How does biochar influence soil N cycle? A meta-analysis
Background and aims Modern agriculture is driving the release of excessive amounts of reactive nitrogen (N) from the soils to the environment, thereby threatening ecological balances and functions. The amendment of soils with biochar has been suggested as a promising solution to regulate the soil N...
Saved in:
Published in | Plant and soil Vol. 426; no. 1/2; pp. 211 - 225 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer Science + Business Media
01.05.2018
Springer International Publishing Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background and aims
Modern agriculture is driving the release of excessive amounts of reactive nitrogen (N) from the soils to the environment, thereby threatening ecological balances and functions. The amendment of soils with biochar has been suggested as a promising solution to regulate the soil N cycle and reduce N effluxes. However, a comprehensive and quantitative understanding of biochar impacts on soil N cycle remains elusive.
Methods
A meta-analysis was conducted to assess the influence of biochar on different variables involved in soil N cycle using data compiled across 208 peer-reviewed studies.
Results
On average, biochar beneficially increases symbiotic biological N
2
fixation (63%), improves plant N uptake (11%), reduces soil N
2
O emissions (32%), and decreases soil N leaching (26%), but it poses a risk of increased soil NH
3
volatilization (19%). Biochar-induced increase in soil NH
3
volatilization commonly occurs in studies with soils of low buffering capacity (soil pH ≤ 5, organic carbon≤10 g kg
−1
, or clay texture), the application of high alkaline biochar (straw- or manure-derived biochar), or biochar at high application rate (>40 t ha
−1
). Besides, if the pyrolytic syngas is not purified, the biochar production process may be a potential source of N
2
O and NO
x
emissions which correspond to 2–4% and 3–24% of the feedstock-N, respectively.
Conclusions
This study suggests that to make biochar beneficial for decreasing soil N effluxes, clean advanced pyrolysis technique and adapted use of biochar are of great importance. |
---|---|
AbstractList | Background and aimsModern agriculture is driving the release of excessive amounts of reactive nitrogen (N) from the soils to the environment, thereby threatening ecological balances and functions. The amendment of soils with biochar has been suggested as a promising solution to regulate the soil N cycle and reduce N effluxes. However, a comprehensive and quantitative understanding of biochar impacts on soil N cycle remains elusive.MethodsA meta-analysis was conducted to assess the influence of biochar on different variables involved in soil N cycle using data compiled across 208 peer-reviewed studies.ResultsOn average, biochar beneficially increases symbiotic biological N2 fixation (63%), improves plant N uptake (11%), reduces soil N2O emissions (32%), and decreases soil N leaching (26%), but it poses a risk of increased soil NH3 volatilization (19%). Biochar-induced increase in soil NH3 volatilization commonly occurs in studies with soils of low buffering capacity (soil pH ≤ 5, organic carbon≤10 g kg−1, or clay texture), the application of high alkaline biochar (straw- or manure-derived biochar), or biochar at high application rate (>40 t ha−1). Besides, if the pyrolytic syngas is not purified, the biochar production process may be a potential source of N2O and NOx emissions which correspond to 2–4% and 3–24% of the feedstock-N, respectively.ConclusionsThis study suggests that to make biochar beneficial for decreasing soil N effluxes, clean advanced pyrolysis technique and adapted use of biochar are of great importance. Background and aims Modern agriculture is driving the release of excessive amounts of reactive nitrogen (N) from the soils to the environment, thereby threatening ecological balances and functions. The amendment of soils with biochar has been suggested as a promising solution to regulate the soil N cycle and reduce N effluxes. However, a comprehensive and quantitative understanding of biochar impacts on soil N cycle remains elusive. Methods A meta-analysis was conducted to assess the influence of biochar on different variables involved in soil N cycle using data compiled across 208 peer-reviewed studies. Results On average, biochar beneficially increases symbiotic biological N.sub.2 fixation (63%), improves plant N uptake (11%), reduces soil N.sub.2O emissions (32%), and decreases soil N leaching (26%), but it poses a risk of increased soil NH.sub.3 volatilization (19%). Biochar-induced increase in soil NH.sub.3 volatilization commonly occurs in studies with soils of low buffering capacity (soil pH [less than or equal to] 5, organic carbon[less than or equal to]10 g kg.sup.-1, or clay texture), the application of high alkaline biochar (straw- or manure-derived biochar), or biochar at high application rate (>40 t ha.sup.-1). Besides, if the pyrolytic syngas is not purified, the biochar production process may be a potential source of N.sub.2O and NO.sub.x emissions which correspond to 2-4% and 3-24% of the feedstock-N, respectively. Conclusions This study suggests that to make biochar beneficial for decreasing soil N effluxes, clean advanced pyrolysis technique and adapted use of biochar are of great importance. Background and aims Modern agriculture is driving the release of excessive amounts of reactive nitrogen (N) from the soils to the environment, thereby threatening ecological balances and functions. The amendment of soils with biochar has been suggested as a promising solution to regulate the soil N cycle and reduce N effluxes. However, a comprehensive and quantitative understanding of biochar impacts on soil N cycle remains elusive. Methods A meta-analysis was conducted to assess the influence of biochar on different variables involved in soil N cycle using data compiled across 208 peer-reviewed studies. Results On average, biochar beneficially increases symbiotic biological N 2 fixation (63%), improves plant N uptake (11%), reduces soil N 2 O emissions (32%), and decreases soil N leaching (26%), but it poses a risk of increased soil NH 3 volatilization (19%). Biochar-induced increase in soil NH 3 volatilization commonly occurs in studies with soils of low buffering capacity (soil pH ≤ 5, organic carbon≤10 g kg −1 , or clay texture), the application of high alkaline biochar (straw- or manure-derived biochar), or biochar at high application rate (>40 t ha −1 ). Besides, if the pyrolytic syngas is not purified, the biochar production process may be a potential source of N 2 O and NO x emissions which correspond to 2–4% and 3–24% of the feedstock-N, respectively. Conclusions This study suggests that to make biochar beneficial for decreasing soil N effluxes, clean advanced pyrolysis technique and adapted use of biochar are of great importance. BACKGROUND AND AIMS: Modern agriculture is driving the release of excessive amounts of reactive nitrogen (N) from the soils to the environment, thereby threatening ecological balances and functions. The amendment of soils with biochar has been suggested as a promising solution to regulate the soil N cycle and reduce N effluxes. However, a comprehensive and quantitative understanding of biochar impacts on soil N cycle remains elusive. METHODS: A meta-analysis was conducted to assess the influence of biochar on different variables involved in soil N cycle using data compiled across 208 peer-reviewed studies. RESULTS: On average, biochar beneficially increases symbiotic biological N₂ fixation (63%), improves plant N uptake (11%), reduces soil N₂O emissions (32%), and decreases soil N leaching (26%), but it poses a risk of increased soil NH₃ volatilization (19%). Biochar-induced increase in soil NH₃ volatilization commonly occurs in studies with soils of low buffering capacity (soil pH ≤ 5, organic carbon≤10 g kg⁻¹, or clay texture), the application of high alkaline biochar (straw- or manure-derived biochar), or biochar at high application rate (>40 t ha⁻¹). Besides, if the pyrolytic syngas is not purified, the biochar production process may be a potential source of N₂O and NOₓ emissions which correspond to 2–4% and 3–24% of the feedstock-N, respectively. CONCLUSIONS: This study suggests that to make biochar beneficial for decreasing soil N effluxes, clean advanced pyrolysis technique and adapted use of biochar are of great importance. |
Audience | Academic |
Author | Liu, Gang Amonette, James E. Lin, Zhibin Zhang, Yanhui Ambus, Per Xie, Zubin Liu, Qi Liu, Benjuan |
Author_xml | – sequence: 1 givenname: Qi surname: Liu fullname: Liu, Qi – sequence: 2 givenname: Yanhui surname: Zhang fullname: Zhang, Yanhui – sequence: 3 givenname: Benjuan surname: Liu fullname: Liu, Benjuan – sequence: 4 givenname: James E. surname: Amonette fullname: Amonette, James E. – sequence: 5 givenname: Zhibin surname: Lin fullname: Lin, Zhibin – sequence: 6 givenname: Gang surname: Liu fullname: Liu, Gang – sequence: 7 givenname: Per surname: Ambus fullname: Ambus, Per – sequence: 8 givenname: Zubin surname: Xie fullname: Xie, Zubin |
BookMark | eNp9kc9LHDEUx0Ox0NX6B_QgDHjxEvtefswkJ1nE1oK0lxa8hUwmY7NkJ5rMIvvfN8sUBQ-SQ0j4fPLy3veYHE1p8oR8QbhEgO5rQUQQFFBR3qKm4gNZoew4lcDbI7IC4IxCp-8_keNSNnA4Y7si6jY9N0PypelDcn9tbsI0xp2fnG9KCrH52bi9i_6qWTdbP1tqJxv3JZTP5ONoY_Gn__cT8ufbze_rW3r36_uP6_UddQJhpuilBa4GZkdwyolejs7ZnotR9Qx7KWEYpO57pjR3A4qxHbS2yITWXcuF4yfkYnn3MaennS-z2YbifIx28mlXDENALnSdQUXP36CbtMv1v5UClK1CjqJSlwv1YKM3tds0Z-vqGvw2uDrVMdT7teSKacGYrEK3CC6nUrIfjQuznUOaqhiiQTCHCMwSgakRmEME5lAK35iPOWxt3r_rsMUplZ0efH5t4j3pbJE2ZU75pYpQHZMdav4P-2yhSw |
CitedBy_id | crossref_primary_10_3390_agronomy11061242 crossref_primary_10_1139_cjss_2021_0006 crossref_primary_10_1111_gcbb_13003 crossref_primary_10_1016_j_geoderma_2022_116236 crossref_primary_10_1016_j_soilbio_2021_108416 crossref_primary_10_1007_s11356_021_14886_3 crossref_primary_10_1016_j_anifeedsci_2024_116053 crossref_primary_10_1016_j_geoderma_2020_114178 crossref_primary_10_1016_j_scitotenv_2019_06_293 crossref_primary_10_3390_horticulturae8040339 crossref_primary_10_1016_j_fcr_2022_108714 crossref_primary_10_1038_s41598_019_38697_2 crossref_primary_10_1111_sum_12787 crossref_primary_10_1007_s11270_025_07888_1 crossref_primary_10_1016_j_pedsph_2023_03_015 crossref_primary_10_1007_s42773_023_00252_8 crossref_primary_10_1080_09506608_2021_1922047 crossref_primary_10_1007_s11356_019_04417_6 crossref_primary_10_1016_j_eti_2022_102898 crossref_primary_10_1016_j_envpol_2022_120100 crossref_primary_10_1016_j_jclepro_2020_122462 crossref_primary_10_1016_j_scitotenv_2022_161099 crossref_primary_10_1007_s42773_022_00137_2 crossref_primary_10_1016_j_jhazmat_2022_130053 crossref_primary_10_1016_j_envpol_2020_115670 crossref_primary_10_3390_agronomy12081879 crossref_primary_10_1007_s11356_020_10267_4 crossref_primary_10_1016_j_soilbio_2021_108420 crossref_primary_10_1080_00103624_2025_2452182 crossref_primary_10_1007_s00374_021_01542_8 crossref_primary_10_1016_j_geoderma_2024_116806 crossref_primary_10_1016_j_scitotenv_2018_11_124 crossref_primary_10_3389_fpls_2024_1542150 crossref_primary_10_1016_j_scitotenv_2023_168530 crossref_primary_10_1007_s10661_023_11052_9 crossref_primary_10_3389_fenvs_2023_1123897 crossref_primary_10_1186_s40538_020_00182_8 crossref_primary_10_1038_s41598_019_53044_1 crossref_primary_10_32604_phyton_2023_046877 crossref_primary_10_3390_agronomy13010053 crossref_primary_10_1016_j_jclepro_2021_127764 crossref_primary_10_1021_acs_est_3c02620 crossref_primary_10_1007_s11104_023_06265_3 crossref_primary_10_1016_j_eti_2024_104006 crossref_primary_10_1016_j_agwat_2024_108788 crossref_primary_10_1016_j_heliyon_2022_e11304 crossref_primary_10_1016_j_envpol_2020_114477 crossref_primary_10_1016_j_jclepro_2022_134451 crossref_primary_10_1016_j_soilbio_2019_06_008 crossref_primary_10_1016_j_jenvman_2019_03_051 crossref_primary_10_1029_2022EF003246 crossref_primary_10_1016_j_scitotenv_2021_150239 crossref_primary_10_1007_s11356_019_06762_y crossref_primary_10_1016_j_eja_2020_126021 crossref_primary_10_1016_j_still_2020_104822 crossref_primary_10_1002_agj2_20540 crossref_primary_10_1007_s42773_022_00166_x crossref_primary_10_1007_s11270_024_07584_6 crossref_primary_10_3389_fpls_2021_650432 crossref_primary_10_1007_s00374_024_01823_y crossref_primary_10_3390_agronomy12081857 crossref_primary_10_1016_j_scitotenv_2023_163631 crossref_primary_10_1016_j_eja_2024_127365 crossref_primary_10_1016_j_envres_2022_113832 crossref_primary_10_1016_j_apsoil_2022_104591 crossref_primary_10_1016_j_apsoil_2019_103402 crossref_primary_10_1016_j_jenvman_2023_118721 crossref_primary_10_1016_j_jenvman_2023_119018 crossref_primary_10_1007_s42452_020_2156_y crossref_primary_10_1007_s11104_022_05325_4 crossref_primary_10_1080_09593330_2022_2103742 crossref_primary_10_1016_j_agee_2019_02_013 crossref_primary_10_1111_ejss_13488 crossref_primary_10_1016_j_scitotenv_2020_144381 crossref_primary_10_1007_s11104_020_04637_7 crossref_primary_10_1016_j_chemosphere_2022_137244 crossref_primary_10_1186_s13750_024_00326_5 crossref_primary_10_1007_s11104_022_05767_w crossref_primary_10_1007_s42729_024_01931_6 crossref_primary_10_1007_s11356_024_35269_4 crossref_primary_10_3390_app11198914 crossref_primary_10_1016_j_chemosphere_2019_06_030 crossref_primary_10_1080_17583004_2023_2217785 crossref_primary_10_2139_ssrn_4141110 crossref_primary_10_3390_soilsystems7010026 crossref_primary_10_1007_s42773_023_00287_x crossref_primary_10_1038_s41598_020_76213_z crossref_primary_10_3390_plants12203649 crossref_primary_10_1016_j_jenvman_2025_124990 crossref_primary_10_1016_j_scitotenv_2019_134943 crossref_primary_10_1016_j_soilbio_2024_109685 crossref_primary_10_1111_sum_12642 crossref_primary_10_1016_j_envpol_2020_114553 crossref_primary_10_1016_j_envpol_2019_07_073 crossref_primary_10_5194_bg_19_3739_2022 crossref_primary_10_3390_agronomy12020247 crossref_primary_10_1007_s11368_019_02400_9 crossref_primary_10_1016_j_jclepro_2021_125811 crossref_primary_10_1016_S1002_0160_20_60094_7 crossref_primary_10_1016_j_scitotenv_2024_170266 crossref_primary_10_1016_j_scitotenv_2021_152073 crossref_primary_10_1016_j_geodrs_2025_e00936 crossref_primary_10_1016_j_psep_2024_09_115 crossref_primary_10_3389_fpls_2023_1131937 crossref_primary_10_1016_j_agee_2024_109243 crossref_primary_10_1109_TGRS_2021_3109819 crossref_primary_10_1016_j_scitotenv_2022_160416 crossref_primary_10_3390_su151813366 crossref_primary_10_1016_j_soilbio_2025_109730 crossref_primary_10_1016_j_chemosphere_2024_141769 crossref_primary_10_1038_s41467_023_38577_4 crossref_primary_10_1007_s00374_020_01499_0 crossref_primary_10_3390_agronomy10010109 crossref_primary_10_1051_e3sconf_202017509014 crossref_primary_10_3390_geosciences8110420 crossref_primary_10_1016_j_apsoil_2023_105124 crossref_primary_10_1016_j_jclepro_2021_126259 crossref_primary_10_1016_j_pedsph_2025_01_001 crossref_primary_10_3389_fenvs_2022_1011820 crossref_primary_10_1016_j_agwat_2022_108129 crossref_primary_10_3390_su15032384 crossref_primary_10_1007_s42773_023_00271_5 crossref_primary_10_1016_j_scitotenv_2023_162054 crossref_primary_10_1007_s42452_021_04521_8 crossref_primary_10_1016_j_jhazmat_2021_125378 crossref_primary_10_1016_j_scitotenv_2023_167290 crossref_primary_10_1016_j_scitotenv_2024_170522 crossref_primary_10_1016_j_scitotenv_2021_151044 crossref_primary_10_1007_s11368_022_03416_4 crossref_primary_10_1016_j_envpol_2022_120068 crossref_primary_10_1002_agg2_20067 crossref_primary_10_1016_j_bej_2022_108778 crossref_primary_10_1016_j_envpol_2022_120731 crossref_primary_10_7717_peerj_7373 crossref_primary_10_1016_j_scitotenv_2022_158643 crossref_primary_10_1111_gcbb_12783 crossref_primary_10_1016_j_geodrs_2023_e00669 crossref_primary_10_1002_ldr_4405 crossref_primary_10_1007_s11356_021_13562_w crossref_primary_10_1002_saj2_20207 crossref_primary_10_1016_j_agee_2021_107551 crossref_primary_10_3390_su12124868 crossref_primary_10_1016_j_scitotenv_2020_137390 crossref_primary_10_1016_j_scitotenv_2020_137399 crossref_primary_10_1111_gcbb_12898 crossref_primary_10_1111_sum_12848 crossref_primary_10_1016_j_envpol_2021_118598 crossref_primary_10_5194_hess_26_4603_2022 crossref_primary_10_1016_j_scitotenv_2021_148572 crossref_primary_10_1016_j_rser_2022_113042 crossref_primary_10_1007_s42773_020_00065_z crossref_primary_10_1111_nyas_14690 crossref_primary_10_1146_annurev_environ_101718_033129 crossref_primary_10_1016_j_jece_2024_114129 crossref_primary_10_1007_s13399_022_02530_0 crossref_primary_10_1016_j_envpol_2021_118344 crossref_primary_10_1016_j_still_2021_105126 crossref_primary_10_1016_j_apsoil_2023_104926 crossref_primary_10_1111_gcbb_12889 crossref_primary_10_1111_gcbb_12885 crossref_primary_10_1007_s42106_022_00191_7 crossref_primary_10_1016_j_jenvman_2023_119738 crossref_primary_10_1111_sum_12953 crossref_primary_10_1007_s11356_021_15364_6 crossref_primary_10_1016_j_agee_2021_107371 crossref_primary_10_1039_D3EN00511A crossref_primary_10_1016_j_ecoenv_2023_115228 crossref_primary_10_1007_s11356_022_18619_y crossref_primary_10_1007_s11368_024_03887_7 crossref_primary_10_2139_ssrn_4155100 crossref_primary_10_1016_j_jclepro_2023_140240 crossref_primary_10_3390_agronomy13092406 crossref_primary_10_3389_fsoil_2024_1376159 crossref_primary_10_7211_jjsrt_50_210 crossref_primary_10_1016_j_geoderma_2021_115348 crossref_primary_10_1038_s41598_025_87942_4 crossref_primary_10_1016_j_scitotenv_2022_156532 crossref_primary_10_1007_s00374_020_01535_z crossref_primary_10_1016_j_jclepro_2019_06_288 crossref_primary_10_1016_j_agwat_2021_107354 crossref_primary_10_3390_horticulturae6030037 crossref_primary_10_1016_j_envres_2023_117750 crossref_primary_10_1016_j_jenvman_2025_124336 crossref_primary_10_3390_agronomy13051312 crossref_primary_10_1016_j_scitotenv_2022_154174 crossref_primary_10_1016_j_still_2020_104766 crossref_primary_10_1007_s42773_019_00012_7 crossref_primary_10_1007_s42729_023_01286_4 crossref_primary_10_3390_su15064861 crossref_primary_10_1016_j_jclepro_2023_138425 crossref_primary_10_1016_j_scitotenv_2022_157635 crossref_primary_10_1007_s00128_019_02779_8 crossref_primary_10_1007_s42729_020_00311_0 crossref_primary_10_1016_j_scitotenv_2024_177629 crossref_primary_10_1016_j_jenvman_2023_118584 crossref_primary_10_1007_s13399_023_05019_6 crossref_primary_10_1016_j_geoderma_2023_116498 crossref_primary_10_1080_00103624_2021_1900225 crossref_primary_10_1016_j_scitotenv_2020_141607 crossref_primary_10_1016_j_soilbio_2020_107946 crossref_primary_10_1016_j_envpol_2021_118154 crossref_primary_10_1016_j_apsoil_2020_103674 crossref_primary_10_1016_j_scitotenv_2020_144564 crossref_primary_10_1016_j_scitotenv_2018_10_060 crossref_primary_10_1016_j_scitotenv_2022_157766 crossref_primary_10_1007_s12517_019_4846_6 crossref_primary_10_1007_s42773_023_00279_x crossref_primary_10_1007_s11368_024_03830_w crossref_primary_10_1016_j_apsoil_2023_104844 crossref_primary_10_1007_s11104_022_05832_4 crossref_primary_10_1007_s42106_022_00200_9 crossref_primary_10_1016_j_scitotenv_2018_12_450 crossref_primary_10_3390_land8120179 crossref_primary_10_1016_j_scitotenv_2023_169809 crossref_primary_10_1590_1678_4499_20210017 crossref_primary_10_3389_fenvs_2022_914766 crossref_primary_10_1080_00103624_2022_2146704 crossref_primary_10_1111_gcbb_12720 crossref_primary_10_1016_j_apsoil_2021_104134 crossref_primary_10_1007_s00374_021_01541_9 crossref_primary_10_1016_j_agwat_2021_107024 |
Cites_doi | 10.2136/sssaj2005.0096 10.1016/j.soilbio.2010.09.013 10.1029/93GB01186 10.1080/00380768.2013.830229 10.1371/journal.pone.0113888 10.1038/543322a 10.1007/s11104-012-1411-4 10.1021/ef4016872 10.2136/sssaj2009.0115 10.1016/j.pedobi.2011.07.005 10.2134/jeq2009.0138 10.1016/j.biombioe.2013.02.036 10.1111/aab.12014 10.1016/0378-3820(94)00123-B 10.1016/0360-1285(92)90038-3 10.1371/journal.pone.0086388 10.1016/j.soilbio.2012.05.019 10.1097/SS.0b013e31824e5593 10.1038/nature06592 10.1111/gcbb.12376 10.1038/ismej.2013.160 10.1016/S0920-5861(98)00318-6 10.2136/sssaj2005.0383 10.1007/s00374-006-0152-z 10.1007/s11104-011-1010-9 10.1021/es302720k 10.1080/00380768.2014.885386 10.1038/srep01732 10.1038/ncomms14873 10.1111/gcbb.12037 10.1073/pnas.0913658107 10.1080/21683565.2014.996696 10.1016/j.soilbio.2016.10.006 10.1890/0012-9658(1997)078[1277:RTFMAO]2.0.CO;2 10.1002/jsfa.8202 10.1016/S1359-4311(02)00013-3 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 10.1071/SR13359 10.1088/1748-9326/aa67bd 10.1016/j.chemosphere.2010.05.026 10.1007/s11104-008-9573-9 10.1016/j.ecoleng.2014.06.017 10.1016/j.still.2015.11.009 10.1016/j.orggeochem.2010.04.007 10.1007/s10494-013-9473-9 10.1080/10643389.2016.1239975 10.1080/00103629509369376 10.1128/AEM.00136-11 10.1016/j.jhazmat.2008.09.051 10.1111/gcbb.12248 10.1016/j.jiec.2016.06.002 10.1126/science.1225987 10.1016/j.agee.2016.08.019 10.1016/j.envint.2004.09.005 10.1007/s11104-013-1636-x 10.2134/jeq2016.10.0396 10.1007/s00374-005-0858-3 10.1007/s10310-011-0287-0 10.2136/sssaj1984.03615995004800010026x 10.1021/es201792c 10.1021/es101283d 10.1016/j.agee.2014.03.011 10.1016/j.apsoil.2013.01.006 10.2136/sssaj1986.03615995005000040039x 10.1007/s11356-014-4067-1 10.1038/ngeo325 10.1016/0043-1354(90)90070-M 10.1007/s00374-013-0857-8 10.1016/j.geoderma.2016.11.004 10.1016/0016-2361(96)00100-7 10.1016/j.agee.2013.10.009 10.1007/s11104-007-9391-5 10.1016/j.biortech.2012.05.042 10.3390/agronomy3020275 10.1016/j.soilbio.2009.03.016 10.1029/2004GB002282 10.1080/09593330.2017.1349839 10.1073/pnas.1116437108 10.1029/2004GB002435 |
ContentType | Journal Article |
Copyright | Springer International Publishing AG, part of Springer Nature 2018 COPYRIGHT 2018 Springer Plant and Soil is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: Springer International Publishing AG, part of Springer Nature 2018 – notice: COPYRIGHT 2018 Springer – notice: Plant and Soil is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7S9 L.6 |
DOI | 10.1007/s11104-018-3619-4 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Botany Ecology |
EISSN | 1573-5036 |
EndPage | 225 |
ExternalDocumentID | A538294225 10_1007_s11104_018_3619_4 48725719 |
GrantInformation_xml | – fundername: the Science and Technology Supporting Project of China grantid: 2013BAD11B01 – fundername: Special Project on Agricultural Science and Technology grantid: 201503137 – fundername: the Danish Agency for Science, Technology and Innovation for financial support to Sino-Danish cooperation on biochar as a tool to mitigate climate change grantid: No 1370-00036B – fundername: Special Project on the Basis of National Science and Technology of China: National Survey of Biological Nitrogen Fixation Resources in Paddies of China grantid: 2015FY110700 – fundername: Natural Science Foundation of China grantid: NFSC-41171191 – fundername: the Science and Technology Supporting Project of Jiangsu Province grantid: BE2013451 |
GroupedDBID | -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 203 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2XV 2~F 2~H 30V 4.4 406 408 409 40D 40E 5VS 67N 67Z 6NX 78A 7X2 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYZH ABAKF ABBBX ABBHK ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ABXSQ ACAOD ACDTI ACGFS ACHIC ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSTC ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADZKW AEEJZ AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AZFZN B-. B0M BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BSONS CCPQU CS3 CSCUP DATOO DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JST JZLTJ KDC KOV KPH LAK LK8 LLZTM M0K M4Y M7P MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 PF0 PHGZM PHGZT PQQKQ PROAC PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3A S3B SA0 SAP SBL SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 Y6R YLTOR Z45 ZMTXR ZOVNA ~02 ~8M ~EX ~KM -4W -56 -5G -BR -EM -Y2 1SB 2.D 28- 2P1 2VQ 3SX 3V. 53G 5QI 88A AANXM AARHV AAYTO ABQSL ABULA ACBXY ACKIV ADINQ ADYPR AEBTG AEFIE AFEXP AFFNX AFGCZ AGGDS AIDBO AJBLW BBWZM CAG COF EN4 GQ6 JSODD KOW M0L N2Q NDZJH O9- OVD P0- R4E RNI RZC RZE RZK S1Z S26 S28 SBY SCLPG T16 TEORI WK6 XOL Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 ZCG AAYXX ADHKG AGQPQ CITATION AEIIB PMFND 7SN 7ST 7T7 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQUKI PRINS RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c410t-1e5a038d2af0c8c4b5fccab34f8b21b550dd59bb2893cd14f6d99a124997634c3 |
IEDL.DBID | U2A |
ISSN | 0032-079X |
IngestDate | Fri Jul 11 03:33:22 EDT 2025 Fri Jul 25 19:28:33 EDT 2025 Tue Jun 10 20:10:50 EDT 2025 Tue Jul 01 01:47:02 EDT 2025 Thu Apr 24 22:54:30 EDT 2025 Fri Feb 21 02:33:33 EST 2025 Thu Jun 19 21:37:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1/2 |
Keywords | Nitrogen cycle Biochar Soil properties Meta-analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-1e5a038d2af0c8c4b5fccab34f8b21b550dd59bb2893cd14f6d99a124997634c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2015681314 |
PQPubID | 54098 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2101349007 proquest_journals_2015681314 gale_infotracacademiconefile_A538294225 crossref_citationtrail_10_1007_s11104_018_3619_4 crossref_primary_10_1007_s11104_018_3619_4 springer_journals_10_1007_s11104_018_3619_4 jstor_primary_48725719 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180501 20180500 2018-5-00 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 5 year: 2018 text: 20180501 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationYear | 2018 |
Publisher | Springer Science + Business Media Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer Science + Business Media – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | Anderson, Condron, Clough, Fiers, Stewart, Hill, Sherlock (CR4) 2011; 54 Verhoeven, Pereira, Decock, Suddick, Angst, Six (CR79) 2017; 46 Pan, Lam, Mosier, Luo, Chen (CR56) 2016; 232 Parfitt, Giltrap, Whitton (CR57) 1995; 26 Biederman, Harpole (CR11) 2013; 5 Adouane, Hoppesteyn, de Jong, van der Wel, Hein, Spliethoff (CR2) 2002; 22 Singh, Hatton, Singh, Cowie, Kathuria (CR67) 2010; 39 Bouwman, Fung, Matthews, John (CR12) 1993; 7 Sun, Li, Chen, Wang, Xiong (CR72) 2014; 60 Taghizadeh-Toosi, Clough, Sherlock, Condron (CR76) 2012; 353 CR78 Yao, Gao, Nicol, Campbell, Prosser, Zhang, Singh (CR85) 2011; 77 Tagoe, Horiuchi, Matsui (CR77) 2008; 306 CR73 Liu, Liu, Zhang, Lin, Zhu, Sun, Wang, Ma, Bei, Liu, Lin, Xie (CR47) 2017; 104 Cayuela, Zwieten, Singh, Jeffery, Roig, Sánchez-Monedero (CR16) 2014; 191 Mandal, Sarkar, Bolan, Novak, Ok, van Zwieten, Singh, Kirkham, Choppala, Spokas, Naidu (CR49) 2016; 46 Quilliam, DeLuca, Jones (CR59) 2013; 366 Hedges, Gurevitch, Curtis (CR31) 1999; 80 Yao, Arbestain, Virgel, Blanco, Arostegui, Maciá-Agulló, Macías (CR84) 2010; 80 DeLuca, MacKenzie, Gundale, Holben (CR20) 2006; 70 Ahmad, Lee, Dou, Mohan, Sung, Yang, Ok (CR3) 2012; 118 Kontopoulou, Liasis, Iannetta, Tampakaki, Savvas (CR38) 2017; 97 Warnock, Lehmann, Kuyper, Rillig (CR80) 2007; 300 Kastner, Miller, Das (CR36) 2009; 164 Lal (CR41) 2005; 31 CR7 Erisman, Sutton, Galloway, Klimont, Winiwarter (CR22) 2008; 1 CR9 Kanthle, Lenka, Lenka, Tedia (CR35) 2016; 157 Novak, Busscher, Watts (CR55) 2012; 177 Gruber, Galloway (CR25) 2008; 451 Knicker (CR37) 2010; 41 Sohi (CR69) 2012; 338 Cayuela, Sánchez-Monedero, Roig, Hanley, Enders, Lehmann (CR15) 2013; 3 CR42 Mukherjee, Lal (CR52) 2014; 52 Ren, Zhao (CR60) 2013; 47 Gurevitch, Hedges, Scheiner, Gurevitch (CR26) 1993 He, Zhou, Jiang, Li, Du, Zhou, Wallace (CR30) 2017; 9 Xie, Xu, Liu, Liu, Zhu, Tu, Hu (CR82) 2013; 370 Bhandari, Kumar, Huhnke (CR10) 2014; 28 Cao, Farrell, Kristiansen, Rayner (CR14) 2014; 71 Silber, Levkovitch, Graber (CR66) 2010; 44 Song, Zhang, Ma, Chang, Gong (CR70) 2014; 50 Bateman, Baggs (CR8) 2005; 41 Smith, Collins, Bailey (CR68) 2010; 42 Deenik, McClellan, Uehara, Antal, Campbell (CR19) 2010; 74 Cameron, Di, Moir (CR13) 2013; 162 Clough, Condron, Kammann, Müller (CR17) 2013; 3 Sun, Levin, Guzman, Enders, Muller, Angenent, Lehmann (CR74) 2017; 8 Liu, You, Amini, Obersteiner, Herrero, Zehnder, Yang (CR45) 2010; 107 Liang, Lehmann, Solomon, Kinyangi, Grossman, O'neill, Neves (CR44) 2006; 70 Kwiatkowski, Dudyński, Bajer (CR40) 2013; 91 Jeffery, Abalos, Prodana, Bastos, van Groenigen, Hungate, Verheijen (CR32) 2017; 12 Prommer, Wanek, Hofhansl, Trojan, Offre, Urich, Hood-Nowotny (CR58) 2014; 9 Leppälahti, Koljonen (CR43) 1995; 43 Cha, Park, Jung, Ryu, Jeon, Shin, Park (CR33) 2016; 40 Nguyen, Xu, Tahmasbian, Che, Xu, Zhou, Bai (CR54) 2017; 288 Shirazi, Boersma (CR65) 1984; 48 Saxton, Rawls, Romberger, Papendick (CR63) 1986; 50 Cranedroesch, Abiven, Jeffery, Torn (CR18) 2013; 8 Mia, Van Groenigen, Van de Voorde, Oram, Bezemer, Mommer, Jeffery (CR51) 2014; 191 Steinbeiss, Gleixner, Antonietti (CR75) 2009; 41 Lu, Shi (CR48) 1982 Harter, Krause, Schuettler, Ruser, Fromme, Scholten, Behrens (CR27) 2014; 8 Meyer, Glaser, Quicker (CR50) 2011; 45 Rondon, Lehmann, Ramírez, Hurtado (CR61) 2007; 43 Sánchez-García, Roig, Sánchez-Monedero, Cayuela (CR64) 2014; 2 Yang, Cao, Gao, Zhao, Li (CR83) 2015; 22 Zhao, Yan, Wang, Xing, Zhou (CR88) 2013; 59 Woolcock, Brown (CR81) 2013; 52 Adams, Gurevitch, Rosenberg (CR1) 1997; 78 Hämäläinen, Aho (CR29) 1996; 75 Nelissen, Rütting, Huygens, Staelens, Ruysschaert, Boeckx (CR53) 2012; 55 Zhao, Cao, Mašek, Zimmerman (CR87) 2013; 256 Kuroiwa, Koba, Isobe, Tateno, Nakanishi, Inagaki, Yoh (CR39) 2011; 16 Gai, Wang, Liu, Zhai, Liu, Ren, Liu (CR24) 2014; 9 CR23 Hayhurst, Lawrence (CR28) 1992; 18 Sparrevik, Field, Martinsen, Breedveld, Cornelissen (CR71) 2013; 47 Zhang (CR86) 2017; 543 CR62 Antoniou, Hamilton, Koopman, Jain, Holloway, Lyberatos, Svoronos (CR5) 1990; 24 Liu, Liu, Ambus, Zhang, Hansen, Lin, Shen, Liu, Bei, Zhu, Wang, Ma, Lin, Yu, Zhu, Xie (CR46) 2016; 8 Johansson, Järås (CR34) 1999; 47 Ducey, Ippolito, Cantrell, Novak, Lentz (CR21) 2013; 65 Arif, Jalal, Jan, Muhammad, Quilliam (CR6) 2015; 39 Q Liu (3619_CR47) 2017; 104 J Prommer (3619_CR58) 2014; 9 JL Deenik (3619_CR19) 2010; 74 Y Song (3619_CR70) 2014; 50 FX Yao (3619_CR84) 2010; 80 J Gurevitch (3619_CR26) 1993 A Mukherjee (3619_CR52) 2014; 52 M Arif (3619_CR6) 2015; 39 M Kuroiwa (3619_CR39) 2011; 16 Z Xie (3619_CR82) 2013; 370 X Zhang (3619_CR86) 2017; 543 CR Anderson (3619_CR4) 2011; 54 ML Cayuela (3619_CR15) 2013; 3 TF Ducey (3619_CR21) 2013; 65 3619_CR62 JL Smith (3619_CR68) 2010; 42 H Knicker (3619_CR37) 2010; 41 X Gai (3619_CR24) 2014; 9 J Leppälahti (3619_CR43) 1995; 43 BP Singh (3619_CR67) 2010; 39 RS Quilliam (3619_CR59) 2013; 366 J Harter (3619_CR27) 2014; 8 AF Bouwman (3619_CR12) 1993; 7 JR Kastner (3619_CR36) 2009; 164 CT Cao (3619_CR14) 2014; 71 JW Erisman (3619_CR22) 2008; 1 RK Lu (3619_CR48) 1982 E Verhoeven (3619_CR79) 2017; 46 PN Bhandari (3619_CR10) 2014; 28 B Pan (3619_CR56) 2016; 232 DC Adams (3619_CR1) 1997; 78 JM Novak (3619_CR55) 2012; 177 P Antoniou (3619_CR5) 1990; 24 EM Johansson (3619_CR34) 1999; 47 KC Cameron (3619_CR13) 2013; 162 3619_CR73 B Liang (3619_CR44) 2006; 70 A Cranedroesch (3619_CR18) 2013; 8 3619_CR23 Q Liu (3619_CR46) 2016; 8 A Silber (3619_CR66) 2010; 44 K Kwiatkowski (3619_CR40) 2013; 91 S Steinbeiss (3619_CR75) 2009; 41 TH DeLuca (3619_CR20) 2006; 70 DD Warnock (3619_CR80) 2007; 300 RL Parfitt (3619_CR57) 1995; 26 CK Kontopoulou (3619_CR38) 2017; 97 S Mia (3619_CR51) 2014; 191 S Jeffery (3619_CR32) 2017; 12 ML Cayuela (3619_CR16) 2014; 191 SO Tagoe (3619_CR77) 2008; 306 AN Hayhurst (3619_CR28) 1992; 18 Y He (3619_CR30) 2017; 9 J Liu (3619_CR45) 2010; 107 F Yang (3619_CR83) 2015; 22 Q Ren (3619_CR60) 2013; 47 S Mandal (3619_CR49) 2016; 46 PJ Woolcock (3619_CR81) 2013; 52 3619_CR78 MA Rondon (3619_CR61) 2007; 43 M Sánchez-García (3619_CR64) 2014; 2 SP Sohi (3619_CR69) 2012; 338 TTN Nguyen (3619_CR54) 2017; 288 KE Saxton (3619_CR63) 1986; 50 EJ Bateman (3619_CR8) 2005; 41 L Zhao (3619_CR87) 2013; 256 LA Biederman (3619_CR11) 2013; 5 LV Hedges (3619_CR31) 1999; 80 MA Shirazi (3619_CR65) 1984; 48 JS Cha (3619_CR33) 2016; 40 B Adouane (3619_CR2) 2002; 22 M Ahmad (3619_CR3) 2012; 118 JP Hämäläinen (3619_CR29) 1996; 75 A Taghizadeh-Toosi (3619_CR76) 2012; 353 X Zhao (3619_CR88) 2013; 59 3619_CR7 R Lal (3619_CR41) 2005; 31 3619_CR9 M Sparrevik (3619_CR71) 2013; 47 3619_CR42 T Sun (3619_CR74) 2017; 8 L Sun (3619_CR72) 2014; 60 S Meyer (3619_CR50) 2011; 45 TJ Clough (3619_CR17) 2013; 3 N Gruber (3619_CR25) 2008; 451 H Yao (3619_CR85) 2011; 77 AK Kanthle (3619_CR35) 2016; 157 V Nelissen (3619_CR53) 2012; 55 |
References_xml | – volume: 70 start-page: 448 year: 2006 end-page: 453 ident: CR20 article-title: Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2005.0096 – volume: 42 start-page: 2345 year: 2010 end-page: 2347 ident: CR68 article-title: The effect of young biochar on soil respiration publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2010.09.013 – year: 1982 ident: CR48 publication-title: Handbook of agricultural chemistry – volume: 7 start-page: 557 year: 1993 end-page: 597 ident: CR12 article-title: Global analysis of the potential for N O production in natural soils publication-title: Global Biogeochem Cy doi: 10.1029/93GB01186 – volume: 59 start-page: 771 year: 2013 end-page: 782 ident: CR88 article-title: Effects of the addition of rice-straw-based biochar on leaching and retention of fertilizer N in highly fertilized cropland soils publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.2013.830229 – volume: 9 year: 2014 ident: CR24 article-title: Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate publication-title: PLoS One doi: 10.1371/journal.pone.0113888 – volume: 543 start-page: 322 year: 2017 end-page: 323 ident: CR86 article-title: Biogeochemistry: a plan for efficient use of nitrogen fertilizers publication-title: Nature doi: 10.1038/543322a – volume: 366 start-page: 83 year: 2013 end-page: 92 ident: CR59 article-title: Biochar application reduces nodulation but increases nitrogenase activity in clover publication-title: Plant Soil doi: 10.1007/s11104-012-1411-4 – volume: 28 start-page: 1918 year: 2014 end-page: 1925 ident: CR10 article-title: Simultaneous removal of toluene (model tar), NH , and H S, from biomass-generated producer gas using biochar-based and mixed-metal oxide catalysts publication-title: Energy Fuel doi: 10.1021/ef4016872 – volume: 74 start-page: 1259 year: 2010 end-page: 1270 ident: CR19 article-title: Charcoal volatile matter content influences plant growth and soil nitrogen transformations publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2009.0115 – volume: 54 start-page: 309 year: 2011 end-page: 320 ident: CR4 article-title: Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus publication-title: Pedobiologia doi: 10.1016/j.pedobi.2011.07.005 – volume: 39 start-page: 1224 year: 2010 end-page: 1235 ident: CR67 article-title: Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils publication-title: J Environ Qual doi: 10.2134/jeq2009.0138 – volume: 52 start-page: 54 year: 2013 end-page: 84 ident: CR81 article-title: A review of cleaning technologies for biomass-derived syngas publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2013.02.036 – volume: 162 start-page: 145 year: 2013 end-page: 173 ident: CR13 article-title: Nitrogen losses from the soil/plant system: a review publication-title: Ann Appl Biol doi: 10.1111/aab.12014 – volume: 43 start-page: 1 year: 1995 end-page: 45 ident: CR43 article-title: Nitrogen evolution from coal, peat and wood during gasification: literature review publication-title: Fuel Process Technol doi: 10.1016/0378-3820(94)00123-B – volume: 18 start-page: 529 year: 1992 end-page: 552 ident: CR28 article-title: Emissions of nitrous oxide from combustion sources publication-title: Prog Energ Combust doi: 10.1016/0360-1285(92)90038-3 – volume: 9 year: 2014 ident: CR58 article-title: Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial publication-title: PLoS One doi: 10.1371/journal.pone.0086388 – volume: 55 start-page: 20 year: 2012 end-page: 27 ident: CR53 article-title: Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.05.019 – volume: 177 start-page: 310 year: 2012 end-page: 320 ident: CR55 article-title: Biochars impact on soil-moisture storage in an Ultisol and two Aridisols publication-title: Soil Sci doi: 10.1097/SS.0b013e31824e5593 – volume: 451 start-page: 293 year: 2008 end-page: 296 ident: CR25 article-title: An earth-system perspective of the global nitrogen cycle publication-title: Nature doi: 10.1038/nature06592 – volume: 9 start-page: 743 year: 2017 end-page: 755 ident: CR30 article-title: Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis publication-title: GCB Bioenergy doi: 10.1111/gcbb.12376 – ident: CR42 – volume: 8 start-page: 660 year: 2014 end-page: 674 ident: CR27 article-title: Linking N O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community publication-title: The ISME journal doi: 10.1038/ismej.2013.160 – volume: 47 start-page: 359 year: 1999 end-page: 367 ident: CR34 article-title: Circumventing fuel-NO formation in catalytic combustion of gasified biomass publication-title: Catal Today doi: 10.1016/S0920-5861(98)00318-6 – volume: 70 start-page: 1719 year: 2006 end-page: 1730 ident: CR44 article-title: Black carbon increases cation exchange capacity in soils publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2005.0383 – volume: 43 start-page: 699 year: 2007 end-page: 708 ident: CR61 article-title: Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions publication-title: Biol Fert Soils doi: 10.1007/s00374-006-0152-z – volume: 353 start-page: 73 year: 2012 end-page: 84 ident: CR76 article-title: A wood based low-temperature biochar captures NH -N generated from ruminant urine-N, retaining its bioavailability publication-title: Plant Soil doi: 10.1007/s11104-011-1010-9 – volume: 47 start-page: 1206 year: 2013 end-page: 1215 ident: CR71 article-title: Life cycle assessment to evaluate the environmental impact of biochar implementation in conservation agriculture in Zambia publication-title: Environ Sci Technol doi: 10.1021/es302720k – volume: 60 start-page: 254 year: 2014 end-page: 265 ident: CR72 article-title: Combined effects of nitrogen deposition and biochar application on emissions of N O, CO and NH from agricultural and forest soils publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.2014.885386 – ident: CR9 – volume: 3 start-page: 1732 year: 2013 ident: CR15 article-title: Biochar and denitrification in soils: when, how much and why does biochar reduce N O emissions? publication-title: Sci Rep doi: 10.1038/srep01732 – start-page: 378 year: 1993 end-page: 389 ident: CR26 article-title: Meta-analysis: combining the results of independent experiments publication-title: Design and analysis of ecological experiments – volume: 8 year: 2017 ident: CR74 article-title: Rapid electron transfer by the carbon matrix in natural pyrogenic carbon publication-title: Nat Commun doi: 10.1038/ncomms14873 – volume: 5 start-page: 202 year: 2013 end-page: 214 ident: CR11 article-title: Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis publication-title: GCB Bioenergy doi: 10.1111/gcbb.12037 – volume: 107 start-page: 8035 year: 2010 end-page: 8040 ident: CR45 article-title: A high-resolution assessment on global nitrogen flows in cropland publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0913658107 – ident: CR78 – volume: 39 start-page: 391 year: 2015 end-page: 398 ident: CR6 article-title: Incorporation of biochar and legumes into the summer gap: improving productivity of cereal-based cropping systems in Pakistan publication-title: Agroecol Sust Food doi: 10.1080/21683565.2014.996696 – volume: 104 start-page: 8 year: 2017 end-page: 17 ident: CR47 article-title: Can biochar alleviate soil compaction stress on wheat growth and mitigate soil N O emissions? publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.10.006 – volume: 78 start-page: 1277 year: 1997 end-page: 1283 ident: CR1 article-title: Resampling tests for meta-analysis of ecological data publication-title: Ecology doi: 10.1890/0012-9658(1997)078[1277:RTFMAO]2.0.CO;2 – volume: 97 start-page: 4353 year: 2017 end-page: 4361 ident: CR38 article-title: Impact of rhizobial inoculation and reduced N supply on biomass production and biological N fixation in common bean grown hydroponically publication-title: J Sci Food Agric doi: 10.1002/jsfa.8202 – volume: 22 start-page: 959 year: 2002 end-page: 970 ident: CR2 article-title: Gas turbine combustor for biomass derived LCV gas, a first approach towards fuel-NO modelling and experimental validation publication-title: Appl Therm Eng doi: 10.1016/S1359-4311(02)00013-3 – volume: 80 start-page: 1150 year: 1999 end-page: 1156 ident: CR31 article-title: The meta-analysis of response ratios in experimental ecology publication-title: Ecology doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 – volume: 52 start-page: 217 year: 2014 end-page: 230 ident: CR52 article-title: The biochar dilemma publication-title: Soil Res doi: 10.1071/SR13359 – volume: 12 year: 2017 ident: CR32 article-title: Biochar boosts tropical but not temperate crop yields publication-title: Environ Res Lett doi: 10.1088/1748-9326/aa67bd – volume: 80 start-page: 724 year: 2010 end-page: 732 ident: CR84 article-title: Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.05.026 – volume: 306 start-page: 211 year: 2008 end-page: 220 ident: CR77 article-title: Effects of carbonized and dried chicken manures on the growth, yield, and N content of soybean publication-title: Plant Soil doi: 10.1007/s11104-008-9573-9 – volume: 71 start-page: 368 year: 2014 end-page: 374 ident: CR14 article-title: Biochar makes green roof substrates lighter and improves water supply to plants publication-title: Ecol Eng doi: 10.1016/j.ecoleng.2014.06.017 – volume: 157 start-page: 65 year: 2016 end-page: 72 ident: CR35 article-title: Biochar impact on nitrate leaching as influenced by native soil organic carbon in an Inceptisol of Central India publication-title: Soil Till Res doi: 10.1016/j.still.2015.11.009 – volume: 41 start-page: 947 year: 2010 end-page: 950 ident: CR37 article-title: “Black nitrogen”–an important fraction in determining the recalcitrance of charcoal publication-title: Org Geochem doi: 10.1016/j.orggeochem.2010.04.007 – volume: 91 start-page: 749 year: 2013 end-page: 772 ident: CR40 article-title: Combustion of low-calorific waste biomass syngas publication-title: Flow Turbul Combust doi: 10.1007/s10494-013-9473-9 – volume: 46 start-page: 1367 year: 2016 end-page: 1401 ident: CR49 article-title: Designing advanced biochar products for maximizing greenhouse gas mitigation potential publication-title: Crit Revt Env Sci Tec doi: 10.1080/10643389.2016.1239975 – volume: 26 start-page: 1343 year: 1995 end-page: 1355 ident: CR57 article-title: Contribution of organic matter and clay minerals to the cation exchange capacity of soils publication-title: Commun Soil Sci Plan doi: 10.1080/00103629509369376 – volume: 47 start-page: 8955 issue: 15 year: 2013 end-page: 8961 ident: CR60 article-title: NO and N O precursors from biomass pyrolysis: role of cellulose, hemicellulose and lignin publication-title: Environ Sci Technol – volume: 77 start-page: 4618 year: 2011 end-page: 4625 ident: CR85 article-title: Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils publication-title: Appl Environ Microb doi: 10.1128/AEM.00136-11 – volume: 164 start-page: 1420 year: 2009 end-page: 1427 ident: CR36 article-title: Pyrolysis conditions and ozone oxidation effects on ammonia adsorption in biomass generated chars publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2008.09.051 – volume: 8 start-page: 148 year: 2016 end-page: 159 ident: CR46 article-title: Carbon footprint of rice production under biochar amendment-a case study in a Chinese rice cropping system publication-title: GCB Bioenergy doi: 10.1111/gcbb.12248 – volume: 40 start-page: 1 year: 2016 end-page: 15 ident: CR33 article-title: Production and utilization of biochar: a review publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2016.06.002 – volume: 338 start-page: 1034 year: 2012 end-page: 1035 ident: CR69 article-title: Carbon storage with benefits publication-title: Science doi: 10.1126/science.1225987 – volume: 232 start-page: 283 year: 2016 end-page: 289 ident: CR56 article-title: Ammonia volatilization from synthetic fertilizers and its mitigation strategies: a global synthesis publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2016.08.019 – ident: CR23 – volume: 31 start-page: 575 year: 2005 end-page: 584 ident: CR41 article-title: World crop residues production and implications of its use as a biofuel publication-title: Environ Int doi: 10.1016/j.envint.2004.09.005 – volume: 370 start-page: 527 year: 2013 end-page: 540 ident: CR82 article-title: Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China publication-title: Plant Soil doi: 10.1007/s11104-013-1636-x – volume: 2 start-page: 25 year: 2014 ident: CR64 article-title: Biochar increases soil N O emissions produced by nitrification-mediated pathways publication-title: Front Environ Sci – volume: 46 start-page: 237 year: 2017 end-page: 246 ident: CR79 article-title: Toward a better assessment of biochar-nitrous oxide mitigation potential at the field scale publication-title: J Environ Qual doi: 10.2134/jeq2016.10.0396 – volume: 41 start-page: 379 year: 2005 end-page: 388 ident: CR8 article-title: Contributions of nitrification and denitrification to N O emissions from soils at different water-filled pore space publication-title: Biol Fert Soils doi: 10.1007/s00374-005-0858-3 – volume: 16 start-page: 363 year: 2011 end-page: 373 ident: CR39 article-title: Gross nitrification rates in four Japanese forest soils: heterotrophic versus autotrophic and the regulation factors for the nitrification publication-title: J Forest Res doi: 10.1007/s10310-011-0287-0 – volume: 48 start-page: 142 year: 1984 end-page: 147 ident: CR65 article-title: A unifying quantitative analysis of soil texture publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1984.03615995004800010026x – ident: CR73 – volume: 45 start-page: 9473 year: 2011 end-page: 9483 ident: CR50 article-title: Technical, economical, and climate-related aspects of biochar production technologies: a literature review publication-title: Environ Sci Technol doi: 10.1021/es201792c – volume: 44 start-page: 9318 year: 2010 end-page: 9323 ident: CR66 article-title: pH-dependent mineral release and surface properties of corn straw biochar: agronomic implications publication-title: Environ Sci Technol doi: 10.1021/es101283d – volume: 191 start-page: 83 year: 2014 end-page: 91 ident: CR51 article-title: Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2014.03.011 – volume: 65 start-page: 65 year: 2013 end-page: 72 ident: CR21 article-title: Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2013.01.006 – volume: 50 start-page: 1031 year: 1986 end-page: 1036 ident: CR63 article-title: Estimating generalized soil-water characteristics from texture publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1986.03615995005000040039x – volume: 22 start-page: 9184 year: 2015 end-page: 9192 ident: CR83 article-title: Short-term effects of rice straw biochar on sorption, emission, and transformation of soil NH -N publication-title: Environ Sci Pollut R doi: 10.1007/s11356-014-4067-1 – volume: 256 start-page: 1 year: 2013 end-page: 9 ident: CR87 article-title: Heterogeneity of biochar properties as a function of feedstock sources and production temperatures publication-title: J Hazard Mater – volume: 1 start-page: 636 year: 2008 end-page: 639 ident: CR22 article-title: How a century of ammonia synthesis changed the world publication-title: Nat Geosci doi: 10.1038/ngeo325 – volume: 24 start-page: 97 year: 1990 end-page: 101 ident: CR5 article-title: Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria publication-title: Water Res doi: 10.1016/0043-1354(90)90070-M – volume: 50 start-page: 321 year: 2014 end-page: 332 ident: CR70 article-title: Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil publication-title: Biol Fert Soils doi: 10.1007/s00374-013-0857-8 – volume: 8 start-page: 925 year: 2013 end-page: 932 ident: CR18 article-title: Heterogeneous global crop yield response to biochar: a meta-regression analysis publication-title: Environ Res Lett – volume: 288 start-page: 79 year: 2017 end-page: 96 ident: CR54 article-title: Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis publication-title: Geoderma doi: 10.1016/j.geoderma.2016.11.004 – ident: CR7 – volume: 75 start-page: 1377 year: 1996 end-page: 1386 ident: CR29 article-title: Conversion of fuel nitrogen through HCN and NH to nitrogen oxides at elevated pressure publication-title: Fuel doi: 10.1016/0016-2361(96)00100-7 – volume: 191 start-page: 5 year: 2014 end-page: 16 ident: CR16 article-title: Biochar's role in mitigating soil nitrous oxide emissions: a review and meta-analysis publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2013.10.009 – ident: CR62 – volume: 300 start-page: 9 year: 2007 end-page: 20 ident: CR80 article-title: Mycorrhizal responses to biochar in soil----concepts and mechanisms publication-title: Plant Soil doi: 10.1007/s11104-007-9391-5 – volume: 118 start-page: 536 year: 2012 end-page: 544 ident: CR3 article-title: Effects of pyrolysis temperature on soybean Stover- and peanut shell-derived biochar properties and TCE adsorption in water publication-title: Bioresour Technol doi: 10.1016/j.biortech.2012.05.042 – volume: 3 start-page: 275 year: 2013 end-page: 293 ident: CR17 article-title: A review of biochar and soil nitrogen dynamics publication-title: Agronomy doi: 10.3390/agronomy3020275 – volume: 41 start-page: 1301 year: 2009 end-page: 1310 ident: CR75 article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2009.03.016 – volume: 232 start-page: 283 year: 2016 ident: 3619_CR56 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2016.08.019 – volume: 543 start-page: 322 year: 2017 ident: 3619_CR86 publication-title: Nature doi: 10.1038/543322a – volume: 59 start-page: 771 year: 2013 ident: 3619_CR88 publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.2013.830229 – volume: 71 start-page: 368 year: 2014 ident: 3619_CR14 publication-title: Ecol Eng doi: 10.1016/j.ecoleng.2014.06.017 – volume: 75 start-page: 1377 year: 1996 ident: 3619_CR29 publication-title: Fuel doi: 10.1016/0016-2361(96)00100-7 – volume: 3 start-page: 1732 year: 2013 ident: 3619_CR15 publication-title: Sci Rep doi: 10.1038/srep01732 – volume: 70 start-page: 448 year: 2006 ident: 3619_CR20 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2005.0096 – volume: 177 start-page: 310 year: 2012 ident: 3619_CR55 publication-title: Soil Sci doi: 10.1097/SS.0b013e31824e5593 – volume: 80 start-page: 1150 year: 1999 ident: 3619_CR31 publication-title: Ecology doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 – volume: 7 start-page: 557 year: 1993 ident: 3619_CR12 publication-title: Global Biogeochem Cy doi: 10.1029/93GB01186 – volume: 40 start-page: 1 year: 2016 ident: 3619_CR33 publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2016.06.002 – volume: 8 start-page: 925 year: 2013 ident: 3619_CR18 publication-title: Environ Res Lett – ident: 3619_CR23 – volume: 97 start-page: 4353 year: 2017 ident: 3619_CR38 publication-title: J Sci Food Agric doi: 10.1002/jsfa.8202 – volume: 18 start-page: 529 year: 1992 ident: 3619_CR28 publication-title: Prog Energ Combust doi: 10.1016/0360-1285(92)90038-3 – volume: 107 start-page: 8035 year: 2010 ident: 3619_CR45 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0913658107 – volume: 306 start-page: 211 year: 2008 ident: 3619_CR77 publication-title: Plant Soil doi: 10.1007/s11104-008-9573-9 – volume: 118 start-page: 536 year: 2012 ident: 3619_CR3 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2012.05.042 – volume: 191 start-page: 5 year: 2014 ident: 3619_CR16 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2013.10.009 – volume: 338 start-page: 1034 year: 2012 ident: 3619_CR69 publication-title: Science doi: 10.1126/science.1225987 – volume: 12 year: 2017 ident: 3619_CR32 publication-title: Environ Res Lett doi: 10.1088/1748-9326/aa67bd – volume: 47 start-page: 8955 issue: 15 year: 2013 ident: 3619_CR60 publication-title: Environ Sci Technol – ident: 3619_CR7 doi: 10.1029/2004GB002282 – volume: 48 start-page: 142 year: 1984 ident: 3619_CR65 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1984.03615995004800010026x – volume: 80 start-page: 724 year: 2010 ident: 3619_CR84 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.05.026 – volume: 5 start-page: 202 year: 2013 ident: 3619_CR11 publication-title: GCB Bioenergy doi: 10.1111/gcbb.12037 – volume: 45 start-page: 9473 year: 2011 ident: 3619_CR50 publication-title: Environ Sci Technol doi: 10.1021/es201792c – ident: 3619_CR73 doi: 10.1080/09593330.2017.1349839 – volume: 256 start-page: 1 year: 2013 ident: 3619_CR87 publication-title: J Hazard Mater – volume: 47 start-page: 359 year: 1999 ident: 3619_CR34 publication-title: Catal Today doi: 10.1016/S0920-5861(98)00318-6 – start-page: 378 volume-title: Design and analysis of ecological experiments year: 1993 ident: 3619_CR26 – volume: 41 start-page: 1301 year: 2009 ident: 3619_CR75 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2009.03.016 – volume: 22 start-page: 959 year: 2002 ident: 3619_CR2 publication-title: Appl Therm Eng doi: 10.1016/S1359-4311(02)00013-3 – volume: 24 start-page: 97 year: 1990 ident: 3619_CR5 publication-title: Water Res doi: 10.1016/0043-1354(90)90070-M – volume: 1 start-page: 636 year: 2008 ident: 3619_CR22 publication-title: Nat Geosci doi: 10.1038/ngeo325 – ident: 3619_CR78 doi: 10.1073/pnas.1116437108 – volume: 77 start-page: 4618 year: 2011 ident: 3619_CR85 publication-title: Appl Environ Microb doi: 10.1128/AEM.00136-11 – volume: 55 start-page: 20 year: 2012 ident: 3619_CR53 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.05.019 – volume: 43 start-page: 699 year: 2007 ident: 3619_CR61 publication-title: Biol Fert Soils doi: 10.1007/s00374-006-0152-z – volume: 8 year: 2017 ident: 3619_CR74 publication-title: Nat Commun doi: 10.1038/ncomms14873 – volume: 157 start-page: 65 year: 2016 ident: 3619_CR35 publication-title: Soil Till Res doi: 10.1016/j.still.2015.11.009 – ident: 3619_CR9 – volume: 22 start-page: 9184 year: 2015 ident: 3619_CR83 publication-title: Environ Sci Pollut R doi: 10.1007/s11356-014-4067-1 – volume: 74 start-page: 1259 year: 2010 ident: 3619_CR19 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2009.0115 – volume: 65 start-page: 65 year: 2013 ident: 3619_CR21 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2013.01.006 – volume: 451 start-page: 293 year: 2008 ident: 3619_CR25 publication-title: Nature doi: 10.1038/nature06592 – volume: 9 year: 2014 ident: 3619_CR58 publication-title: PLoS One doi: 10.1371/journal.pone.0086388 – volume: 42 start-page: 2345 year: 2010 ident: 3619_CR68 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2010.09.013 – volume: 54 start-page: 309 year: 2011 ident: 3619_CR4 publication-title: Pedobiologia doi: 10.1016/j.pedobi.2011.07.005 – volume: 9 year: 2014 ident: 3619_CR24 publication-title: PLoS One doi: 10.1371/journal.pone.0113888 – volume: 366 start-page: 83 year: 2013 ident: 3619_CR59 publication-title: Plant Soil doi: 10.1007/s11104-012-1411-4 – volume: 2 start-page: 25 year: 2014 ident: 3619_CR64 publication-title: Front Environ Sci – volume: 41 start-page: 379 year: 2005 ident: 3619_CR8 publication-title: Biol Fert Soils doi: 10.1007/s00374-005-0858-3 – volume: 300 start-page: 9 year: 2007 ident: 3619_CR80 publication-title: Plant Soil doi: 10.1007/s11104-007-9391-5 – volume: 50 start-page: 1031 year: 1986 ident: 3619_CR63 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1986.03615995005000040039x – ident: 3619_CR42 doi: 10.1029/2004GB002435 – volume: 191 start-page: 83 year: 2014 ident: 3619_CR51 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2014.03.011 – volume: 52 start-page: 54 year: 2013 ident: 3619_CR81 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2013.02.036 – volume: 52 start-page: 217 year: 2014 ident: 3619_CR52 publication-title: Soil Res doi: 10.1071/SR13359 – volume: 162 start-page: 145 year: 2013 ident: 3619_CR13 publication-title: Ann Appl Biol doi: 10.1111/aab.12014 – volume: 46 start-page: 237 year: 2017 ident: 3619_CR79 publication-title: J Environ Qual doi: 10.2134/jeq2016.10.0396 – volume: 164 start-page: 1420 year: 2009 ident: 3619_CR36 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2008.09.051 – volume: 16 start-page: 363 year: 2011 ident: 3619_CR39 publication-title: J Forest Res doi: 10.1007/s10310-011-0287-0 – volume: 8 start-page: 148 year: 2016 ident: 3619_CR46 publication-title: GCB Bioenergy doi: 10.1111/gcbb.12248 – volume-title: Handbook of agricultural chemistry year: 1982 ident: 3619_CR48 – volume: 353 start-page: 73 year: 2012 ident: 3619_CR76 publication-title: Plant Soil doi: 10.1007/s11104-011-1010-9 – volume: 370 start-page: 527 year: 2013 ident: 3619_CR82 publication-title: Plant Soil doi: 10.1007/s11104-013-1636-x – volume: 28 start-page: 1918 year: 2014 ident: 3619_CR10 publication-title: Energy Fuel doi: 10.1021/ef4016872 – volume: 44 start-page: 9318 year: 2010 ident: 3619_CR66 publication-title: Environ Sci Technol doi: 10.1021/es101283d – volume: 50 start-page: 321 year: 2014 ident: 3619_CR70 publication-title: Biol Fert Soils doi: 10.1007/s00374-013-0857-8 – volume: 70 start-page: 1719 year: 2006 ident: 3619_CR44 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2005.0383 – volume: 288 start-page: 79 year: 2017 ident: 3619_CR54 publication-title: Geoderma doi: 10.1016/j.geoderma.2016.11.004 – volume: 26 start-page: 1343 year: 1995 ident: 3619_CR57 publication-title: Commun Soil Sci Plan doi: 10.1080/00103629509369376 – volume: 78 start-page: 1277 year: 1997 ident: 3619_CR1 publication-title: Ecology doi: 10.1890/0012-9658(1997)078[1277:RTFMAO]2.0.CO;2 – volume: 8 start-page: 660 year: 2014 ident: 3619_CR27 publication-title: The ISME journal doi: 10.1038/ismej.2013.160 – volume: 41 start-page: 947 year: 2010 ident: 3619_CR37 publication-title: Org Geochem doi: 10.1016/j.orggeochem.2010.04.007 – volume: 91 start-page: 749 year: 2013 ident: 3619_CR40 publication-title: Flow Turbul Combust doi: 10.1007/s10494-013-9473-9 – volume: 39 start-page: 1224 year: 2010 ident: 3619_CR67 publication-title: J Environ Qual doi: 10.2134/jeq2009.0138 – volume: 47 start-page: 1206 year: 2013 ident: 3619_CR71 publication-title: Environ Sci Technol doi: 10.1021/es302720k – volume: 43 start-page: 1 year: 1995 ident: 3619_CR43 publication-title: Fuel Process Technol doi: 10.1016/0378-3820(94)00123-B – ident: 3619_CR62 – volume: 31 start-page: 575 year: 2005 ident: 3619_CR41 publication-title: Environ Int doi: 10.1016/j.envint.2004.09.005 – volume: 60 start-page: 254 year: 2014 ident: 3619_CR72 publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.2014.885386 – volume: 46 start-page: 1367 year: 2016 ident: 3619_CR49 publication-title: Crit Revt Env Sci Tec doi: 10.1080/10643389.2016.1239975 – volume: 3 start-page: 275 year: 2013 ident: 3619_CR17 publication-title: Agronomy doi: 10.3390/agronomy3020275 – volume: 39 start-page: 391 year: 2015 ident: 3619_CR6 publication-title: Agroecol Sust Food doi: 10.1080/21683565.2014.996696 – volume: 104 start-page: 8 year: 2017 ident: 3619_CR47 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.10.006 – volume: 9 start-page: 743 year: 2017 ident: 3619_CR30 publication-title: GCB Bioenergy doi: 10.1111/gcbb.12376 |
SSID | ssj0003216 |
Score | 2.6317053 |
Snippet | Background and aims
Modern agriculture is driving the release of excessive amounts of reactive nitrogen (N) from the soils to the environment, thereby... Background and aims Modern agriculture is driving the release of excessive amounts of reactive nitrogen (N) from the soils to the environment, thereby... Background and aimsModern agriculture is driving the release of excessive amounts of reactive nitrogen (N) from the soils to the environment, thereby... BACKGROUND AND AIMS: Modern agriculture is driving the release of excessive amounts of reactive nitrogen (N) from the soils to the environment, thereby... |
SourceID | proquest gale crossref springer jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 211 |
SubjectTerms | Ammonia Ammonia pressure leaching application rate biochar Biological effects Biomedical and Life Sciences buffering capacity Charcoal Chemical properties clay Data processing Ecological balance Ecology Emissions Environmental aspects Fertilizers greenhouse gas emissions Influence Laboratories Leaching Life Sciences Measurement Meta-analysis Nitrogen Nitrogen fixation Nitrogen oxides Nitrogenation Nitrous oxide Organic carbon Organic soils Plant Physiology Plant Sciences Pollutants Pyrolysis REGULAR ARTICLE risk Soil amendment Soil chemistry Soil nitrogen Soil pH Soil Science & Conservation Soil sciences Straw synthesis gas Synthetic fuels texture Volatilization |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSyMxEB-0-uA9HHd-4Hp6RBAEJbD52Jp9kipKObCIKPQt5GuloF3PVsT_3sk226KgbwubnQ0zmV9mMpMZgAPOKoVmKnqqgnGKgJejznlFjXNMKBNCt6mzfTXo9u_kv2ExTAduk5RW2WJiA9S-dvGMHJ10FmtlCSZPn_7T2DUqRldTC41lWEEIVqoDK2cXg-ubORYL3jQ_jQ80PymHbVyzuTyHO1_MwFBUoBdB5YedKeHzLEfxg_X5KWDa7EOXv-BnMiBJbybx37AUxuvwo3f_nIpohHVYPavR5HvbANWvX4mvw4TYUR3vV5FR25OETOrRAxkQ94ZUTkmPPIapoSaVKNmEu8uL2_M-Ta0SqJMsn1IWCpML5bmpcqectEWForFCVspyZtEN8b4orUX3SjjPZNX1ZWli42k0R4R0Ygs643octoEI74UpC1E4VUluglG24sx569E2qZzPIG_ZpF2qIx7bWTzoRQXkyFmNnNWRs1pmcDT_5GlWROO7wYeR9zoqGNJ1Jt0TwNnFUlW6hxDNS4k4lMFWI545TXS-EIFYmcFuKy-dVHKiFwsog_35a1SmGCEx41C_4BgEKCFLnFcGx62cFyS-nPPO9z_8A2s8rrMmT3IXOtPnl7CHtszU_k0L9h1fDOu9 priority: 102 providerName: ProQuest |
Title | How does biochar influence soil N cycle? A meta-analysis |
URI | https://www.jstor.org/stable/48725719 https://link.springer.com/article/10.1007/s11104-018-3619-4 https://www.proquest.com/docview/2015681314 https://www.proquest.com/docview/2101349007 |
Volume | 426 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxNBEB-0VdAH0WjxtJYVCkJl4fbj4t6TXDQxKA2lNBCflv06CdScNCmS_97Zy15CSxV82oPbm1tmdn87w3wBHHNWK1RT0VIVjFMEvBzPnFfUOMeEMiH02zrbp5P-eCq_zopZyuNedtHunUuyRepdshveVDFiQlGBWj-V92G_QNM9xnFNebWFX8HbfqfxgeYfylnnyryLxI3LKEHyJizxhsJ5y0faXj2jp_Ak6Yyk2gj5GdwLix48rn5cpboZoQcPBg1qeesePBy2ZajXz0GNm9_EN2FJ7LyJyVVk3jUkIctmfkkmxK2R3kdSkZ9hZahJ9UlewHQ0vPg0pqlPAnWS5SvKQmFyoTw3de6Uk7aoUS5WyFpZzizaIN4XpbVoWwnnmaz7vixN7DqNuoiQThzA3qJZhJdAhPfClIUonKolN8EoW3PmvPWomNTOZ5B3DNMuFRGPvSwu9a78ceSxRh7ryGMtMzjZfvJrU0HjX5PfRSnoeLqQrjMpSQBXF-tU6QrxmZcSQSiDg1ZQW5poeSH8sDKDw05yOp3HpeYxY1wxwfAPb7ev8SRF94hZhOYa5yA6CVniujJ430l8R-Kva371X7NfwyMeN2AbM3kIe6ur6_AG9ZqVPYL9avB5MIrjl-_fhjgOhpOz86N2f_8BBWDudg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1daxNBcKipoD4UrRZP27qCIigLtx8X9x6kpLUltW0QaSFv2_06CdRcbVJK_pS_0dnLXkIF-9a3g9ub25uZnY-bL4B3nFUKzVT0VAXjFAVejmfOK2qcY0KZELpNn-2TQbd_Jr8Ni-EK_GlrYWJaZSsTG0Htaxf_kaOTzmKvLMHkzuVvGqdGxehqO0JjzhZHYXaDLtvky-FXpO97zg_2T_f6NE0VoE6yfEpZKEwulOemyp1y0hYVfoUVslKWM4sWu_dFaS16IsJ5JquuL0sTZzSj5hbSCYT7AFal6Oa8A6u7-4PvPxayX_Bm2Gq8oPnnctjGUZtiPdS0MeNDUYFeC5W3NGHSB_OcyFvW7j8B2kbvHTyFtWSwkt6cw57BShivw5Pez6vUtCOsw8PdGk3M2XNQ_fqG-DpMiB3VsZ6LjNoZKGRSjy7IgLgZQtkhPfIrTA01qSXKCzi7FyRuQGdcj8NLIMJ7YcpCFE5VkptglK04c956tIUq5zPIWzRpl_qWx_EZF3rZcTliViNmdcSslhl8XDxyOW_acdfiDxH3Oh5ohOtMqkvA3cXWWLqHKoGXEuVeBhsNeRYw0dlDicfKDDZbeukkAiZ6ybAZvF3cxsMbIzJmHOprXIMCUcgS95XBp5bOSxD_3fOru1_4Bh71T0-O9fHh4Og1POaR55oczU3oTK-uwxbaUVO7nZiXwPl9n5e_ZGopGQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bahNB9FBTEX0QrRZXq46gCMrgzmXT2QcpqW1IrYYiFvI2zm1LoM3WJqXk1_w6z2xmEyrYt74t7OzZ2TPnuucG8JazSqGZip6qYJyiwMuR57yixjkmlAmh2_TZ_j7sDo7l11ExWoM_bS1MTKtsZWIjqH3t4j9ydNJZ7JUlmPxUpbSIo73-zvlvGidIxUhrO05jQSKHYX6F7tv088EenvU7zvv7P78MaJowQJ1k-YyyUJhcKM9NlTvlpC0q_CIrZKUsZxatd--L0lr0SoTzTFZdX5YmzmtGLS6kEwj3DqxvR6-oA-u7-8OjH0s9IHgzeDVe0Hy7HLUx1aZwD7VuzP5QVKAHQ-U1rZh0wyI_8prl-0-wttGB_UfwMBmvpLegtsewFiYb8KB3cpEaeIQNuLtbo7k5fwJqUF8RX4cpseM61naRcTsPhUzr8SkZEjdHKDukR87CzFCT2qM8heNbQeImdCb1JDwDIrwXpixE4VQluQlG2Yoz561Hu6hyPoO8RZN2qYd5HKVxqlfdlyNmNWJWR8xqmcGH5SPniwYeNy1-H3GvI3MjXGdSjQLuLrbJ0j1UD7yUKAMz2GyOZwkTHT-UfqzMYKs9L53EwVSviDeDN8vbyMgxOmMmob7ENSgchSxxXxl8bM95BeK_e35-8wtfwz3kE_3tYHj4Au7zSHJNuuYWdGYXl-ElmlQz-yrRLoFft80ufwFv3i1O |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+does+biochar+influence+soil+N+cycle%3F+A+meta-analysis&rft.jtitle=Plant+and+soil&rft.au=Liu%2C+Qi&rft.au=Zhang%2C+Yanhui&rft.au=Liu%2C+Benjuan&rft.au=Amonette%2C+James+E.&rft.date=2018-05-01&rft.pub=Springer+Science+%2B+Business+Media&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=426&rft.issue=1%2F2&rft.spage=211&rft.epage=225&rft_id=info:doi/10.1007%2Fs11104-018-3619-4&rft.externalDocID=48725719 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |