A Light‐Responsive Metal–Organic Framework Hybrid Membrane with High On/Off Photoswitchable Proton Conductivity

Mimicking biological proton pumps to achieve stimuli‐responsive protonic solids has long been of great interest for their diverse applications in fuel cells, chemical sensors, and bio‐electronic devices. Now, dynamic light‐responsive metal–organic framework hybrid membranes can be obtained by in sit...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 20; pp. 7732 - 7737
Main Authors Liang, Hong‐Qing, Guo, Yi, Shi, Yanshu, Peng, Xinsheng, Liang, Bin, Chen, Banglin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 11.05.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mimicking biological proton pumps to achieve stimuli‐responsive protonic solids has long been of great interest for their diverse applications in fuel cells, chemical sensors, and bio‐electronic devices. Now, dynamic light‐responsive metal–organic framework hybrid membranes can be obtained by in situ encapsulation of photoactive molecules (sulfonated spiropyran, SSP), as the molecular valve, into the cavities of the host ZIF‐8. The configuration of SSP can be changed and switched reversibly in response to light, generating different mobile acidic protons and thus high on/off photoswitchable proton conductivity in the hybrid membranes and device. This device exhibits a high proton conductivity, fast response time, and extremely large on/off ratio upon visible‐light irradiation. This approach might provide a platform for creating emerging smart protonic solids with potential applications in the remote‐controllable chemical sensors or proton‐conducting field‐effect transistors. Light‐regulated proton conduction in MOF membranes was realized by in situ encapsulation of light‐active molecules into 3D frameworks. The hybrid membrane has high proton conductivity and outstanding switchable properties, making it feasible to control the lightening of a LED lamp assembled into an optically controlled circuit.
AbstractList Mimicking biological proton pumps to achieve stimuli‐responsive protonic solids has long been of great interest for their diverse applications in fuel cells, chemical sensors, and bio‐electronic devices. Now, dynamic light‐responsive metal–organic framework hybrid membranes can be obtained by in situ encapsulation of photoactive molecules (sulfonated spiropyran, SSP), as the molecular valve, into the cavities of the host ZIF‐8. The configuration of SSP can be changed and switched reversibly in response to light, generating different mobile acidic protons and thus high on/off photoswitchable proton conductivity in the hybrid membranes and device. This device exhibits a high proton conductivity, fast response time, and extremely large on/off ratio upon visible‐light irradiation. This approach might provide a platform for creating emerging smart protonic solids with potential applications in the remote‐controllable chemical sensors or proton‐conducting field‐effect transistors. Light‐regulated proton conduction in MOF membranes was realized by in situ encapsulation of light‐active molecules into 3D frameworks. The hybrid membrane has high proton conductivity and outstanding switchable properties, making it feasible to control the lightening of a LED lamp assembled into an optically controlled circuit.
Mimicking biological proton pumps to achieve stimuli-responsive protonic solids has long been of great interest for their diverse applications in fuel cells, chemical sensors, and bio-electronic devices. Now, dynamic light-responsive metal-organic framework hybrid membranes can be obtained by in situ encapsulation of photoactive molecules (sulfonated spiropyran, SSP), as the molecular valve, into the cavities of the host ZIF-8. The configuration of SSP can be changed and switched reversibly in response to light, generating different mobile acidic protons and thus high on/off photoswitchable proton conductivity in the hybrid membranes and device. This device exhibits a high proton conductivity, fast response time, and extremely large on/off ratio upon visible-light irradiation. This approach might provide a platform for creating emerging smart protonic solids with potential applications in the remote-controllable chemical sensors or proton-conducting field-effect transistors.Mimicking biological proton pumps to achieve stimuli-responsive protonic solids has long been of great interest for their diverse applications in fuel cells, chemical sensors, and bio-electronic devices. Now, dynamic light-responsive metal-organic framework hybrid membranes can be obtained by in situ encapsulation of photoactive molecules (sulfonated spiropyran, SSP), as the molecular valve, into the cavities of the host ZIF-8. The configuration of SSP can be changed and switched reversibly in response to light, generating different mobile acidic protons and thus high on/off photoswitchable proton conductivity in the hybrid membranes and device. This device exhibits a high proton conductivity, fast response time, and extremely large on/off ratio upon visible-light irradiation. This approach might provide a platform for creating emerging smart protonic solids with potential applications in the remote-controllable chemical sensors or proton-conducting field-effect transistors.
Mimicking biological proton pumps to achieve stimuli‐responsive protonic solids has long been of great interest for their diverse applications in fuel cells, chemical sensors, and bio‐electronic devices. Now, dynamic light‐responsive metal–organic framework hybrid membranes can be obtained by in situ encapsulation of photoactive molecules (sulfonated spiropyran, SSP), as the molecular valve, into the cavities of the host ZIF‐8. The configuration of SSP can be changed and switched reversibly in response to light, generating different mobile acidic protons and thus high on/off photoswitchable proton conductivity in the hybrid membranes and device. This device exhibits a high proton conductivity, fast response time, and extremely large on/off ratio upon visible‐light irradiation. This approach might provide a platform for creating emerging smart protonic solids with potential applications in the remote‐controllable chemical sensors or proton‐conducting field‐effect transistors.
Author Shi, Yanshu
Chen, Banglin
Peng, Xinsheng
Liang, Hong‐Qing
Liang, Bin
Guo, Yi
Author_xml – sequence: 1
  givenname: Hong‐Qing
  surname: Liang
  fullname: Liang, Hong‐Qing
  organization: University of Texas at San Antonio
– sequence: 2
  givenname: Yi
  surname: Guo
  fullname: Guo, Yi
  organization: Zhejiang University
– sequence: 3
  givenname: Yanshu
  surname: Shi
  fullname: Shi, Yanshu
  organization: University of Texas at San Antonio
– sequence: 4
  givenname: Xinsheng
  surname: Peng
  fullname: Peng, Xinsheng
  email: pengxinsheng@zju.edu.cn
  organization: Zhejiang University
– sequence: 5
  givenname: Bin
  surname: Liang
  fullname: Liang, Bin
  email: bin.liang@utsa.edu
  organization: University of Texas at San Antonio
– sequence: 6
  givenname: Banglin
  orcidid: 0000-0001-8707-8115
  surname: Chen
  fullname: Chen, Banglin
  email: banglin.chen@utsa.edu
  organization: University of Texas at San Antonio
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32090427$$D View this record in MEDLINE/PubMed
BookMark eNqFkctqGzEUhkVJaRI32y6LoJtuxtF1Lktjkjrg1qE060EaSbHSGcmVNDHe5RECecM8SRWcphAoXZ0L33_O4fzH4MB5pwH4gNEUI0ROhbN6ShDJOa2bN-AIc4ILWlX0IOeM0qKqOT4ExzHeZKauUfkOHFKCGsRIdQTiDC7t9To93t1_13HjXbS3Gn7VSfSPdw-rcJ0XdPA8iEFvffgJFzsZrMrAIINwGm5tWsNFngBX7nRlDLxc--RjbndrIXsNL0OuHZx7p8Yu2Vubdu_BWyP6qE-e4wRcnZ_9mC-K5erLxXy2LDqGUVMYXFOKpeS8RkghaYTuEGFYIY5K2SihBFNUGS64LiUjyhiGmSBCyAZzWtMJ-Lyfuwn-16hjagcbO933-XA_xpbQkqK6KvPrJuDTK_TGj8Hl6zLVVKzkTYYn4OMzNcpBq3YT7CDCrv3zzgxM90AXfIxBmxcEo_bJr_bJr_bFryxgrwSdTSJZ71IQtv-3rNnLtrbXu_8saWffLs7-an8Dinasaw
CitedBy_id crossref_primary_10_1021_acsanm_3c03172
crossref_primary_10_1021_acsanm_2c05387
crossref_primary_10_21926_rpm_2404025
crossref_primary_10_1039_D4SC04793A
crossref_primary_10_1021_acsbiomaterials_3c00507
crossref_primary_10_1021_acsmaterialslett_3c01358
crossref_primary_10_1002_admt_202000790
crossref_primary_10_1002_chem_202300976
crossref_primary_10_1021_jacs_0c03554
crossref_primary_10_1002_smsc_202000035
crossref_primary_10_1002_ange_202302997
crossref_primary_10_1016_j_ccr_2021_213915
crossref_primary_10_1016_j_dyepig_2020_108805
crossref_primary_10_1016_j_ccr_2022_214562
crossref_primary_10_1021_accountsmr_3c00067
crossref_primary_10_1002_adma_202410067
crossref_primary_10_1021_acs_inorgchem_2c01664
crossref_primary_10_1002_anie_202111024
crossref_primary_10_1007_s10895_024_03734_5
crossref_primary_10_1007_s12274_021_3925_7
crossref_primary_10_1016_j_seppur_2024_128254
crossref_primary_10_1021_acs_langmuir_1c02053
crossref_primary_10_1021_acs_iecr_0c02683
crossref_primary_10_1016_j_cej_2022_141115
crossref_primary_10_1002_adma_202305783
crossref_primary_10_1039_D1NJ01046H
crossref_primary_10_1021_acs_inorgchem_1c02165
crossref_primary_10_1039_D0TA02895A
crossref_primary_10_1039_D2CC02470E
crossref_primary_10_1039_D3TA06197C
crossref_primary_10_1002_smll_202404605
crossref_primary_10_1039_D2NJ04435H
crossref_primary_10_1021_acssensors_1c00463
crossref_primary_10_1002_nano_202100164
crossref_primary_10_1002_admt_202000765
crossref_primary_10_1021_acs_langmuir_0c02859
crossref_primary_10_1021_acscatal_3c04818
crossref_primary_10_1021_jacs_3c01821
crossref_primary_10_1016_j_ccr_2020_213655
crossref_primary_10_1039_D1QM00070E
crossref_primary_10_1016_j_ccr_2021_213794
crossref_primary_10_1016_j_talanta_2021_122815
crossref_primary_10_1039_D2CE00470D
crossref_primary_10_1039_D3TC01735D
crossref_primary_10_1021_acs_inorgchem_3c03092
crossref_primary_10_1021_acs_langmuir_3c01205
crossref_primary_10_1021_acsanm_3c00226
crossref_primary_10_1007_s12274_023_5812_x
crossref_primary_10_1038_s41570_021_00336_8
crossref_primary_10_3389_fchem_2022_986908
crossref_primary_10_1039_D1RA06814H
crossref_primary_10_1016_j_jece_2025_115487
crossref_primary_10_1002_chem_202100911
crossref_primary_10_1021_acs_iecr_4c04488
crossref_primary_10_1039_D1CE00790D
crossref_primary_10_1039_D4QI00605D
crossref_primary_10_1038_s41467_025_56228_8
crossref_primary_10_1039_D2MA01022D
crossref_primary_10_1039_D4CS00272E
crossref_primary_10_1002_cnma_202100486
crossref_primary_10_1039_D2TA04680F
crossref_primary_10_1063_5_0169507
crossref_primary_10_1021_accountsmr_3c00262
crossref_primary_10_1021_acsami_0c14487
crossref_primary_10_1016_j_memsci_2022_121109
crossref_primary_10_1073_pnas_2112973118
crossref_primary_10_1039_D4SC08389J
crossref_primary_10_1016_j_advmem_2022_100043
crossref_primary_10_1016_j_inoche_2020_108138
crossref_primary_10_1002_aenm_202100441
crossref_primary_10_1021_acsmaterialslett_3c00476
crossref_primary_10_1021_acsami_2c01113
crossref_primary_10_3390_molecules28093712
crossref_primary_10_1002_asia_202200158
crossref_primary_10_1007_s11426_021_9976_7
crossref_primary_10_1016_j_advmem_2022_100045
crossref_primary_10_1016_j_ccr_2022_214918
crossref_primary_10_1002_anie_202302997
crossref_primary_10_1002_admi_202200341
crossref_primary_10_1021_acs_accounts_1c00328
crossref_primary_10_1021_acsnano_2c05498
crossref_primary_10_1038_s41598_023_34953_8
crossref_primary_10_1021_acsami_1c08078
crossref_primary_10_1039_D3RA01252B
crossref_primary_10_1016_j_memsci_2024_122744
crossref_primary_10_1039_d0pp00267d
crossref_primary_10_1002_admt_202201433
crossref_primary_10_1016_j_apmt_2020_100761
crossref_primary_10_1039_D2TC00749E
crossref_primary_10_1016_j_ceja_2025_100711
crossref_primary_10_1021_cbe_4c00016
crossref_primary_10_1016_j_jphotochemrev_2022_100487
crossref_primary_10_1021_acsami_2c23170
crossref_primary_10_1021_jacsau_2c00069
crossref_primary_10_1039_D2SC02100E
crossref_primary_10_1039_D0RA10500G
crossref_primary_10_1021_acs_chemmater_3c00069
crossref_primary_10_1021_acsanm_1c01539
crossref_primary_10_1016_j_ccr_2022_214740
crossref_primary_10_1039_D0DT04332J
crossref_primary_10_1002_aisy_202000113
crossref_primary_10_1002_admi_202101247
crossref_primary_10_1126_sciadv_abl5070
crossref_primary_10_2139_ssrn_4098684
crossref_primary_10_1002_ange_202111024
crossref_primary_10_1007_s40843_021_1806_1
crossref_primary_10_1038_s41467_023_38728_7
crossref_primary_10_1007_s41061_022_00417_2
crossref_primary_10_1016_j_memsci_2020_118888
Cites_doi 10.1002/anie.201607329
10.1038/s41565-017-0051-5
10.1021/nn4059852
10.1146/annurev-anchem-071114-040202
10.1002/chem.201503503
10.1039/C7TA03917D
10.1002/anie.201601537
10.1039/c3sc21659d
10.1002/anie.201206410
10.1039/C9SC04926F
10.1002/anie.201700962
10.1002/ange.201607329
10.1126/science.1230444
10.1021/ja511788f
10.1021/jacs.7b09163
10.1039/b719497h
10.1002/adfm.201404160
10.1039/C4CS00093E
10.1002/ange.201601537
10.1002/ange.201700962
10.1038/nchem.1858
10.1039/C7TA01526G
10.1021/cm504623r
10.1038/ncomms13872
10.1016/S0006-3495(75)85875-9
10.1038/s41560-017-0018-7
10.1002/adfm.201000239
10.1002/anie.201700686
10.1021/ar400024p
10.1021/acs.jpcb.6b00370
10.1021/acs.chemmater.7b00147
10.1002/chem.201700989
10.1016/j.snb.2011.12.055
10.1126/science.1239872
10.1039/C4CS00006D
10.1002/adma.201706551
10.1038/ncomms6532
10.1038/nature08652
10.1002/adma.201800702
10.1021/cr200304e
10.1002/cplu.201600243
10.1002/ange.201700686
10.1039/C3CS60181A
10.1038/srep44427
10.1002/adma.201705155
10.1021/ja107035w
10.1038/ncomms13415
10.1002/ange.201206410
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202002389
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 7737
ExternalDocumentID 32090427
10_1002_anie_202002389
ANIE202002389
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Welch Foundation
  funderid: AX-1730
– fundername: Welch Foundation
  grantid: AX-1730
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4109-f18331bb55800d0bfaec0241d0506b9dada4d3df5a5e6b42dff414a2aab915383
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 04:02:44 EDT 2025
Sun Jul 13 04:59:27 EDT 2025
Thu Apr 03 07:03:04 EDT 2025
Tue Jul 01 01:17:35 EDT 2025
Thu Apr 24 22:54:47 EDT 2025
Wed Jan 22 16:38:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords proton conduction
MOFs
hybrid membranes
photoswitching
sulfonated spiropyran
Language English
License 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4109-f18331bb55800d0bfaec0241d0506b9dada4d3df5a5e6b42dff414a2aab915383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8707-8115
PMID 32090427
PQID 2397465936
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2363087602
proquest_journals_2397465936
pubmed_primary_32090427
crossref_primary_10_1002_anie_202002389
crossref_citationtrail_10_1002_anie_202002389
wiley_primary_10_1002_anie_202002389_ANIE202002389
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 11, 2020
PublicationDateYYYYMMDD 2020-05-11
PublicationDate_xml – month: 05
  year: 2020
  text: May 11, 2020
  day: 11
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 7
2017; 2
2013; 4
2013; 46
2017; 23
2010; 463
2008
1975; 15
2017; 29
2013; 341
2020; 11
2017 2017; 56 129
2015; 8
2016; 120
2014; 43
2013 2013; 52 125
2017; 139
2016; 7
2010; 20
2015; 25
2012; 175
2014; 5
2016 2016; 55 128
2015; 27
2012; 112
2015; 137
2010; 132
2018; 30
2016; 81
2014; 8
2014; 6
2016; 22
2018; 13
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_22_2
e_1_2_2_49_2
e_1_2_2_6_2
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_41_2
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_8_1
e_1_2_2_45_1
e_1_2_2_26_2
e_1_2_2_24_3
e_1_2_2_36_2
e_1_2_2_13_1
e_1_2_2_36_3
e_1_2_2_38_1
e_1_2_2_11_2
e_1_2_2_30_1
e_1_2_2_51_1
e_1_2_2_19_2
e_1_2_2_32_1
e_1_2_2_17_1
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_3_2
e_1_2_2_48_2
e_1_2_2_5_2
e_1_2_2_23_1
e_1_2_2_5_3
e_1_2_2_7_1
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_2
e_1_2_2_42_1
e_1_2_2_29_2
e_1_2_2_29_1
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_46_1
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_37_1
e_1_2_2_12_2
e_1_2_2_39_1
e_1_2_2_10_2
e_1_2_2_52_1
e_1_2_2_50_2
e_1_2_2_31_1
e_1_2_2_18_1
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_33_3
e_1_2_2_14_2
e_1_2_2_35_2
References_xml – volume: 7
  start-page: 13872
  year: 2016
  publication-title: Nat. Commun.
– volume: 23
  start-page: 5434
  year: 2017
  end-page: 5438
  publication-title: Chem. Eur. J.
– volume: 27
  start-page: 3601
  year: 2015
  end-page: 3608
  publication-title: Chem. Mater.
– volume: 5
  start-page: 9775
  year: 2017
  end-page: 9784
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 13415
  year: 2016
  publication-title: Nat. Commun.
– volume: 120
  start-page: 1002
  year: 2016
  end-page: 1007
  publication-title: J. Phys. Chem. B
– volume: 46
  start-page: 2834
  year: 2013
  end-page: 2846
  publication-title: Acc. Chem. Res.
– volume: 5
  start-page: 14525
  year: 2017
  end-page: 14529
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 955
  year: 1975
  end-page: 962
  publication-title: Biophys. J.
– volume: 5
  start-page: 5532
  year: 2014
  publication-title: Nat. Commun.
– volume: 56 129
  start-page: 6176 6272
  year: 2017 2017
  end-page: 6180 6276
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 132
  start-page: 14055
  year: 2010
  end-page: 14057
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 2858
  year: 2013
  end-page: 2864
  publication-title: Chem. Sci.
– volume: 22
  start-page: 746
  year: 2016
  end-page: 752
  publication-title: Chem. Eur. J.
– volume: 139
  start-page: 15604
  year: 2017
  end-page: 15607
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 202
  year: 2014
  end-page: 207
  publication-title: Nat. Chem.
– volume: 11
  start-page: 1404
  year: 2020
  end-page: 1410
  publication-title: Chem. Sci.
– volume: 8
  start-page: 441
  year: 2015
  end-page: 462
  publication-title: Annu. Rev. Anal. Chem.
– volume: 175
  start-page: 92
  year: 2012
  end-page: 99
  publication-title: Sens. Actuators B
– volume: 81
  start-page: 691
  year: 2016
  end-page: 701
  publication-title: ChemPlusChem
– volume: 341
  start-page: 354
  year: 2013
  end-page: 355
  publication-title: Science
– volume: 25
  start-page: 2091
  year: 2015
  end-page: 2098
  publication-title: Adv. Funct. Mater.
– volume: 55 128
  start-page: 15120 15344
  year: 2016 2016
  end-page: 15124 15348
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 44427
  year: 2017
  publication-title: Sci. Rep.
– volume: 20
  start-page: 2636
  year: 2010
  end-page: 2642
  publication-title: Adv. Funct. Mater.
– volume: 341
  year: 2013
  publication-title: Science
– volume: 56 129
  start-page: 4976 5058
  year: 2017 2017
  end-page: 4981 5063
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 29
  start-page: 3111
  year: 2017
  end-page: 3117
  publication-title: Chem. Mater.
– volume: 137
  start-page: 3291
  year: 2015
  end-page: 3299
  publication-title: J. Am. Chem. Soc.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 43
  start-page: 5766
  year: 2014
  end-page: 5788
  publication-title: Chem. Soc. Rev.
– start-page: 1904
  year: 2008
  end-page: 1906
  publication-title: Chem. Commun.
– volume: 43
  start-page: 148
  year: 2014
  end-page: 184
  publication-title: Chem. Soc. Rev.
– volume: 55 128
  start-page: 8846 8992
  year: 2016 2016
  end-page: 8849 8995
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 13
  start-page: 300
  year: 2018
  end-page: 303
  publication-title: Nat. Nanotechnol.
– volume: 43
  start-page: 5913
  year: 2014
  end-page: 5932
  publication-title: Chem. Soc. Rev.
– volume: 112
  start-page: 933
  year: 2012
  end-page: 969
  publication-title: Chem. Rev.
– volume: 2
  start-page: 877
  year: 2017
  end-page: 883
  publication-title: Nat. Energy
– volume: 463
  start-page: 98
  year: 2010
  end-page: 102
  publication-title: Nature
– volume: 8
  start-page: 537
  year: 2014
  end-page: 545
  publication-title: ACS Nano
– volume: 52 125
  start-page: 2688 2752
  year: 2013 2013
  end-page: 2700 2764
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_2_33_2
  doi: 10.1002/anie.201607329
– ident: e_1_2_2_46_1
– ident: e_1_2_2_51_1
  doi: 10.1038/s41565-017-0051-5
– ident: e_1_2_2_32_1
– ident: e_1_2_2_10_2
  doi: 10.1021/nn4059852
– ident: e_1_2_2_16_2
  doi: 10.1146/annurev-anchem-071114-040202
– ident: e_1_2_2_23_1
– ident: e_1_2_2_48_2
  doi: 10.1002/chem.201503503
– ident: e_1_2_2_44_2
  doi: 10.1039/C7TA03917D
– ident: e_1_2_2_5_2
  doi: 10.1002/anie.201601537
– ident: e_1_2_2_50_2
  doi: 10.1039/c3sc21659d
– ident: e_1_2_2_24_2
  doi: 10.1002/anie.201206410
– ident: e_1_2_2_31_1
  doi: 10.1039/C9SC04926F
– ident: e_1_2_2_29_1
  doi: 10.1002/anie.201700962
– ident: e_1_2_2_33_3
  doi: 10.1002/ange.201607329
– ident: e_1_2_2_17_1
  doi: 10.1126/science.1230444
– ident: e_1_2_2_3_2
  doi: 10.1021/ja511788f
– ident: e_1_2_2_28_2
  doi: 10.1021/jacs.7b09163
– ident: e_1_2_2_37_1
  doi: 10.1039/b719497h
– ident: e_1_2_2_12_2
  doi: 10.1002/adfm.201404160
– ident: e_1_2_2_27_2
  doi: 10.1039/C4CS00093E
– ident: e_1_2_2_5_3
  doi: 10.1002/ange.201601537
– ident: e_1_2_2_29_2
  doi: 10.1002/ange.201700962
– ident: e_1_2_2_39_1
– ident: e_1_2_2_11_2
  doi: 10.1038/nchem.1858
– ident: e_1_2_2_35_2
  doi: 10.1039/C7TA01526G
– ident: e_1_2_2_41_2
  doi: 10.1021/cm504623r
– ident: e_1_2_2_1_1
– ident: e_1_2_2_47_2
  doi: 10.1038/ncomms13872
– ident: e_1_2_2_7_1
  doi: 10.1016/S0006-3495(75)85875-9
– ident: e_1_2_2_43_2
  doi: 10.1038/s41560-017-0018-7
– ident: e_1_2_2_9_2
  doi: 10.1002/adfm.201000239
– ident: e_1_2_2_36_2
  doi: 10.1002/anie.201700686
– ident: e_1_2_2_14_2
  doi: 10.1021/ar400024p
– ident: e_1_2_2_15_2
  doi: 10.1021/acs.jpcb.6b00370
– ident: e_1_2_2_40_2
  doi: 10.1021/acs.chemmater.7b00147
– ident: e_1_2_2_49_2
  doi: 10.1002/chem.201700989
– ident: e_1_2_2_38_1
  doi: 10.1016/j.snb.2011.12.055
– ident: e_1_2_2_22_2
  doi: 10.1126/science.1239872
– ident: e_1_2_2_21_2
  doi: 10.1039/C4CS00006D
– ident: e_1_2_2_42_1
– ident: e_1_2_2_30_1
  doi: 10.1002/adma.201706551
– ident: e_1_2_2_34_2
  doi: 10.1038/ncomms6532
– ident: e_1_2_2_2_2
  doi: 10.1038/nature08652
– ident: e_1_2_2_18_1
– ident: e_1_2_2_20_2
  doi: 10.1002/adma.201800702
– ident: e_1_2_2_19_2
  doi: 10.1021/cr200304e
– ident: e_1_2_2_45_1
  doi: 10.1002/cplu.201600243
– ident: e_1_2_2_36_3
  doi: 10.1002/ange.201700686
– ident: e_1_2_2_8_1
– ident: e_1_2_2_52_1
  doi: 10.1039/C3CS60181A
– ident: e_1_2_2_13_1
– ident: e_1_2_2_6_2
  doi: 10.1038/srep44427
– ident: e_1_2_2_26_2
  doi: 10.1002/adma.201705155
– ident: e_1_2_2_25_2
  doi: 10.1021/ja107035w
– ident: e_1_2_2_4_2
  doi: 10.1038/ncomms13415
– ident: e_1_2_2_24_3
  doi: 10.1002/ange.201206410
SSID ssj0028806
Score 2.6134834
Snippet Mimicking biological proton pumps to achieve stimuli‐responsive protonic solids has long been of great interest for their diverse applications in fuel cells,...
Mimicking biological proton pumps to achieve stimuli-responsive protonic solids has long been of great interest for their diverse applications in fuel cells,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7732
SubjectTerms Chemical sensors
Conductivity
Electronic devices
Electronic equipment
Fuel cells
hybrid membranes
Irradiation
Light irradiation
Membranes
Metal-organic frameworks
Mimicry
MOFs
photoswitching
proton conduction
Protons
Radiation
Remote sensors
Response time
Sensors
Spiropyrans
sulfonated spiropyran
Transistors
Title A Light‐Responsive Metal–Organic Framework Hybrid Membrane with High On/Off Photoswitchable Proton Conductivity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202002389
https://www.ncbi.nlm.nih.gov/pubmed/32090427
https://www.proquest.com/docview/2397465936
https://www.proquest.com/docview/2363087602
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEB5KXtqX3oebAxUKfVLW1hXv47Jk2ZbmIDSQN6PDItDULtndQPuUnxDoP8wv6YyvdltKoQU_WPYIydJI-iTPfAPwWpmoZVAZl9Y6rnIhuXXO8oi64rU0Ulo6Gjg4NPNT9e5Mn_3kxd_yQwwHbjQymvmaBrh1i9EP0lDywMb9nWhWHfLgI4MtQkUnA3-UwAJb9yIpOUWh71kbUzFaz76-Kv0GNdeRa7P0zB6A7SvdWpx83F0t3a7_-guf4_981UO43-FSNmkV6RHcKavHcHfah4N7AosJe08b-dvrm5POrvaqZAclgvfb62-tS6dns97Wi82_kC8YCnzC6lQlowNfRlYl7KgaHcXIjs_rZb3Ax_6c3LfY8SWmKzatK6KgbWJaPIXT2f6H6Zx3ERu4V1k65hEnCJk5pzXi0JC6aEuPICALqU6NGwcbrAoyRG11aZwSIUaVKStQT8Y09cpnsFHVVfkCWOpjbryKuXJ4hRyRYK59nhGmintGJ8D7Hit8R2dOUTUuipaIWRTUlMXQlAm8GeQ_t0Qef5Tc6hWg6Ab0ohCI25Sh8IcJvBpeYxfQ_xVsxXpFMob4FU0qEnjeKs5QlBTpmMKaJCCa7v9LHYrJ4dv9IfXyXzJtwj26J0uHLNuCjeXlqtxGALV0O80g-Q71ThOV
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZRLKc8GChgJiVO6iV8kx9XS1RZ2t1XVStwi24lVCUhQdxeJnvoTKvEP-0s6kxdaEEICKRc7tuzYY_vzZOYbgNdSeyVyGYfCGBvKhIvQWGtCj7LilNBCGFINzOZ6cirff1SdNSH5wjT8EL3CjVZGvV_TAieF9OAnayi5YOMFj9fHTnob7lBYb6LPf3fcM0hxbLJxMBIipDj0HW9jxAfr9dfPpd_A5jp2rQ-f8T2wXbcbm5NPe6ul3XMXvzA6_td3bcNWC03ZsJGl-3CrKB_A5qiLCPcQFkM2pbv89eXVcWta-61gswLx-_Xlj8ar07FxZ-7FJt_JHQwLfMH-lAUjnS8jwxJ2WA4OvWdHZ9WyWmC2OyMPLnZ0jumSjaqSWGjrsBaP4HS8fzKahG3QhtDJOEpDj3uEiK1VCqFoHllvCoc4IM4jFWmb5iY3Mhe5V0YV2kqeey9jaTiKSkq7r3gMG2VVFjvAIucT7aRPpMUnTxAMJsolMcEq_1arAMJuyjLXMppTYI3PWcPFzDMayqwfygDe9OW_Nlwefyy520lA1q7pRcYRuqGIpUIH8Kp_jVNAv1hwFKsVldFEsagjHsCTRnL6pgSPUopsEgCv5_8vfciG84P9PvX0Xyq9hM3JyWyaTQ_mH57BXconw4c43oWN5fmqeI54amlf1CvmBiZDF7E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL70eggJGQOKWb-NXkuNp2tYV2u6qo1FvkR6xKQFJ1d5Hg1J-AxD_sL2Em2QQWhJBAysXOWHbssf3ZmfkG4JXUQQkv01gYY2OZcREba00cUFecEloIQ1cDB1M9OZZvTtTJT178LT9Ef-FGM6NZr2mCn_kw-EEaSh7YeL7jza6TX4VrUic5BW_YOeoJpDjW2PoXCRFTGPqOtjHhg_Xy69vSb1hzHbo2e8_4Npiu1a3Jyfut5cJuuS-_EDr-z2fdgVsrYMqGrSbdhStldQ9ujLp4cPdhPmT7dJK_vPh6tDKs_VSygxLR--XFt9an07FxZ-zFJp_JGQwFPmJzqpLRjS8jsxJ2WA0OQ2Cz03pRzzHbnZL_FpudY7pio7oiDtomqMUDOB7vvhtN4lXIhtjJNMnjgCuESK1VCoGoT2wwpUMUkPpEJdrm3ngjvfBBGVVqK7kPQabScFSUnNZe8RA2qroqHwNLXMi0kyGTFh-fIRTMlMtSAlVhW6sI4m7ECrfiM6ewGh-KlomZF9SVRd-VEbzu5c9aJo8_Sm52ClCsZvS84AjcpKb4hxG87F_jENAPFuzFekkymggWdcIjeNQqTl-V4Kidkm9HwJvh_0sbiuF0b7dPPfmXQi_g-mxnXOzvTd8-hZuUTVYPaboJG4vzZfkMwdTCPm_my3fKdhZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Light-Responsive+Metal-Organic+Framework+Hybrid+Membrane+with+High+On%2FOff+Photoswitchable+Proton+Conductivity&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liang%2C+Hong-Qing&rft.au=Guo%2C+Yi&rft.au=Shi%2C+Yanshu&rft.au=Peng%2C+Xinsheng&rft.date=2020-05-11&rft.eissn=1521-3773&rft.volume=59&rft.issue=20&rft.spage=7732&rft_id=info:doi/10.1002%2Fanie.202002389&rft_id=info%3Apmid%2F32090427&rft.externalDocID=32090427
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon