How does biochar influence soil N cycle? A meta-analysis

Background and aims Modern agriculture is driving the release of excessive amounts of reactive nitrogen (N) from the soils to the environment, thereby threatening ecological balances and functions. The amendment of soils with biochar has been suggested as a promising solution to regulate the soil N...

Full description

Saved in:
Bibliographic Details
Published inPlant and soil Vol. 426; no. 1/2; pp. 211 - 225
Main Authors Liu, Qi, Zhang, Yanhui, Liu, Benjuan, Amonette, James E., Lin, Zhibin, Liu, Gang, Ambus, Per, Xie, Zubin
Format Journal Article
LanguageEnglish
Published Cham Springer Science + Business Media 01.05.2018
Springer International Publishing
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background and aims Modern agriculture is driving the release of excessive amounts of reactive nitrogen (N) from the soils to the environment, thereby threatening ecological balances and functions. The amendment of soils with biochar has been suggested as a promising solution to regulate the soil N cycle and reduce N effluxes. However, a comprehensive and quantitative understanding of biochar impacts on soil N cycle remains elusive. Methods A meta-analysis was conducted to assess the influence of biochar on different variables involved in soil N cycle using data compiled across 208 peer-reviewed studies. Results On average, biochar beneficially increases symbiotic biological N 2 fixation (63%), improves plant N uptake (11%), reduces soil N 2 O emissions (32%), and decreases soil N leaching (26%), but it poses a risk of increased soil NH 3 volatilization (19%). Biochar-induced increase in soil NH 3 volatilization commonly occurs in studies with soils of low buffering capacity (soil pH ≤ 5, organic carbon≤10 g kg −1 , or clay texture), the application of high alkaline biochar (straw- or manure-derived biochar), or biochar at high application rate (>40 t ha −1 ). Besides, if the pyrolytic syngas is not purified, the biochar production process may be a potential source of N 2 O and NO x emissions which correspond to 2–4% and 3–24% of the feedstock-N, respectively. Conclusions This study suggests that to make biochar beneficial for decreasing soil N effluxes, clean advanced pyrolysis technique and adapted use of biochar are of great importance.
AbstractList Background and aimsModern agriculture is driving the release of excessive amounts of reactive nitrogen (N) from the soils to the environment, thereby threatening ecological balances and functions. The amendment of soils with biochar has been suggested as a promising solution to regulate the soil N cycle and reduce N effluxes. However, a comprehensive and quantitative understanding of biochar impacts on soil N cycle remains elusive.MethodsA meta-analysis was conducted to assess the influence of biochar on different variables involved in soil N cycle using data compiled across 208 peer-reviewed studies.ResultsOn average, biochar beneficially increases symbiotic biological N2 fixation (63%), improves plant N uptake (11%), reduces soil N2O emissions (32%), and decreases soil N leaching (26%), but it poses a risk of increased soil NH3 volatilization (19%). Biochar-induced increase in soil NH3 volatilization commonly occurs in studies with soils of low buffering capacity (soil pH ≤ 5, organic carbon≤10 g kg−1, or clay texture), the application of high alkaline biochar (straw- or manure-derived biochar), or biochar at high application rate (>40 t ha−1). Besides, if the pyrolytic syngas is not purified, the biochar production process may be a potential source of N2O and NOx emissions which correspond to 2–4% and 3–24% of the feedstock-N, respectively.ConclusionsThis study suggests that to make biochar beneficial for decreasing soil N effluxes, clean advanced pyrolysis technique and adapted use of biochar are of great importance.
Background and aims Modern agriculture is driving the release of excessive amounts of reactive nitrogen (N) from the soils to the environment, thereby threatening ecological balances and functions. The amendment of soils with biochar has been suggested as a promising solution to regulate the soil N cycle and reduce N effluxes. However, a comprehensive and quantitative understanding of biochar impacts on soil N cycle remains elusive. Methods A meta-analysis was conducted to assess the influence of biochar on different variables involved in soil N cycle using data compiled across 208 peer-reviewed studies. Results On average, biochar beneficially increases symbiotic biological N.sub.2 fixation (63%), improves plant N uptake (11%), reduces soil N.sub.2O emissions (32%), and decreases soil N leaching (26%), but it poses a risk of increased soil NH.sub.3 volatilization (19%). Biochar-induced increase in soil NH.sub.3 volatilization commonly occurs in studies with soils of low buffering capacity (soil pH [less than or equal to] 5, organic carbon[less than or equal to]10 g kg.sup.-1, or clay texture), the application of high alkaline biochar (straw- or manure-derived biochar), or biochar at high application rate (>40 t ha.sup.-1). Besides, if the pyrolytic syngas is not purified, the biochar production process may be a potential source of N.sub.2O and NO.sub.x emissions which correspond to 2-4% and 3-24% of the feedstock-N, respectively. Conclusions This study suggests that to make biochar beneficial for decreasing soil N effluxes, clean advanced pyrolysis technique and adapted use of biochar are of great importance.
Background and aims Modern agriculture is driving the release of excessive amounts of reactive nitrogen (N) from the soils to the environment, thereby threatening ecological balances and functions. The amendment of soils with biochar has been suggested as a promising solution to regulate the soil N cycle and reduce N effluxes. However, a comprehensive and quantitative understanding of biochar impacts on soil N cycle remains elusive. Methods A meta-analysis was conducted to assess the influence of biochar on different variables involved in soil N cycle using data compiled across 208 peer-reviewed studies. Results On average, biochar beneficially increases symbiotic biological N 2 fixation (63%), improves plant N uptake (11%), reduces soil N 2 O emissions (32%), and decreases soil N leaching (26%), but it poses a risk of increased soil NH 3 volatilization (19%). Biochar-induced increase in soil NH 3 volatilization commonly occurs in studies with soils of low buffering capacity (soil pH ≤ 5, organic carbon≤10 g kg −1 , or clay texture), the application of high alkaline biochar (straw- or manure-derived biochar), or biochar at high application rate (>40 t ha −1 ). Besides, if the pyrolytic syngas is not purified, the biochar production process may be a potential source of N 2 O and NO x emissions which correspond to 2–4% and 3–24% of the feedstock-N, respectively. Conclusions This study suggests that to make biochar beneficial for decreasing soil N effluxes, clean advanced pyrolysis technique and adapted use of biochar are of great importance.
BACKGROUND AND AIMS: Modern agriculture is driving the release of excessive amounts of reactive nitrogen (N) from the soils to the environment, thereby threatening ecological balances and functions. The amendment of soils with biochar has been suggested as a promising solution to regulate the soil N cycle and reduce N effluxes. However, a comprehensive and quantitative understanding of biochar impacts on soil N cycle remains elusive. METHODS: A meta-analysis was conducted to assess the influence of biochar on different variables involved in soil N cycle using data compiled across 208 peer-reviewed studies. RESULTS: On average, biochar beneficially increases symbiotic biological N₂ fixation (63%), improves plant N uptake (11%), reduces soil N₂O emissions (32%), and decreases soil N leaching (26%), but it poses a risk of increased soil NH₃ volatilization (19%). Biochar-induced increase in soil NH₃ volatilization commonly occurs in studies with soils of low buffering capacity (soil pH ≤ 5, organic carbon≤10 g kg⁻¹, or clay texture), the application of high alkaline biochar (straw- or manure-derived biochar), or biochar at high application rate (>40 t ha⁻¹). Besides, if the pyrolytic syngas is not purified, the biochar production process may be a potential source of N₂O and NOₓ emissions which correspond to 2–4% and 3–24% of the feedstock-N, respectively. CONCLUSIONS: This study suggests that to make biochar beneficial for decreasing soil N effluxes, clean advanced pyrolysis technique and adapted use of biochar are of great importance.
Audience Academic
Author Liu, Gang
Amonette, James E.
Lin, Zhibin
Zhang, Yanhui
Ambus, Per
Xie, Zubin
Liu, Qi
Liu, Benjuan
Author_xml – sequence: 1
  givenname: Qi
  surname: Liu
  fullname: Liu, Qi
– sequence: 2
  givenname: Yanhui
  surname: Zhang
  fullname: Zhang, Yanhui
– sequence: 3
  givenname: Benjuan
  surname: Liu
  fullname: Liu, Benjuan
– sequence: 4
  givenname: James E.
  surname: Amonette
  fullname: Amonette, James E.
– sequence: 5
  givenname: Zhibin
  surname: Lin
  fullname: Lin, Zhibin
– sequence: 6
  givenname: Gang
  surname: Liu
  fullname: Liu, Gang
– sequence: 7
  givenname: Per
  surname: Ambus
  fullname: Ambus, Per
– sequence: 8
  givenname: Zubin
  surname: Xie
  fullname: Xie, Zubin
BookMark eNp9kc9LHDEUx0Ox0NX6B_QgDHjxEvtefswkJ1nE1oK0lxa8hUwmY7NkJ5rMIvvfN8sUBQ-SQ0j4fPLy3veYHE1p8oR8QbhEgO5rQUQQFFBR3qKm4gNZoew4lcDbI7IC4IxCp-8_keNSNnA4Y7si6jY9N0PypelDcn9tbsI0xp2fnG9KCrH52bi9i_6qWTdbP1tqJxv3JZTP5ONoY_Gn__cT8ufbze_rW3r36_uP6_UddQJhpuilBa4GZkdwyolejs7ZnotR9Qx7KWEYpO57pjR3A4qxHbS2yITWXcuF4yfkYnn3MaennS-z2YbifIx28mlXDENALnSdQUXP36CbtMv1v5UClK1CjqJSlwv1YKM3tds0Z-vqGvw2uDrVMdT7teSKacGYrEK3CC6nUrIfjQuznUOaqhiiQTCHCMwSgakRmEME5lAK35iPOWxt3r_rsMUplZ0efH5t4j3pbJE2ZU75pYpQHZMdav4P-2yhSw
CitedBy_id crossref_primary_10_3390_agronomy11061242
crossref_primary_10_1139_cjss_2021_0006
crossref_primary_10_1111_gcbb_13003
crossref_primary_10_1016_j_geoderma_2022_116236
crossref_primary_10_1016_j_soilbio_2021_108416
crossref_primary_10_1007_s11356_021_14886_3
crossref_primary_10_1016_j_anifeedsci_2024_116053
crossref_primary_10_1016_j_geoderma_2020_114178
crossref_primary_10_1016_j_scitotenv_2019_06_293
crossref_primary_10_3390_horticulturae8040339
crossref_primary_10_1016_j_fcr_2022_108714
crossref_primary_10_1038_s41598_019_38697_2
crossref_primary_10_1111_sum_12787
crossref_primary_10_1007_s11270_025_07888_1
crossref_primary_10_1016_j_pedsph_2023_03_015
crossref_primary_10_1007_s42773_023_00252_8
crossref_primary_10_1080_09506608_2021_1922047
crossref_primary_10_1007_s11356_019_04417_6
crossref_primary_10_1016_j_eti_2022_102898
crossref_primary_10_1016_j_envpol_2022_120100
crossref_primary_10_1016_j_jclepro_2020_122462
crossref_primary_10_1016_j_scitotenv_2022_161099
crossref_primary_10_1007_s42773_022_00137_2
crossref_primary_10_1016_j_jhazmat_2022_130053
crossref_primary_10_1016_j_envpol_2020_115670
crossref_primary_10_3390_agronomy12081879
crossref_primary_10_1007_s11356_020_10267_4
crossref_primary_10_1016_j_soilbio_2021_108420
crossref_primary_10_1080_00103624_2025_2452182
crossref_primary_10_1007_s00374_021_01542_8
crossref_primary_10_1016_j_geoderma_2024_116806
crossref_primary_10_1016_j_scitotenv_2018_11_124
crossref_primary_10_3389_fpls_2024_1542150
crossref_primary_10_1016_j_scitotenv_2023_168530
crossref_primary_10_1007_s10661_023_11052_9
crossref_primary_10_3389_fenvs_2023_1123897
crossref_primary_10_1186_s40538_020_00182_8
crossref_primary_10_1038_s41598_019_53044_1
crossref_primary_10_32604_phyton_2023_046877
crossref_primary_10_3390_agronomy13010053
crossref_primary_10_1016_j_jclepro_2021_127764
crossref_primary_10_1021_acs_est_3c02620
crossref_primary_10_1007_s11104_023_06265_3
crossref_primary_10_1016_j_eti_2024_104006
crossref_primary_10_1016_j_agwat_2024_108788
crossref_primary_10_1016_j_heliyon_2022_e11304
crossref_primary_10_1016_j_envpol_2020_114477
crossref_primary_10_1016_j_jclepro_2022_134451
crossref_primary_10_1016_j_soilbio_2019_06_008
crossref_primary_10_1016_j_jenvman_2019_03_051
crossref_primary_10_1029_2022EF003246
crossref_primary_10_1016_j_scitotenv_2021_150239
crossref_primary_10_1007_s11356_019_06762_y
crossref_primary_10_1016_j_eja_2020_126021
crossref_primary_10_1016_j_still_2020_104822
crossref_primary_10_1002_agj2_20540
crossref_primary_10_1007_s42773_022_00166_x
crossref_primary_10_1007_s11270_024_07584_6
crossref_primary_10_3389_fpls_2021_650432
crossref_primary_10_1007_s00374_024_01823_y
crossref_primary_10_3390_agronomy12081857
crossref_primary_10_1016_j_scitotenv_2023_163631
crossref_primary_10_1016_j_eja_2024_127365
crossref_primary_10_1016_j_envres_2022_113832
crossref_primary_10_1016_j_apsoil_2022_104591
crossref_primary_10_1016_j_apsoil_2019_103402
crossref_primary_10_1016_j_jenvman_2023_118721
crossref_primary_10_1016_j_jenvman_2023_119018
crossref_primary_10_1007_s42452_020_2156_y
crossref_primary_10_1007_s11104_022_05325_4
crossref_primary_10_1080_09593330_2022_2103742
crossref_primary_10_1016_j_agee_2019_02_013
crossref_primary_10_1111_ejss_13488
crossref_primary_10_1016_j_scitotenv_2020_144381
crossref_primary_10_1007_s11104_020_04637_7
crossref_primary_10_1016_j_chemosphere_2022_137244
crossref_primary_10_1186_s13750_024_00326_5
crossref_primary_10_1007_s11104_022_05767_w
crossref_primary_10_1007_s42729_024_01931_6
crossref_primary_10_1007_s11356_024_35269_4
crossref_primary_10_3390_app11198914
crossref_primary_10_1016_j_chemosphere_2019_06_030
crossref_primary_10_1080_17583004_2023_2217785
crossref_primary_10_2139_ssrn_4141110
crossref_primary_10_3390_soilsystems7010026
crossref_primary_10_1007_s42773_023_00287_x
crossref_primary_10_1038_s41598_020_76213_z
crossref_primary_10_3390_plants12203649
crossref_primary_10_1016_j_jenvman_2025_124990
crossref_primary_10_1016_j_scitotenv_2019_134943
crossref_primary_10_1016_j_soilbio_2024_109685
crossref_primary_10_1111_sum_12642
crossref_primary_10_1016_j_envpol_2020_114553
crossref_primary_10_1016_j_envpol_2019_07_073
crossref_primary_10_5194_bg_19_3739_2022
crossref_primary_10_3390_agronomy12020247
crossref_primary_10_1007_s11368_019_02400_9
crossref_primary_10_1016_j_jclepro_2021_125811
crossref_primary_10_1016_S1002_0160_20_60094_7
crossref_primary_10_1016_j_scitotenv_2024_170266
crossref_primary_10_1016_j_scitotenv_2021_152073
crossref_primary_10_1016_j_geodrs_2025_e00936
crossref_primary_10_1016_j_psep_2024_09_115
crossref_primary_10_3389_fpls_2023_1131937
crossref_primary_10_1016_j_agee_2024_109243
crossref_primary_10_1109_TGRS_2021_3109819
crossref_primary_10_1016_j_scitotenv_2022_160416
crossref_primary_10_3390_su151813366
crossref_primary_10_1016_j_soilbio_2025_109730
crossref_primary_10_1016_j_chemosphere_2024_141769
crossref_primary_10_1038_s41467_023_38577_4
crossref_primary_10_1007_s00374_020_01499_0
crossref_primary_10_3390_agronomy10010109
crossref_primary_10_1051_e3sconf_202017509014
crossref_primary_10_3390_geosciences8110420
crossref_primary_10_1016_j_apsoil_2023_105124
crossref_primary_10_1016_j_jclepro_2021_126259
crossref_primary_10_1016_j_pedsph_2025_01_001
crossref_primary_10_3389_fenvs_2022_1011820
crossref_primary_10_1016_j_agwat_2022_108129
crossref_primary_10_3390_su15032384
crossref_primary_10_1007_s42773_023_00271_5
crossref_primary_10_1016_j_scitotenv_2023_162054
crossref_primary_10_1007_s42452_021_04521_8
crossref_primary_10_1016_j_jhazmat_2021_125378
crossref_primary_10_1016_j_scitotenv_2023_167290
crossref_primary_10_1016_j_scitotenv_2024_170522
crossref_primary_10_1016_j_scitotenv_2021_151044
crossref_primary_10_1007_s11368_022_03416_4
crossref_primary_10_1016_j_envpol_2022_120068
crossref_primary_10_1002_agg2_20067
crossref_primary_10_1016_j_bej_2022_108778
crossref_primary_10_1016_j_envpol_2022_120731
crossref_primary_10_7717_peerj_7373
crossref_primary_10_1016_j_scitotenv_2022_158643
crossref_primary_10_1111_gcbb_12783
crossref_primary_10_1016_j_geodrs_2023_e00669
crossref_primary_10_1002_ldr_4405
crossref_primary_10_1007_s11356_021_13562_w
crossref_primary_10_1002_saj2_20207
crossref_primary_10_1016_j_agee_2021_107551
crossref_primary_10_3390_su12124868
crossref_primary_10_1016_j_scitotenv_2020_137390
crossref_primary_10_1016_j_scitotenv_2020_137399
crossref_primary_10_1111_gcbb_12898
crossref_primary_10_1111_sum_12848
crossref_primary_10_1016_j_envpol_2021_118598
crossref_primary_10_5194_hess_26_4603_2022
crossref_primary_10_1016_j_scitotenv_2021_148572
crossref_primary_10_1016_j_rser_2022_113042
crossref_primary_10_1007_s42773_020_00065_z
crossref_primary_10_1111_nyas_14690
crossref_primary_10_1146_annurev_environ_101718_033129
crossref_primary_10_1016_j_jece_2024_114129
crossref_primary_10_1007_s13399_022_02530_0
crossref_primary_10_1016_j_envpol_2021_118344
crossref_primary_10_1016_j_still_2021_105126
crossref_primary_10_1016_j_apsoil_2023_104926
crossref_primary_10_1111_gcbb_12889
crossref_primary_10_1111_gcbb_12885
crossref_primary_10_1007_s42106_022_00191_7
crossref_primary_10_1016_j_jenvman_2023_119738
crossref_primary_10_1111_sum_12953
crossref_primary_10_1007_s11356_021_15364_6
crossref_primary_10_1016_j_agee_2021_107371
crossref_primary_10_1039_D3EN00511A
crossref_primary_10_1016_j_ecoenv_2023_115228
crossref_primary_10_1007_s11356_022_18619_y
crossref_primary_10_1007_s11368_024_03887_7
crossref_primary_10_2139_ssrn_4155100
crossref_primary_10_1016_j_jclepro_2023_140240
crossref_primary_10_3390_agronomy13092406
crossref_primary_10_3389_fsoil_2024_1376159
crossref_primary_10_7211_jjsrt_50_210
crossref_primary_10_1016_j_geoderma_2021_115348
crossref_primary_10_1038_s41598_025_87942_4
crossref_primary_10_1016_j_scitotenv_2022_156532
crossref_primary_10_1007_s00374_020_01535_z
crossref_primary_10_1016_j_jclepro_2019_06_288
crossref_primary_10_1016_j_agwat_2021_107354
crossref_primary_10_3390_horticulturae6030037
crossref_primary_10_1016_j_envres_2023_117750
crossref_primary_10_1016_j_jenvman_2025_124336
crossref_primary_10_3390_agronomy13051312
crossref_primary_10_1016_j_scitotenv_2022_154174
crossref_primary_10_1016_j_still_2020_104766
crossref_primary_10_1007_s42773_019_00012_7
crossref_primary_10_1007_s42729_023_01286_4
crossref_primary_10_3390_su15064861
crossref_primary_10_1016_j_jclepro_2023_138425
crossref_primary_10_1016_j_scitotenv_2022_157635
crossref_primary_10_1007_s00128_019_02779_8
crossref_primary_10_1007_s42729_020_00311_0
crossref_primary_10_1016_j_scitotenv_2024_177629
crossref_primary_10_1016_j_jenvman_2023_118584
crossref_primary_10_1007_s13399_023_05019_6
crossref_primary_10_1016_j_geoderma_2023_116498
crossref_primary_10_1080_00103624_2021_1900225
crossref_primary_10_1016_j_scitotenv_2020_141607
crossref_primary_10_1016_j_soilbio_2020_107946
crossref_primary_10_1016_j_envpol_2021_118154
crossref_primary_10_1016_j_apsoil_2020_103674
crossref_primary_10_1016_j_scitotenv_2020_144564
crossref_primary_10_1016_j_scitotenv_2018_10_060
crossref_primary_10_1016_j_scitotenv_2022_157766
crossref_primary_10_1007_s12517_019_4846_6
crossref_primary_10_1007_s42773_023_00279_x
crossref_primary_10_1007_s11368_024_03830_w
crossref_primary_10_1016_j_apsoil_2023_104844
crossref_primary_10_1007_s11104_022_05832_4
crossref_primary_10_1007_s42106_022_00200_9
crossref_primary_10_1016_j_scitotenv_2018_12_450
crossref_primary_10_3390_land8120179
crossref_primary_10_1016_j_scitotenv_2023_169809
crossref_primary_10_1590_1678_4499_20210017
crossref_primary_10_3389_fenvs_2022_914766
crossref_primary_10_1080_00103624_2022_2146704
crossref_primary_10_1111_gcbb_12720
crossref_primary_10_1016_j_apsoil_2021_104134
crossref_primary_10_1007_s00374_021_01541_9
crossref_primary_10_1016_j_agwat_2021_107024
Cites_doi 10.2136/sssaj2005.0096
10.1016/j.soilbio.2010.09.013
10.1029/93GB01186
10.1080/00380768.2013.830229
10.1371/journal.pone.0113888
10.1038/543322a
10.1007/s11104-012-1411-4
10.1021/ef4016872
10.2136/sssaj2009.0115
10.1016/j.pedobi.2011.07.005
10.2134/jeq2009.0138
10.1016/j.biombioe.2013.02.036
10.1111/aab.12014
10.1016/0378-3820(94)00123-B
10.1016/0360-1285(92)90038-3
10.1371/journal.pone.0086388
10.1016/j.soilbio.2012.05.019
10.1097/SS.0b013e31824e5593
10.1038/nature06592
10.1111/gcbb.12376
10.1038/ismej.2013.160
10.1016/S0920-5861(98)00318-6
10.2136/sssaj2005.0383
10.1007/s00374-006-0152-z
10.1007/s11104-011-1010-9
10.1021/es302720k
10.1080/00380768.2014.885386
10.1038/srep01732
10.1038/ncomms14873
10.1111/gcbb.12037
10.1073/pnas.0913658107
10.1080/21683565.2014.996696
10.1016/j.soilbio.2016.10.006
10.1890/0012-9658(1997)078[1277:RTFMAO]2.0.CO;2
10.1002/jsfa.8202
10.1016/S1359-4311(02)00013-3
10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
10.1071/SR13359
10.1088/1748-9326/aa67bd
10.1016/j.chemosphere.2010.05.026
10.1007/s11104-008-9573-9
10.1016/j.ecoleng.2014.06.017
10.1016/j.still.2015.11.009
10.1016/j.orggeochem.2010.04.007
10.1007/s10494-013-9473-9
10.1080/10643389.2016.1239975
10.1080/00103629509369376
10.1128/AEM.00136-11
10.1016/j.jhazmat.2008.09.051
10.1111/gcbb.12248
10.1016/j.jiec.2016.06.002
10.1126/science.1225987
10.1016/j.agee.2016.08.019
10.1016/j.envint.2004.09.005
10.1007/s11104-013-1636-x
10.2134/jeq2016.10.0396
10.1007/s00374-005-0858-3
10.1007/s10310-011-0287-0
10.2136/sssaj1984.03615995004800010026x
10.1021/es201792c
10.1021/es101283d
10.1016/j.agee.2014.03.011
10.1016/j.apsoil.2013.01.006
10.2136/sssaj1986.03615995005000040039x
10.1007/s11356-014-4067-1
10.1038/ngeo325
10.1016/0043-1354(90)90070-M
10.1007/s00374-013-0857-8
10.1016/j.geoderma.2016.11.004
10.1016/0016-2361(96)00100-7
10.1016/j.agee.2013.10.009
10.1007/s11104-007-9391-5
10.1016/j.biortech.2012.05.042
10.3390/agronomy3020275
10.1016/j.soilbio.2009.03.016
10.1029/2004GB002282
10.1080/09593330.2017.1349839
10.1073/pnas.1116437108
10.1029/2004GB002435
ContentType Journal Article
Copyright Springer International Publishing AG, part of Springer Nature 2018
COPYRIGHT 2018 Springer
Plant and Soil is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer International Publishing AG, part of Springer Nature 2018
– notice: COPYRIGHT 2018 Springer
– notice: Plant and Soil is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SN
7ST
7T7
7X2
88A
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7S9
L.6
DOI 10.1007/s11104-018-3619-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Biology Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Agricultural Science Database


AGRICOLA
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Botany
Ecology
EISSN 1573-5036
EndPage 225
ExternalDocumentID A538294225
10_1007_s11104_018_3619_4
48725719
GrantInformation_xml – fundername: the Science and Technology Supporting Project of China
  grantid: 2013BAD11B01
– fundername: Special Project on Agricultural Science and Technology
  grantid: 201503137
– fundername: the Danish Agency for Science, Technology and Innovation for financial support to Sino-Danish cooperation on biochar as a tool to mitigate climate change
  grantid: No 1370-00036B
– fundername: Special Project on the Basis of National Science and Technology of China: National Survey of Biological Nitrogen Fixation Resources in Paddies of China
  grantid: 2015FY110700
– fundername: Natural Science Foundation of China
  grantid: NFSC-41171191
– fundername: the Science and Technology Supporting Project of Jiangsu Province
  grantid: BE2013451
GroupedDBID -~C
-~X
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
203
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2XV
2~F
2~H
30V
4.4
406
408
409
40D
40E
5VS
67N
67Z
6NX
78A
7X2
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBHK
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACDTI
ACGFS
ACHIC
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADZKW
AEEJZ
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
AQVQM
ARMRJ
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
B-.
B0M
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DATOO
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EMK
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAG
IAO
IEP
IHE
IJ-
IKXTQ
IPSME
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JZLTJ
KDC
KOV
KPH
LAK
LK8
LLZTM
M0K
M4Y
M7P
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
PF0
PHGZM
PHGZT
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3A
S3B
SA0
SAP
SBL
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
Y6R
YLTOR
Z45
ZMTXR
ZOVNA
~02
~8M
~EX
~KM
-4W
-56
-5G
-BR
-EM
-Y2
1SB
2.D
28-
2P1
2VQ
3SX
3V.
53G
5QI
88A
AANXM
AARHV
AAYTO
ABQSL
ABULA
ACBXY
ACKIV
ADINQ
ADYPR
AEBTG
AEFIE
AFEXP
AFFNX
AFGCZ
AGGDS
AIDBO
AJBLW
BBWZM
CAG
COF
EN4
GQ6
JSODD
KOW
M0L
N2Q
NDZJH
O9-
OVD
P0-
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SBY
SCLPG
T16
TEORI
WK6
XOL
Z5O
Z7U
Z7V
Z7W
Z7Y
Z83
Z86
Z8O
Z8P
Z8Q
Z8S
Z8W
Z92
ZCG
AAYXX
ADHKG
AGQPQ
CITATION
AEIIB
PMFND
7SN
7ST
7T7
8FD
8FK
ABRTQ
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c410t-1e5a038d2af0c8c4b5fccab34f8b21b550dd59bb2893cd14f6d99a124997634c3
IEDL.DBID U2A
ISSN 0032-079X
IngestDate Fri Jul 11 03:33:22 EDT 2025
Fri Jul 25 19:28:33 EDT 2025
Tue Jun 10 20:10:50 EDT 2025
Tue Jul 01 01:47:02 EDT 2025
Thu Apr 24 22:54:30 EDT 2025
Fri Feb 21 02:33:33 EST 2025
Thu Jun 19 21:37:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1/2
Keywords Nitrogen cycle
Biochar
Soil properties
Meta-analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-1e5a038d2af0c8c4b5fccab34f8b21b550dd59bb2893cd14f6d99a124997634c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2015681314
PQPubID 54098
PageCount 15
ParticipantIDs proquest_miscellaneous_2101349007
proquest_journals_2015681314
gale_infotracacademiconefile_A538294225
crossref_citationtrail_10_1007_s11104_018_3619_4
crossref_primary_10_1007_s11104_018_3619_4
springer_journals_10_1007_s11104_018_3619_4
jstor_primary_48725719
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180501
20180500
2018-5-00
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 5
  year: 2018
  text: 20180501
  day: 1
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal on Plant-Soil Relationships
PublicationTitle Plant and soil
PublicationTitleAbbrev Plant Soil
PublicationYear 2018
Publisher Springer Science + Business Media
Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer Science + Business Media
– name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Anderson, Condron, Clough, Fiers, Stewart, Hill, Sherlock (CR4) 2011; 54
Verhoeven, Pereira, Decock, Suddick, Angst, Six (CR79) 2017; 46
Pan, Lam, Mosier, Luo, Chen (CR56) 2016; 232
Parfitt, Giltrap, Whitton (CR57) 1995; 26
Biederman, Harpole (CR11) 2013; 5
Adouane, Hoppesteyn, de Jong, van der Wel, Hein, Spliethoff (CR2) 2002; 22
Singh, Hatton, Singh, Cowie, Kathuria (CR67) 2010; 39
Bouwman, Fung, Matthews, John (CR12) 1993; 7
Sun, Li, Chen, Wang, Xiong (CR72) 2014; 60
Taghizadeh-Toosi, Clough, Sherlock, Condron (CR76) 2012; 353
CR78
Yao, Gao, Nicol, Campbell, Prosser, Zhang, Singh (CR85) 2011; 77
Tagoe, Horiuchi, Matsui (CR77) 2008; 306
CR73
Liu, Liu, Zhang, Lin, Zhu, Sun, Wang, Ma, Bei, Liu, Lin, Xie (CR47) 2017; 104
Cayuela, Zwieten, Singh, Jeffery, Roig, Sánchez-Monedero (CR16) 2014; 191
Mandal, Sarkar, Bolan, Novak, Ok, van Zwieten, Singh, Kirkham, Choppala, Spokas, Naidu (CR49) 2016; 46
Quilliam, DeLuca, Jones (CR59) 2013; 366
Hedges, Gurevitch, Curtis (CR31) 1999; 80
Yao, Arbestain, Virgel, Blanco, Arostegui, Maciá-Agulló, Macías (CR84) 2010; 80
DeLuca, MacKenzie, Gundale, Holben (CR20) 2006; 70
Ahmad, Lee, Dou, Mohan, Sung, Yang, Ok (CR3) 2012; 118
Kontopoulou, Liasis, Iannetta, Tampakaki, Savvas (CR38) 2017; 97
Warnock, Lehmann, Kuyper, Rillig (CR80) 2007; 300
Kastner, Miller, Das (CR36) 2009; 164
Lal (CR41) 2005; 31
CR7
Erisman, Sutton, Galloway, Klimont, Winiwarter (CR22) 2008; 1
CR9
Kanthle, Lenka, Lenka, Tedia (CR35) 2016; 157
Novak, Busscher, Watts (CR55) 2012; 177
Gruber, Galloway (CR25) 2008; 451
Knicker (CR37) 2010; 41
Sohi (CR69) 2012; 338
Cayuela, Sánchez-Monedero, Roig, Hanley, Enders, Lehmann (CR15) 2013; 3
CR42
Mukherjee, Lal (CR52) 2014; 52
Ren, Zhao (CR60) 2013; 47
Gurevitch, Hedges, Scheiner, Gurevitch (CR26) 1993
He, Zhou, Jiang, Li, Du, Zhou, Wallace (CR30) 2017; 9
Xie, Xu, Liu, Liu, Zhu, Tu, Hu (CR82) 2013; 370
Bhandari, Kumar, Huhnke (CR10) 2014; 28
Cao, Farrell, Kristiansen, Rayner (CR14) 2014; 71
Silber, Levkovitch, Graber (CR66) 2010; 44
Song, Zhang, Ma, Chang, Gong (CR70) 2014; 50
Bateman, Baggs (CR8) 2005; 41
Smith, Collins, Bailey (CR68) 2010; 42
Deenik, McClellan, Uehara, Antal, Campbell (CR19) 2010; 74
Cameron, Di, Moir (CR13) 2013; 162
Clough, Condron, Kammann, Müller (CR17) 2013; 3
Sun, Levin, Guzman, Enders, Muller, Angenent, Lehmann (CR74) 2017; 8
Liu, You, Amini, Obersteiner, Herrero, Zehnder, Yang (CR45) 2010; 107
Liang, Lehmann, Solomon, Kinyangi, Grossman, O'neill, Neves (CR44) 2006; 70
Kwiatkowski, Dudyński, Bajer (CR40) 2013; 91
Jeffery, Abalos, Prodana, Bastos, van Groenigen, Hungate, Verheijen (CR32) 2017; 12
Prommer, Wanek, Hofhansl, Trojan, Offre, Urich, Hood-Nowotny (CR58) 2014; 9
Leppälahti, Koljonen (CR43) 1995; 43
Cha, Park, Jung, Ryu, Jeon, Shin, Park (CR33) 2016; 40
Nguyen, Xu, Tahmasbian, Che, Xu, Zhou, Bai (CR54) 2017; 288
Shirazi, Boersma (CR65) 1984; 48
Saxton, Rawls, Romberger, Papendick (CR63) 1986; 50
Cranedroesch, Abiven, Jeffery, Torn (CR18) 2013; 8
Mia, Van Groenigen, Van de Voorde, Oram, Bezemer, Mommer, Jeffery (CR51) 2014; 191
Steinbeiss, Gleixner, Antonietti (CR75) 2009; 41
Lu, Shi (CR48) 1982
Harter, Krause, Schuettler, Ruser, Fromme, Scholten, Behrens (CR27) 2014; 8
Meyer, Glaser, Quicker (CR50) 2011; 45
Rondon, Lehmann, Ramírez, Hurtado (CR61) 2007; 43
Sánchez-García, Roig, Sánchez-Monedero, Cayuela (CR64) 2014; 2
Yang, Cao, Gao, Zhao, Li (CR83) 2015; 22
Zhao, Yan, Wang, Xing, Zhou (CR88) 2013; 59
Woolcock, Brown (CR81) 2013; 52
Adams, Gurevitch, Rosenberg (CR1) 1997; 78
Hämäläinen, Aho (CR29) 1996; 75
Nelissen, Rütting, Huygens, Staelens, Ruysschaert, Boeckx (CR53) 2012; 55
Zhao, Cao, Mašek, Zimmerman (CR87) 2013; 256
Kuroiwa, Koba, Isobe, Tateno, Nakanishi, Inagaki, Yoh (CR39) 2011; 16
Gai, Wang, Liu, Zhai, Liu, Ren, Liu (CR24) 2014; 9
CR23
Hayhurst, Lawrence (CR28) 1992; 18
Sparrevik, Field, Martinsen, Breedveld, Cornelissen (CR71) 2013; 47
Zhang (CR86) 2017; 543
CR62
Antoniou, Hamilton, Koopman, Jain, Holloway, Lyberatos, Svoronos (CR5) 1990; 24
Liu, Liu, Ambus, Zhang, Hansen, Lin, Shen, Liu, Bei, Zhu, Wang, Ma, Lin, Yu, Zhu, Xie (CR46) 2016; 8
Johansson, Järås (CR34) 1999; 47
Ducey, Ippolito, Cantrell, Novak, Lentz (CR21) 2013; 65
Arif, Jalal, Jan, Muhammad, Quilliam (CR6) 2015; 39
Q Liu (3619_CR47) 2017; 104
J Prommer (3619_CR58) 2014; 9
JL Deenik (3619_CR19) 2010; 74
Y Song (3619_CR70) 2014; 50
FX Yao (3619_CR84) 2010; 80
J Gurevitch (3619_CR26) 1993
A Mukherjee (3619_CR52) 2014; 52
M Arif (3619_CR6) 2015; 39
M Kuroiwa (3619_CR39) 2011; 16
Z Xie (3619_CR82) 2013; 370
X Zhang (3619_CR86) 2017; 543
CR Anderson (3619_CR4) 2011; 54
ML Cayuela (3619_CR15) 2013; 3
TF Ducey (3619_CR21) 2013; 65
3619_CR62
JL Smith (3619_CR68) 2010; 42
H Knicker (3619_CR37) 2010; 41
X Gai (3619_CR24) 2014; 9
J Leppälahti (3619_CR43) 1995; 43
BP Singh (3619_CR67) 2010; 39
RS Quilliam (3619_CR59) 2013; 366
J Harter (3619_CR27) 2014; 8
AF Bouwman (3619_CR12) 1993; 7
JR Kastner (3619_CR36) 2009; 164
CT Cao (3619_CR14) 2014; 71
JW Erisman (3619_CR22) 2008; 1
RK Lu (3619_CR48) 1982
E Verhoeven (3619_CR79) 2017; 46
PN Bhandari (3619_CR10) 2014; 28
B Pan (3619_CR56) 2016; 232
DC Adams (3619_CR1) 1997; 78
JM Novak (3619_CR55) 2012; 177
P Antoniou (3619_CR5) 1990; 24
EM Johansson (3619_CR34) 1999; 47
KC Cameron (3619_CR13) 2013; 162
3619_CR73
B Liang (3619_CR44) 2006; 70
A Cranedroesch (3619_CR18) 2013; 8
3619_CR23
Q Liu (3619_CR46) 2016; 8
A Silber (3619_CR66) 2010; 44
K Kwiatkowski (3619_CR40) 2013; 91
S Steinbeiss (3619_CR75) 2009; 41
TH DeLuca (3619_CR20) 2006; 70
DD Warnock (3619_CR80) 2007; 300
RL Parfitt (3619_CR57) 1995; 26
CK Kontopoulou (3619_CR38) 2017; 97
S Mia (3619_CR51) 2014; 191
S Jeffery (3619_CR32) 2017; 12
ML Cayuela (3619_CR16) 2014; 191
SO Tagoe (3619_CR77) 2008; 306
AN Hayhurst (3619_CR28) 1992; 18
Y He (3619_CR30) 2017; 9
J Liu (3619_CR45) 2010; 107
F Yang (3619_CR83) 2015; 22
Q Ren (3619_CR60) 2013; 47
S Mandal (3619_CR49) 2016; 46
PJ Woolcock (3619_CR81) 2013; 52
3619_CR78
MA Rondon (3619_CR61) 2007; 43
M Sánchez-García (3619_CR64) 2014; 2
SP Sohi (3619_CR69) 2012; 338
TTN Nguyen (3619_CR54) 2017; 288
KE Saxton (3619_CR63) 1986; 50
EJ Bateman (3619_CR8) 2005; 41
L Zhao (3619_CR87) 2013; 256
LA Biederman (3619_CR11) 2013; 5
LV Hedges (3619_CR31) 1999; 80
MA Shirazi (3619_CR65) 1984; 48
JS Cha (3619_CR33) 2016; 40
B Adouane (3619_CR2) 2002; 22
M Ahmad (3619_CR3) 2012; 118
JP Hämäläinen (3619_CR29) 1996; 75
A Taghizadeh-Toosi (3619_CR76) 2012; 353
X Zhao (3619_CR88) 2013; 59
3619_CR7
R Lal (3619_CR41) 2005; 31
3619_CR9
M Sparrevik (3619_CR71) 2013; 47
3619_CR42
T Sun (3619_CR74) 2017; 8
L Sun (3619_CR72) 2014; 60
S Meyer (3619_CR50) 2011; 45
TJ Clough (3619_CR17) 2013; 3
N Gruber (3619_CR25) 2008; 451
H Yao (3619_CR85) 2011; 77
AK Kanthle (3619_CR35) 2016; 157
V Nelissen (3619_CR53) 2012; 55
References_xml – volume: 70
  start-page: 448
  year: 2006
  end-page: 453
  ident: CR20
  article-title: Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2005.0096
– volume: 42
  start-page: 2345
  year: 2010
  end-page: 2347
  ident: CR68
  article-title: The effect of young biochar on soil respiration
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2010.09.013
– year: 1982
  ident: CR48
  publication-title: Handbook of agricultural chemistry
– volume: 7
  start-page: 557
  year: 1993
  end-page: 597
  ident: CR12
  article-title: Global analysis of the potential for N O production in natural soils
  publication-title: Global Biogeochem Cy
  doi: 10.1029/93GB01186
– volume: 59
  start-page: 771
  year: 2013
  end-page: 782
  ident: CR88
  article-title: Effects of the addition of rice-straw-based biochar on leaching and retention of fertilizer N in highly fertilized cropland soils
  publication-title: Soil Sci Plant Nutr
  doi: 10.1080/00380768.2013.830229
– volume: 9
  year: 2014
  ident: CR24
  article-title: Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0113888
– volume: 543
  start-page: 322
  year: 2017
  end-page: 323
  ident: CR86
  article-title: Biogeochemistry: a plan for efficient use of nitrogen fertilizers
  publication-title: Nature
  doi: 10.1038/543322a
– volume: 366
  start-page: 83
  year: 2013
  end-page: 92
  ident: CR59
  article-title: Biochar application reduces nodulation but increases nitrogenase activity in clover
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1411-4
– volume: 28
  start-page: 1918
  year: 2014
  end-page: 1925
  ident: CR10
  article-title: Simultaneous removal of toluene (model tar), NH , and H S, from biomass-generated producer gas using biochar-based and mixed-metal oxide catalysts
  publication-title: Energy Fuel
  doi: 10.1021/ef4016872
– volume: 74
  start-page: 1259
  year: 2010
  end-page: 1270
  ident: CR19
  article-title: Charcoal volatile matter content influences plant growth and soil nitrogen transformations
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2009.0115
– volume: 54
  start-page: 309
  year: 2011
  end-page: 320
  ident: CR4
  article-title: Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus
  publication-title: Pedobiologia
  doi: 10.1016/j.pedobi.2011.07.005
– volume: 39
  start-page: 1224
  year: 2010
  end-page: 1235
  ident: CR67
  article-title: Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils
  publication-title: J Environ Qual
  doi: 10.2134/jeq2009.0138
– volume: 52
  start-page: 54
  year: 2013
  end-page: 84
  ident: CR81
  article-title: A review of cleaning technologies for biomass-derived syngas
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2013.02.036
– volume: 162
  start-page: 145
  year: 2013
  end-page: 173
  ident: CR13
  article-title: Nitrogen losses from the soil/plant system: a review
  publication-title: Ann Appl Biol
  doi: 10.1111/aab.12014
– volume: 43
  start-page: 1
  year: 1995
  end-page: 45
  ident: CR43
  article-title: Nitrogen evolution from coal, peat and wood during gasification: literature review
  publication-title: Fuel Process Technol
  doi: 10.1016/0378-3820(94)00123-B
– volume: 18
  start-page: 529
  year: 1992
  end-page: 552
  ident: CR28
  article-title: Emissions of nitrous oxide from combustion sources
  publication-title: Prog Energ Combust
  doi: 10.1016/0360-1285(92)90038-3
– volume: 9
  year: 2014
  ident: CR58
  article-title: Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0086388
– volume: 55
  start-page: 20
  year: 2012
  end-page: 27
  ident: CR53
  article-title: Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2012.05.019
– volume: 177
  start-page: 310
  year: 2012
  end-page: 320
  ident: CR55
  article-title: Biochars impact on soil-moisture storage in an Ultisol and two Aridisols
  publication-title: Soil Sci
  doi: 10.1097/SS.0b013e31824e5593
– volume: 451
  start-page: 293
  year: 2008
  end-page: 296
  ident: CR25
  article-title: An earth-system perspective of the global nitrogen cycle
  publication-title: Nature
  doi: 10.1038/nature06592
– volume: 9
  start-page: 743
  year: 2017
  end-page: 755
  ident: CR30
  article-title: Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12376
– ident: CR42
– volume: 8
  start-page: 660
  year: 2014
  end-page: 674
  ident: CR27
  article-title: Linking N O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community
  publication-title: The ISME journal
  doi: 10.1038/ismej.2013.160
– volume: 47
  start-page: 359
  year: 1999
  end-page: 367
  ident: CR34
  article-title: Circumventing fuel-NO formation in catalytic combustion of gasified biomass
  publication-title: Catal Today
  doi: 10.1016/S0920-5861(98)00318-6
– volume: 70
  start-page: 1719
  year: 2006
  end-page: 1730
  ident: CR44
  article-title: Black carbon increases cation exchange capacity in soils
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2005.0383
– volume: 43
  start-page: 699
  year: 2007
  end-page: 708
  ident: CR61
  article-title: Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions
  publication-title: Biol Fert Soils
  doi: 10.1007/s00374-006-0152-z
– volume: 353
  start-page: 73
  year: 2012
  end-page: 84
  ident: CR76
  article-title: A wood based low-temperature biochar captures NH -N generated from ruminant urine-N, retaining its bioavailability
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-1010-9
– volume: 47
  start-page: 1206
  year: 2013
  end-page: 1215
  ident: CR71
  article-title: Life cycle assessment to evaluate the environmental impact of biochar implementation in conservation agriculture in Zambia
  publication-title: Environ Sci Technol
  doi: 10.1021/es302720k
– volume: 60
  start-page: 254
  year: 2014
  end-page: 265
  ident: CR72
  article-title: Combined effects of nitrogen deposition and biochar application on emissions of N O, CO and NH from agricultural and forest soils
  publication-title: Soil Sci Plant Nutr
  doi: 10.1080/00380768.2014.885386
– ident: CR9
– volume: 3
  start-page: 1732
  year: 2013
  ident: CR15
  article-title: Biochar and denitrification in soils: when, how much and why does biochar reduce N O emissions?
  publication-title: Sci Rep
  doi: 10.1038/srep01732
– start-page: 378
  year: 1993
  end-page: 389
  ident: CR26
  article-title: Meta-analysis: combining the results of independent experiments
  publication-title: Design and analysis of ecological experiments
– volume: 8
  year: 2017
  ident: CR74
  article-title: Rapid electron transfer by the carbon matrix in natural pyrogenic carbon
  publication-title: Nat Commun
  doi: 10.1038/ncomms14873
– volume: 5
  start-page: 202
  year: 2013
  end-page: 214
  ident: CR11
  article-title: Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12037
– volume: 107
  start-page: 8035
  year: 2010
  end-page: 8040
  ident: CR45
  article-title: A high-resolution assessment on global nitrogen flows in cropland
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0913658107
– ident: CR78
– volume: 39
  start-page: 391
  year: 2015
  end-page: 398
  ident: CR6
  article-title: Incorporation of biochar and legumes into the summer gap: improving productivity of cereal-based cropping systems in Pakistan
  publication-title: Agroecol Sust Food
  doi: 10.1080/21683565.2014.996696
– volume: 104
  start-page: 8
  year: 2017
  end-page: 17
  ident: CR47
  article-title: Can biochar alleviate soil compaction stress on wheat growth and mitigate soil N O emissions?
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2016.10.006
– volume: 78
  start-page: 1277
  year: 1997
  end-page: 1283
  ident: CR1
  article-title: Resampling tests for meta-analysis of ecological data
  publication-title: Ecology
  doi: 10.1890/0012-9658(1997)078[1277:RTFMAO]2.0.CO;2
– volume: 97
  start-page: 4353
  year: 2017
  end-page: 4361
  ident: CR38
  article-title: Impact of rhizobial inoculation and reduced N supply on biomass production and biological N fixation in common bean grown hydroponically
  publication-title: J Sci Food Agric
  doi: 10.1002/jsfa.8202
– volume: 22
  start-page: 959
  year: 2002
  end-page: 970
  ident: CR2
  article-title: Gas turbine combustor for biomass derived LCV gas, a first approach towards fuel-NO modelling and experimental validation
  publication-title: Appl Therm Eng
  doi: 10.1016/S1359-4311(02)00013-3
– volume: 80
  start-page: 1150
  year: 1999
  end-page: 1156
  ident: CR31
  article-title: The meta-analysis of response ratios in experimental ecology
  publication-title: Ecology
  doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
– volume: 52
  start-page: 217
  year: 2014
  end-page: 230
  ident: CR52
  article-title: The biochar dilemma
  publication-title: Soil Res
  doi: 10.1071/SR13359
– volume: 12
  year: 2017
  ident: CR32
  article-title: Biochar boosts tropical but not temperate crop yields
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/aa67bd
– volume: 80
  start-page: 724
  year: 2010
  end-page: 732
  ident: CR84
  article-title: Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.05.026
– volume: 306
  start-page: 211
  year: 2008
  end-page: 220
  ident: CR77
  article-title: Effects of carbonized and dried chicken manures on the growth, yield, and N content of soybean
  publication-title: Plant Soil
  doi: 10.1007/s11104-008-9573-9
– volume: 71
  start-page: 368
  year: 2014
  end-page: 374
  ident: CR14
  article-title: Biochar makes green roof substrates lighter and improves water supply to plants
  publication-title: Ecol Eng
  doi: 10.1016/j.ecoleng.2014.06.017
– volume: 157
  start-page: 65
  year: 2016
  end-page: 72
  ident: CR35
  article-title: Biochar impact on nitrate leaching as influenced by native soil organic carbon in an Inceptisol of Central India
  publication-title: Soil Till Res
  doi: 10.1016/j.still.2015.11.009
– volume: 41
  start-page: 947
  year: 2010
  end-page: 950
  ident: CR37
  article-title: “Black nitrogen”–an important fraction in determining the recalcitrance of charcoal
  publication-title: Org Geochem
  doi: 10.1016/j.orggeochem.2010.04.007
– volume: 91
  start-page: 749
  year: 2013
  end-page: 772
  ident: CR40
  article-title: Combustion of low-calorific waste biomass syngas
  publication-title: Flow Turbul Combust
  doi: 10.1007/s10494-013-9473-9
– volume: 46
  start-page: 1367
  year: 2016
  end-page: 1401
  ident: CR49
  article-title: Designing advanced biochar products for maximizing greenhouse gas mitigation potential
  publication-title: Crit Revt Env Sci Tec
  doi: 10.1080/10643389.2016.1239975
– volume: 26
  start-page: 1343
  year: 1995
  end-page: 1355
  ident: CR57
  article-title: Contribution of organic matter and clay minerals to the cation exchange capacity of soils
  publication-title: Commun Soil Sci Plan
  doi: 10.1080/00103629509369376
– volume: 47
  start-page: 8955
  issue: 15
  year: 2013
  end-page: 8961
  ident: CR60
  article-title: NO and N O precursors from biomass pyrolysis: role of cellulose, hemicellulose and lignin
  publication-title: Environ Sci Technol
– volume: 77
  start-page: 4618
  year: 2011
  end-page: 4625
  ident: CR85
  article-title: Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils
  publication-title: Appl Environ Microb
  doi: 10.1128/AEM.00136-11
– volume: 164
  start-page: 1420
  year: 2009
  end-page: 1427
  ident: CR36
  article-title: Pyrolysis conditions and ozone oxidation effects on ammonia adsorption in biomass generated chars
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2008.09.051
– volume: 8
  start-page: 148
  year: 2016
  end-page: 159
  ident: CR46
  article-title: Carbon footprint of rice production under biochar amendment-a case study in a Chinese rice cropping system
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12248
– volume: 40
  start-page: 1
  year: 2016
  end-page: 15
  ident: CR33
  article-title: Production and utilization of biochar: a review
  publication-title: J Ind Eng Chem
  doi: 10.1016/j.jiec.2016.06.002
– volume: 338
  start-page: 1034
  year: 2012
  end-page: 1035
  ident: CR69
  article-title: Carbon storage with benefits
  publication-title: Science
  doi: 10.1126/science.1225987
– volume: 232
  start-page: 283
  year: 2016
  end-page: 289
  ident: CR56
  article-title: Ammonia volatilization from synthetic fertilizers and its mitigation strategies: a global synthesis
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2016.08.019
– ident: CR23
– volume: 31
  start-page: 575
  year: 2005
  end-page: 584
  ident: CR41
  article-title: World crop residues production and implications of its use as a biofuel
  publication-title: Environ Int
  doi: 10.1016/j.envint.2004.09.005
– volume: 370
  start-page: 527
  year: 2013
  end-page: 540
  ident: CR82
  article-title: Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1636-x
– volume: 2
  start-page: 25
  year: 2014
  ident: CR64
  article-title: Biochar increases soil N O emissions produced by nitrification-mediated pathways
  publication-title: Front Environ Sci
– volume: 46
  start-page: 237
  year: 2017
  end-page: 246
  ident: CR79
  article-title: Toward a better assessment of biochar-nitrous oxide mitigation potential at the field scale
  publication-title: J Environ Qual
  doi: 10.2134/jeq2016.10.0396
– volume: 41
  start-page: 379
  year: 2005
  end-page: 388
  ident: CR8
  article-title: Contributions of nitrification and denitrification to N O emissions from soils at different water-filled pore space
  publication-title: Biol Fert Soils
  doi: 10.1007/s00374-005-0858-3
– volume: 16
  start-page: 363
  year: 2011
  end-page: 373
  ident: CR39
  article-title: Gross nitrification rates in four Japanese forest soils: heterotrophic versus autotrophic and the regulation factors for the nitrification
  publication-title: J Forest Res
  doi: 10.1007/s10310-011-0287-0
– volume: 48
  start-page: 142
  year: 1984
  end-page: 147
  ident: CR65
  article-title: A unifying quantitative analysis of soil texture
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1984.03615995004800010026x
– ident: CR73
– volume: 45
  start-page: 9473
  year: 2011
  end-page: 9483
  ident: CR50
  article-title: Technical, economical, and climate-related aspects of biochar production technologies: a literature review
  publication-title: Environ Sci Technol
  doi: 10.1021/es201792c
– volume: 44
  start-page: 9318
  year: 2010
  end-page: 9323
  ident: CR66
  article-title: pH-dependent mineral release and surface properties of corn straw biochar: agronomic implications
  publication-title: Environ Sci Technol
  doi: 10.1021/es101283d
– volume: 191
  start-page: 83
  year: 2014
  end-page: 91
  ident: CR51
  article-title: Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2014.03.011
– volume: 65
  start-page: 65
  year: 2013
  end-page: 72
  ident: CR21
  article-title: Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2013.01.006
– volume: 50
  start-page: 1031
  year: 1986
  end-page: 1036
  ident: CR63
  article-title: Estimating generalized soil-water characteristics from texture
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1986.03615995005000040039x
– volume: 22
  start-page: 9184
  year: 2015
  end-page: 9192
  ident: CR83
  article-title: Short-term effects of rice straw biochar on sorption, emission, and transformation of soil NH -N
  publication-title: Environ Sci Pollut R
  doi: 10.1007/s11356-014-4067-1
– volume: 256
  start-page: 1
  year: 2013
  end-page: 9
  ident: CR87
  article-title: Heterogeneity of biochar properties as a function of feedstock sources and production temperatures
  publication-title: J Hazard Mater
– volume: 1
  start-page: 636
  year: 2008
  end-page: 639
  ident: CR22
  article-title: How a century of ammonia synthesis changed the world
  publication-title: Nat Geosci
  doi: 10.1038/ngeo325
– volume: 24
  start-page: 97
  year: 1990
  end-page: 101
  ident: CR5
  article-title: Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria
  publication-title: Water Res
  doi: 10.1016/0043-1354(90)90070-M
– volume: 50
  start-page: 321
  year: 2014
  end-page: 332
  ident: CR70
  article-title: Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil
  publication-title: Biol Fert Soils
  doi: 10.1007/s00374-013-0857-8
– volume: 8
  start-page: 925
  year: 2013
  end-page: 932
  ident: CR18
  article-title: Heterogeneous global crop yield response to biochar: a meta-regression analysis
  publication-title: Environ Res Lett
– volume: 288
  start-page: 79
  year: 2017
  end-page: 96
  ident: CR54
  article-title: Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.11.004
– ident: CR7
– volume: 75
  start-page: 1377
  year: 1996
  end-page: 1386
  ident: CR29
  article-title: Conversion of fuel nitrogen through HCN and NH to nitrogen oxides at elevated pressure
  publication-title: Fuel
  doi: 10.1016/0016-2361(96)00100-7
– volume: 191
  start-page: 5
  year: 2014
  end-page: 16
  ident: CR16
  article-title: Biochar's role in mitigating soil nitrous oxide emissions: a review and meta-analysis
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2013.10.009
– ident: CR62
– volume: 300
  start-page: 9
  year: 2007
  end-page: 20
  ident: CR80
  article-title: Mycorrhizal responses to biochar in soil----concepts and mechanisms
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9391-5
– volume: 118
  start-page: 536
  year: 2012
  end-page: 544
  ident: CR3
  article-title: Effects of pyrolysis temperature on soybean Stover- and peanut shell-derived biochar properties and TCE adsorption in water
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2012.05.042
– volume: 3
  start-page: 275
  year: 2013
  end-page: 293
  ident: CR17
  article-title: A review of biochar and soil nitrogen dynamics
  publication-title: Agronomy
  doi: 10.3390/agronomy3020275
– volume: 41
  start-page: 1301
  year: 2009
  end-page: 1310
  ident: CR75
  article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2009.03.016
– volume: 232
  start-page: 283
  year: 2016
  ident: 3619_CR56
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2016.08.019
– volume: 543
  start-page: 322
  year: 2017
  ident: 3619_CR86
  publication-title: Nature
  doi: 10.1038/543322a
– volume: 59
  start-page: 771
  year: 2013
  ident: 3619_CR88
  publication-title: Soil Sci Plant Nutr
  doi: 10.1080/00380768.2013.830229
– volume: 71
  start-page: 368
  year: 2014
  ident: 3619_CR14
  publication-title: Ecol Eng
  doi: 10.1016/j.ecoleng.2014.06.017
– volume: 75
  start-page: 1377
  year: 1996
  ident: 3619_CR29
  publication-title: Fuel
  doi: 10.1016/0016-2361(96)00100-7
– volume: 3
  start-page: 1732
  year: 2013
  ident: 3619_CR15
  publication-title: Sci Rep
  doi: 10.1038/srep01732
– volume: 70
  start-page: 448
  year: 2006
  ident: 3619_CR20
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2005.0096
– volume: 177
  start-page: 310
  year: 2012
  ident: 3619_CR55
  publication-title: Soil Sci
  doi: 10.1097/SS.0b013e31824e5593
– volume: 80
  start-page: 1150
  year: 1999
  ident: 3619_CR31
  publication-title: Ecology
  doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
– volume: 7
  start-page: 557
  year: 1993
  ident: 3619_CR12
  publication-title: Global Biogeochem Cy
  doi: 10.1029/93GB01186
– volume: 40
  start-page: 1
  year: 2016
  ident: 3619_CR33
  publication-title: J Ind Eng Chem
  doi: 10.1016/j.jiec.2016.06.002
– volume: 8
  start-page: 925
  year: 2013
  ident: 3619_CR18
  publication-title: Environ Res Lett
– ident: 3619_CR23
– volume: 97
  start-page: 4353
  year: 2017
  ident: 3619_CR38
  publication-title: J Sci Food Agric
  doi: 10.1002/jsfa.8202
– volume: 18
  start-page: 529
  year: 1992
  ident: 3619_CR28
  publication-title: Prog Energ Combust
  doi: 10.1016/0360-1285(92)90038-3
– volume: 107
  start-page: 8035
  year: 2010
  ident: 3619_CR45
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0913658107
– volume: 306
  start-page: 211
  year: 2008
  ident: 3619_CR77
  publication-title: Plant Soil
  doi: 10.1007/s11104-008-9573-9
– volume: 118
  start-page: 536
  year: 2012
  ident: 3619_CR3
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2012.05.042
– volume: 191
  start-page: 5
  year: 2014
  ident: 3619_CR16
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2013.10.009
– volume: 338
  start-page: 1034
  year: 2012
  ident: 3619_CR69
  publication-title: Science
  doi: 10.1126/science.1225987
– volume: 12
  year: 2017
  ident: 3619_CR32
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/aa67bd
– volume: 47
  start-page: 8955
  issue: 15
  year: 2013
  ident: 3619_CR60
  publication-title: Environ Sci Technol
– ident: 3619_CR7
  doi: 10.1029/2004GB002282
– volume: 48
  start-page: 142
  year: 1984
  ident: 3619_CR65
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1984.03615995004800010026x
– volume: 80
  start-page: 724
  year: 2010
  ident: 3619_CR84
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.05.026
– volume: 5
  start-page: 202
  year: 2013
  ident: 3619_CR11
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12037
– volume: 45
  start-page: 9473
  year: 2011
  ident: 3619_CR50
  publication-title: Environ Sci Technol
  doi: 10.1021/es201792c
– ident: 3619_CR73
  doi: 10.1080/09593330.2017.1349839
– volume: 256
  start-page: 1
  year: 2013
  ident: 3619_CR87
  publication-title: J Hazard Mater
– volume: 47
  start-page: 359
  year: 1999
  ident: 3619_CR34
  publication-title: Catal Today
  doi: 10.1016/S0920-5861(98)00318-6
– start-page: 378
  volume-title: Design and analysis of ecological experiments
  year: 1993
  ident: 3619_CR26
– volume: 41
  start-page: 1301
  year: 2009
  ident: 3619_CR75
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2009.03.016
– volume: 22
  start-page: 959
  year: 2002
  ident: 3619_CR2
  publication-title: Appl Therm Eng
  doi: 10.1016/S1359-4311(02)00013-3
– volume: 24
  start-page: 97
  year: 1990
  ident: 3619_CR5
  publication-title: Water Res
  doi: 10.1016/0043-1354(90)90070-M
– volume: 1
  start-page: 636
  year: 2008
  ident: 3619_CR22
  publication-title: Nat Geosci
  doi: 10.1038/ngeo325
– ident: 3619_CR78
  doi: 10.1073/pnas.1116437108
– volume: 77
  start-page: 4618
  year: 2011
  ident: 3619_CR85
  publication-title: Appl Environ Microb
  doi: 10.1128/AEM.00136-11
– volume: 55
  start-page: 20
  year: 2012
  ident: 3619_CR53
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2012.05.019
– volume: 43
  start-page: 699
  year: 2007
  ident: 3619_CR61
  publication-title: Biol Fert Soils
  doi: 10.1007/s00374-006-0152-z
– volume: 8
  year: 2017
  ident: 3619_CR74
  publication-title: Nat Commun
  doi: 10.1038/ncomms14873
– volume: 157
  start-page: 65
  year: 2016
  ident: 3619_CR35
  publication-title: Soil Till Res
  doi: 10.1016/j.still.2015.11.009
– ident: 3619_CR9
– volume: 22
  start-page: 9184
  year: 2015
  ident: 3619_CR83
  publication-title: Environ Sci Pollut R
  doi: 10.1007/s11356-014-4067-1
– volume: 74
  start-page: 1259
  year: 2010
  ident: 3619_CR19
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2009.0115
– volume: 65
  start-page: 65
  year: 2013
  ident: 3619_CR21
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2013.01.006
– volume: 451
  start-page: 293
  year: 2008
  ident: 3619_CR25
  publication-title: Nature
  doi: 10.1038/nature06592
– volume: 9
  year: 2014
  ident: 3619_CR58
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0086388
– volume: 42
  start-page: 2345
  year: 2010
  ident: 3619_CR68
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2010.09.013
– volume: 54
  start-page: 309
  year: 2011
  ident: 3619_CR4
  publication-title: Pedobiologia
  doi: 10.1016/j.pedobi.2011.07.005
– volume: 9
  year: 2014
  ident: 3619_CR24
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0113888
– volume: 366
  start-page: 83
  year: 2013
  ident: 3619_CR59
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1411-4
– volume: 2
  start-page: 25
  year: 2014
  ident: 3619_CR64
  publication-title: Front Environ Sci
– volume: 41
  start-page: 379
  year: 2005
  ident: 3619_CR8
  publication-title: Biol Fert Soils
  doi: 10.1007/s00374-005-0858-3
– volume: 300
  start-page: 9
  year: 2007
  ident: 3619_CR80
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9391-5
– volume: 50
  start-page: 1031
  year: 1986
  ident: 3619_CR63
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1986.03615995005000040039x
– ident: 3619_CR42
  doi: 10.1029/2004GB002435
– volume: 191
  start-page: 83
  year: 2014
  ident: 3619_CR51
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2014.03.011
– volume: 52
  start-page: 54
  year: 2013
  ident: 3619_CR81
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2013.02.036
– volume: 52
  start-page: 217
  year: 2014
  ident: 3619_CR52
  publication-title: Soil Res
  doi: 10.1071/SR13359
– volume: 162
  start-page: 145
  year: 2013
  ident: 3619_CR13
  publication-title: Ann Appl Biol
  doi: 10.1111/aab.12014
– volume: 46
  start-page: 237
  year: 2017
  ident: 3619_CR79
  publication-title: J Environ Qual
  doi: 10.2134/jeq2016.10.0396
– volume: 164
  start-page: 1420
  year: 2009
  ident: 3619_CR36
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2008.09.051
– volume: 16
  start-page: 363
  year: 2011
  ident: 3619_CR39
  publication-title: J Forest Res
  doi: 10.1007/s10310-011-0287-0
– volume: 8
  start-page: 148
  year: 2016
  ident: 3619_CR46
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12248
– volume-title: Handbook of agricultural chemistry
  year: 1982
  ident: 3619_CR48
– volume: 353
  start-page: 73
  year: 2012
  ident: 3619_CR76
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-1010-9
– volume: 370
  start-page: 527
  year: 2013
  ident: 3619_CR82
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1636-x
– volume: 28
  start-page: 1918
  year: 2014
  ident: 3619_CR10
  publication-title: Energy Fuel
  doi: 10.1021/ef4016872
– volume: 44
  start-page: 9318
  year: 2010
  ident: 3619_CR66
  publication-title: Environ Sci Technol
  doi: 10.1021/es101283d
– volume: 50
  start-page: 321
  year: 2014
  ident: 3619_CR70
  publication-title: Biol Fert Soils
  doi: 10.1007/s00374-013-0857-8
– volume: 70
  start-page: 1719
  year: 2006
  ident: 3619_CR44
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2005.0383
– volume: 288
  start-page: 79
  year: 2017
  ident: 3619_CR54
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.11.004
– volume: 26
  start-page: 1343
  year: 1995
  ident: 3619_CR57
  publication-title: Commun Soil Sci Plan
  doi: 10.1080/00103629509369376
– volume: 78
  start-page: 1277
  year: 1997
  ident: 3619_CR1
  publication-title: Ecology
  doi: 10.1890/0012-9658(1997)078[1277:RTFMAO]2.0.CO;2
– volume: 8
  start-page: 660
  year: 2014
  ident: 3619_CR27
  publication-title: The ISME journal
  doi: 10.1038/ismej.2013.160
– volume: 41
  start-page: 947
  year: 2010
  ident: 3619_CR37
  publication-title: Org Geochem
  doi: 10.1016/j.orggeochem.2010.04.007
– volume: 91
  start-page: 749
  year: 2013
  ident: 3619_CR40
  publication-title: Flow Turbul Combust
  doi: 10.1007/s10494-013-9473-9
– volume: 39
  start-page: 1224
  year: 2010
  ident: 3619_CR67
  publication-title: J Environ Qual
  doi: 10.2134/jeq2009.0138
– volume: 47
  start-page: 1206
  year: 2013
  ident: 3619_CR71
  publication-title: Environ Sci Technol
  doi: 10.1021/es302720k
– volume: 43
  start-page: 1
  year: 1995
  ident: 3619_CR43
  publication-title: Fuel Process Technol
  doi: 10.1016/0378-3820(94)00123-B
– ident: 3619_CR62
– volume: 31
  start-page: 575
  year: 2005
  ident: 3619_CR41
  publication-title: Environ Int
  doi: 10.1016/j.envint.2004.09.005
– volume: 60
  start-page: 254
  year: 2014
  ident: 3619_CR72
  publication-title: Soil Sci Plant Nutr
  doi: 10.1080/00380768.2014.885386
– volume: 46
  start-page: 1367
  year: 2016
  ident: 3619_CR49
  publication-title: Crit Revt Env Sci Tec
  doi: 10.1080/10643389.2016.1239975
– volume: 3
  start-page: 275
  year: 2013
  ident: 3619_CR17
  publication-title: Agronomy
  doi: 10.3390/agronomy3020275
– volume: 39
  start-page: 391
  year: 2015
  ident: 3619_CR6
  publication-title: Agroecol Sust Food
  doi: 10.1080/21683565.2014.996696
– volume: 104
  start-page: 8
  year: 2017
  ident: 3619_CR47
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2016.10.006
– volume: 9
  start-page: 743
  year: 2017
  ident: 3619_CR30
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12376
SSID ssj0003216
Score 2.6317053
Snippet Background and aims Modern agriculture is driving the release of excessive amounts of reactive nitrogen (N) from the soils to the environment, thereby...
Background and aims Modern agriculture is driving the release of excessive amounts of reactive nitrogen (N) from the soils to the environment, thereby...
Background and aimsModern agriculture is driving the release of excessive amounts of reactive nitrogen (N) from the soils to the environment, thereby...
BACKGROUND AND AIMS: Modern agriculture is driving the release of excessive amounts of reactive nitrogen (N) from the soils to the environment, thereby...
SourceID proquest
gale
crossref
springer
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 211
SubjectTerms Ammonia
Ammonia pressure leaching
application rate
biochar
Biological effects
Biomedical and Life Sciences
buffering capacity
Charcoal
Chemical properties
clay
Data processing
Ecological balance
Ecology
Emissions
Environmental aspects
Fertilizers
greenhouse gas emissions
Influence
Laboratories
Leaching
Life Sciences
Measurement
Meta-analysis
Nitrogen
Nitrogen fixation
Nitrogen oxides
Nitrogenation
Nitrous oxide
Organic carbon
Organic soils
Plant Physiology
Plant Sciences
Pollutants
Pyrolysis
REGULAR ARTICLE
risk
Soil amendment
Soil chemistry
Soil nitrogen
Soil pH
Soil Science & Conservation
Soil sciences
Straw
synthesis gas
Synthetic fuels
texture
Volatilization
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSyMxEB-0-uA9HHd-4Hp6RBAEJbD52Jp9kipKObCIKPQt5GuloF3PVsT_3sk226KgbwubnQ0zmV9mMpMZgAPOKoVmKnqqgnGKgJejznlFjXNMKBNCt6mzfTXo9u_kv2ExTAduk5RW2WJiA9S-dvGMHJ10FmtlCSZPn_7T2DUqRldTC41lWEEIVqoDK2cXg-ubORYL3jQ_jQ80PymHbVyzuTyHO1_MwFBUoBdB5YedKeHzLEfxg_X5KWDa7EOXv-BnMiBJbybx37AUxuvwo3f_nIpohHVYPavR5HvbANWvX4mvw4TYUR3vV5FR25OETOrRAxkQ94ZUTkmPPIapoSaVKNmEu8uL2_M-Ta0SqJMsn1IWCpML5bmpcqectEWForFCVspyZtEN8b4orUX3SjjPZNX1ZWli42k0R4R0Ygs643octoEI74UpC1E4VUluglG24sx569E2qZzPIG_ZpF2qIx7bWTzoRQXkyFmNnNWRs1pmcDT_5GlWROO7wYeR9zoqGNJ1Jt0TwNnFUlW6hxDNS4k4lMFWI545TXS-EIFYmcFuKy-dVHKiFwsog_35a1SmGCEx41C_4BgEKCFLnFcGx62cFyS-nPPO9z_8A2s8rrMmT3IXOtPnl7CHtszU_k0L9h1fDOu9
  priority: 102
  providerName: ProQuest
Title How does biochar influence soil N cycle? A meta-analysis
URI https://www.jstor.org/stable/48725719
https://link.springer.com/article/10.1007/s11104-018-3619-4
https://www.proquest.com/docview/2015681314
https://www.proquest.com/docview/2101349007
Volume 426
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxNBEB-0VdAH0WjxtJYVCkJl4fbj4t6TXDQxKA2lNBCflv06CdScNCmS_97Zy15CSxV82oPbm1tmdn87w3wBHHNWK1RT0VIVjFMEvBzPnFfUOMeEMiH02zrbp5P-eCq_zopZyuNedtHunUuyRepdshveVDFiQlGBWj-V92G_QNM9xnFNebWFX8HbfqfxgeYfylnnyryLxI3LKEHyJizxhsJ5y0faXj2jp_Ak6Yyk2gj5GdwLix48rn5cpboZoQcPBg1qeesePBy2ZajXz0GNm9_EN2FJ7LyJyVVk3jUkIctmfkkmxK2R3kdSkZ9hZahJ9UlewHQ0vPg0pqlPAnWS5SvKQmFyoTw3de6Uk7aoUS5WyFpZzizaIN4XpbVoWwnnmaz7vixN7DqNuoiQThzA3qJZhJdAhPfClIUonKolN8EoW3PmvPWomNTOZ5B3DNMuFRGPvSwu9a78ceSxRh7ryGMtMzjZfvJrU0HjX5PfRSnoeLqQrjMpSQBXF-tU6QrxmZcSQSiDg1ZQW5poeSH8sDKDw05yOp3HpeYxY1wxwfAPb7ev8SRF94hZhOYa5yA6CVniujJ430l8R-Kva371X7NfwyMeN2AbM3kIe6ur6_AG9ZqVPYL9avB5MIrjl-_fhjgOhpOz86N2f_8BBWDudg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1daxNBcKipoD4UrRZP27qCIigLtx8X9x6kpLUltW0QaSFv2_06CdRcbVJK_pS_0dnLXkIF-9a3g9ub25uZnY-bL4B3nFUKzVT0VAXjFAVejmfOK2qcY0KZELpNn-2TQbd_Jr8Ni-EK_GlrYWJaZSsTG0Htaxf_kaOTzmKvLMHkzuVvGqdGxehqO0JjzhZHYXaDLtvky-FXpO97zg_2T_f6NE0VoE6yfEpZKEwulOemyp1y0hYVfoUVslKWM4sWu_dFaS16IsJ5JquuL0sTZzSj5hbSCYT7AFal6Oa8A6u7-4PvPxayX_Bm2Gq8oPnnctjGUZtiPdS0MeNDUYFeC5W3NGHSB_OcyFvW7j8B2kbvHTyFtWSwkt6cw57BShivw5Pez6vUtCOsw8PdGk3M2XNQ_fqG-DpMiB3VsZ6LjNoZKGRSjy7IgLgZQtkhPfIrTA01qSXKCzi7FyRuQGdcj8NLIMJ7YcpCFE5VkptglK04c956tIUq5zPIWzRpl_qWx_EZF3rZcTliViNmdcSslhl8XDxyOW_acdfiDxH3Oh5ohOtMqkvA3cXWWLqHKoGXEuVeBhsNeRYw0dlDicfKDDZbeukkAiZ6ybAZvF3cxsMbIzJmHOprXIMCUcgS95XBp5bOSxD_3fOru1_4Bh71T0-O9fHh4Og1POaR55oczU3oTK-uwxbaUVO7nZiXwPl9n5e_ZGopGQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bahNB9FBTEX0QrRZXq46gCMrgzmXT2QcpqW1IrYYiFvI2zm1LoM3WJqXk1_w6z2xmEyrYt74t7OzZ2TPnuucG8JazSqGZip6qYJyiwMuR57yixjkmlAmh2_TZ_j7sDo7l11ExWoM_bS1MTKtsZWIjqH3t4j9ydNJZ7JUlmPxUpbSIo73-zvlvGidIxUhrO05jQSKHYX6F7tv088EenvU7zvv7P78MaJowQJ1k-YyyUJhcKM9NlTvlpC0q_CIrZKUsZxatd--L0lr0SoTzTFZdX5YmzmtGLS6kEwj3DqxvR6-oA-u7-8OjH0s9IHgzeDVe0Hy7HLUx1aZwD7VuzP5QVKAHQ-U1rZh0wyI_8prl-0-wttGB_UfwMBmvpLegtsewFiYb8KB3cpEaeIQNuLtbo7k5fwJqUF8RX4cpseM61naRcTsPhUzr8SkZEjdHKDukR87CzFCT2qM8heNbQeImdCb1JDwDIrwXpixE4VQluQlG2Yoz561Hu6hyPoO8RZN2qYd5HKVxqlfdlyNmNWJWR8xqmcGH5SPniwYeNy1-H3GvI3MjXGdSjQLuLrbJ0j1UD7yUKAMz2GyOZwkTHT-UfqzMYKs9L53EwVSviDeDN8vbyMgxOmMmob7ENSgchSxxXxl8bM95BeK_e35-8wtfwz3kE_3tYHj4Au7zSHJNuuYWdGYXl-ElmlQz-yrRLoFft80ufwFv3i1O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+does+biochar+influence+soil+N+cycle%3F+A+meta-analysis&rft.jtitle=Plant+and+soil&rft.au=Liu%2C+Qi&rft.au=Zhang%2C+Yanhui&rft.au=Liu%2C+Benjuan&rft.au=Amonette%2C+James+E.&rft.date=2018-05-01&rft.pub=Springer+Science+%2B+Business+Media&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=426&rft.issue=1%2F2&rft.spage=211&rft.epage=225&rft_id=info:doi/10.1007%2Fs11104-018-3619-4&rft.externalDocID=48725719
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon