Deep learning-based intelligent precise aeration strategy for factory recirculating aquaculture systems

Factory recirculating aquaculture system (RAS) is facing in a stage of continuous research and technological innovation. Intelligent aquaculture is an important direction for the future development of aquaculture. However, the RAS nowdays still has poor self-learning and optimal decision-making capa...

Full description

Saved in:
Bibliographic Details
Published inArtificial intelligence in agriculture Vol. 12; pp. 57 - 71
Main Authors Yang, Junchao, Zhou, Yuting, Guo, Zhiwei, Zhou, Yueming, Shen, Yu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2024
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Factory recirculating aquaculture system (RAS) is facing in a stage of continuous research and technological innovation. Intelligent aquaculture is an important direction for the future development of aquaculture. However, the RAS nowdays still has poor self-learning and optimal decision-making capabilities, which leads to high aquaculture cost and low running efficiency. In this paper, a precise aeration strategy based on deep learning is designed for improving the healthy growth of breeding objects. Firstly, the situation perception driven by computer vision is used to detect the hypoxia behavior. Then combined with the biological energy model, it is constructed to calculate the breeding objects oxygen consumption. Finally, the optimal adaptive aeration strategy is generated according to hypoxia behavior judgement and biological energy model. Experimental results show that the energy consumption of proposed precise aeration strategy decreased by 26.3% compared with the manual control and 12.8% compared with the threshold control. Meanwhile, stable water quality conditions accelerated breeding objects growth, and the breeding cycle with the average weight of 400 g was shortened from 5 to 6 months to 3–4 months. •Aeration solution for recirculating aquaculture system based on computer vision.•Real time monitoring of the health status of breeding objects based on deep learning.•Precision aeration control using multi-source data model enhances accuracy.•Experimental demonstration under real recirculating aquaculture scenario.
AbstractList Factory recirculating aquaculture system (RAS) is facing in a stage of continuous research and technological innovation. Intelligent aquaculture is an important direction for the future development of aquaculture. However, the RAS nowdays still has poor self-learning and optimal decision-making capabilities, which leads to high aquaculture cost and low running efficiency. In this paper, a precise aeration strategy based on deep learning is designed for improving the healthy growth of breeding objects. Firstly, the situation perception driven by computer vision is used to detect the hypoxia behavior. Then combined with the biological energy model, it is constructed to calculate the breeding objects oxygen consumption. Finally, the optimal adaptive aeration strategy is generated according to hypoxia behavior judgement and biological energy model. Experimental results show that the energy consumption of proposed precise aeration strategy decreased by 26.3% compared with the manual control and 12.8% compared with the threshold control. Meanwhile, stable water quality conditions accelerated breeding objects growth, and the breeding cycle with the average weight of 400 g was shortened from 5 to 6 months to 3–4 months.
Factory recirculating aquaculture system (RAS) is facing in a stage of continuous research and technological innovation. Intelligent aquaculture is an important direction for the future development of aquaculture. However, the RAS nowdays still has poor self-learning and optimal decision-making capabilities, which leads to high aquaculture cost and low running efficiency. In this paper, a precise aeration strategy based on deep learning is designed for improving the healthy growth of breeding objects. Firstly, the situation perception driven by computer vision is used to detect the hypoxia behavior. Then combined with the biological energy model, it is constructed to calculate the breeding objects oxygen consumption. Finally, the optimal adaptive aeration strategy is generated according to hypoxia behavior judgement and biological energy model. Experimental results show that the energy consumption of proposed precise aeration strategy decreased by 26.3% compared with the manual control and 12.8% compared with the threshold control. Meanwhile, stable water quality conditions accelerated breeding objects growth, and the breeding cycle with the average weight of 400 g was shortened from 5 to 6 months to 3–4 months. •Aeration solution for recirculating aquaculture system based on computer vision.•Real time monitoring of the health status of breeding objects based on deep learning.•Precision aeration control using multi-source data model enhances accuracy.•Experimental demonstration under real recirculating aquaculture scenario.
Author Guo, Zhiwei
Shen, Yu
Zhou, Yueming
Yang, Junchao
Zhou, Yuting
Author_xml – sequence: 1
  givenname: Junchao
  surname: Yang
  fullname: Yang, Junchao
  email: yangjc@ctbu.edu.cn
  organization: School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China
– sequence: 2
  givenname: Yuting
  surname: Zhou
  fullname: Zhou, Yuting
  email: ytzhou@email.ctbu.edu.cn
  organization: School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China
– sequence: 3
  givenname: Zhiwei
  surname: Guo
  fullname: Guo, Zhiwei
  email: zwguo@ctbu.edu.cn
  organization: School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China
– sequence: 4
  givenname: Yueming
  surname: Zhou
  fullname: Zhou, Yueming
  email: zhouyueming@ctbu.edu.cn
  organization: National Research Base of Intelligent Manufacturing Services, Chongqing Technology and Business University, Chongqing 400067, China
– sequence: 5
  givenname: Yu
  surname: Shen
  fullname: Shen, Yu
  email: Shenyu@ctbu.edu.cn
  organization: National Research Base of Intelligent Manufacturing Services, Chongqing Technology and Business University, Chongqing 400067, China
BookMark eNp9kNFqHCEUhqWk0GSbF-iVLzAbnXFWhd6UbZIuLPSmvZYzehxcJs5G3cK-fZ1sAqUXgQMe5Xy_-t2QqzhHJOQLZ2vO-ObusIYQYN2yVqxZLcY_kOu2V7qRLZdX__SfyG3OB8ZYqxZSX5PxO-KRTggphjg2A2R0NMSC0xRGjIUeE9qQkQImKGGONJfa4Himfk7Ugy1zOtNlKNnTVEfiSOH5BHVTTglpPueCT_kz-ehhynj7uq7I74f7X9sfzf7n4277bd9YwVlpuO97FK1Ug0fvuN84zVAOQgxcqa7TQg1uAOi0clpzzxlgJz1D3VutlbTdiuwuuW6Ggzmm8ATpbGYI5uVgTqOBVIKd0AiJzvey3tEpwS0o77QUYLmUG6VaVrPUJcumOeeE3thQXiRUBWEynJnFojmYxb9Z_BtWi_GKtv-hb095F_p6gbAK-hMwmWwDRosuVL-l_iC8h_8Fc9ajWA
CitedBy_id crossref_primary_10_1016_j_jwpe_2025_107218
Cites_doi 10.1109/TIE.2021.3123629
10.1109/IOTM.001.2200065
10.1007/s10641-022-01261-5
10.1007/s10661-021-09586-x
10.1142/S0219622022500031
10.1155/2019/9674054
10.1186/s13638-018-1190-6
10.1109/MNET.102.2100394
10.1016/j.compag.2022.107335
10.1109/TFUZZ.2021.3130311
10.1016/j.eswa.2022.118218
10.1109/JBHI.2021.3139541
10.1007/s11042-020-09677-w
10.1109/TCYB.2018.2870981
10.1142/S0218126623501694
10.1016/j.engappai.2023.106002
10.1016/j.compag.2021.106583
10.1016/j.aquaeng.2018.03.003
10.1007/s10462-022-10165-w
10.3390/rs14164001
10.1080/02705060.2009.9664330
10.1016/j.compag.2021.106512
10.1016/j.eswa.2022.118670
10.1109/MWC.002.2100272
10.1109/TMM.2019.2960700
10.3390/rs14143306
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.aiia.2024.04.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2589-7217
EndPage 71
ExternalDocumentID oai_doaj_org_article_47edf57f6d3841ca8fd974ac17768820
10_1016_j_aiia_2024_04_001
S2589721724000138
GroupedDBID 0R~
0SF
6I.
AAEDW
AAFTH
AAHBH
AALRI
AAXUO
ACLIJ
AEXQZ
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
GROUPED_DOAJ
M41
NCXOZ
OK1
ROL
SSZ
AAYWO
AAYXX
ADVLN
CITATION
ID FETCH-LOGICAL-c410t-1f55e4278bfefd1f6d90e7b44b18833948bdbaa398d991f10ae37f0e95c9987c3
IEDL.DBID DOA
ISSN 2589-7217
IngestDate Wed Aug 27 01:17:58 EDT 2025
Tue Jul 01 01:27:17 EDT 2025
Thu Apr 24 23:08:13 EDT 2025
Wed Jun 26 17:51:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Precise aeration
Recirculating aquaculture system
Intelligent control
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-1f55e4278bfefd1f6d90e7b44b18833948bdbaa398d991f10ae37f0e95c9987c3
OpenAccessLink https://doaj.org/article/47edf57f6d3841ca8fd974ac17768820
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_47edf57f6d3841ca8fd974ac17768820
crossref_citationtrail_10_1016_j_aiia_2024_04_001
crossref_primary_10_1016_j_aiia_2024_04_001
elsevier_sciencedirect_doi_10_1016_j_aiia_2024_04_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Artificial intelligence in agriculture
PublicationYear 2024
Publisher Elsevier B.V
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co., Ltd
References Han, Huang, Sun, Wang (bb0055) 2022; 55
Jia, Xie, Yang, Li, Zhou, Fan, Shen, Guo (bb0070) 2023; 32
Guo, Yu, Jolfaei, Ding, Zhang (bb0045) 2022; 30
da Silva, Rosa, de Miranda, Cordeiro, Si, Nascimento, de Mello, de Mattos Neto (bb0020) 2023; 212
Mei, Sun, Li, Yu, Qin, Liu, Yan, Chen (bb0085) 2022; 201
Guo, Zhang, Yang, Yu, Wang (bb0030) 2022; 208
Stebel, Pospiech, Nocon, Czeczot, Skupin (bb0115) 2022; 69
Badiola, Basurko, Piedrahita, Hundley, Mendiola (bb0005) 2018; 81
Hou, Zhao, Chen, Yu (bb0065) 2022; 14
Guo, Yu, Lv, Choo, Shi, Rodrigues (bb0050) 2022; 29
Zhou, Wang, Huang, Li, Duan (bb0130) 2022; 192
Guo, Yu, Bashir, Zhang, Al-Otaibi, Guizani (bb0040) 2022; 36
Hogue, Pegg (bb0060) 2009; 24
Zhu, Lv, Tao (bb0135) 2018; 2018
Wang, Zhang, Zhao, Wang, Li, Zhao (bb0120) 2022; 192
Moghadam, Sharafati, Feizi, Marjaie, Asadollah, Motta (bb0095) 2021; 193
Zou, Chen, Liu, Zhang, Liang, Chen, Wang (bb0140) 2022; 14
Palomares, Parducho, Reyes, Bailly (bb0105) 2022; 105
Coutinho, Boukerche (bb0010) 2022; 5
Sanchez, Ceballos Arroyo, Robles-Serrano (bb0110) 2018; 26
Mharakurwa, Nyakoe, Akumu (bb0090) 2019
Cui, Cao, Pan, Zhang, Wang (bb0015) 2020; 22
Padma, Periyasamy, Ramadoss (bb0100) 2022; 21
Guo, Shen, Wan, Shang, Yu (bb0035) 2022; 26
Juang, Lin, Bui (bb0075) 2020; 50
Konovalov, Saleh, Efremova, Domingos, Jerry (bb0080) 2019
Gong, Tian, Zou, Zhou (bb0025) 2021; 80
Yang, Jia, Guo, Shen, Li, Mou, Yu, Lin (bb0125) 2023; 121
Coutinho (10.1016/j.aiia.2024.04.001_bb0010) 2022; 5
Jia (10.1016/j.aiia.2024.04.001_bb0070) 2023; 32
Padma (10.1016/j.aiia.2024.04.001_bb0100) 2022; 21
Guo (10.1016/j.aiia.2024.04.001_bb0035) 2022; 26
Cui (10.1016/j.aiia.2024.04.001_bb0015) 2020; 22
Hou (10.1016/j.aiia.2024.04.001_bb0065) 2022; 14
Konovalov (10.1016/j.aiia.2024.04.001_bb0080) 2019
Gong (10.1016/j.aiia.2024.04.001_bb0025) 2021; 80
Zhu (10.1016/j.aiia.2024.04.001_bb0135) 2018; 2018
Zou (10.1016/j.aiia.2024.04.001_bb0140) 2022; 14
Guo (10.1016/j.aiia.2024.04.001_bb0040) 2022; 36
Guo (10.1016/j.aiia.2024.04.001_bb0030) 2022; 208
Juang (10.1016/j.aiia.2024.04.001_bb0075) 2020; 50
Hogue (10.1016/j.aiia.2024.04.001_bb0060) 2009; 24
Yang (10.1016/j.aiia.2024.04.001_bb0125) 2023; 121
Moghadam (10.1016/j.aiia.2024.04.001_bb0095) 2021; 193
Han (10.1016/j.aiia.2024.04.001_bb0055) 2022; 55
Zhou (10.1016/j.aiia.2024.04.001_bb0130) 2022; 192
da Silva (10.1016/j.aiia.2024.04.001_bb0020) 2023; 212
Badiola (10.1016/j.aiia.2024.04.001_bb0005) 2018; 81
Mharakurwa (10.1016/j.aiia.2024.04.001_bb0090) 2019
Sanchez (10.1016/j.aiia.2024.04.001_bb0110) 2018; 26
Palomares (10.1016/j.aiia.2024.04.001_bb0105) 2022; 105
Mei (10.1016/j.aiia.2024.04.001_bb0085) 2022; 201
Stebel (10.1016/j.aiia.2024.04.001_bb0115) 2022; 69
Guo (10.1016/j.aiia.2024.04.001_bb0045) 2022; 30
Guo (10.1016/j.aiia.2024.04.001_bb0050) 2022; 29
Wang (10.1016/j.aiia.2024.04.001_bb0120) 2022; 192
References_xml – volume: 121
  start-page: 106002
  year: 2023
  ident: bb0125
  article-title: Prediction and control of water quality in recirculating aquaculture system based on hybrid neural network
  publication-title: Eng. Appl. Artif. Intell.
– volume: 55
  start-page: 6655
  year: 2022
  end-page: 6671
  ident: bb0055
  article-title: 3ddacnn: 3d dense attention convolutional neural network for point cloud based object recognition
  publication-title: Artif. Intell. Rev.
– volume: 26
  start-page: 461
  year: 2018
  end-page: 472
  ident: bb0110
  article-title: Automatic measurement of fish weight and size by processing underwater hatchery images
  publication-title: Eng. Lett.
– volume: 5
  start-page: 174
  year: 2022
  end-page: 179
  ident: bb0010
  article-title: Towards a novel architectural design for iot-based smart marine aquaculture
  publication-title: IEEE Internet Things Mag.
– volume: 212
  start-page: 118670
  year: 2023
  ident: bb0020
  article-title: A novel multi-objective grammar-based framework for the generation of convolutional neural networks
  publication-title: Expert Syst. Appl.
– volume: 192
  start-page: 106512
  year: 2022
  ident: bb0120
  article-title: Real-time detection and tracking of fish abnormal behavior based on improved YOLOV5 and siamrpn++
  publication-title: Comput. Electron. Agric.
– volume: 22
  start-page: 2551
  year: 2020
  end-page: 2563
  ident: bb0015
  article-title: Deep gesture video generation with learning on regions of interest
  publication-title: IEEE Trans. Multim.
– volume: 24
  start-page: 535
  year: 2009
  end-page: 543
  ident: bb0060
  article-title: Oxygen consumption rates for bighead and silver carp in relation to life-stage and water temperature
  publication-title: J. Freshw. Ecol.
– volume: 14
  start-page: 4001
  year: 2022
  ident: bb0140
  article-title: Extraction of aquaculture ponds along coastal region using u2-net deep learning model from remote sensing images
  publication-title: Remote Sens.
– volume: 69
  start-page: 10541
  year: 2022
  end-page: 10551
  ident: bb0115
  article-title: Boundary-based predictive controller and its application to control of dissolved oxygen concentration in activated sludge bioreactor
  publication-title: IEEE Trans. Ind. Electron.
– volume: 81
  start-page: 57
  year: 2018
  end-page: 70
  ident: bb0005
  article-title: Energy use in recirculating aquaculture systems (ras): a review
  publication-title: Aquac. Eng.
– start-page: 1
  year: 2019
  end-page: 7
  ident: bb0080
  article-title: Automatic weight estimation of harvested fish from images
  publication-title: 2019 Digital Image Computing: Techniques and Applications, DICTA 2019, Perth, Australia, December 2-4, 2019
– volume: 14
  start-page: 3306
  year: 2022
  ident: bb0065
  article-title: Improving satellite retrieval of coastal aquaculture pond by adding water quality parameters
  publication-title: Remote Sens.
– volume: 193
  start-page: 1
  year: 2021
  end-page: 18
  ident: bb0095
  article-title: An efficient strategy for predicting river dissolved oxygen concentration: application of deep recurrent neural network model
  publication-title: Environ. Monit. Assess.
– volume: 80
  start-page: 439
  year: 2021
  end-page: 461
  ident: bb0025
  article-title: Robust and imperceptible watermarking scheme based on canny edge detection and SVD in the contourlet domain
  publication-title: Multimed. Tools Appl.
– volume: 2018
  start-page: 174
  year: 2018
  ident: bb0135
  article-title: An improved localization scheme based on imdv-hop for large-scale wireless mobile sensor aquaculture networks
  publication-title: EURASIP J. Wirel. Commun. Netw.
– volume: 105
  start-page: 1475
  year: 2022
  end-page: 1479
  ident: bb0105
  article-title: The interrelationship of temperature, growth parameters, and activity level in fishes
  publication-title: Environ. Biol. Fish
– volume: 26
  start-page: 5817
  year: 2022
  end-page: 5828
  ident: bb0035
  article-title: Hybrid intelligence-driven medical image recognition for remote patient diagnosis in internet of medical things
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 192
  start-page: 106583
  year: 2022
  ident: bb0130
  article-title: Modelling and controlling dissolved oxygen in recirculating aquaculture systems based on mechanism analysis and an adaptive PID controller
  publication-title: Comput. Electron. Agric.
– volume: 32
  start-page: 1
  year: 2023
  end-page: 2350169
  ident: bb0070
  article-title: Lightweight cnn-based image recognition with ecological iot framework for management of marine fishes
  publication-title: J. Circuits Syst. Comput.
– volume: 50
  start-page: 650
  year: 2020
  end-page: 663
  ident: bb0075
  article-title: Multiobjective rule-based cooperative continuous ant colony optimized fuzzy systems with a robot control application
  publication-title: IEEE Trans. Cybern.
– year: 2019
  ident: bb0090
  article-title: Power transformer fault severity estimation based on dissolved gas analysis and energy of fault formation technique
  publication-title: J. Electr. Comput. Eng.
– volume: 29
  start-page: 22
  year: 2022
  end-page: 29
  ident: bb0050
  article-title: Deep federated learning enhanced secure poi microservices for cyber-physical systems
  publication-title: IEEE Wirel. Commun.
– volume: 30
  start-page: 4543
  year: 2022
  end-page: 4554
  ident: bb0045
  article-title: Fuz-spam: label smoothing-based fuzzy detection of spammers in internet of things
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 21
  start-page: 999
  year: 2022
  end-page: 1030
  ident: bb0100
  article-title: Hybrid fuzzy AHP and fuzzy TOPSIS decision model for aquaculture species selection
  publication-title: Int. J. Inf. Technol. Decis. Mak.
– volume: 36
  start-page: 210
  year: 2022
  end-page: 216
  ident: bb0040
  article-title: Deep information fusion-driven poi scheduling for mobile social networks
  publication-title: IEEE Netw.
– volume: 201
  start-page: 107335
  year: 2022
  ident: bb0085
  article-title: Recent advances of target tracking applications in aquaculture with emphasis on fish
  publication-title: Comput. Electron. Agric.
– volume: 208
  start-page: 118218
  year: 2022
  ident: bb0030
  article-title: Dual memory scale network for multi-step time series forecasting in thermal environment of aquaculture facility: a case study of recirculating aquaculture water temperature
  publication-title: Expert Syst. Appl.
– volume: 69
  start-page: 10541
  year: 2022
  ident: 10.1016/j.aiia.2024.04.001_bb0115
  article-title: Boundary-based predictive controller and its application to control of dissolved oxygen concentration in activated sludge bioreactor
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2021.3123629
– volume: 5
  start-page: 174
  year: 2022
  ident: 10.1016/j.aiia.2024.04.001_bb0010
  article-title: Towards a novel architectural design for iot-based smart marine aquaculture
  publication-title: IEEE Internet Things Mag.
  doi: 10.1109/IOTM.001.2200065
– volume: 105
  start-page: 1475
  year: 2022
  ident: 10.1016/j.aiia.2024.04.001_bb0105
  article-title: The interrelationship of temperature, growth parameters, and activity level in fishes
  publication-title: Environ. Biol. Fish
  doi: 10.1007/s10641-022-01261-5
– volume: 193
  start-page: 1
  year: 2021
  ident: 10.1016/j.aiia.2024.04.001_bb0095
  article-title: An efficient strategy for predicting river dissolved oxygen concentration: application of deep recurrent neural network model
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-021-09586-x
– volume: 21
  start-page: 999
  year: 2022
  ident: 10.1016/j.aiia.2024.04.001_bb0100
  article-title: Hybrid fuzzy AHP and fuzzy TOPSIS decision model for aquaculture species selection
  publication-title: Int. J. Inf. Technol. Decis. Mak.
  doi: 10.1142/S0219622022500031
– year: 2019
  ident: 10.1016/j.aiia.2024.04.001_bb0090
  article-title: Power transformer fault severity estimation based on dissolved gas analysis and energy of fault formation technique
  publication-title: J. Electr. Comput. Eng.
  doi: 10.1155/2019/9674054
– volume: 2018
  start-page: 174
  year: 2018
  ident: 10.1016/j.aiia.2024.04.001_bb0135
  article-title: An improved localization scheme based on imdv-hop for large-scale wireless mobile sensor aquaculture networks
  publication-title: EURASIP J. Wirel. Commun. Netw.
  doi: 10.1186/s13638-018-1190-6
– volume: 36
  start-page: 210
  year: 2022
  ident: 10.1016/j.aiia.2024.04.001_bb0040
  article-title: Deep information fusion-driven poi scheduling for mobile social networks
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.102.2100394
– volume: 201
  start-page: 107335
  year: 2022
  ident: 10.1016/j.aiia.2024.04.001_bb0085
  article-title: Recent advances of target tracking applications in aquaculture with emphasis on fish
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107335
– volume: 30
  start-page: 4543
  year: 2022
  ident: 10.1016/j.aiia.2024.04.001_bb0045
  article-title: Fuz-spam: label smoothing-based fuzzy detection of spammers in internet of things
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2021.3130311
– volume: 208
  start-page: 118218
  year: 2022
  ident: 10.1016/j.aiia.2024.04.001_bb0030
  article-title: Dual memory scale network for multi-step time series forecasting in thermal environment of aquaculture facility: a case study of recirculating aquaculture water temperature
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118218
– volume: 26
  start-page: 5817
  year: 2022
  ident: 10.1016/j.aiia.2024.04.001_bb0035
  article-title: Hybrid intelligence-driven medical image recognition for remote patient diagnosis in internet of medical things
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3139541
– volume: 26
  start-page: 461
  year: 2018
  ident: 10.1016/j.aiia.2024.04.001_bb0110
  article-title: Automatic measurement of fish weight and size by processing underwater hatchery images
  publication-title: Eng. Lett.
– volume: 80
  start-page: 439
  year: 2021
  ident: 10.1016/j.aiia.2024.04.001_bb0025
  article-title: Robust and imperceptible watermarking scheme based on canny edge detection and SVD in the contourlet domain
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-09677-w
– volume: 50
  start-page: 650
  year: 2020
  ident: 10.1016/j.aiia.2024.04.001_bb0075
  article-title: Multiobjective rule-based cooperative continuous ant colony optimized fuzzy systems with a robot control application
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2870981
– volume: 32
  start-page: 1
  year: 2023
  ident: 10.1016/j.aiia.2024.04.001_bb0070
  article-title: Lightweight cnn-based image recognition with ecological iot framework for management of marine fishes
  publication-title: J. Circuits Syst. Comput.
  doi: 10.1142/S0218126623501694
– start-page: 1
  year: 2019
  ident: 10.1016/j.aiia.2024.04.001_bb0080
  article-title: Automatic weight estimation of harvested fish from images
– volume: 121
  start-page: 106002
  year: 2023
  ident: 10.1016/j.aiia.2024.04.001_bb0125
  article-title: Prediction and control of water quality in recirculating aquaculture system based on hybrid neural network
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106002
– volume: 192
  start-page: 106583
  year: 2022
  ident: 10.1016/j.aiia.2024.04.001_bb0130
  article-title: Modelling and controlling dissolved oxygen in recirculating aquaculture systems based on mechanism analysis and an adaptive PID controller
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106583
– volume: 81
  start-page: 57
  year: 2018
  ident: 10.1016/j.aiia.2024.04.001_bb0005
  article-title: Energy use in recirculating aquaculture systems (ras): a review
  publication-title: Aquac. Eng.
  doi: 10.1016/j.aquaeng.2018.03.003
– volume: 55
  start-page: 6655
  year: 2022
  ident: 10.1016/j.aiia.2024.04.001_bb0055
  article-title: 3ddacnn: 3d dense attention convolutional neural network for point cloud based object recognition
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10165-w
– volume: 14
  start-page: 4001
  year: 2022
  ident: 10.1016/j.aiia.2024.04.001_bb0140
  article-title: Extraction of aquaculture ponds along coastal region using u2-net deep learning model from remote sensing images
  publication-title: Remote Sens.
  doi: 10.3390/rs14164001
– volume: 24
  start-page: 535
  year: 2009
  ident: 10.1016/j.aiia.2024.04.001_bb0060
  article-title: Oxygen consumption rates for bighead and silver carp in relation to life-stage and water temperature
  publication-title: J. Freshw. Ecol.
  doi: 10.1080/02705060.2009.9664330
– volume: 192
  start-page: 106512
  year: 2022
  ident: 10.1016/j.aiia.2024.04.001_bb0120
  article-title: Real-time detection and tracking of fish abnormal behavior based on improved YOLOV5 and siamrpn++
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106512
– volume: 212
  start-page: 118670
  year: 2023
  ident: 10.1016/j.aiia.2024.04.001_bb0020
  article-title: A novel multi-objective grammar-based framework for the generation of convolutional neural networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118670
– volume: 29
  start-page: 22
  year: 2022
  ident: 10.1016/j.aiia.2024.04.001_bb0050
  article-title: Deep federated learning enhanced secure poi microservices for cyber-physical systems
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.002.2100272
– volume: 22
  start-page: 2551
  year: 2020
  ident: 10.1016/j.aiia.2024.04.001_bb0015
  article-title: Deep gesture video generation with learning on regions of interest
  publication-title: IEEE Trans. Multim.
  doi: 10.1109/TMM.2019.2960700
– volume: 14
  start-page: 3306
  year: 2022
  ident: 10.1016/j.aiia.2024.04.001_bb0065
  article-title: Improving satellite retrieval of coastal aquaculture pond by adding water quality parameters
  publication-title: Remote Sens.
  doi: 10.3390/rs14143306
SSID ssj0002810169
Score 2.303602
Snippet Factory recirculating aquaculture system (RAS) is facing in a stage of continuous research and technological innovation. Intelligent aquaculture is an...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 57
SubjectTerms Deep learning
Intelligent control
Precise aeration
Recirculating aquaculture system
Title Deep learning-based intelligent precise aeration strategy for factory recirculating aquaculture systems
URI https://dx.doi.org/10.1016/j.aiia.2024.04.001
https://doaj.org/article/47edf57f6d3841ca8fd974ac17768820
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sCGIpzEqZ2xPKoKCSYqdYv8jFKhUNp06L_HFztVJlhYo4svOl9y30Xn70PoLk2pShMBbaoSEXVZEeXavY-aO_jBJRdUwGnkt_fRdEZf59m8J_UFM2GeHtgH7oEyo23G7EinnLr1uNUOAgsVMweUXfmCr6-reb1matH-MoKuNA-nZPxAl6gqIBpKaMttGlRgukrUEvb3ClKvyEyO0GFAh3jsn-oY7Zn6BB2My1VgyDCnqHw2ZomD2EMZQRXSuNoRazZ4CXwVa4OF8ZuL156AdosdPsVeX2eLwWilWu2uusTieyOCB-y5nddnaDZ5-XiaRkEtIVI0Jk0U2ywzIJwhrbE6dgHLiWGSUhmDoHBOudRSiDTn2mFCGxNhUmaJyTPlWi6m0nM0qL9qc4GwTSwXhGgQl6Q5ULLFxDIm0ySziWFqiOIucoUKVOKgaPFZdDNjiwKiXUC0C0JhcG6I7nf3LD2Rxq_Wj7AhO0sgwW4vuNQoQmoUf6XGEGXddhYBT3ic4JaqfnF--R_Or9A-LOmnyq7RoFltzI3DL428bVP1BxGr7rE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+intelligent+precise+aeration+strategy+for+factory+recirculating+aquaculture+systems&rft.jtitle=Artificial+intelligence+in+agriculture&rft.au=Yang%2C+Junchao&rft.au=Zhou%2C+Yuting&rft.au=Guo%2C+Zhiwei&rft.au=Zhou%2C+Yueming&rft.date=2024-06-01&rft.issn=2589-7217&rft.eissn=2589-7217&rft.volume=12&rft.spage=57&rft.epage=71&rft_id=info:doi/10.1016%2Fj.aiia.2024.04.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aiia_2024_04_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-7217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-7217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-7217&client=summon