An amplitude and frequency tunable terahertz absorber
•The absorber can be controlled by Fermi energy level (EF) and temperature (T).•Coupled-mode theory (CMT), perturbation theory, and the electric field distribution at the resonance point are utilized to verify the authenticity of numerical results. A perfect terahertz (THz) metamaterial absorber (MM...
Saved in:
Published in | Results in physics Vol. 34; p. 105263 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2022
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2211-3797 2211-3797 |
DOI | 10.1016/j.rinp.2022.105263 |
Cover
Loading…
Abstract | •The absorber can be controlled by Fermi energy level (EF) and temperature (T).•Coupled-mode theory (CMT), perturbation theory, and the electric field distribution at the resonance point are utilized to verify the authenticity of numerical results.
A perfect terahertz (THz) metamaterial absorber (MMA) based on bulk Dirac semimetal (BDS) and strontium titanate (STO) is proposed and numerically analyzed. By integrating two new materials with adjustable dielectric constant in one structure, the performance of this design can be flexibly controlled. The simulation results show that as the Fermi energy (EF) of BDS varies from 10 meV to 70 meV, the absorption rate can be tuned from 89% to 100%, with the resonant frequency exhibits a tiny blue shift. Meanwhile, the center frequency can be tuned by varying the temperature of STO from 150 K to 300 K. In addition, the absorption reaches 1 at 0.69 THz when the temperature of STO and EF of BDS are set as 200 K and 30 meV, respectively. The coupled-mode theory (CMT) and perturbation theory are used to explore the reason of perfect absorption and frequency tunable mechanism, respectively. Further research and analysis prove that this designed absorber shows outstanding feature of angular insensitivity. Our work provides a potential guide for designing multifunctional THz devices, such as photodetectors, modulators, sensors, and so on. |
---|---|
AbstractList | A perfect terahertz (THz) metamaterial absorber (MMA) based on bulk Dirac semimetal (BDS) and strontium titanate (STO) is proposed and numerically analyzed. By integrating two new materials with adjustable dielectric constant in one structure, the performance of this design can be flexibly controlled. The simulation results show that as the Fermi energy (EF) of BDS varies from 10 meV to 70 meV, the absorption rate can be tuned from 89% to 100%, with the resonant frequency exhibits a tiny blue shift. Meanwhile, the center frequency can be tuned by varying the temperature of STO from 150 K to 300 K. In addition, the absorption reaches 1 at 0.69 THz when the temperature of STO and EF of BDS are set as 200 K and 30 meV, respectively. The coupled-mode theory (CMT) and perturbation theory are used to explore the reason of perfect absorption and frequency tunable mechanism, respectively. Further research and analysis prove that this designed absorber shows outstanding feature of angular insensitivity. Our work provides a potential guide for designing multifunctional THz devices, such as photodetectors, modulators, sensors, and so on. •The absorber can be controlled by Fermi energy level (EF) and temperature (T).•Coupled-mode theory (CMT), perturbation theory, and the electric field distribution at the resonance point are utilized to verify the authenticity of numerical results. A perfect terahertz (THz) metamaterial absorber (MMA) based on bulk Dirac semimetal (BDS) and strontium titanate (STO) is proposed and numerically analyzed. By integrating two new materials with adjustable dielectric constant in one structure, the performance of this design can be flexibly controlled. The simulation results show that as the Fermi energy (EF) of BDS varies from 10 meV to 70 meV, the absorption rate can be tuned from 89% to 100%, with the resonant frequency exhibits a tiny blue shift. Meanwhile, the center frequency can be tuned by varying the temperature of STO from 150 K to 300 K. In addition, the absorption reaches 1 at 0.69 THz when the temperature of STO and EF of BDS are set as 200 K and 30 meV, respectively. The coupled-mode theory (CMT) and perturbation theory are used to explore the reason of perfect absorption and frequency tunable mechanism, respectively. Further research and analysis prove that this designed absorber shows outstanding feature of angular insensitivity. Our work provides a potential guide for designing multifunctional THz devices, such as photodetectors, modulators, sensors, and so on. |
ArticleNumber | 105263 |
Author | Xiong, Han Shen, Qi |
Author_xml | – sequence: 1 givenname: Qi surname: Shen fullname: Shen, Qi organization: School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China – sequence: 2 givenname: Han surname: Xiong fullname: Xiong, Han email: Hxiong@cqu.edu.cn organization: School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China |
BookMark | eNp9kE1Lw0AQhhepYK39A57yB1r3O1nwUoofhYIXPS-TzUS3pEndbIX6690aBfHQwzDDwPMy81ySUdu1SMg1o3NGmb7ZzINvd3NOOU8LxbU4I2POGZuJ3OSjP_MFmfb9htJESaUYGxO1aDPY7hof9xVm0FZZHfB9j607ZHHfQtlgFjHAG4b4mUHZd6HEcEXOa2h6nP70CXm5v3tePs7WTw-r5WI9c5LROGPCcARntOSyQqFKVlAmcgalKxQ4R3MoCqZyzWQqIymArI1SokQJxggxIasht-pgY3fBbyEcbAfefi-68GohRO8atNoIrXNXK-OMrLUpJdfapF6JsuI6T1nFkOVC1_cBa-t8hOi7NgbwjWXUHm3ajT3atEebdrCZUP4P_T3lJHQ7QJgEfXgMtnc-ecXKB3QxfeBP4V909o36 |
CitedBy_id | crossref_primary_10_3390_photonics10060643 crossref_primary_10_1007_s11664_024_11348_7 crossref_primary_10_1364_OE_522788 crossref_primary_10_1088_2040_8986_ad6334 crossref_primary_10_1007_s11082_022_03753_1 crossref_primary_10_1016_j_optmat_2023_114667 crossref_primary_10_1038_s41598_025_90912_5 crossref_primary_10_1002_adfm_202402068 crossref_primary_10_1007_s11082_023_04881_y crossref_primary_10_3390_electronics11182847 crossref_primary_10_1364_AO_495749 crossref_primary_10_1016_j_physe_2022_115527 crossref_primary_10_1364_JOSAB_468292 crossref_primary_10_1016_j_optcom_2022_128874 crossref_primary_10_1364_OME_478596 crossref_primary_10_1364_AO_488472 crossref_primary_10_1364_JOSAB_480608 crossref_primary_10_1016_j_mtcomm_2022_104073 crossref_primary_10_1039_D4CP02809K crossref_primary_10_1016_j_optcom_2023_129600 crossref_primary_10_1140_epjd_s10053_023_00689_3 crossref_primary_10_1016_j_jallcom_2022_166617 crossref_primary_10_1016_j_rinp_2024_107610 crossref_primary_10_1109_LPT_2023_3274232 crossref_primary_10_1364_OE_485847 crossref_primary_10_1007_s11082_022_04331_1 crossref_primary_10_1088_1361_6463_ad4565 crossref_primary_10_1364_OE_462865 crossref_primary_10_1364_AO_509826 crossref_primary_10_1088_1402_4896_ac700f crossref_primary_10_1007_s11664_022_09750_0 crossref_primary_10_1038_s41598_024_64158_6 crossref_primary_10_1364_JOSAB_501994 crossref_primary_10_3390_app13137742 crossref_primary_10_1016_j_optcom_2022_129254 crossref_primary_10_1088_1402_4896_ad46c4 crossref_primary_10_1364_AO_544937 crossref_primary_10_1016_j_diamond_2022_109460 |
Cites_doi | 10.1103/PhysRevLett.100.207402 10.1021/ph400090p 10.1364/OE.395070 10.1002/adma.201707547 10.1364/OSAC.2.000216 10.1109/JQE.2004.834773 10.1103/PhysRevB.93.235417 10.1103/PhysRevB.87.205112 10.1103/PhysRevB.76.085409 10.1364/OE.385181 10.1016/j.optlastec.2021.107274 10.1364/OE.392380 10.1038/nmat3990 10.1016/j.optcom.2020.125333 10.1364/OME.7.003397 10.1364/OE.25.005206 10.1364/AO.57.006916 10.1364/OE.27.025902 10.1103/PhysRevLett.92.037401 10.1515/nanoph-2015-0014 10.1063/1.4890521 10.1103/PhysRevE.71.036617 10.1063/1.4905261 10.1016/j.optcom.2018.01.051 10.1021/acsphotonics.7b01011 |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rinp.2022.105263 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Open Access Full Text |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2211-3797 |
ExternalDocumentID | oai_doaj_org_article_693667cf59c94f69b4266969bd3bd267 10_1016_j_rinp_2022_105263 S2211379722000638 |
GroupedDBID | --K 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M48 M~E NCXOZ O-L O9- OK1 RIG ROL SES SSZ XH2 AAFWJ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPKN AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c410t-1392eac96424de35b1801371abc85acc07a88157614761940aa4f9553be4a9933 |
IEDL.DBID | M48 |
ISSN | 2211-3797 |
IngestDate | Wed Aug 27 01:29:01 EDT 2025 Tue Jul 01 02:27:43 EDT 2025 Thu Apr 24 23:02:01 EDT 2025 Tue Jul 25 20:57:34 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dirac semimetal Strontium titanate Absorber THz |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-1392eac96424de35b1801371abc85acc07a88157614761940aa4f9553be4a9933 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.rinp.2022.105263 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_693667cf59c94f69b4266969bd3bd267 crossref_citationtrail_10_1016_j_rinp_2022_105263 crossref_primary_10_1016_j_rinp_2022_105263 elsevier_sciencedirect_doi_10_1016_j_rinp_2022_105263 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationTitle | Results in physics |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Watts, Liu, Padilla (b0010) 2012; 24 Xiong, Peng, Yang, Yang, Wang (b0085) 2020; 28 Wang, Jiang (b0030) 2017; 25 Smith, Vier, Koschny, Soukoulis (b0130) 2005; 71 Emani, Kildishev, Shalaev, Boltasseva (b0135) 2015; 4 Huang, Yang, Gao, Yang, Wu, He (b0090) 2019; 27 Shah, Grant, Hao, Kenney, Pusino, Cumming (b0100) 2018; 5 Kotov, Lozovik (b0070) 2016; 93 Strelniker (b0105) 2007; 76 Wang, Li, Yu, Liao (b0055) 2016; 7 Landy, Sajuyigbe, Mock, Smith, Padilla (b0005) 2008; 100 Zhu, Ma, Sun, Ding, He, Zhou (b0025) 2014; 105 Wang, Huang, Li, Chen, Xie (b0040) 2018; 57 Liu, Jiang, Zhou, Wang, Zhang, Weng (b0050) 2014; 13 Chen, Zhang, Liu, Zhao, Guo, Zhang (b0115) 2017; 7 Wonjoo (b0125) 2004; 40 Daniel, Bawuah (b0015) 2019; 2 Huang, Cheng, Cheng, Chen, Mao, Gong (b0035) 2018; 415 Wu (b0060) 2018; 30 Argyropoulos, Le, Mattiucci, D’Aguanno, Alù (b0110) 2013; 87 Shi, Fang, Zhai, Li, Wang (b0075) 2020; 28 Piper, Fan (b0120) 2014; 1 Xiong, Ji, Bashir, Yang (b0065) 2020; 28 Wang, Zhai, Wang, Huang, Wang (b0020) 2015; 117 Gordon, Brolo, McKinnon, Rajora, Leathem, Kavanagh (b0095) 2004; 92 Xiong, Li, Zhang (b0045) 2021; 143 Fang, Shi, Liu, Zhai, Li, Wang (b0080) 2020; 462 Landy (10.1016/j.rinp.2022.105263_b0005) 2008; 100 Huang (10.1016/j.rinp.2022.105263_b0090) 2019; 27 Liu (10.1016/j.rinp.2022.105263_b0050) 2014; 13 Shah (10.1016/j.rinp.2022.105263_b0100) 2018; 5 Wang (10.1016/j.rinp.2022.105263_b0020) 2015; 117 Huang (10.1016/j.rinp.2022.105263_b0035) 2018; 415 Smith (10.1016/j.rinp.2022.105263_b0130) 2005; 71 Chen (10.1016/j.rinp.2022.105263_b0115) 2017; 7 Fang (10.1016/j.rinp.2022.105263_b0080) 2020; 462 Wonjoo (10.1016/j.rinp.2022.105263_b0125) 2004; 40 Zhu (10.1016/j.rinp.2022.105263_b0025) 2014; 105 Xiong (10.1016/j.rinp.2022.105263_b0065) 2020; 28 Wang (10.1016/j.rinp.2022.105263_b0055) 2016; 7 Kotov (10.1016/j.rinp.2022.105263_b0070) 2016; 93 Shi (10.1016/j.rinp.2022.105263_b0075) 2020; 28 Emani (10.1016/j.rinp.2022.105263_b0135) 2015; 4 Xiong (10.1016/j.rinp.2022.105263_b0045) 2021; 143 Strelniker (10.1016/j.rinp.2022.105263_b0105) 2007; 76 Wang (10.1016/j.rinp.2022.105263_b0040) 2018; 57 Wu (10.1016/j.rinp.2022.105263_b0060) 2018; 30 Wang (10.1016/j.rinp.2022.105263_b0030) 2017; 25 Argyropoulos (10.1016/j.rinp.2022.105263_b0110) 2013; 87 Daniel (10.1016/j.rinp.2022.105263_b0015) 2019; 2 Gordon (10.1016/j.rinp.2022.105263_b0095) 2004; 92 Piper (10.1016/j.rinp.2022.105263_b0120) 2014; 1 Xiong (10.1016/j.rinp.2022.105263_b0085) 2020; 28 Watts (10.1016/j.rinp.2022.105263_b0010) 2012; 24 |
References_xml | – volume: 93 year: 2016 ident: b0070 article-title: Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films publication-title: Physical Review B – volume: 5 start-page: 663 year: 2018 end-page: 669 ident: b0100 article-title: Ultra-narrow Line Width Polarization-Insensitive Filter Using a Symmetry-Breaking Selective Plasmonic Metasurface publication-title: ACS Photonics – volume: 415 start-page: 194 year: 2018 end-page: 201 ident: b0035 article-title: Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle publication-title: Opt Commun – volume: 28 start-page: 15744 year: 2020 ident: b0085 article-title: Bi-tunable terahertz absorber based on strontium titanate and Dirac semimetal publication-title: Opt Express – volume: 28 start-page: 13884 year: 2020 ident: b0065 article-title: Dual-controlled broadband terahertz absorber based on graphene and Dirac semimetal publication-title: Opt Express – volume: 87 year: 2013 ident: b0110 article-title: Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces publication-title: Physical Review B – volume: 4 start-page: 214 year: 2015 end-page: 223 ident: b0135 article-title: Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance publication-title: Nanophotonics – volume: 143 start-page: 107274 year: 2021 ident: b0045 article-title: Broadband terahertz absorber based on hybrid Dirac semimetal and water publication-title: Opt Laser Technol – volume: 117 start-page: 014504 year: 2015 ident: b0020 article-title: A novel dual-band terahertz metamaterial absorber for a sensor application publication-title: J Appl Phys – volume: 105 start-page: 021102 year: 2014 ident: b0025 article-title: Ultra-broadband terahertz metamaterial absorber publication-title: Appl Phys Lett – volume: 92 year: 2004 ident: b0095 article-title: Strong polarization in the optical transmission through elliptical nanohole arrays publication-title: Phys Rev Lett – volume: 25 start-page: 5206 year: 2017 ident: b0030 article-title: Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials publication-title: Opt Express – volume: 76 year: 2007 ident: b0105 article-title: Theory of optical transmission through elliptical nanohole arrays publication-title: Physical Review B – volume: 1 start-page: 347 year: 2014 end-page: 353 ident: b0120 article-title: Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance publication-title: ACS Photonics – volume: 7 start-page: 3397 year: 2017 ident: b0115 article-title: Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals publication-title: Optical Materials Express – volume: 13 start-page: 677 year: 2014 end-page: 681 ident: b0050 article-title: A stable three-dimensional topological Dirac semimetal Cd3As2 publication-title: Nat Mater – volume: 100 year: 2008 ident: b0005 article-title: Perfect metamaterial absorber publication-title: Phys Rev Lett – volume: 462 start-page: 125333 year: 2020 ident: b0080 article-title: Single- and dual-band convertible terahertz absorber based on bulk Dirac semimetal publication-title: Opt Commun – volume: 71 year: 2005 ident: b0130 article-title: Electromagnetic parameter retrieval from inhomogeneous metamaterials publication-title: Phys Rev E – volume: 28 start-page: 7350 year: 2020 ident: b0075 article-title: Large-range, continuously tunable perfect absorbers based on Dirac semimetals publication-title: Opt Express – volume: 2 start-page: 216 year: 2019 ident: b0015 article-title: Swastika-shaped microslots as a dual-band metamaterial absorber in the terahertz range publication-title: OSA Continuum – volume: 57 start-page: 6916 year: 2018 ident: b0040 article-title: Dual-band tunable perfect metamaterial absorber based on graphene publication-title: Appl Opt – volume: 27 start-page: 25902 year: 2019 ident: b0090 article-title: Metamaterial absorber with independently tunable amplitude and frequency in the terahertz regime publication-title: Opt Express – volume: 30 start-page: 1707547 year: 2018 ident: b0060 article-title: Dirac Semimetal Heterostructures: 3D Cd3As2 on 2D Graphene publication-title: Adv Mater – volume: 40 start-page: 1511 year: 2004 end-page: 1518 ident: b0125 article-title: Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities publication-title: IEEE J Quantum Electron – volume: 24 start-page: OP98 year: 2012 end-page: OP120 ident: b0010 article-title: Metamaterial Electromagnetic Wave Absorbers publication-title: Adv Mater – volume: 7 year: 2016 ident: b0055 article-title: Aharonov–Bohm oscillations in Dirac semimetal Cd3As2 nanowires publication-title: Nat Commun – volume: 100 issue: 20 year: 2008 ident: 10.1016/j.rinp.2022.105263_b0005 article-title: Perfect metamaterial absorber publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.100.207402 – volume: 1 start-page: 347 issue: 4 year: 2014 ident: 10.1016/j.rinp.2022.105263_b0120 article-title: Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance publication-title: ACS Photonics doi: 10.1021/ph400090p – volume: 28 start-page: 15744 issue: 10 year: 2020 ident: 10.1016/j.rinp.2022.105263_b0085 article-title: Bi-tunable terahertz absorber based on strontium titanate and Dirac semimetal publication-title: Opt Express doi: 10.1364/OE.395070 – volume: 30 start-page: 1707547 issue: 34 year: 2018 ident: 10.1016/j.rinp.2022.105263_b0060 article-title: Dirac Semimetal Heterostructures: 3D Cd3As2 on 2D Graphene publication-title: Adv Mater doi: 10.1002/adma.201707547 – volume: 2 start-page: 216 issue: 1 year: 2019 ident: 10.1016/j.rinp.2022.105263_b0015 article-title: Swastika-shaped microslots as a dual-band metamaterial absorber in the terahertz range publication-title: OSA Continuum doi: 10.1364/OSAC.2.000216 – volume: 40 start-page: 1511 issue: 10 year: 2004 ident: 10.1016/j.rinp.2022.105263_b0125 article-title: Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities publication-title: IEEE J Quantum Electron doi: 10.1109/JQE.2004.834773 – volume: 93 issue: 23 year: 2016 ident: 10.1016/j.rinp.2022.105263_b0070 article-title: Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films publication-title: Physical Review B doi: 10.1103/PhysRevB.93.235417 – volume: 87 issue: 20 year: 2013 ident: 10.1016/j.rinp.2022.105263_b0110 article-title: Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces publication-title: Physical Review B doi: 10.1103/PhysRevB.87.205112 – volume: 76 issue: 8 year: 2007 ident: 10.1016/j.rinp.2022.105263_b0105 article-title: Theory of optical transmission through elliptical nanohole arrays publication-title: Physical Review B doi: 10.1103/PhysRevB.76.085409 – volume: 28 start-page: 7350 issue: 5 year: 2020 ident: 10.1016/j.rinp.2022.105263_b0075 article-title: Large-range, continuously tunable perfect absorbers based on Dirac semimetals publication-title: Opt Express doi: 10.1364/OE.385181 – volume: 143 start-page: 107274 year: 2021 ident: 10.1016/j.rinp.2022.105263_b0045 article-title: Broadband terahertz absorber based on hybrid Dirac semimetal and water publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2021.107274 – volume: 28 start-page: 13884 issue: 9 year: 2020 ident: 10.1016/j.rinp.2022.105263_b0065 article-title: Dual-controlled broadband terahertz absorber based on graphene and Dirac semimetal publication-title: Opt Express doi: 10.1364/OE.392380 – volume: 13 start-page: 677 issue: 7 year: 2014 ident: 10.1016/j.rinp.2022.105263_b0050 article-title: A stable three-dimensional topological Dirac semimetal Cd3As2 publication-title: Nat Mater doi: 10.1038/nmat3990 – volume: 462 start-page: 125333 year: 2020 ident: 10.1016/j.rinp.2022.105263_b0080 article-title: Single- and dual-band convertible terahertz absorber based on bulk Dirac semimetal publication-title: Opt Commun doi: 10.1016/j.optcom.2020.125333 – volume: 7 start-page: 3397 issue: 9 year: 2017 ident: 10.1016/j.rinp.2022.105263_b0115 article-title: Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals publication-title: Optical Materials Express doi: 10.1364/OME.7.003397 – volume: 7 issue: 1 year: 2016 ident: 10.1016/j.rinp.2022.105263_b0055 article-title: Aharonov–Bohm oscillations in Dirac semimetal Cd3As2 nanowires publication-title: Nat Commun – volume: 25 start-page: 5206 issue: 5 year: 2017 ident: 10.1016/j.rinp.2022.105263_b0030 article-title: Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials publication-title: Opt Express doi: 10.1364/OE.25.005206 – volume: 57 start-page: 6916 issue: 24 year: 2018 ident: 10.1016/j.rinp.2022.105263_b0040 article-title: Dual-band tunable perfect metamaterial absorber based on graphene publication-title: Appl Opt doi: 10.1364/AO.57.006916 – volume: 27 start-page: 25902 issue: 18 year: 2019 ident: 10.1016/j.rinp.2022.105263_b0090 article-title: Metamaterial absorber with independently tunable amplitude and frequency in the terahertz regime publication-title: Opt Express doi: 10.1364/OE.27.025902 – volume: 92 issue: 3 year: 2004 ident: 10.1016/j.rinp.2022.105263_b0095 article-title: Strong polarization in the optical transmission through elliptical nanohole arrays publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.92.037401 – volume: 4 start-page: 214 issue: 1 year: 2015 ident: 10.1016/j.rinp.2022.105263_b0135 article-title: Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance publication-title: Nanophotonics doi: 10.1515/nanoph-2015-0014 – volume: 105 start-page: 021102 issue: 2 year: 2014 ident: 10.1016/j.rinp.2022.105263_b0025 article-title: Ultra-broadband terahertz metamaterial absorber publication-title: Appl Phys Lett doi: 10.1063/1.4890521 – volume: 71 issue: 3 year: 2005 ident: 10.1016/j.rinp.2022.105263_b0130 article-title: Electromagnetic parameter retrieval from inhomogeneous metamaterials publication-title: Phys Rev E doi: 10.1103/PhysRevE.71.036617 – volume: 117 start-page: 014504 issue: 1 year: 2015 ident: 10.1016/j.rinp.2022.105263_b0020 article-title: A novel dual-band terahertz metamaterial absorber for a sensor application publication-title: J Appl Phys doi: 10.1063/1.4905261 – volume: 24 start-page: OP98 issue: 23 year: 2012 ident: 10.1016/j.rinp.2022.105263_b0010 article-title: Metamaterial Electromagnetic Wave Absorbers publication-title: Adv Mater – volume: 415 start-page: 194 year: 2018 ident: 10.1016/j.rinp.2022.105263_b0035 article-title: Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle publication-title: Opt Commun doi: 10.1016/j.optcom.2018.01.051 – volume: 5 start-page: 663 issue: 2 year: 2018 ident: 10.1016/j.rinp.2022.105263_b0100 article-title: Ultra-narrow Line Width Polarization-Insensitive Filter Using a Symmetry-Breaking Selective Plasmonic Metasurface publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b01011 |
SSID | ssj0001645511 |
Score | 2.4120958 |
Snippet | •The absorber can be controlled by Fermi energy level (EF) and temperature (T).•Coupled-mode theory (CMT), perturbation theory, and the electric field... A perfect terahertz (THz) metamaterial absorber (MMA) based on bulk Dirac semimetal (BDS) and strontium titanate (STO) is proposed and numerically analyzed. By... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 105263 |
SubjectTerms | Absorber Dirac semimetal Strontium titanate THz |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07a8MwEBYlUOhS-qTpCw3dimkkS7I1pqUhdOjUQDajJ6QUpzjO0P766iQnuEu6dDIYPcyd7e9OfPcdQncjR1nhjcuoK3zGCLGZLpXNfBmwQkhRhGwO2BavYjpjL3M-77X6Ak5YkgdOhnsQMheiMJ5LI5kXUgOkyHC1ubZUxDrygHm9ZCqerggWQgHItigFnb5CFl3FTCJ3NYsaxCophT63VOS_UCmK9_fAqQc4kyN02EWKeJye8BjtufoE7UfGplmdIj6usQI6OIhTYlVb7JtEi_7C7TpWRGGoLg4-ab-x0qtlo11zhmaT57enadb1QMgMIyPoFC9p-DfKkCYw63KuSQkigURpU3JlzKhQZUlC0kBYPJAYKcW85DzXjqkQe-TnaFAva3eBsLWeWukUDd8dUyESKAN4G660k5Y4aoeIbGxQmU4gHPpUfFQbJth7BXarwG5VstsQ3W_nfCZ5jJ2jH8G025EgbR1vBIdXncOrvxw-RHzjmKqLEhL6h6UWOza__I_Nr9ABLJlIaNdo0DZrdxOiklbfxhfwB-By2ns priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free and Delayed Access Journal dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBYhUOhS-qTpCw_dioklS7I1JqEhdOjSBrIZvVxcihMcZ2h_fXWWnSZLhk7G4mSbk3wP8d13CD1GltAk1zYkNslDirEJVSpNmKfOV3DBE5fNAdrilc_m9GXBFj006WphAFbZ2n5v0xtr3Y4MW20OV0UxfCMud4kTkRDiHa-zw8DUAkV8i_HfOQunLiiAvAvkQ5jQ1s54mFdVlEBbSQh0vCU83vNPDY3_jpvacT3TU3TSxozByH_WGerZ8hwdNdhNvb5AbFQGEoDhQFMZyNIEeeUB0t9BvWlqowKoM3arU_8EUq2XlbLVJZpPn98ns7DthhBqiiPoGS-Is5LCJQzU2JgpnAJdIJZKp0xqHSUyTbFLHzBtjiYiKWkuGIuVpdJFIfEV6pfL0l6jwJicGGElcX8glS4mSJ0b10wqKwy2xAwQ7nSQ6ZYqHDpWfGUdJuwzA71loLfM622AnrZzVp4o46D0GFS7lQSS62ZgWX1k7SpnXMScJzpnQguac6EgmhDuamJlCE8GiHULk-3tGfeo4sDLb_457xYdw51HoN2hfl1t7L0LSWr10Oy5X9d123Q priority: 102 providerName: Elsevier |
Title | An amplitude and frequency tunable terahertz absorber |
URI | https://dx.doi.org/10.1016/j.rinp.2022.105263 https://doaj.org/article/693667cf59c94f69b4266969bd3bd267 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4-ELyIT1xf9OBNKps0SZuDyK64qKAnF_ZW8qooS1e7XVB_vTN9rAqLJy8tlDxgJul8E758Q8hp1zMeZ9aHzMdZyCl1oUm0C7MEYoVUMoZsDtkWD_JmyO9GYrRE2nJHjQGnC1M7rCc1LMbn728fl7DhL765WsVzjtqTjGHZWiajZbIKkUniKr9v4H515iI5AATMwRhD9b5Yxc09msXD_IpVlaT_j5D1IwwNNslGgx-DXu3wLbLk822yVvE47XSHiF4eaCSJo2RloHMXZEVNlv4Iyll1TyrAO8fgqfIz0GY6KYwvdslwcP14dRM2lRFCy2kX68crBn9MBckDdz4ShiYoHUi1sYnQ1nZjnSQUUgnKq2OKrtY8U0JExnMNiCTaIyv5JPf7JHAuY055zWA3cg34IIGQboU2XjnqmesQ2togtY1sOFavGKctP-wlRbulaLe0tluHnM37vNaiGX-27qNp5y1R8Lr6MCme0mb_pFJFUsY2E8oqnkllEFkoeLvIOCbjDhGtY9IGO9SYAIZ6_mPyg_-Y_JCs45A1Ne2IrJTFzB8DVinNSZXjw_N21D-pFuMXH_XlVw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BEYIF8RTlmYENRa0d24lHikAFShdaqZvlV1ARSlEoA_x6fEnKY2FgiuT4kujs3MP67juAs66nLM2tj6lP85gR4mKTaRfnWfAVQoo0ZHOIthiK_pjdTvhkCS4XtTAIq2xsf23TK2vdjHQabXZeptPOAw25S5LKlNLa8S7DSogGBOK6bia974MWwUJUgIkXCsQo0RTP1DivclogbyWl2PKWiuSXg6p4_H_4qR--53oTNpqgMbqov2sLlnyxDasVeNO-7gC_KCKNyHDkqYx04aK8rBHS79H8rSqOirDQOCzP_CPS5nVWGl_uwvj6anTZj5t2CLFlpItN4yUNZlKGjIE5n3BDMuQLJNrYjGtru6nOMhLyB8Kqs4mu1iyXnCfGMx3CkGQPWsWs8PsQOZdTJ72m4RdkOgQFWfDjlmvjpSOeujaQhQ6UbbjCsWXFs1qAwp4U6k2h3lSttzacf8m81EwZf87uoWq_ZiLLdTUwKx9Vs8xKyESI1OZcWslyIQ2GEzJcXWIcFWkb-GJh1K9NEx41_ePlB_-UO4W1_uh-oAY3w7tDWMc7NRztCFrz8s0fh_hkbk6q_fcJAMTemw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+amplitude+and+frequency+tunable+terahertz+absorber&rft.jtitle=Results+in+physics&rft.au=Qi+Shen&rft.au=Han+Xiong&rft.date=2022-03-01&rft.pub=Elsevier&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=34&rft.spage=105263&rft_id=info:doi/10.1016%2Fj.rinp.2022.105263&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_693667cf59c94f69b4266969bd3bd267 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon |