Minimizing electrostatic interactions from piezoresponse force microscopy via capacitive excitation

•Capacitive excitation piezoresponse force microscopy (PFM) is developed to minimize electrostatic interactions.•The piezoresponse measured by capacitive excitation PFM (ce-PFM) is smaller than conventional PFM.•The domain contrast obtained by ce-PFM is sharper than conventional PFM. Piezoresponse f...

Full description

Saved in:
Bibliographic Details
Published inTheoretical and applied mechanics letters Vol. 10; no. 1; pp. 23 - 26
Main Authors Zhu, Qingfeng, Esfahani, Ehsan Nasr, Xie, Shuhong, Li, Jiangyu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Capacitive excitation piezoresponse force microscopy (PFM) is developed to minimize electrostatic interactions.•The piezoresponse measured by capacitive excitation PFM (ce-PFM) is smaller than conventional PFM.•The domain contrast obtained by ce-PFM is sharper than conventional PFM. Piezoresponse force microscopy (PFM) has emerged as one of the most powerful techniques to probe ferroelectric materials at the nanoscale, yet it has been increasingly recognized that piezoresponse measured by PFM is often influenced by electrostatic interactions. In this letter, we report a capacitive excitation PFM (ce-PFM) to minimize the electrostatic interactions. The effectiveness of ce-PFM in minimizing electrostatic interactions is demonstrated by comparing the piezoresponse and the effective piezoelectric coefficient measured by ce-PFM and conventional PFM. The effectiveness is further confirmed through the ferroelectric domain pattern imaged via ce-PFM and conventional PFM in vertical modes, with the corresponding domain contrast obtained by ce-PFM is sharper than conventional PFM. These results demonstrate ce-PFM as an effective tool to minimize the interference from electrostatic interactions and to image ferroelectric domain pattern, and it can be easily implemented in conventional atomic force microscope (AFM) setup to probe true piezoelectricity at the nanoscale.
AbstractList •Capacitive excitation piezoresponse force microscopy (PFM) is developed to minimize electrostatic interactions.•The piezoresponse measured by capacitive excitation PFM (ce-PFM) is smaller than conventional PFM.•The domain contrast obtained by ce-PFM is sharper than conventional PFM. Piezoresponse force microscopy (PFM) has emerged as one of the most powerful techniques to probe ferroelectric materials at the nanoscale, yet it has been increasingly recognized that piezoresponse measured by PFM is often influenced by electrostatic interactions. In this letter, we report a capacitive excitation PFM (ce-PFM) to minimize the electrostatic interactions. The effectiveness of ce-PFM in minimizing electrostatic interactions is demonstrated by comparing the piezoresponse and the effective piezoelectric coefficient measured by ce-PFM and conventional PFM. The effectiveness is further confirmed through the ferroelectric domain pattern imaged via ce-PFM and conventional PFM in vertical modes, with the corresponding domain contrast obtained by ce-PFM is sharper than conventional PFM. These results demonstrate ce-PFM as an effective tool to minimize the interference from electrostatic interactions and to image ferroelectric domain pattern, and it can be easily implemented in conventional atomic force microscope (AFM) setup to probe true piezoelectricity at the nanoscale.
Piezoresponse force microscopy (PFM) has emerged as one of the most powerful techniques to probe ferroelectric materials at the nanoscale, yet it has been increasingly recognized that piezoresponse measured by PFM is often influenced by electrostatic interactions. In this letter, we report a capacitive excitation PFM (ce-PFM) to minimize the electrostatic interactions. The effectiveness of ce-PFM in minimizing electrostatic interactions is demonstrated by comparing the piezoresponse and the effective piezoelectric coefficient measured by ce-PFM and conventional PFM. The effectiveness is further confirmed through the ferroelectric domain pattern imaged via ce-PFM and conventional PFM in vertical modes, with the corresponding domain contrast obtained by ce-PFM is sharper than conventional PFM. These results demonstrate ce-PFM as an effective tool to minimize the interference from electrostatic interactions and to image ferroelectric domain pattern, and it can be easily implemented in conventional atomic force microscope (AFM) setup to probe true piezoelectricity at the nanoscale. Keywords: Piezoresponse force microscopy, Electrostatic interactions, Capacitive excitation
Author Zhu, Qingfeng
Esfahani, Ehsan Nasr
Xie, Shuhong
Li, Jiangyu
Author_xml – sequence: 1
  givenname: Qingfeng
  surname: Zhu
  fullname: Zhu, Qingfeng
  organization: Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
– sequence: 2
  givenname: Ehsan Nasr
  surname: Esfahani
  fullname: Esfahani, Ehsan Nasr
  organization: Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
– sequence: 3
  givenname: Shuhong
  surname: Xie
  fullname: Xie, Shuhong
  email: shxie@xtu.edu.cn
  organization: Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, and School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
– sequence: 4
  givenname: Jiangyu
  surname: Li
  fullname: Li, Jiangyu
  email: jjli@uw.edu
  organization: Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
BookMark eNp9kMFq3DAURbVIoWmaH-hKPzDOe7I1HkM2YWjTgYRukrV4lp_CG8aWkc3Qma-PnCldRhuJC-eie76pqyEOrNQPhAIB13f7Yqb-UBgwUAAWAHilrg00dgVl1XxVt9O0h3wsrsumvFb-WQbp5SzDm-YD-znFaaZZvJZh5kR-ljhMOqTY61H4HBNPY05Yh5g86158JnwcT_oopD2N5GWWI2v-mx-04N_Vl0CHiW__3Tfq9dfPl-3v1dOfx9324WnlK4R5hQZrIjAhbJixbYCRauKmbQG6tjNUW6wN-s4b26I1m5yAraxFsnluKG_U7tLbRdq7MUlP6eQiifsIYnpzlPK0AztuqKoQzdp0VVVzaBk2dcslbppQlmhyl7l0LfOmxOF_H4JbTLu9W0y7xbQDdNl0hu4vEOeVR-HkJi88eO4kZbX5G_IZ_g70eY0B
CitedBy_id crossref_primary_10_1002_advs_202003993
crossref_primary_10_1039_D0TC01556C
crossref_primary_10_1016_j_apsusc_2021_151281
crossref_primary_10_34133_2021_1519340
Cites_doi 10.1126/science.1129564
10.1063/1.4891349
10.1016/S0304-3991(99)00134-5
10.1103/RevModPhys.84.119
10.1007/s10832-004-5114-y
10.1126/science.1092508
10.1063/1.4873386
10.1039/C1NR11099C
10.1063/1.4927809
10.1109/TUFFC.2006.170
10.1063/1.4922210
10.1063/1.4901102
10.1063/1.4979015
10.1016/j.cap.2016.12.012
10.1103/PhysRevB.65.125408
10.1021/nl0350837
10.1039/c3nr00770g
10.1088/0953-8984/19/13/132201
10.1088/0957-4484/22/35/355705
10.1063/1.3486226
10.1063/1.2750524
10.1557/PROC-541-617
10.1063/1.4884422
10.1021/acsnano.5b02227
10.1002/adma.201102249
10.1103/PhysRevB.34.5883
10.1063/1.1592307
ContentType Journal Article
Copyright 2020 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics
Copyright_xml – notice: 2020 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.taml.2020.01.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 26
ExternalDocumentID oai_doaj_org_article_e9a4411262d447efbe087be3189f3312
10_1016_j_taml_2020_01_001
S2095034920300052
GroupedDBID 0R~
0SF
4.4
457
5VR
5VS
6I.
92E
92I
92Q
93N
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABFTF
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AFUIB
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
CCEZO
CCVFK
CHBEP
CW9
EBS
EJD
FA0
FDB
GROUPED_DOAJ
IPNFZ
M41
NCXOZ
O9-
OK1
RIG
RNS
ROL
SSZ
TCJ
TGP
Y7S
-SA
-S~
AAXDM
AAYXX
ADVLN
AKRWK
CAJEA
CITATION
Q--
U1G
U5K
ID FETCH-LOGICAL-c410t-1217aa02ff8ee1b90e1a7ae9bb00dbd2a751721cdc25b15282a7054551a5020f3
IEDL.DBID DOA
ISSN 2095-0349
IngestDate Thu Jul 04 21:11:41 EDT 2024
Fri Aug 23 03:40:16 EDT 2024
Thu Jul 20 20:16:50 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Capacitive excitation
Electrostatic interactions
Piezoresponse force microscopy
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-1217aa02ff8ee1b90e1a7ae9bb00dbd2a751721cdc25b15282a7054551a5020f3
OpenAccessLink https://doaj.org/article/e9a4411262d447efbe087be3189f3312
PageCount 4
ParticipantIDs doaj_primary_oai_doaj_org_article_e9a4411262d447efbe087be3189f3312
crossref_primary_10_1016_j_taml_2020_01_001
elsevier_sciencedirect_doi_10_1016_j_taml_2020_01_001
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationTitle Theoretical and applied mechanics letters
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Kalinin, Bonnell (bib22) 2002; 65
Chen, Liu, Liu (bib11) 2012; 101
Catalan, Schilling, Scott (bib4) 2007; 19
Harnagea, Alexe, Hesse (bib20) 2003; 83
Durkan, Welland (bib23) 2000; 82
Gannepalli, Yablon, Tsouet (bib25) 2011; 22
Huey, Ramanujan, Bobji (bib16) 2004; 13
Balke, Maksymovych, Jesse (bib21) 2015; 9
Kalinin, Bonnell (bib28) 2004; 4
Wang, Geng, Wu (bib18) 2014; 104
Peter, Rüdiger, Szot (bib24) 2006; 53
Jungk, Hoffmann, Soergel (bib30) 2006; 89
Scott (bib6) 2007; 315
Sekhon, Aggarwal, Sheet (bib10) 2014; 104
Tagantsev (bib14) 1986; 34
Catalan, Seidel, Ramesh (bib2) 2012; 84
Han, Kim, Alexe (bib5) 2011; 23
Christman, Maiwa, Kingon (bib15) 1998; 541
Ahn (bib1) 2004; 303
Johann, Jungk, Lilienblum (bib31) 2010; 97
Seol, Kim, Kim (bib13) 2017; 17
Chen, Ma, Xie (bib27) 2013; 5
Chen, Adler, Li (bib29) 2014; 105
Labuda, Proksch (bib19) 2015; 106
Proksch (bib8) 2015; 118
Chu, Zhao, Cruz (bib3) 2007; 90
Proksch (bib9) 2014; 116
Chen, Ou, Ma (bib17) 2014; 104
Vasudevan, Balke, Maksymovych (bib12) 2017; 4
Setter, Damjanovic, Eng (bib7) 2006; 100
Xie, Gannepalli, Chen (bib26) 2012; 4
Harnagea (10.1016/j.taml.2020.01.001_bib20) 2003; 83
Seol (10.1016/j.taml.2020.01.001_bib13) 2017; 17
Chen (10.1016/j.taml.2020.01.001_bib27) 2013; 5
Chen (10.1016/j.taml.2020.01.001_bib11) 2012; 101
Xie (10.1016/j.taml.2020.01.001_bib26) 2012; 4
Scott (10.1016/j.taml.2020.01.001_bib6) 2007; 315
Setter (10.1016/j.taml.2020.01.001_bib7) 2006; 100
Wang (10.1016/j.taml.2020.01.001_bib18) 2014; 104
Christman (10.1016/j.taml.2020.01.001_bib15) 1998; 541
Kalinin (10.1016/j.taml.2020.01.001_bib22) 2002; 65
Durkan (10.1016/j.taml.2020.01.001_bib23) 2000; 82
Sekhon (10.1016/j.taml.2020.01.001_bib10) 2014; 104
Labuda (10.1016/j.taml.2020.01.001_bib19) 2015; 106
Catalan (10.1016/j.taml.2020.01.001_bib4) 2007; 19
Han (10.1016/j.taml.2020.01.001_bib5) 2011; 23
Chen (10.1016/j.taml.2020.01.001_bib29) 2014; 105
Proksch (10.1016/j.taml.2020.01.001_bib8) 2015; 118
Chen (10.1016/j.taml.2020.01.001_bib17) 2014; 104
Proksch (10.1016/j.taml.2020.01.001_bib9) 2014; 116
Jungk (10.1016/j.taml.2020.01.001_bib30) 2006; 89
Gannepalli (10.1016/j.taml.2020.01.001_bib25) 2011; 22
Balke (10.1016/j.taml.2020.01.001_bib21) 2015; 9
Catalan (10.1016/j.taml.2020.01.001_bib2) 2012; 84
Kalinin (10.1016/j.taml.2020.01.001_bib28) 2004; 4
Vasudevan (10.1016/j.taml.2020.01.001_bib12) 2017; 4
Chu (10.1016/j.taml.2020.01.001_bib3) 2007; 90
Ahn (10.1016/j.taml.2020.01.001_bib1) 2004; 303
Huey (10.1016/j.taml.2020.01.001_bib16) 2004; 13
Peter (10.1016/j.taml.2020.01.001_bib24) 2006; 53
Tagantsev (10.1016/j.taml.2020.01.001_bib14) 1986; 34
Johann (10.1016/j.taml.2020.01.001_bib31) 2010; 97
References_xml – volume: 4
  start-page: 408
  year: 2012
  end-page: 413
  ident: bib26
  article-title: High resolution quantitative piezoresponse force microscopy of BiFeO3 nanofibers with dramatically enhanced sensitivity
  publication-title: Nanoscale
  contributor:
    fullname: Chen
– volume: 23
  start-page: 4599
  year: 2011
  end-page: 4613
  ident: bib5
  article-title: Nanostructured ferroelectrics: Fabrication and structure-property relations
  publication-title: Adv. Mater.
  contributor:
    fullname: Alexe
– volume: 118
  year: 2015
  ident: bib8
  article-title: In-situ piezoresponse force microscopy cantilever mode shape profiling
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Proksch
– volume: 104
  year: 2014
  ident: bib17
  article-title: Mechanisms of electromechanical coupling in strain based scanning probe microscopy
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Ma
– volume: 106
  year: 2015
  ident: bib19
  article-title: Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Proksch
– volume: 9
  start-page: 6484
  year: 2015
  end-page: 6492
  ident: bib21
  article-title: Differentiating ferroelectric and nonferroelectric electromechanical effects with scanning probe microscopy
  publication-title: ACS Nano
  contributor:
    fullname: Jesse
– volume: 116
  year: 2014
  ident: bib9
  article-title: Electrochemical strain microscopy of silica glasses
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Proksch
– volume: 82
  start-page: 141
  year: 2000
  end-page: 148
  ident: bib23
  article-title: Investigations into local ferroelectric properties by atomic force microscopy
  publication-title: Ultramicroscopy
  contributor:
    fullname: Welland
– volume: 315
  start-page: 954
  year: 2007
  end-page: 959
  ident: bib6
  article-title: Applications of modern ferroelectrics
  publication-title: Science
  contributor:
    fullname: Scott
– volume: 5
  start-page: 5747
  year: 2013
  end-page: 5751
  ident: bib27
  article-title: High sensitivity piezomagnetic force microscopy for quantitative probing of magnetic materials at the nanoscale
  publication-title: Nanoscale
  contributor:
    fullname: Xie
– volume: 83
  start-page: 338
  year: 2003
  ident: bib20
  article-title: Contact resonances in voltage-modulated force microscopy
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Hesse
– volume: 22
  year: 2011
  ident: bib25
  article-title: Mapping nanoscale elasticity and dissipation using dual frequency contact resonance AFM
  publication-title: Nanotechnology
  contributor:
    fullname: Tsouet
– volume: 100
  year: 2006
  ident: bib7
  article-title: Ferroelectric thin films: Review of materials. properties, and applications
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Eng
– volume: 19
  year: 2007
  ident: bib4
  article-title: Domains in three-dimensional ferroelectric nanostructures: theory and experiment
  publication-title: J. Phys. Condens. Matter
  contributor:
    fullname: Scott
– volume: 4
  start-page: 555
  year: 2004
  end-page: 560
  ident: bib28
  article-title: Screening phenomena on oxide surfaces and its implications for local electrostatic and transport measurements
  publication-title: Nano Lett.
  contributor:
    fullname: Bonnell
– volume: 90
  year: 2007
  ident: bib3
  article-title: Ferroelectric size effects in multiferroic thin films
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Cruz
– volume: 97
  year: 2010
  ident: bib31
  article-title: Lateral signals in piezoresponse force microscopy at domain boundaries of ferroelectric crystals
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Lilienblum
– volume: 13
  start-page: 287
  year: 2004
  end-page: 291
  ident: bib16
  article-title: The importance of distributed loading and cantilever angle in piezo-force microscopy
  publication-title: J. Electroceramics
  contributor:
    fullname: Bobji
– volume: 84
  start-page: 119
  year: 2012
  end-page: 156
  ident: bib2
  article-title: Domain wall nanoelectronics
  publication-title: Rev. Mod. Phys.
  contributor:
    fullname: Ramesh
– volume: 53
  start-page: 2253
  year: 2006
  end-page: 2260
  ident: bib24
  article-title: Sample-tip interaction of piezoresponse force microscopy in ferroelectric nanostructures
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  contributor:
    fullname: Szot
– volume: 101
  year: 2012
  ident: bib11
  article-title: Delineating local electromigration for nanoscale probing of lithium ion intercalation and extraction by electrochemical strain microscopy
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Liu
– volume: 89
  year: 2006
  ident: bib30
  article-title: Detection mechanism for ferroelectric domain boundaries with lateral force microscopy
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Soergel
– volume: 17
  start-page: 661
  year: 2017
  end-page: 674
  ident: bib13
  article-title: Non-piezoelectric effects in piezoresponse force microscopy
  publication-title: Curr. Appl. Phys.
  contributor:
    fullname: Kim
– volume: 541
  start-page: 617
  year: 1998
  ident: bib15
  article-title: Piezoelectric measurements with atomic force microscopy
  publication-title: MRS Proceedings
  contributor:
    fullname: Kingon
– volume: 34
  start-page: 5883
  year: 1986
  end-page: 5889
  ident: bib14
  article-title: Piezoelectricity and flexoelectricity in crystalline dielectrics
  publication-title: Phys. Rev. B
  contributor:
    fullname: Tagantsev
– volume: 65
  year: 2002
  ident: bib22
  article-title: Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces
  publication-title: Phys. Rev. B
  contributor:
    fullname: Bonnell
– volume: 4
  year: 2017
  ident: bib12
  article-title: Ferroelectric or non-ferroelectric: Why so many materials exhibit “ferroelectricity” on the nanoscale
  publication-title: Appl. Phys. Rev.
  contributor:
    fullname: Maksymovych
– volume: 104
  year: 2014
  ident: bib18
  article-title: Background-free piezoresponse force microscopy for quantitative measurements
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Wu
– volume: 303
  start-page: 488
  year: 2004
  end-page: 491
  ident: bib1
  article-title: Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures
  publication-title: Science
  contributor:
    fullname: Ahn
– volume: 104
  year: 2014
  ident: bib10
  article-title: Voltage induced local hysteretic phase switching in silicon
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Sheet
– volume: 105
  year: 2014
  ident: bib29
  article-title: Imaging space charge regions in Sm-doped ceria using electrochemical strain microscopy
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Li
– volume: 315
  start-page: 954
  year: 2007
  ident: 10.1016/j.taml.2020.01.001_bib6
  article-title: Applications of modern ferroelectrics
  publication-title: Science
  doi: 10.1126/science.1129564
  contributor:
    fullname: Scott
– volume: 116
  year: 2014
  ident: 10.1016/j.taml.2020.01.001_bib9
  article-title: Electrochemical strain microscopy of silica glasses
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4891349
  contributor:
    fullname: Proksch
– volume: 82
  start-page: 141
  year: 2000
  ident: 10.1016/j.taml.2020.01.001_bib23
  article-title: Investigations into local ferroelectric properties by atomic force microscopy
  publication-title: Ultramicroscopy
  doi: 10.1016/S0304-3991(99)00134-5
  contributor:
    fullname: Durkan
– volume: 84
  start-page: 119
  year: 2012
  ident: 10.1016/j.taml.2020.01.001_bib2
  article-title: Domain wall nanoelectronics
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.84.119
  contributor:
    fullname: Catalan
– volume: 13
  start-page: 287
  year: 2004
  ident: 10.1016/j.taml.2020.01.001_bib16
  article-title: The importance of distributed loading and cantilever angle in piezo-force microscopy
  publication-title: J. Electroceramics
  doi: 10.1007/s10832-004-5114-y
  contributor:
    fullname: Huey
– volume: 303
  start-page: 488
  year: 2004
  ident: 10.1016/j.taml.2020.01.001_bib1
  article-title: Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures
  publication-title: Science
  doi: 10.1126/science.1092508
  contributor:
    fullname: Ahn
– volume: 104
  year: 2014
  ident: 10.1016/j.taml.2020.01.001_bib10
  article-title: Voltage induced local hysteretic phase switching in silicon
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4873386
  contributor:
    fullname: Sekhon
– volume: 4
  start-page: 408
  year: 2012
  ident: 10.1016/j.taml.2020.01.001_bib26
  article-title: High resolution quantitative piezoresponse force microscopy of BiFeO3 nanofibers with dramatically enhanced sensitivity
  publication-title: Nanoscale
  doi: 10.1039/C1NR11099C
  contributor:
    fullname: Xie
– volume: 118
  year: 2015
  ident: 10.1016/j.taml.2020.01.001_bib8
  article-title: In-situ piezoresponse force microscopy cantilever mode shape profiling
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4927809
  contributor:
    fullname: Proksch
– volume: 53
  start-page: 2253
  year: 2006
  ident: 10.1016/j.taml.2020.01.001_bib24
  article-title: Sample-tip interaction of piezoresponse force microscopy in ferroelectric nanostructures
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2006.170
  contributor:
    fullname: Peter
– volume: 89
  year: 2006
  ident: 10.1016/j.taml.2020.01.001_bib30
  article-title: Detection mechanism for ferroelectric domain boundaries with lateral force microscopy
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Jungk
– volume: 106
  year: 2015
  ident: 10.1016/j.taml.2020.01.001_bib19
  article-title: Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4922210
  contributor:
    fullname: Labuda
– volume: 105
  year: 2014
  ident: 10.1016/j.taml.2020.01.001_bib29
  article-title: Imaging space charge regions in Sm-doped ceria using electrochemical strain microscopy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4901102
  contributor:
    fullname: Chen
– volume: 4
  year: 2017
  ident: 10.1016/j.taml.2020.01.001_bib12
  article-title: Ferroelectric or non-ferroelectric: Why so many materials exhibit “ferroelectricity” on the nanoscale
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4979015
  contributor:
    fullname: Vasudevan
– volume: 17
  start-page: 661
  year: 2017
  ident: 10.1016/j.taml.2020.01.001_bib13
  article-title: Non-piezoelectric effects in piezoresponse force microscopy
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2016.12.012
  contributor:
    fullname: Seol
– volume: 65
  year: 2002
  ident: 10.1016/j.taml.2020.01.001_bib22
  article-title: Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.125408
  contributor:
    fullname: Kalinin
– volume: 4
  start-page: 555
  year: 2004
  ident: 10.1016/j.taml.2020.01.001_bib28
  article-title: Screening phenomena on oxide surfaces and its implications for local electrostatic and transport measurements
  publication-title: Nano Lett.
  doi: 10.1021/nl0350837
  contributor:
    fullname: Kalinin
– volume: 100
  year: 2006
  ident: 10.1016/j.taml.2020.01.001_bib7
  article-title: Ferroelectric thin films: Review of materials. properties, and applications
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Setter
– volume: 5
  start-page: 5747
  year: 2013
  ident: 10.1016/j.taml.2020.01.001_bib27
  article-title: High sensitivity piezomagnetic force microscopy for quantitative probing of magnetic materials at the nanoscale
  publication-title: Nanoscale
  doi: 10.1039/c3nr00770g
  contributor:
    fullname: Chen
– volume: 19
  year: 2007
  ident: 10.1016/j.taml.2020.01.001_bib4
  article-title: Domains in three-dimensional ferroelectric nanostructures: theory and experiment
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/19/13/132201
  contributor:
    fullname: Catalan
– volume: 104
  year: 2014
  ident: 10.1016/j.taml.2020.01.001_bib18
  article-title: Background-free piezoresponse force microscopy for quantitative measurements
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Wang
– volume: 22
  year: 2011
  ident: 10.1016/j.taml.2020.01.001_bib25
  article-title: Mapping nanoscale elasticity and dissipation using dual frequency contact resonance AFM
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/35/355705
  contributor:
    fullname: Gannepalli
– volume: 97
  year: 2010
  ident: 10.1016/j.taml.2020.01.001_bib31
  article-title: Lateral signals in piezoresponse force microscopy at domain boundaries of ferroelectric crystals
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3486226
  contributor:
    fullname: Johann
– volume: 90
  year: 2007
  ident: 10.1016/j.taml.2020.01.001_bib3
  article-title: Ferroelectric size effects in multiferroic thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2750524
  contributor:
    fullname: Chu
– volume: 541
  start-page: 617
  year: 1998
  ident: 10.1016/j.taml.2020.01.001_bib15
  article-title: Piezoelectric measurements with atomic force microscopy
  publication-title: MRS Proceedings
  doi: 10.1557/PROC-541-617
  contributor:
    fullname: Christman
– volume: 104
  year: 2014
  ident: 10.1016/j.taml.2020.01.001_bib17
  article-title: Mechanisms of electromechanical coupling in strain based scanning probe microscopy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4884422
  contributor:
    fullname: Chen
– volume: 9
  start-page: 6484
  year: 2015
  ident: 10.1016/j.taml.2020.01.001_bib21
  article-title: Differentiating ferroelectric and nonferroelectric electromechanical effects with scanning probe microscopy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02227
  contributor:
    fullname: Balke
– volume: 23
  start-page: 4599
  year: 2011
  ident: 10.1016/j.taml.2020.01.001_bib5
  article-title: Nanostructured ferroelectrics: Fabrication and structure-property relations
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102249
  contributor:
    fullname: Han
– volume: 101
  year: 2012
  ident: 10.1016/j.taml.2020.01.001_bib11
  article-title: Delineating local electromigration for nanoscale probing of lithium ion intercalation and extraction by electrochemical strain microscopy
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Chen
– volume: 34
  start-page: 5883
  year: 1986
  ident: 10.1016/j.taml.2020.01.001_bib14
  article-title: Piezoelectricity and flexoelectricity in crystalline dielectrics
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.34.5883
  contributor:
    fullname: Tagantsev
– volume: 83
  start-page: 338
  year: 2003
  ident: 10.1016/j.taml.2020.01.001_bib20
  article-title: Contact resonances in voltage-modulated force microscopy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1592307
  contributor:
    fullname: Harnagea
SSID ssj0000516393
Score 2.1876252
Snippet •Capacitive excitation piezoresponse force microscopy (PFM) is developed to minimize electrostatic interactions.•The piezoresponse measured by capacitive...
Piezoresponse force microscopy (PFM) has emerged as one of the most powerful techniques to probe ferroelectric materials at the nanoscale, yet it has been...
SourceID doaj
crossref
elsevier
SourceType Open Website
Aggregation Database
Publisher
StartPage 23
SubjectTerms Capacitive excitation
Electrostatic interactions
Piezoresponse force microscopy
Title Minimizing electrostatic interactions from piezoresponse force microscopy via capacitive excitation
URI https://dx.doi.org/10.1016/j.taml.2020.01.001
https://doaj.org/article/e9a4411262d447efbe087be3189f3312
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iFz2IT1xf5OBNinm0m_aoooiiB1H0VvKYQoVdZV1F_fXONFnpSS8eG0pSZpJ-k-Sbbxg7KIyuoDI-k6YUGSJUk5U66Mx6nAHe6lJ5Sk6-vhle3OeXj8Vjr9QXccKiPHA03BFUFhFbqqEKeW6gcSBK4-jkrmq0lvHvK4veZiqpeiP00vWyEpSCrPMqZcxEctfUjujeQYlOszNVhJmhUife3wOnHuCcr7DlFCny4_iFq2wOxmtsqacfuM78dTtuR-0XPvBUz4YShFrPSQViEnMWXjmlkPCXFr6eJ5ERCxxDVQ98RGw8ykv55O-t5R6B03dcIg4fPol3b7D787O704ssVU3IfC7FNJO4ybBWqKYpAaSrBEhrLFQOF1hwQVlT0LbPB68Kh-hdYgvGbRg52QIN0uhNNj9-HsMW4wZEkCCVEwrQjaEMhbFDHeTQmyCcHbDDmdXqlyiOUc9YY0812bgmG9dCEnVuwE7IsD9vkrB114DurpO767_cPWDFzC11ihEi9mNX7S-Db__H4DtskbqMJzC7bH46eYM9jEmmbp8tHF_dPlztd9PwG6mP33k
link.rule.ids 315,786,790,870,2115,27957,27958
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimizing+electrostatic+interactions+from+piezoresponse+force+microscopy+via+capacitive+excitation&rft.jtitle=Theoretical+and+applied+mechanics+letters&rft.au=Zhu%2C+Qingfeng&rft.au=Esfahani%2C+Ehsan+Nasr&rft.au=Xie%2C+Shuhong&rft.au=Li%2C+Jiangyu&rft.date=2020-01-01&rft.pub=Elsevier+Ltd&rft.issn=2095-0349&rft.volume=10&rft.issue=1&rft.spage=23&rft.epage=26&rft_id=info:doi/10.1016%2Fj.taml.2020.01.001&rft.externalDocID=S2095034920300052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-0349&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-0349&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-0349&client=summon