Breast cancer diagnosis model using stacked autoencoder with particle swarm optimization
Breast cancer (BrC) stands as the most prevalent cancer affecting women globally, comprising 24.5% of all female cancer diagnoses and contributing to 15.0% of total cancer-related fatalities. The timely detection and precise categorization of breast cancer play pivotal roles in enhancing patient pro...
Saved in:
Published in | Ain Shams Engineering Journal Vol. 15; no. 6; p. 102734 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Breast cancer (BrC) stands as the most prevalent cancer affecting women globally, comprising 24.5% of all female cancer diagnoses and contributing to 15.0% of total cancer-related fatalities. The timely detection and precise categorization of breast cancer play pivotal roles in enhancing patient prognosis and treatment outcomes. The main goal is to enhance the precision of classifying mammogram images, thus offering vital support to radiology experts in diagnosing BrCs. The proposed model encompasses several pivotal stages, including pre-processing, feature extraction, segmentation, and classification. To assess the model's efficacy, we employed the INBreast dataset. During pre-processing, mammogram images were enhanced through a customized contrast-limited adaptive histogram equalization (mCLAHE) technique coupled with data augmentation. Segmentation was executed utilizing the Res-SegNet model, and feature extraction employing the VGG-19 model. The classification was conducted via a stacked autoencoder (SAE) with particle swarm optimization (PSO). Our proposed model exhibited notably high performance compared to alternative models such as CNN, Yolo-v4, and Inception-v3. The results unveiled an accuracy of 98.33%, precision of 99.39%, recall of 98.78%, specificity of 93.75%, an F1-score of 99.08%, and an MCC score of 90.04%. |
---|---|
AbstractList | Breast cancer (BrC) stands as the most prevalent cancer affecting women globally, comprising 24.5% of all female cancer diagnoses and contributing to 15.0% of total cancer-related fatalities. The timely detection and precise categorization of breast cancer play pivotal roles in enhancing patient prognosis and treatment outcomes. The main goal is to enhance the precision of classifying mammogram images, thus offering vital support to radiology experts in diagnosing BrCs. The proposed model encompasses several pivotal stages, including pre-processing, feature extraction, segmentation, and classification. To assess the model's efficacy, we employed the INBreast dataset. During pre-processing, mammogram images were enhanced through a customized contrast-limited adaptive histogram equalization (mCLAHE) technique coupled with data augmentation. Segmentation was executed utilizing the Res-SegNet model, and feature extraction employing the VGG-19 model. The classification was conducted via a stacked autoencoder (SAE) with particle swarm optimization (PSO). Our proposed model exhibited notably high performance compared to alternative models such as CNN, Yolo-v4, and Inception-v3. The results unveiled an accuracy of 98.33%, precision of 99.39%, recall of 98.78%, specificity of 93.75%, an F1-score of 99.08%, and an MCC score of 90.04%. |
ArticleNumber | 102734 |
Author | Karthikeyan, P. Narmatha, C. Manimurugan, S. Ganesan, Subramaniam Aborokbah, Majed |
Author_xml | – sequence: 1 givenname: S. surname: Manimurugan fullname: Manimurugan, S. email: mmurugan@ut.edu.sa organization: Faculty of Computers and Information Technology, University of Tabuk, Tabuk, Kingdom of Saudi Arabia – sequence: 2 givenname: P. surname: Karthikeyan fullname: Karthikeyan, P. organization: School of Computer Science & Engineering, RV University, Bengaluru, India – sequence: 3 givenname: Majed surname: Aborokbah fullname: Aborokbah, Majed email: m.aborokbah@ut.edu.sa organization: Faculty of Computers and Information Technology, University of Tabuk, Tabuk, Kingdom of Saudi Arabia – sequence: 4 givenname: C. surname: Narmatha fullname: Narmatha, C. email: narmatha@ut.edu.sa organization: Faculty of Computers and Information Technology, University of Tabuk, Tabuk, Kingdom of Saudi Arabia – sequence: 5 givenname: Subramaniam surname: Ganesan fullname: Ganesan, Subramaniam email: ganesan@oakland.edu organization: Department of Electrical and Computer Engineering, School of Engineering and Computer Science, Oakland University, Rochester 112345, USA |
BookMark | eNp9kM1OQyEQhVlo4l9fwBUv0AoU7r0kbrTxp0kTN5q4I1Pu3Dq1vTSAGn16aasbF26AGXLOnPlO2EEfemTsXIqRFLK6WI4g4XKkhNKloeqxPmDHSlgx1Lq2R2yQEs1FeavGNOaYPV9HhJS5h95j5C3Bog-JEl-HFlf8LVG_4CmDf8WWw1sO2PvyE_kH5Re-gZjJr5CnD4hrHjaZ1vQFmUJ_xg47WCUc_Nyn7On25nFyP5w93E0nV7Oh11LkoZwjWNX6DqEyVYnkpbdGytbWYi69AOjqOQjQpTCqhloo5Y3oRAO6E60an7Lp3rcNsHSbSGuIny4AuV0jxIX7CenM2ChTRqkKUNvtafVY2aqxqDvT2OLV7L18DClF7JynvNsmR6CVk8JtIbul20J2W8huD7lI1R_pb5R_RZd7ERZA74TRJU8FMLYU0eeyAf0n_wZG_Jsc |
CitedBy_id | crossref_primary_10_1016_j_imavis_2024_105146 crossref_primary_10_1016_j_asej_2024_103241 crossref_primary_10_3390_life15020211 |
Cites_doi | 10.2174/2666255813666191218111850 10.1007/s00330-023-10072-w 10.1080/01431161.2016.1246775 10.1007/s00521-022-08062-y 10.2196/14464 10.1109/TNNLS.2018.2881143 10.1016/j.bspc.2021.102825 10.1016/j.asoc.2023.110119 10.1109/ACCESS.2021.3071297 10.3322/caac.21660 10.1109/ACCESS.2021.3105924 10.1038/s41523-023-00508-3 10.46338/ijetae0322_13 10.1155/2022/5089078 10.1016/j.acra.2011.09.014 10.3390/biology10121347 10.1016/j.semcancer.2020.06.002 10.1007/s11042-022-12332-1 |
ContentType | Journal Article |
Copyright | 2024 THE AUTHORS |
Copyright_xml | – notice: 2024 THE AUTHORS |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.asej.2024.102734 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | oai_doaj_org_article_53525dcf26ae4926ae94329689e4f589 10_1016_j_asej_2024_102734 S2090447924001096 |
GroupedDBID | 6I. AAFTH ALMA_UNASSIGNED_HOLDINGS M~E AAYXX CITATION GROUPED_DOAJ |
ID | FETCH-LOGICAL-c410t-1bea92dcfea656585c1c9511d970b1c0aaf7ba0a4b1c527a7022c50f08a4f0d23 |
IEDL.DBID | DOA |
ISSN | 2090-4479 |
IngestDate | Wed Aug 27 01:17:34 EDT 2025 Tue Jul 01 05:20:59 EDT 2025 Thu Apr 24 23:13:07 EDT 2025 Sat Mar 22 15:55:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Stacked autoencoder Res-SegNet Breast cancer INBreast VGG-19 CAD |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-1bea92dcfea656585c1c9511d970b1c0aaf7ba0a4b1c527a7022c50f08a4f0d23 |
OpenAccessLink | https://doaj.org/article/53525dcf26ae4926ae94329689e4f589 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_53525dcf26ae4926ae94329689e4f589 crossref_citationtrail_10_1016_j_asej_2024_102734 crossref_primary_10_1016_j_asej_2024_102734 elsevier_sciencedirect_doi_10_1016_j_asej_2024_102734 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationTitle | Ain Shams Engineering Journal |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Rautela, Kumar, Kumar (b0025) 2022; 1–32 Sung, Ferlay, Siegel, Laversanne, Soerjomataram (b0010) 2021; 71 Weijia, Haohuan, Le, Peng, Duole, Congcong (b0135) 2016; 37 Sangaiah, Rezaei, Javadpour, Zhang (b0020) 2023; 136 Debendra M, Ratnakar D, Banshidhar M. Automated diagnosis of breast cancers using multi-modal dataset: A deep convolution neural networks-based approach. Biomed. Signal Process. Control, 71(B), 102825, 1-14, 2022. Sidratul M, Sami A, Abul KMRHR, Pronab G, Md. Zahid H et al., BreastNet18: A High Accuracy Fine-Tuned VGG-16 Model Evaluated Using Ablation Study for Diagnosing Breast Cancers from Enhanced Mammography Image. Biology, 10, 1347, 1-44, 2021. Nemade, Pathak, Dubey, Barhate (b0045) 2022; 12 Oyelade, Ezugwu (b0070) 2022; 12 Malebary, Hashmi (b0095) 2021; 9 Shaban (b0115) 2023; 35 Hussain (b0130) 2022; 70 Gardezi, Elazab, Lei, Wang (b0035) 2019; 21 Debien, Véronique, Alex De Caluwé, Xiaoxiao Wang, Martine Piccart-Gebhart, Vincent K. Tuohy, Emanuela Romano, and Laurence Buisseret. Immunotherapy in breast cancers: an overview of current strategies and perspective. NPJ Breast Cancer 9, no. 1 (2023): 7. Moreira, Amaral, Domingues, Cardoso, Cardoso, Cardoso (b0150) 2012; 19 Muhammad Saquib Nazir, Usman Ghani Khan, Aqsa Mohiyuddin, Mana Saleh Al Reshan, Asadullah Shaikh et al. A Novel CNN-Inception-V4-Based Hybrid Approach for Classification of Breast Cancer in Mammogram Images. Wirel Commun Mob Comput, pp. 1-10, 2022. Alruwaili, Gouda (b0090) 2022; 22 Mendes, Matela (b0050) 2021; 7 Houssein, Emam, Ali, Suganthan (b0055) 2021; 167 Hassan, Hamad, Mahar (b0145) 2022; 81 Moreira, Amaral, Domingues, Cardoso, Cardoso, Cardoso (b0030) 2012; 19 Mridha, Hamid, Monowar, Jannat Keya, Ohi, Kim (b0005) 2021; 13 Sechopoulos, Teuwen, Mann (b0040) 2021; 72 Hamed, Marey, Amin, Tolba (b0085) 2021; 9 Daimary, Bora, Amitab, Kandar (b0125) 2020; 167 Sassi, Antti, Annukka Salminen, Arja Jukkola, Maija Tervo, Niina Mäenpää, Saara Turtiainen, Leena Tiainen et al. Breast density and the likelihood of malignant MRI-detected lesions in women diagnosed with breast cancer. Eur Radiol (2023): 1-9. Marawan Elbatel. Mammograms Classification: A Review. Available Online: arXiv:2203.03618, 2022. Rehman, Li, Pei, Yasin, Ali, Saeed (b0080) 2022; 11 Mohan, Ravishankar (b0120) 2013 Yanan, Bing, Mengjie, Gary (b0140) 2019; 30 Singla, Kumari (b0075) 2021; 14 Weijia (10.1016/j.asej.2024.102734_b0135) 2016; 37 Moreira (10.1016/j.asej.2024.102734_b0030) 2012; 19 Malebary (10.1016/j.asej.2024.102734_b0095) 2021; 9 10.1016/j.asej.2024.102734_b0015 Rehman (10.1016/j.asej.2024.102734_b0080) 2022; 11 Alruwaili (10.1016/j.asej.2024.102734_b0090) 2022; 22 Rautela (10.1016/j.asej.2024.102734_b0025) 2022; 1–32 Mendes (10.1016/j.asej.2024.102734_b0050) 2021; 7 Singla (10.1016/j.asej.2024.102734_b0075) 2021; 14 Sung (10.1016/j.asej.2024.102734_b0010) 2021; 71 10.1016/j.asej.2024.102734_b0060 Daimary (10.1016/j.asej.2024.102734_b0125) 2020; 167 10.1016/j.asej.2024.102734_b0065 Yanan (10.1016/j.asej.2024.102734_b0140) 2019; 30 Nemade (10.1016/j.asej.2024.102734_b0045) 2022; 12 Oyelade (10.1016/j.asej.2024.102734_b0070) 2022; 12 Mohan (10.1016/j.asej.2024.102734_b0120) 2013 Houssein (10.1016/j.asej.2024.102734_b0055) 2021; 167 Sechopoulos (10.1016/j.asej.2024.102734_b0040) 2021; 72 10.1016/j.asej.2024.102734_b0100 10.1016/j.asej.2024.102734_b0105 Hamed (10.1016/j.asej.2024.102734_b0085) 2021; 9 Hassan (10.1016/j.asej.2024.102734_b0145) 2022; 81 Mridha (10.1016/j.asej.2024.102734_b0005) 2021; 13 10.1016/j.asej.2024.102734_b0110 Shaban (10.1016/j.asej.2024.102734_b0115) 2023; 35 Sangaiah (10.1016/j.asej.2024.102734_b0020) 2023; 136 Gardezi (10.1016/j.asej.2024.102734_b0035) 2019; 21 Moreira (10.1016/j.asej.2024.102734_b0150) 2012; 19 Hussain (10.1016/j.asej.2024.102734_b0130) 2022; 70 |
References_xml | – volume: 72 start-page: 214 year: 2021 end-page: 225 ident: b0040 article-title: Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: state of the art publication-title: Semin Cancer Biol – volume: 71 start-page: 209 year: 2021 end-page: 249 ident: b0010 article-title: Global cancer statistics 2020: GLOBOCAN estimate of incidences and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J Clin – volume: 37 start-page: 5632 year: 2016 end-page: 5646 ident: b0135 article-title: Stacked autoencoders-based deep learning for remote-sensing images classifications: a case study of african land-covers mapping publication-title: Int J Remote Sens – volume: 167 start-page: 2419 year: 2020 end-page: 2428 ident: b0125 article-title: Brain tumor segmentation from MRI images using hybrid convolutional neural networks publication-title: International Conference on Computational Intelligence and Data Science, Procedia Computer Science – volume: 136 year: 2023 ident: b0020 article-title: Explainable AI in big data intelligence of community detection for digitalization e-healthcare services publication-title: Appl Soft Comput – volume: 12 start-page: 1 year: 2022 end-page: 22 ident: b0070 article-title: A novel wavelet decomposition and transformation convolutional neural network with data augmentation for breast cancer detection using digital mammogram publication-title: Sci Rep – reference: Sassi, Antti, Annukka Salminen, Arja Jukkola, Maija Tervo, Niina Mäenpää, Saara Turtiainen, Leena Tiainen et al. Breast density and the likelihood of malignant MRI-detected lesions in women diagnosed with breast cancer. Eur Radiol (2023): 1-9. – reference: Debendra M, Ratnakar D, Banshidhar M. Automated diagnosis of breast cancers using multi-modal dataset: A deep convolution neural networks-based approach. Biomed. Signal Process. Control, 71(B), 102825, 1-14, 2022. – volume: 19 start-page: 236 year: 2012 end-page: 248 ident: b0030 article-title: INbreast: Toward a full-field digital mammographic database publication-title: Acad Radiol – volume: 22 start-page: 1 year: 2022 end-page: 16 ident: b0090 article-title: Automated breast cancer detection models based on transfer learning publication-title: Sensors – volume: 9 start-page: 55312 year: 2021 end-page: 55328 ident: b0095 article-title: Automated breast mass classification systems using deep learning and ensembled learning in digital mammograms publication-title: IEEE Access – volume: 167 start-page: 1 year: 2021 end-page: 25 ident: b0055 article-title: Deep and machine learning techniques for medical imaging-based breast cancer: a comprehensive review publication-title: Expert Syst Appl – reference: Sidratul M, Sami A, Abul KMRHR, Pronab G, Md. Zahid H et al., BreastNet18: A High Accuracy Fine-Tuned VGG-16 Model Evaluated Using Ablation Study for Diagnosing Breast Cancers from Enhanced Mammography Image. Biology, 10, 1347, 1-44, 2021. – volume: 19 start-page: 236 year: 2012 end-page: 248 ident: b0150 article-title: Inbreast: toward a full-field digital mammographic database publication-title: Acad Radiol – volume: 35 start-page: 6831 year: 2023 end-page: 6853 ident: b0115 article-title: Insights into breast cancers detections: new hybrid features selection methods publication-title: Neural Comput Appl – volume: 12 start-page: 111 year: 2022 end-page: 118 ident: b0045 article-title: A review and computational analysis of breast cancer using different machine learning technique publication-title: Int J Emerg Technol Adv Eng – volume: 21 start-page: e14464 year: 2019 ident: b0035 article-title: Breast cancer detection and diagnosis using mammographic data: systematic review publication-title: J Med Internet Res – volume: 81 start-page: 20043 year: 2022 end-page: 20075 ident: b0145 article-title: Mammogram breast cancer CAD systems for mass detection and classification: a review publication-title: Multimed Tools Appl – volume: 9 start-page: 116898 year: 2021 end-page: 116913 ident: b0085 article-title: Automated breast cancer detections and classifications in full field digital mammogram using two full and cropped detection path approach publication-title: IEEE Access – volume: 70 start-page: 3281 year: 2022 end-page: 3294 ident: b0130 article-title: Multiclass cucumber leaf diseases recognition using best feature selection publication-title: Comput Mater Contin – volume: 11 start-page: 1 year: 2022 end-page: 29 ident: b0080 article-title: Architectural distortions-based digital mammogram classifications using depth wise convolutional neural networks publication-title: Biology – volume: 14 start-page: 1922 year: 2021 end-page: 1928 ident: b0075 article-title: Analysis of performance of two wavelet families using GLCM feature extraction for mammogram classification of breast cancer publication-title: Recent Adv Comput Sci Commun – volume: 30 start-page: 2295 year: 2019 end-page: 2309 ident: b0140 article-title: A particles swarm optimizations-based flexible convolutional autoencoders for images classifications publication-title: IEEE T Neural Netw Learn Syst – volume: 7 start-page: 1 year: 2021 end-page: 21 ident: b0050 article-title: Breast cancer risk assessment: a review on mammography-based approaches publication-title: J Imaging – volume: 13 start-page: 1 year: 2021 end-page: 36 ident: b0005 article-title: A comprehensive survey on deep-learning-based breast cancer diagnosis publication-title: Cancers – reference: Debien, Véronique, Alex De Caluwé, Xiaoxiao Wang, Martine Piccart-Gebhart, Vincent K. Tuohy, Emanuela Romano, and Laurence Buisseret. Immunotherapy in breast cancers: an overview of current strategies and perspective. NPJ Breast Cancer 9, no. 1 (2023): 7. – volume: 1–32 year: 2022 ident: b0025 article-title: A systematic review on breast cancer detection using deep learning techniques publication-title: Arch Comput Methods Eng – start-page: 397 year: 2013 end-page: 403 ident: b0120 article-title: Modified contrast limited adaptive histogram equalization based on local contrast enhancement for mammogram images publication-title: International Conference on Advances in Information Technology and Mobile Communication – reference: Marawan Elbatel. Mammograms Classification: A Review. Available Online: arXiv:2203.03618, 2022. – reference: Muhammad Saquib Nazir, Usman Ghani Khan, Aqsa Mohiyuddin, Mana Saleh Al Reshan, Asadullah Shaikh et al. A Novel CNN-Inception-V4-Based Hybrid Approach for Classification of Breast Cancer in Mammogram Images. Wirel Commun Mob Comput, pp. 1-10, 2022. – volume: 14 start-page: 1922 year: 2021 ident: 10.1016/j.asej.2024.102734_b0075 article-title: Analysis of performance of two wavelet families using GLCM feature extraction for mammogram classification of breast cancer publication-title: Recent Adv Comput Sci Commun doi: 10.2174/2666255813666191218111850 – volume: 11 start-page: 1 issue: 15 year: 2022 ident: 10.1016/j.asej.2024.102734_b0080 article-title: Architectural distortions-based digital mammogram classifications using depth wise convolutional neural networks publication-title: Biology – volume: 1–32 year: 2022 ident: 10.1016/j.asej.2024.102734_b0025 article-title: A systematic review on breast cancer detection using deep learning techniques publication-title: Arch Comput Methods Eng – ident: 10.1016/j.asej.2024.102734_b0110 doi: 10.1007/s00330-023-10072-w – volume: 37 start-page: 5632 issue: 23 year: 2016 ident: 10.1016/j.asej.2024.102734_b0135 article-title: Stacked autoencoders-based deep learning for remote-sensing images classifications: a case study of african land-covers mapping publication-title: Int J Remote Sens doi: 10.1080/01431161.2016.1246775 – volume: 35 start-page: 6831 issue: 9 year: 2023 ident: 10.1016/j.asej.2024.102734_b0115 article-title: Insights into breast cancers detections: new hybrid features selection methods publication-title: Neural Comput Appl doi: 10.1007/s00521-022-08062-y – volume: 21 start-page: e14464 issue: 7 year: 2019 ident: 10.1016/j.asej.2024.102734_b0035 article-title: Breast cancer detection and diagnosis using mammographic data: systematic review publication-title: J Med Internet Res doi: 10.2196/14464 – ident: 10.1016/j.asej.2024.102734_b0060 – volume: 30 start-page: 2295 issue: 8 year: 2019 ident: 10.1016/j.asej.2024.102734_b0140 article-title: A particles swarm optimizations-based flexible convolutional autoencoders for images classifications publication-title: IEEE T Neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2881143 – ident: 10.1016/j.asej.2024.102734_b0100 doi: 10.1016/j.bspc.2021.102825 – volume: 136 year: 2023 ident: 10.1016/j.asej.2024.102734_b0020 article-title: Explainable AI in big data intelligence of community detection for digitalization e-healthcare services publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2023.110119 – volume: 167 start-page: 1 issue: 114161 year: 2021 ident: 10.1016/j.asej.2024.102734_b0055 article-title: Deep and machine learning techniques for medical imaging-based breast cancer: a comprehensive review publication-title: Expert Syst Appl – start-page: 397 year: 2013 ident: 10.1016/j.asej.2024.102734_b0120 article-title: Modified contrast limited adaptive histogram equalization based on local contrast enhancement for mammogram images – volume: 9 start-page: 55312 year: 2021 ident: 10.1016/j.asej.2024.102734_b0095 article-title: Automated breast mass classification systems using deep learning and ensembled learning in digital mammograms publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3071297 – volume: 71 start-page: 209 year: 2021 ident: 10.1016/j.asej.2024.102734_b0010 article-title: Global cancer statistics 2020: GLOBOCAN estimate of incidences and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J Clin doi: 10.3322/caac.21660 – volume: 9 start-page: 116898 year: 2021 ident: 10.1016/j.asej.2024.102734_b0085 article-title: Automated breast cancer detections and classifications in full field digital mammogram using two full and cropped detection path approach publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3105924 – volume: 70 start-page: 3281 year: 2022 ident: 10.1016/j.asej.2024.102734_b0130 article-title: Multiclass cucumber leaf diseases recognition using best feature selection publication-title: Comput Mater Contin – ident: 10.1016/j.asej.2024.102734_b0015 doi: 10.1038/s41523-023-00508-3 – volume: 13 start-page: 1 issue: 6116 year: 2021 ident: 10.1016/j.asej.2024.102734_b0005 article-title: A comprehensive survey on deep-learning-based breast cancer diagnosis publication-title: Cancers – volume: 7 start-page: 1 issue: 98 year: 2021 ident: 10.1016/j.asej.2024.102734_b0050 article-title: Breast cancer risk assessment: a review on mammography-based approaches publication-title: J Imaging – volume: 12 start-page: 111 issue: 3 year: 2022 ident: 10.1016/j.asej.2024.102734_b0045 article-title: A review and computational analysis of breast cancer using different machine learning technique publication-title: Int J Emerg Technol Adv Eng doi: 10.46338/ijetae0322_13 – ident: 10.1016/j.asej.2024.102734_b0065 doi: 10.1155/2022/5089078 – volume: 19 start-page: 236 issue: 2 year: 2012 ident: 10.1016/j.asej.2024.102734_b0030 article-title: INbreast: Toward a full-field digital mammographic database publication-title: Acad Radiol doi: 10.1016/j.acra.2011.09.014 – ident: 10.1016/j.asej.2024.102734_b0105 doi: 10.3390/biology10121347 – volume: 19 start-page: 236 issue: 2 year: 2012 ident: 10.1016/j.asej.2024.102734_b0150 article-title: Inbreast: toward a full-field digital mammographic database publication-title: Acad Radiol doi: 10.1016/j.acra.2011.09.014 – volume: 22 start-page: 1 issue: 876 year: 2022 ident: 10.1016/j.asej.2024.102734_b0090 article-title: Automated breast cancer detection models based on transfer learning publication-title: Sensors – volume: 72 start-page: 214 year: 2021 ident: 10.1016/j.asej.2024.102734_b0040 article-title: Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: state of the art publication-title: Semin Cancer Biol doi: 10.1016/j.semcancer.2020.06.002 – volume: 12 start-page: 1 issue: 5913 year: 2022 ident: 10.1016/j.asej.2024.102734_b0070 article-title: A novel wavelet decomposition and transformation convolutional neural network with data augmentation for breast cancer detection using digital mammogram publication-title: Sci Rep – volume: 81 start-page: 20043 year: 2022 ident: 10.1016/j.asej.2024.102734_b0145 article-title: Mammogram breast cancer CAD systems for mass detection and classification: a review publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12332-1 – volume: 167 start-page: 2419 year: 2020 ident: 10.1016/j.asej.2024.102734_b0125 article-title: Brain tumor segmentation from MRI images using hybrid convolutional neural networks publication-title: International Conference on Computational Intelligence and Data Science, Procedia Computer Science |
SSID | ssib044728585 |
Score | 2.3319201 |
Snippet | Breast cancer (BrC) stands as the most prevalent cancer affecting women globally, comprising 24.5% of all female cancer diagnoses and contributing to 15.0% of... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 102734 |
SubjectTerms | Breast cancer CAD INBreast Res-SegNet Stacked autoencoder VGG-19 |
Title | Breast cancer diagnosis model using stacked autoencoder with particle swarm optimization |
URI | https://dx.doi.org/10.1016/j.asej.2024.102734 https://doaj.org/article/53525dcf26ae4926ae94329689e4f589 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxYEAkR5yQMbinASJ45HilpVSGWiUrfIT9SKPtSmYuO3cxenVVjKwhLJkePEn8-5z8n5O0IeNNNW5YbD_OYi4k5mkY7zIvIFM-ANUu3rpH2jt3w45q-TbNJK9YUxYUEeOAD3hPIjmTU-yZVDcTvlJE8TmRfScZ8V9dY98HmtxRRYEuciwR9emFmOSRZBWTY7ZkJwF3iIGSwOE47SBSLlv7xSLd7fck4thzM4JScNU6TP4QnPyJFbnJNJD4PIK2pwsNbUhkC56YbWGW0oRrF_UCB8MDctVdtqiTqVFmri91a6arpLN19qPadLeF3Mm32YF2Q86L-_DKMmOUJkeMyqKNZOyQSAcQooGfTVxAbYUmylYDo2TCkvtGKKQyFLhBLgrE3GPCsU98wm6SXpLJYLd0WoMWkunPeAA-POxwrGRzlhgXpZnQndJfEOnNI0yuGYwOKz3IWIzUoEtERAywBolzzur1kF3YyDtXuI-b4mal7XJ8ASygaa8i9L6JJsN2JlQx8CLYCmpgdufv0fN78hx9hkCCK7JZ1qvXV3QFcqfV9bJhxH3_0fi8jnWg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breast+cancer+diagnosis+model+using+stacked+autoencoder+with+particle+swarm+optimization&rft.jtitle=Ain+Shams+Engineering+Journal&rft.au=Manimurugan%2C+S.&rft.au=Karthikeyan%2C+P.&rft.au=Aborokbah%2C+Majed&rft.au=Narmatha%2C+C.&rft.date=2024-06-01&rft.pub=Elsevier+B.V&rft.issn=2090-4479&rft.volume=15&rft.issue=6&rft_id=info:doi/10.1016%2Fj.asej.2024.102734&rft.externalDocID=S2090447924001096 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-4479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-4479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-4479&client=summon |