_6_55_2 e_1_3_6_15_2 e_1_3_6_36_2 e_1_3_6_57_2 e_1_3_6_40_2 e_1_3_6_65_2 e_1_3_6_21_2 e_1_3_6_42_2 e_1_3_6_63_2 e_1_3_6_4_2 e_1_3_6_2_2 e_1_3_6_8_2 e_1_3_6_6_2 e_1_3_6_27_2 e_1_3_6_48_2 e_1_3_6_29_2 e_1_3_6_23_2 e_1_3_6_44_2 e_1_3_6_25_2 e_1_3_6_46_2 e_1_3_6_52_2 e_1_3_6_31_2 Li TC (e_1_3_6_41_2) e_1_3_6_54_2 e_1_3_6_10_2 e_1_3_6_50_2 Hall TA (e_1_3_6_61_2) 1999; 41 e_1_3_6_14_2 e_1_3_6_37_2 e_1_3_6_12_2 e_1_3_6_39_2 e_1_3_6_18_2 Baião CG (e_1_3_6_32_2) 2021 e_1_3_6_33_2 e_1_3_6_56_2 e_1_3_6_16_2 e_1_3_6_35_2 e_1_3_6_58_2 e_1_3_6_64_2 e_1_3_6_20_2 e_1_3_6_43_2 e_1_3_6_62_2 e_1_3_6_60_2 e_1_3_6_5_2 e_1_3_6_3_2 e_1_3_6_9_2 e_1_3_6_7_2 e_1_3_6_26_2 e_1_3_6_49_2 Folmer O (e_1_3_6_38_2) 1994; 3 e_1_3_6_28_2 e_1_3_6_22_2 e_1_3_6_45_2 e_1_3_6_24_2 e_1_3_6_47_2 |
References_xml | – ident: e_1_3_6_22_2 doi: 10.7717/peerj.2760 – ident: e_1_3_6_63_2 doi: 10.1093/molbev/msx248 – ident: e_1_3_6_47_2 doi: 10.3897/BDJ.8.e50124 – ident: e_1_3_6_7_2 doi: 10.1016/j.jgg.2017.05.006 – ident: e_1_3_6_49_2 doi: 10.1534/genetics.105.046342 – ident: e_1_3_6_18_2 doi: 10.1371/journal.pone.0074636 – ident: e_1_3_6_52_2 doi: 10.1093/gbe/evx247 – ident: e_1_3_6_50_2 doi: 10.1111/ele.12195 – ident: e_1_3_6_6_2 doi: 10.1534/genetics.167.1.311 – ident: e_1_3_6_62_2 doi: 10.1093/molbev/msy096 – ident: e_1_3_6_55_2 doi: 10.1007/978-981-13-8367-0_13 – ident: e_1_3_6_24_2 doi: 10.1073/pnas.80.22.6942 – ident: e_1_3_6_41_2 article-title: Impact of mitotype diversity on metabarcoding biodiversity estimations in Insecta and Arachnida using different sample preparation strategies publication-title: Mol. Ecol. Resour. – ident: e_1_3_6_46_2 doi: 10.1111/syen.12500 – ident: e_1_3_6_13_2 doi: 10.3390/antiox10030415 – volume: 41 start-page: 95 year: 1999 ident: e_1_3_6_61_2 article-title: BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT publication-title: Nucl. Acids Symp. Ser. – ident: e_1_3_6_4_2 doi: 10.1038/s41467-019-11933-z – ident: e_1_3_6_10_2 doi: 10.1016/j.cell.2020.04.049 – ident: e_1_3_6_43_2 doi: 10.1111/1755-0998.12951 – ident: e_1_3_6_53_2 doi: 10.1007/s00114-021-01729-x – ident: e_1_3_6_60_2 doi: 10.1098/rstb.2005.1727 – ident: e_1_3_6_42_2 doi: 10.1111/eva.12694 – ident: e_1_3_6_14_2 doi: 10.1016/j.cell.2017.12.039 – ident: e_1_3_6_36_2 doi: 10.1098/rspb.2002.2218 – ident: e_1_3_6_19_2 doi: 10.1038/s41576-020-00284-x – ident: e_1_3_6_59_2 doi: 10.1007/s00248-021-01703-0 – ident: e_1_3_6_16_2 doi: 10.1007/s12038-020-00055-0 – ident: e_1_3_6_11_2 doi: 10.1016/j.cell.2005.02.001 – ident: e_1_3_6_21_2 doi: 10.3390/life11070633 – ident: e_1_3_6_15_2 doi: 10.3390/ijms20112770 – ident: e_1_3_6_51_2 doi: 10.1002/ece3.434 – ident: e_1_3_6_57_2 doi: 10.1007/s00227-012-2099-y – ident: e_1_3_6_45_2 doi: 10.1111/1755-0998.12904 – ident: e_1_3_6_34_2 doi: 10.1016/j.cub.2019.10.060 – ident: e_1_3_6_54_2 doi: 10.1186/s12862-020-1581-2 – ident: e_1_3_6_27_2 doi: 10.1073/pnas.95.5.2372 – ident: e_1_3_6_31_2 doi: 10.1038/hdy.2012.60 – ident: e_1_3_6_2_2 doi: 10.1016/j.cels.2017.06.004 – ident: e_1_3_6_5_2 doi: 10.1016/j.cub.2010.05.029 – ident: e_1_3_6_17_2 doi: 10.1002/adma.202008065 – ident: e_1_3_6_30_2 doi: 10.1038/s41598-020-59194-x – ident: e_1_3_6_26_2 doi: 10.1038/hdy.1997.207 – ident: e_1_3_6_35_2 doi: 10.1038/s41586-019-1213-4 – ident: e_1_3_6_29_2 doi: 10.1111/mec.12256 – ident: e_1_3_6_33_2 doi: 10.1038/s41598-019-56918-6 – ident: e_1_3_6_8_2 doi: 10.1371/journal.pbio.2006409 – ident: e_1_3_6_39_2 doi: 10.1098/rsbl.2003.0025 – ident: e_1_3_6_3_2 doi: 10.1016/j.cbpb.2021.110591 – ident: e_1_3_6_64_2 doi: 10.1093/oxfordjournals.molbev.a026036 – ident: e_1_3_6_58_2 doi: 10.1111/jzs.12096 – ident: e_1_3_6_56_2 doi: 10.1038/nrg3966 – ident: e_1_3_6_65_2 doi: 10.1098/rsob.220108 – year: 2021 ident: e_1_3_6_32_2 article-title: Persistence and invasiveness of high-level heteroplasmy through biparental transmission of a selfish mitochondrial genome in Drosophila publication-title: bioRxiv – ident: e_1_3_6_28_2 doi: 10.1002/ece3.1069 – ident: e_1_3_6_23_2 doi: 10.1111/jzs.12386 – ident: e_1_3_6_48_2 doi: 10.7717/peerj.4644 – ident: e_1_3_6_20_2 doi: 10.1038/nature08802 – ident: e_1_3_6_44_2 doi: 10.1002/ece3.7460 – ident: e_1_3_6_40_2 doi: 10.1111/2041-210X.13276 – ident: e_1_3_6_25_2 doi: 10.1073/pnas.89.23.11528 – ident: e_1_3_6_9_2 doi: 10.1038/s41586-019-1034-5 – volume: 3 start-page: 294 year: 1994 ident: e_1_3_6_38_2 article-title: DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates publication-title: Mol. Mar. Biol. Biotechnol. – ident: e_1_3_6_12_2 doi: 10.3390/antiox9060472 – ident: e_1_3_6_37_2 doi: 10.1111/j.1471-8286.2007.01678.x |
SSID | ssj0000561941 |
Score | 2.2734954 |
Snippet | In animals, starvation can increase the level of reactive oxygen species (ROS) in some tissues. Mitochondrial DNA (mtDNA) is more vulnerable to being attacked... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 220108 |
SubjectTerms | fruit fly genetic diversity mitochondria starved |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La8MwDDajMNhl7Mm6Fx70NMiaOE7qHPcqZbCdVujN-JVSaJPRx2H_fpKdlo4NdhmEHILAQbKtT5b1iZCOxXJJg2l3cE4R1y6LCq50FAuDa48lRmPt8OtbPhjyl1E22mr1hXfCAj1wUFw31lmW69iAZ4NYRGuBGLeEqYhMaFnP4O4LPm8rmAqs3hidJ01BXlyILsBXfccw9yu-uSDP1P9jI_bepX9A9htYSO_D7xySHVcdkd3QKPLzmFiwJh37rm8R1kbi_R4aChxpXVJAeM3RKoVnBosUT1YX1K4vXdBJRT3TxgLFn-a-ecFkqujMTVVVjxXSJZyQYf_5_XEQNf0RIsOTeBkBGCo935YDkJSWCS8zA_gD3oLZVCtjGTcq5zpOheIpL4RVNikhwFEsE0ylp6RV1ZU7I9S4HLSqkD9Oc8sT3TNc6NymrOCZ46ZNbtcqk6YhD8ceFlMZkthCon5l0G-bdDbCH4Ez43exB9T9RgSJrv0HML9szC__Mn-b3KwtJ2FhYLZDVa5eLSQDr4vhWcrP_2OgC7LHsPIBE1LikrSW85W7Ajyy1Nd-6n0B6fHcoQ priority: 102 providerName: Directory of Open Access Journals |
Title | The gender-specific impact of starvation on mitotypes diversity in adults of Drosophila melanogaster |
URI | https://www.proquest.com/docview/2718960634 https://doaj.org/article/0b556b0c750840bb83067f031224657c |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60IngRn_gsK3gSUpPNJt0eRHxVEXwcLPQW9pVSqIk2Ldh_78wmKag9CGEPYQPLbCbzfTuZbwg5NVguqTHtDsHJ48pGXodL5flCo--xQCusHX56jh96_LEf9ZdI3YyzMmCxkNphP6neeNT6-pxdgsNflGJI4hyQqWoxTOuKZbICIamNHvpU4fxS5BvJOpIvBnzQg5AWVLV6v57_EZ2ciP-fb7QLPN0Nsl4hRnpVbvEmWbLZFlkte0jOtomBjaYD1xDOw7JJ_PWHlrWPNE8pgL_q1JXC9Q7-i4euBTX1_xh0mFEnwlHg9Nux62swHEn6bkcyywcSlRR2SK9793bz4FWtEzzNA3_iAU5KnRSXBfwUpgFPIw3QBEbBTKikNoxrGXPlh0LykHeEkSZIgftIFgkmw13SyPLM7hGqbRy3U4nScoobHqi25kLFJmQdHlmu98lZbbJEV7ri2N5ilJT5bZGgfZPSvvvkdD75o5TTWDztGm0_n4Ia2O5GPh4klUslvoqiWPkaMA-wVKUEsp8UPlKokRe1YWEn9c4l4DOYCJGZzadFwiAgI3ML-cH_1nNI1hiWPWA2ShyRxmQ8tccARiaq6Ug8jPf9oOleOhhfXoNvlsjfzQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+gender-specific+impact+of+starvation+on+mitotypes+diversity+in+adults+of+Drosophila+melanogaster&rft.jtitle=Open+biology&rft.au=Wang%2C+Tao&rft.au=Li%2C+Tian-Chu&rft.au=Miao%2C+Yun-Heng&rft.au=Wu%2C+Luo-Nan&rft.date=2022-09-28&rft.issn=2046-2441&rft.eissn=2046-2441&rft.volume=12&rft.issue=9&rft_id=info:doi/10.1098%2Frsob.220108&rft.externalDBID=n%2Fa&rft.externalDocID=10_1098_rsob_220108 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2441&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2441&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2441&client=summon |