Breast cancer diagnosis model using stacked autoencoder with particle swarm optimization

Breast cancer (BrC) stands as the most prevalent cancer affecting women globally, comprising 24.5% of all female cancer diagnoses and contributing to 15.0% of total cancer-related fatalities. The timely detection and precise categorization of breast cancer play pivotal roles in enhancing patient pro...

Full description

Saved in:
Bibliographic Details
Published inAin Shams Engineering Journal Vol. 15; no. 6; p. 102734
Main Authors Manimurugan, S., Karthikeyan, P., Aborokbah, Majed, Narmatha, C., Ganesan, Subramaniam
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Breast cancer (BrC) stands as the most prevalent cancer affecting women globally, comprising 24.5% of all female cancer diagnoses and contributing to 15.0% of total cancer-related fatalities. The timely detection and precise categorization of breast cancer play pivotal roles in enhancing patient prognosis and treatment outcomes. The main goal is to enhance the precision of classifying mammogram images, thus offering vital support to radiology experts in diagnosing BrCs. The proposed model encompasses several pivotal stages, including pre-processing, feature extraction, segmentation, and classification. To assess the model's efficacy, we employed the INBreast dataset. During pre-processing, mammogram images were enhanced through a customized contrast-limited adaptive histogram equalization (mCLAHE) technique coupled with data augmentation. Segmentation was executed utilizing the Res-SegNet model, and feature extraction employing the VGG-19 model. The classification was conducted via a stacked autoencoder (SAE) with particle swarm optimization (PSO). Our proposed model exhibited notably high performance compared to alternative models such as CNN, Yolo-v4, and Inception-v3. The results unveiled an accuracy of 98.33%, precision of 99.39%, recall of 98.78%, specificity of 93.75%, an F1-score of 99.08%, and an MCC score of 90.04%.
AbstractList Breast cancer (BrC) stands as the most prevalent cancer affecting women globally, comprising 24.5% of all female cancer diagnoses and contributing to 15.0% of total cancer-related fatalities. The timely detection and precise categorization of breast cancer play pivotal roles in enhancing patient prognosis and treatment outcomes. The main goal is to enhance the precision of classifying mammogram images, thus offering vital support to radiology experts in diagnosing BrCs. The proposed model encompasses several pivotal stages, including pre-processing, feature extraction, segmentation, and classification. To assess the model's efficacy, we employed the INBreast dataset. During pre-processing, mammogram images were enhanced through a customized contrast-limited adaptive histogram equalization (mCLAHE) technique coupled with data augmentation. Segmentation was executed utilizing the Res-SegNet model, and feature extraction employing the VGG-19 model. The classification was conducted via a stacked autoencoder (SAE) with particle swarm optimization (PSO). Our proposed model exhibited notably high performance compared to alternative models such as CNN, Yolo-v4, and Inception-v3. The results unveiled an accuracy of 98.33%, precision of 99.39%, recall of 98.78%, specificity of 93.75%, an F1-score of 99.08%, and an MCC score of 90.04%.
ArticleNumber 102734
Author Karthikeyan, P.
Narmatha, C.
Manimurugan, S.
Ganesan, Subramaniam
Aborokbah, Majed
Author_xml – sequence: 1
  givenname: S.
  surname: Manimurugan
  fullname: Manimurugan, S.
  email: mmurugan@ut.edu.sa
  organization: Faculty of Computers and Information Technology, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
– sequence: 2
  givenname: P.
  surname: Karthikeyan
  fullname: Karthikeyan, P.
  organization: School of Computer Science & Engineering, RV University, Bengaluru, India
– sequence: 3
  givenname: Majed
  surname: Aborokbah
  fullname: Aborokbah, Majed
  email: m.aborokbah@ut.edu.sa
  organization: Faculty of Computers and Information Technology, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
– sequence: 4
  givenname: C.
  surname: Narmatha
  fullname: Narmatha, C.
  email: narmatha@ut.edu.sa
  organization: Faculty of Computers and Information Technology, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
– sequence: 5
  givenname: Subramaniam
  surname: Ganesan
  fullname: Ganesan, Subramaniam
  email: ganesan@oakland.edu
  organization: Department of Electrical and Computer Engineering, School of Engineering and Computer Science, Oakland University, Rochester 112345, USA
BookMark eNp9kM1OQyEQhVlo4l9fwBUv0AoU7r0kbrTxp0kTN5q4I1Pu3Dq1vTSAGn16aasbF26AGXLOnPlO2EEfemTsXIqRFLK6WI4g4XKkhNKloeqxPmDHSlgx1Lq2R2yQEs1FeavGNOaYPV9HhJS5h95j5C3Bog-JEl-HFlf8LVG_4CmDf8WWw1sO2PvyE_kH5Re-gZjJr5CnD4hrHjaZ1vQFmUJ_xg47WCUc_Nyn7On25nFyP5w93E0nV7Oh11LkoZwjWNX6DqEyVYnkpbdGytbWYi69AOjqOQjQpTCqhloo5Y3oRAO6E60an7Lp3rcNsHSbSGuIny4AuV0jxIX7CenM2ChTRqkKUNvtafVY2aqxqDvT2OLV7L18DClF7JynvNsmR6CVk8JtIbul20J2W8huD7lI1R_pb5R_RZd7ERZA74TRJU8FMLYU0eeyAf0n_wZG_Jsc
CitedBy_id crossref_primary_10_1016_j_imavis_2024_105146
crossref_primary_10_1016_j_asej_2024_103241
crossref_primary_10_3390_life15020211
Cites_doi 10.2174/2666255813666191218111850
10.1007/s00330-023-10072-w
10.1080/01431161.2016.1246775
10.1007/s00521-022-08062-y
10.2196/14464
10.1109/TNNLS.2018.2881143
10.1016/j.bspc.2021.102825
10.1016/j.asoc.2023.110119
10.1109/ACCESS.2021.3071297
10.3322/caac.21660
10.1109/ACCESS.2021.3105924
10.1038/s41523-023-00508-3
10.46338/ijetae0322_13
10.1155/2022/5089078
10.1016/j.acra.2011.09.014
10.3390/biology10121347
10.1016/j.semcancer.2020.06.002
10.1007/s11042-022-12332-1
ContentType Journal Article
Copyright 2024 THE AUTHORS
Copyright_xml – notice: 2024 THE AUTHORS
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.asej.2024.102734
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID oai_doaj_org_article_53525dcf26ae4926ae94329689e4f589
10_1016_j_asej_2024_102734
S2090447924001096
GroupedDBID 6I.
AAFTH
ALMA_UNASSIGNED_HOLDINGS
M~E
AAYXX
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c410t-1bea92dcfea656585c1c9511d970b1c0aaf7ba0a4b1c527a7022c50f08a4f0d23
IEDL.DBID DOA
ISSN 2090-4479
IngestDate Wed Aug 27 01:17:34 EDT 2025
Tue Jul 01 05:20:59 EDT 2025
Thu Apr 24 23:13:07 EDT 2025
Sat Mar 22 15:55:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Stacked autoencoder
Res-SegNet
Breast cancer
INBreast
VGG-19
CAD
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-1bea92dcfea656585c1c9511d970b1c0aaf7ba0a4b1c527a7022c50f08a4f0d23
OpenAccessLink https://doaj.org/article/53525dcf26ae4926ae94329689e4f589
ParticipantIDs doaj_primary_oai_doaj_org_article_53525dcf26ae4926ae94329689e4f589
crossref_citationtrail_10_1016_j_asej_2024_102734
crossref_primary_10_1016_j_asej_2024_102734
elsevier_sciencedirect_doi_10_1016_j_asej_2024_102734
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Ain Shams Engineering Journal
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Rautela, Kumar, Kumar (b0025) 2022; 1–32
Sung, Ferlay, Siegel, Laversanne, Soerjomataram (b0010) 2021; 71
Weijia, Haohuan, Le, Peng, Duole, Congcong (b0135) 2016; 37
Sangaiah, Rezaei, Javadpour, Zhang (b0020) 2023; 136
Debendra M, Ratnakar D, Banshidhar M. Automated diagnosis of breast cancers using multi-modal dataset: A deep convolution neural networks-based approach. Biomed. Signal Process. Control, 71(B), 102825, 1-14, 2022.
Sidratul M, Sami A, Abul KMRHR, Pronab G, Md. Zahid H et al., BreastNet18: A High Accuracy Fine-Tuned VGG-16 Model Evaluated Using Ablation Study for Diagnosing Breast Cancers from Enhanced Mammography Image. Biology, 10, 1347, 1-44, 2021.
Nemade, Pathak, Dubey, Barhate (b0045) 2022; 12
Oyelade, Ezugwu (b0070) 2022; 12
Malebary, Hashmi (b0095) 2021; 9
Shaban (b0115) 2023; 35
Hussain (b0130) 2022; 70
Gardezi, Elazab, Lei, Wang (b0035) 2019; 21
Debien, Véronique, Alex De Caluwé, Xiaoxiao Wang, Martine Piccart-Gebhart, Vincent K. Tuohy, Emanuela Romano, and Laurence Buisseret. Immunotherapy in breast cancers: an overview of current strategies and perspective. NPJ Breast Cancer 9, no. 1 (2023): 7.
Moreira, Amaral, Domingues, Cardoso, Cardoso, Cardoso (b0150) 2012; 19
Muhammad Saquib Nazir, Usman Ghani Khan, Aqsa Mohiyuddin, Mana Saleh Al Reshan, Asadullah Shaikh et al. A Novel CNN-Inception-V4-Based Hybrid Approach for Classification of Breast Cancer in Mammogram Images. Wirel Commun Mob Comput, pp. 1-10, 2022.
Alruwaili, Gouda (b0090) 2022; 22
Mendes, Matela (b0050) 2021; 7
Houssein, Emam, Ali, Suganthan (b0055) 2021; 167
Hassan, Hamad, Mahar (b0145) 2022; 81
Moreira, Amaral, Domingues, Cardoso, Cardoso, Cardoso (b0030) 2012; 19
Mridha, Hamid, Monowar, Jannat Keya, Ohi, Kim (b0005) 2021; 13
Sechopoulos, Teuwen, Mann (b0040) 2021; 72
Hamed, Marey, Amin, Tolba (b0085) 2021; 9
Daimary, Bora, Amitab, Kandar (b0125) 2020; 167
Sassi, Antti, Annukka Salminen, Arja Jukkola, Maija Tervo, Niina Mäenpää, Saara Turtiainen, Leena Tiainen et al. Breast density and the likelihood of malignant MRI-detected lesions in women diagnosed with breast cancer. Eur Radiol (2023): 1-9.
Marawan Elbatel. Mammograms Classification: A Review. Available Online: arXiv:2203.03618, 2022.
Rehman, Li, Pei, Yasin, Ali, Saeed (b0080) 2022; 11
Mohan, Ravishankar (b0120) 2013
Yanan, Bing, Mengjie, Gary (b0140) 2019; 30
Singla, Kumari (b0075) 2021; 14
Weijia (10.1016/j.asej.2024.102734_b0135) 2016; 37
Moreira (10.1016/j.asej.2024.102734_b0030) 2012; 19
Malebary (10.1016/j.asej.2024.102734_b0095) 2021; 9
10.1016/j.asej.2024.102734_b0015
Rehman (10.1016/j.asej.2024.102734_b0080) 2022; 11
Alruwaili (10.1016/j.asej.2024.102734_b0090) 2022; 22
Rautela (10.1016/j.asej.2024.102734_b0025) 2022; 1–32
Mendes (10.1016/j.asej.2024.102734_b0050) 2021; 7
Singla (10.1016/j.asej.2024.102734_b0075) 2021; 14
Sung (10.1016/j.asej.2024.102734_b0010) 2021; 71
10.1016/j.asej.2024.102734_b0060
Daimary (10.1016/j.asej.2024.102734_b0125) 2020; 167
10.1016/j.asej.2024.102734_b0065
Yanan (10.1016/j.asej.2024.102734_b0140) 2019; 30
Nemade (10.1016/j.asej.2024.102734_b0045) 2022; 12
Oyelade (10.1016/j.asej.2024.102734_b0070) 2022; 12
Mohan (10.1016/j.asej.2024.102734_b0120) 2013
Houssein (10.1016/j.asej.2024.102734_b0055) 2021; 167
Sechopoulos (10.1016/j.asej.2024.102734_b0040) 2021; 72
10.1016/j.asej.2024.102734_b0100
10.1016/j.asej.2024.102734_b0105
Hamed (10.1016/j.asej.2024.102734_b0085) 2021; 9
Hassan (10.1016/j.asej.2024.102734_b0145) 2022; 81
Mridha (10.1016/j.asej.2024.102734_b0005) 2021; 13
10.1016/j.asej.2024.102734_b0110
Shaban (10.1016/j.asej.2024.102734_b0115) 2023; 35
Sangaiah (10.1016/j.asej.2024.102734_b0020) 2023; 136
Gardezi (10.1016/j.asej.2024.102734_b0035) 2019; 21
Moreira (10.1016/j.asej.2024.102734_b0150) 2012; 19
Hussain (10.1016/j.asej.2024.102734_b0130) 2022; 70
References_xml – volume: 72
  start-page: 214
  year: 2021
  end-page: 225
  ident: b0040
  article-title: Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: state of the art
  publication-title: Semin Cancer Biol
– volume: 71
  start-page: 209
  year: 2021
  end-page: 249
  ident: b0010
  article-title: Global cancer statistics 2020: GLOBOCAN estimate of incidences and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J Clin
– volume: 37
  start-page: 5632
  year: 2016
  end-page: 5646
  ident: b0135
  article-title: Stacked autoencoders-based deep learning for remote-sensing images classifications: a case study of african land-covers mapping
  publication-title: Int J Remote Sens
– volume: 167
  start-page: 2419
  year: 2020
  end-page: 2428
  ident: b0125
  article-title: Brain tumor segmentation from MRI images using hybrid convolutional neural networks
  publication-title: International Conference on Computational Intelligence and Data Science, Procedia Computer Science
– volume: 136
  year: 2023
  ident: b0020
  article-title: Explainable AI in big data intelligence of community detection for digitalization e-healthcare services
  publication-title: Appl Soft Comput
– volume: 12
  start-page: 1
  year: 2022
  end-page: 22
  ident: b0070
  article-title: A novel wavelet decomposition and transformation convolutional neural network with data augmentation for breast cancer detection using digital mammogram
  publication-title: Sci Rep
– reference: Sassi, Antti, Annukka Salminen, Arja Jukkola, Maija Tervo, Niina Mäenpää, Saara Turtiainen, Leena Tiainen et al. Breast density and the likelihood of malignant MRI-detected lesions in women diagnosed with breast cancer. Eur Radiol (2023): 1-9.
– reference: Debendra M, Ratnakar D, Banshidhar M. Automated diagnosis of breast cancers using multi-modal dataset: A deep convolution neural networks-based approach. Biomed. Signal Process. Control, 71(B), 102825, 1-14, 2022.
– volume: 19
  start-page: 236
  year: 2012
  end-page: 248
  ident: b0030
  article-title: INbreast: Toward a full-field digital mammographic database
  publication-title: Acad Radiol
– volume: 22
  start-page: 1
  year: 2022
  end-page: 16
  ident: b0090
  article-title: Automated breast cancer detection models based on transfer learning
  publication-title: Sensors
– volume: 9
  start-page: 55312
  year: 2021
  end-page: 55328
  ident: b0095
  article-title: Automated breast mass classification systems using deep learning and ensembled learning in digital mammograms
  publication-title: IEEE Access
– volume: 167
  start-page: 1
  year: 2021
  end-page: 25
  ident: b0055
  article-title: Deep and machine learning techniques for medical imaging-based breast cancer: a comprehensive review
  publication-title: Expert Syst Appl
– reference: Sidratul M, Sami A, Abul KMRHR, Pronab G, Md. Zahid H et al., BreastNet18: A High Accuracy Fine-Tuned VGG-16 Model Evaluated Using Ablation Study for Diagnosing Breast Cancers from Enhanced Mammography Image. Biology, 10, 1347, 1-44, 2021.
– volume: 19
  start-page: 236
  year: 2012
  end-page: 248
  ident: b0150
  article-title: Inbreast: toward a full-field digital mammographic database
  publication-title: Acad Radiol
– volume: 35
  start-page: 6831
  year: 2023
  end-page: 6853
  ident: b0115
  article-title: Insights into breast cancers detections: new hybrid features selection methods
  publication-title: Neural Comput Appl
– volume: 12
  start-page: 111
  year: 2022
  end-page: 118
  ident: b0045
  article-title: A review and computational analysis of breast cancer using different machine learning technique
  publication-title: Int J Emerg Technol Adv Eng
– volume: 21
  start-page: e14464
  year: 2019
  ident: b0035
  article-title: Breast cancer detection and diagnosis using mammographic data: systematic review
  publication-title: J Med Internet Res
– volume: 81
  start-page: 20043
  year: 2022
  end-page: 20075
  ident: b0145
  article-title: Mammogram breast cancer CAD systems for mass detection and classification: a review
  publication-title: Multimed Tools Appl
– volume: 9
  start-page: 116898
  year: 2021
  end-page: 116913
  ident: b0085
  article-title: Automated breast cancer detections and classifications in full field digital mammogram using two full and cropped detection path approach
  publication-title: IEEE Access
– volume: 70
  start-page: 3281
  year: 2022
  end-page: 3294
  ident: b0130
  article-title: Multiclass cucumber leaf diseases recognition using best feature selection
  publication-title: Comput Mater Contin
– volume: 11
  start-page: 1
  year: 2022
  end-page: 29
  ident: b0080
  article-title: Architectural distortions-based digital mammogram classifications using depth wise convolutional neural networks
  publication-title: Biology
– volume: 14
  start-page: 1922
  year: 2021
  end-page: 1928
  ident: b0075
  article-title: Analysis of performance of two wavelet families using GLCM feature extraction for mammogram classification of breast cancer
  publication-title: Recent Adv Comput Sci Commun
– volume: 30
  start-page: 2295
  year: 2019
  end-page: 2309
  ident: b0140
  article-title: A particles swarm optimizations-based flexible convolutional autoencoders for images classifications
  publication-title: IEEE T Neural Netw Learn Syst
– volume: 7
  start-page: 1
  year: 2021
  end-page: 21
  ident: b0050
  article-title: Breast cancer risk assessment: a review on mammography-based approaches
  publication-title: J Imaging
– volume: 13
  start-page: 1
  year: 2021
  end-page: 36
  ident: b0005
  article-title: A comprehensive survey on deep-learning-based breast cancer diagnosis
  publication-title: Cancers
– reference: Debien, Véronique, Alex De Caluwé, Xiaoxiao Wang, Martine Piccart-Gebhart, Vincent K. Tuohy, Emanuela Romano, and Laurence Buisseret. Immunotherapy in breast cancers: an overview of current strategies and perspective. NPJ Breast Cancer 9, no. 1 (2023): 7.
– volume: 1–32
  year: 2022
  ident: b0025
  article-title: A systematic review on breast cancer detection using deep learning techniques
  publication-title: Arch Comput Methods Eng
– start-page: 397
  year: 2013
  end-page: 403
  ident: b0120
  article-title: Modified contrast limited adaptive histogram equalization based on local contrast enhancement for mammogram images
  publication-title: International Conference on Advances in Information Technology and Mobile Communication
– reference: Marawan Elbatel. Mammograms Classification: A Review. Available Online: arXiv:2203.03618, 2022.
– reference: Muhammad Saquib Nazir, Usman Ghani Khan, Aqsa Mohiyuddin, Mana Saleh Al Reshan, Asadullah Shaikh et al. A Novel CNN-Inception-V4-Based Hybrid Approach for Classification of Breast Cancer in Mammogram Images. Wirel Commun Mob Comput, pp. 1-10, 2022.
– volume: 14
  start-page: 1922
  year: 2021
  ident: 10.1016/j.asej.2024.102734_b0075
  article-title: Analysis of performance of two wavelet families using GLCM feature extraction for mammogram classification of breast cancer
  publication-title: Recent Adv Comput Sci Commun
  doi: 10.2174/2666255813666191218111850
– volume: 11
  start-page: 1
  issue: 15
  year: 2022
  ident: 10.1016/j.asej.2024.102734_b0080
  article-title: Architectural distortions-based digital mammogram classifications using depth wise convolutional neural networks
  publication-title: Biology
– volume: 1–32
  year: 2022
  ident: 10.1016/j.asej.2024.102734_b0025
  article-title: A systematic review on breast cancer detection using deep learning techniques
  publication-title: Arch Comput Methods Eng
– ident: 10.1016/j.asej.2024.102734_b0110
  doi: 10.1007/s00330-023-10072-w
– volume: 37
  start-page: 5632
  issue: 23
  year: 2016
  ident: 10.1016/j.asej.2024.102734_b0135
  article-title: Stacked autoencoders-based deep learning for remote-sensing images classifications: a case study of african land-covers mapping
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2016.1246775
– volume: 35
  start-page: 6831
  issue: 9
  year: 2023
  ident: 10.1016/j.asej.2024.102734_b0115
  article-title: Insights into breast cancers detections: new hybrid features selection methods
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-08062-y
– volume: 21
  start-page: e14464
  issue: 7
  year: 2019
  ident: 10.1016/j.asej.2024.102734_b0035
  article-title: Breast cancer detection and diagnosis using mammographic data: systematic review
  publication-title: J Med Internet Res
  doi: 10.2196/14464
– ident: 10.1016/j.asej.2024.102734_b0060
– volume: 30
  start-page: 2295
  issue: 8
  year: 2019
  ident: 10.1016/j.asej.2024.102734_b0140
  article-title: A particles swarm optimizations-based flexible convolutional autoencoders for images classifications
  publication-title: IEEE T Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2881143
– ident: 10.1016/j.asej.2024.102734_b0100
  doi: 10.1016/j.bspc.2021.102825
– volume: 136
  year: 2023
  ident: 10.1016/j.asej.2024.102734_b0020
  article-title: Explainable AI in big data intelligence of community detection for digitalization e-healthcare services
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2023.110119
– volume: 167
  start-page: 1
  issue: 114161
  year: 2021
  ident: 10.1016/j.asej.2024.102734_b0055
  article-title: Deep and machine learning techniques for medical imaging-based breast cancer: a comprehensive review
  publication-title: Expert Syst Appl
– start-page: 397
  year: 2013
  ident: 10.1016/j.asej.2024.102734_b0120
  article-title: Modified contrast limited adaptive histogram equalization based on local contrast enhancement for mammogram images
– volume: 9
  start-page: 55312
  year: 2021
  ident: 10.1016/j.asej.2024.102734_b0095
  article-title: Automated breast mass classification systems using deep learning and ensembled learning in digital mammograms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3071297
– volume: 71
  start-page: 209
  year: 2021
  ident: 10.1016/j.asej.2024.102734_b0010
  article-title: Global cancer statistics 2020: GLOBOCAN estimate of incidences and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21660
– volume: 9
  start-page: 116898
  year: 2021
  ident: 10.1016/j.asej.2024.102734_b0085
  article-title: Automated breast cancer detections and classifications in full field digital mammogram using two full and cropped detection path approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3105924
– volume: 70
  start-page: 3281
  year: 2022
  ident: 10.1016/j.asej.2024.102734_b0130
  article-title: Multiclass cucumber leaf diseases recognition using best feature selection
  publication-title: Comput Mater Contin
– ident: 10.1016/j.asej.2024.102734_b0015
  doi: 10.1038/s41523-023-00508-3
– volume: 13
  start-page: 1
  issue: 6116
  year: 2021
  ident: 10.1016/j.asej.2024.102734_b0005
  article-title: A comprehensive survey on deep-learning-based breast cancer diagnosis
  publication-title: Cancers
– volume: 7
  start-page: 1
  issue: 98
  year: 2021
  ident: 10.1016/j.asej.2024.102734_b0050
  article-title: Breast cancer risk assessment: a review on mammography-based approaches
  publication-title: J Imaging
– volume: 12
  start-page: 111
  issue: 3
  year: 2022
  ident: 10.1016/j.asej.2024.102734_b0045
  article-title: A review and computational analysis of breast cancer using different machine learning technique
  publication-title: Int J Emerg Technol Adv Eng
  doi: 10.46338/ijetae0322_13
– ident: 10.1016/j.asej.2024.102734_b0065
  doi: 10.1155/2022/5089078
– volume: 19
  start-page: 236
  issue: 2
  year: 2012
  ident: 10.1016/j.asej.2024.102734_b0030
  article-title: INbreast: Toward a full-field digital mammographic database
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2011.09.014
– ident: 10.1016/j.asej.2024.102734_b0105
  doi: 10.3390/biology10121347
– volume: 19
  start-page: 236
  issue: 2
  year: 2012
  ident: 10.1016/j.asej.2024.102734_b0150
  article-title: Inbreast: toward a full-field digital mammographic database
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2011.09.014
– volume: 22
  start-page: 1
  issue: 876
  year: 2022
  ident: 10.1016/j.asej.2024.102734_b0090
  article-title: Automated breast cancer detection models based on transfer learning
  publication-title: Sensors
– volume: 72
  start-page: 214
  year: 2021
  ident: 10.1016/j.asej.2024.102734_b0040
  article-title: Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: state of the art
  publication-title: Semin Cancer Biol
  doi: 10.1016/j.semcancer.2020.06.002
– volume: 12
  start-page: 1
  issue: 5913
  year: 2022
  ident: 10.1016/j.asej.2024.102734_b0070
  article-title: A novel wavelet decomposition and transformation convolutional neural network with data augmentation for breast cancer detection using digital mammogram
  publication-title: Sci Rep
– volume: 81
  start-page: 20043
  year: 2022
  ident: 10.1016/j.asej.2024.102734_b0145
  article-title: Mammogram breast cancer CAD systems for mass detection and classification: a review
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-12332-1
– volume: 167
  start-page: 2419
  year: 2020
  ident: 10.1016/j.asej.2024.102734_b0125
  article-title: Brain tumor segmentation from MRI images using hybrid convolutional neural networks
  publication-title: International Conference on Computational Intelligence and Data Science, Procedia Computer Science
SSID ssib044728585
Score 2.3319201
Snippet Breast cancer (BrC) stands as the most prevalent cancer affecting women globally, comprising 24.5% of all female cancer diagnoses and contributing to 15.0% of...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 102734
SubjectTerms Breast cancer
CAD
INBreast
Res-SegNet
Stacked autoencoder
VGG-19
Title Breast cancer diagnosis model using stacked autoencoder with particle swarm optimization
URI https://dx.doi.org/10.1016/j.asej.2024.102734
https://doaj.org/article/53525dcf26ae4926ae94329689e4f589
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxYEAkR5yQMbinASJ45HilpVSGWiUrfIT9SKPtSmYuO3cxenVVjKwhLJkePEn8-5z8n5O0IeNNNW5YbD_OYi4k5mkY7zIvIFM-ANUu3rpH2jt3w45q-TbNJK9YUxYUEeOAD3hPIjmTU-yZVDcTvlJE8TmRfScZ8V9dY98HmtxRRYEuciwR9emFmOSRZBWTY7ZkJwF3iIGSwOE47SBSLlv7xSLd7fck4thzM4JScNU6TP4QnPyJFbnJNJD4PIK2pwsNbUhkC56YbWGW0oRrF_UCB8MDctVdtqiTqVFmri91a6arpLN19qPadLeF3Mm32YF2Q86L-_DKMmOUJkeMyqKNZOyQSAcQooGfTVxAbYUmylYDo2TCkvtGKKQyFLhBLgrE3GPCsU98wm6SXpLJYLd0WoMWkunPeAA-POxwrGRzlhgXpZnQndJfEOnNI0yuGYwOKz3IWIzUoEtERAywBolzzur1kF3YyDtXuI-b4mal7XJ8ASygaa8i9L6JJsN2JlQx8CLYCmpgdufv0fN78hx9hkCCK7JZ1qvXV3QFcqfV9bJhxH3_0fi8jnWg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breast+cancer+diagnosis+model+using+stacked+autoencoder+with+particle+swarm+optimization&rft.jtitle=Ain+Shams+Engineering+Journal&rft.au=Manimurugan%2C+S.&rft.au=Karthikeyan%2C+P.&rft.au=Aborokbah%2C+Majed&rft.au=Narmatha%2C+C.&rft.date=2024-06-01&rft.pub=Elsevier+B.V&rft.issn=2090-4479&rft.volume=15&rft.issue=6&rft_id=info:doi/10.1016%2Fj.asej.2024.102734&rft.externalDocID=S2090447924001096
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-4479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-4479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-4479&client=summon