A Light‐Responsive Metal–Organic Framework Hybrid Membrane with High On/Off Photoswitchable Proton Conductivity
Mimicking biological proton pumps to achieve stimuli‐responsive protonic solids has long been of great interest for their diverse applications in fuel cells, chemical sensors, and bio‐electronic devices. Now, dynamic light‐responsive metal–organic framework hybrid membranes can be obtained by in sit...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 20; pp. 7732 - 7737 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
11.05.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mimicking biological proton pumps to achieve stimuli‐responsive protonic solids has long been of great interest for their diverse applications in fuel cells, chemical sensors, and bio‐electronic devices. Now, dynamic light‐responsive metal–organic framework hybrid membranes can be obtained by in situ encapsulation of photoactive molecules (sulfonated spiropyran, SSP), as the molecular valve, into the cavities of the host ZIF‐8. The configuration of SSP can be changed and switched reversibly in response to light, generating different mobile acidic protons and thus high on/off photoswitchable proton conductivity in the hybrid membranes and device. This device exhibits a high proton conductivity, fast response time, and extremely large on/off ratio upon visible‐light irradiation. This approach might provide a platform for creating emerging smart protonic solids with potential applications in the remote‐controllable chemical sensors or proton‐conducting field‐effect transistors.
Light‐regulated proton conduction in MOF membranes was realized by in situ encapsulation of light‐active molecules into 3D frameworks. The hybrid membrane has high proton conductivity and outstanding switchable properties, making it feasible to control the lightening of a LED lamp assembled into an optically controlled circuit. |
---|---|
AbstractList | Mimicking biological proton pumps to achieve stimuli‐responsive protonic solids has long been of great interest for their diverse applications in fuel cells, chemical sensors, and bio‐electronic devices. Now, dynamic light‐responsive metal–organic framework hybrid membranes can be obtained by in situ encapsulation of photoactive molecules (sulfonated spiropyran, SSP), as the molecular valve, into the cavities of the host ZIF‐8. The configuration of SSP can be changed and switched reversibly in response to light, generating different mobile acidic protons and thus high on/off photoswitchable proton conductivity in the hybrid membranes and device. This device exhibits a high proton conductivity, fast response time, and extremely large on/off ratio upon visible‐light irradiation. This approach might provide a platform for creating emerging smart protonic solids with potential applications in the remote‐controllable chemical sensors or proton‐conducting field‐effect transistors.
Light‐regulated proton conduction in MOF membranes was realized by in situ encapsulation of light‐active molecules into 3D frameworks. The hybrid membrane has high proton conductivity and outstanding switchable properties, making it feasible to control the lightening of a LED lamp assembled into an optically controlled circuit. Mimicking biological proton pumps to achieve stimuli-responsive protonic solids has long been of great interest for their diverse applications in fuel cells, chemical sensors, and bio-electronic devices. Now, dynamic light-responsive metal-organic framework hybrid membranes can be obtained by in situ encapsulation of photoactive molecules (sulfonated spiropyran, SSP), as the molecular valve, into the cavities of the host ZIF-8. The configuration of SSP can be changed and switched reversibly in response to light, generating different mobile acidic protons and thus high on/off photoswitchable proton conductivity in the hybrid membranes and device. This device exhibits a high proton conductivity, fast response time, and extremely large on/off ratio upon visible-light irradiation. This approach might provide a platform for creating emerging smart protonic solids with potential applications in the remote-controllable chemical sensors or proton-conducting field-effect transistors.Mimicking biological proton pumps to achieve stimuli-responsive protonic solids has long been of great interest for their diverse applications in fuel cells, chemical sensors, and bio-electronic devices. Now, dynamic light-responsive metal-organic framework hybrid membranes can be obtained by in situ encapsulation of photoactive molecules (sulfonated spiropyran, SSP), as the molecular valve, into the cavities of the host ZIF-8. The configuration of SSP can be changed and switched reversibly in response to light, generating different mobile acidic protons and thus high on/off photoswitchable proton conductivity in the hybrid membranes and device. This device exhibits a high proton conductivity, fast response time, and extremely large on/off ratio upon visible-light irradiation. This approach might provide a platform for creating emerging smart protonic solids with potential applications in the remote-controllable chemical sensors or proton-conducting field-effect transistors. Mimicking biological proton pumps to achieve stimuli‐responsive protonic solids has long been of great interest for their diverse applications in fuel cells, chemical sensors, and bio‐electronic devices. Now, dynamic light‐responsive metal–organic framework hybrid membranes can be obtained by in situ encapsulation of photoactive molecules (sulfonated spiropyran, SSP), as the molecular valve, into the cavities of the host ZIF‐8. The configuration of SSP can be changed and switched reversibly in response to light, generating different mobile acidic protons and thus high on/off photoswitchable proton conductivity in the hybrid membranes and device. This device exhibits a high proton conductivity, fast response time, and extremely large on/off ratio upon visible‐light irradiation. This approach might provide a platform for creating emerging smart protonic solids with potential applications in the remote‐controllable chemical sensors or proton‐conducting field‐effect transistors. |
Author | Shi, Yanshu Chen, Banglin Peng, Xinsheng Liang, Hong‐Qing Liang, Bin Guo, Yi |
Author_xml | – sequence: 1 givenname: Hong‐Qing surname: Liang fullname: Liang, Hong‐Qing organization: University of Texas at San Antonio – sequence: 2 givenname: Yi surname: Guo fullname: Guo, Yi organization: Zhejiang University – sequence: 3 givenname: Yanshu surname: Shi fullname: Shi, Yanshu organization: University of Texas at San Antonio – sequence: 4 givenname: Xinsheng surname: Peng fullname: Peng, Xinsheng email: pengxinsheng@zju.edu.cn organization: Zhejiang University – sequence: 5 givenname: Bin surname: Liang fullname: Liang, Bin email: bin.liang@utsa.edu organization: University of Texas at San Antonio – sequence: 6 givenname: Banglin orcidid: 0000-0001-8707-8115 surname: Chen fullname: Chen, Banglin email: banglin.chen@utsa.edu organization: University of Texas at San Antonio |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32090427$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctqGzEUhkVJaRI32y6LoJtuxtF1Lktjkjrg1qE060EaSbHSGcmVNDHe5RECecM8SRWcphAoXZ0L33_O4fzH4MB5pwH4gNEUI0ROhbN6ShDJOa2bN-AIc4ILWlX0IOeM0qKqOT4ExzHeZKauUfkOHFKCGsRIdQTiDC7t9To93t1_13HjXbS3Gn7VSfSPdw-rcJ0XdPA8iEFvffgJFzsZrMrAIINwGm5tWsNFngBX7nRlDLxc--RjbndrIXsNL0OuHZx7p8Yu2Vubdu_BWyP6qE-e4wRcnZ_9mC-K5erLxXy2LDqGUVMYXFOKpeS8RkghaYTuEGFYIY5K2SihBFNUGS64LiUjyhiGmSBCyAZzWtMJ-Lyfuwn-16hjagcbO933-XA_xpbQkqK6KvPrJuDTK_TGj8Hl6zLVVKzkTYYn4OMzNcpBq3YT7CDCrv3zzgxM90AXfIxBmxcEo_bJr_bJr_bFryxgrwSdTSJZ71IQtv-3rNnLtrbXu_8saWffLs7-an8Dinasaw |
CitedBy_id | crossref_primary_10_1021_acsanm_3c03172 crossref_primary_10_1021_acsanm_2c05387 crossref_primary_10_21926_rpm_2404025 crossref_primary_10_1039_D4SC04793A crossref_primary_10_1021_acsbiomaterials_3c00507 crossref_primary_10_1021_acsmaterialslett_3c01358 crossref_primary_10_1002_admt_202000790 crossref_primary_10_1002_chem_202300976 crossref_primary_10_1021_jacs_0c03554 crossref_primary_10_1002_smsc_202000035 crossref_primary_10_1002_ange_202302997 crossref_primary_10_1016_j_ccr_2021_213915 crossref_primary_10_1016_j_dyepig_2020_108805 crossref_primary_10_1016_j_ccr_2022_214562 crossref_primary_10_1021_accountsmr_3c00067 crossref_primary_10_1002_adma_202410067 crossref_primary_10_1021_acs_inorgchem_2c01664 crossref_primary_10_1002_anie_202111024 crossref_primary_10_1007_s10895_024_03734_5 crossref_primary_10_1007_s12274_021_3925_7 crossref_primary_10_1016_j_seppur_2024_128254 crossref_primary_10_1021_acs_langmuir_1c02053 crossref_primary_10_1021_acs_iecr_0c02683 crossref_primary_10_1016_j_cej_2022_141115 crossref_primary_10_1002_adma_202305783 crossref_primary_10_1039_D1NJ01046H crossref_primary_10_1021_acs_inorgchem_1c02165 crossref_primary_10_1039_D0TA02895A crossref_primary_10_1039_D2CC02470E crossref_primary_10_1039_D3TA06197C crossref_primary_10_1002_smll_202404605 crossref_primary_10_1039_D2NJ04435H crossref_primary_10_1021_acssensors_1c00463 crossref_primary_10_1002_nano_202100164 crossref_primary_10_1002_admt_202000765 crossref_primary_10_1021_acs_langmuir_0c02859 crossref_primary_10_1021_acscatal_3c04818 crossref_primary_10_1021_jacs_3c01821 crossref_primary_10_1016_j_ccr_2020_213655 crossref_primary_10_1039_D1QM00070E crossref_primary_10_1016_j_ccr_2021_213794 crossref_primary_10_1016_j_talanta_2021_122815 crossref_primary_10_1039_D2CE00470D crossref_primary_10_1039_D3TC01735D crossref_primary_10_1021_acs_inorgchem_3c03092 crossref_primary_10_1021_acs_langmuir_3c01205 crossref_primary_10_1021_acsanm_3c00226 crossref_primary_10_1007_s12274_023_5812_x crossref_primary_10_1038_s41570_021_00336_8 crossref_primary_10_3389_fchem_2022_986908 crossref_primary_10_1039_D1RA06814H crossref_primary_10_1016_j_jece_2025_115487 crossref_primary_10_1002_chem_202100911 crossref_primary_10_1021_acs_iecr_4c04488 crossref_primary_10_1039_D1CE00790D crossref_primary_10_1039_D4QI00605D crossref_primary_10_1038_s41467_025_56228_8 crossref_primary_10_1039_D2MA01022D crossref_primary_10_1039_D4CS00272E crossref_primary_10_1002_cnma_202100486 crossref_primary_10_1039_D2TA04680F crossref_primary_10_1063_5_0169507 crossref_primary_10_1021_accountsmr_3c00262 crossref_primary_10_1021_acsami_0c14487 crossref_primary_10_1016_j_memsci_2022_121109 crossref_primary_10_1073_pnas_2112973118 crossref_primary_10_1039_D4SC08389J crossref_primary_10_1016_j_advmem_2022_100043 crossref_primary_10_1016_j_inoche_2020_108138 crossref_primary_10_1002_aenm_202100441 crossref_primary_10_1021_acsmaterialslett_3c00476 crossref_primary_10_1021_acsami_2c01113 crossref_primary_10_3390_molecules28093712 crossref_primary_10_1002_asia_202200158 crossref_primary_10_1007_s11426_021_9976_7 crossref_primary_10_1016_j_advmem_2022_100045 crossref_primary_10_1016_j_ccr_2022_214918 crossref_primary_10_1002_anie_202302997 crossref_primary_10_1002_admi_202200341 crossref_primary_10_1021_acs_accounts_1c00328 crossref_primary_10_1021_acsnano_2c05498 crossref_primary_10_1038_s41598_023_34953_8 crossref_primary_10_1021_acsami_1c08078 crossref_primary_10_1039_D3RA01252B crossref_primary_10_1016_j_memsci_2024_122744 crossref_primary_10_1039_d0pp00267d crossref_primary_10_1002_admt_202201433 crossref_primary_10_1016_j_apmt_2020_100761 crossref_primary_10_1039_D2TC00749E crossref_primary_10_1016_j_ceja_2025_100711 crossref_primary_10_1021_cbe_4c00016 crossref_primary_10_1016_j_jphotochemrev_2022_100487 crossref_primary_10_1021_acsami_2c23170 crossref_primary_10_1021_jacsau_2c00069 crossref_primary_10_1039_D2SC02100E crossref_primary_10_1039_D0RA10500G crossref_primary_10_1021_acs_chemmater_3c00069 crossref_primary_10_1021_acsanm_1c01539 crossref_primary_10_1016_j_ccr_2022_214740 crossref_primary_10_1039_D0DT04332J crossref_primary_10_1002_aisy_202000113 crossref_primary_10_1002_admi_202101247 crossref_primary_10_1126_sciadv_abl5070 crossref_primary_10_2139_ssrn_4098684 crossref_primary_10_1002_ange_202111024 crossref_primary_10_1007_s40843_021_1806_1 crossref_primary_10_1038_s41467_023_38728_7 crossref_primary_10_1007_s41061_022_00417_2 crossref_primary_10_1016_j_memsci_2020_118888 |
Cites_doi | 10.1002/anie.201607329 10.1038/s41565-017-0051-5 10.1021/nn4059852 10.1146/annurev-anchem-071114-040202 10.1002/chem.201503503 10.1039/C7TA03917D 10.1002/anie.201601537 10.1039/c3sc21659d 10.1002/anie.201206410 10.1039/C9SC04926F 10.1002/anie.201700962 10.1002/ange.201607329 10.1126/science.1230444 10.1021/ja511788f 10.1021/jacs.7b09163 10.1039/b719497h 10.1002/adfm.201404160 10.1039/C4CS00093E 10.1002/ange.201601537 10.1002/ange.201700962 10.1038/nchem.1858 10.1039/C7TA01526G 10.1021/cm504623r 10.1038/ncomms13872 10.1016/S0006-3495(75)85875-9 10.1038/s41560-017-0018-7 10.1002/adfm.201000239 10.1002/anie.201700686 10.1021/ar400024p 10.1021/acs.jpcb.6b00370 10.1021/acs.chemmater.7b00147 10.1002/chem.201700989 10.1016/j.snb.2011.12.055 10.1126/science.1239872 10.1039/C4CS00006D 10.1002/adma.201706551 10.1038/ncomms6532 10.1038/nature08652 10.1002/adma.201800702 10.1021/cr200304e 10.1002/cplu.201600243 10.1002/ange.201700686 10.1039/C3CS60181A 10.1038/srep44427 10.1002/adma.201705155 10.1021/ja107035w 10.1038/ncomms13415 10.1002/ange.201206410 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202002389 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 7737 |
ExternalDocumentID | 32090427 10_1002_anie_202002389 ANIE202002389 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: Welch Foundation funderid: AX-1730 – fundername: Welch Foundation grantid: AX-1730 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4109-f18331bb55800d0bfaec0241d0506b9dada4d3df5a5e6b42dff414a2aab915383 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 04:02:44 EDT 2025 Sun Jul 13 04:59:27 EDT 2025 Thu Apr 03 07:03:04 EDT 2025 Tue Jul 01 01:17:35 EDT 2025 Thu Apr 24 22:54:47 EDT 2025 Wed Jan 22 16:38:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | proton conduction MOFs hybrid membranes photoswitching sulfonated spiropyran |
Language | English |
License | 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4109-f18331bb55800d0bfaec0241d0506b9dada4d3df5a5e6b42dff414a2aab915383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8707-8115 |
PMID | 32090427 |
PQID | 2397465936 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2363087602 proquest_journals_2397465936 pubmed_primary_32090427 crossref_primary_10_1002_anie_202002389 crossref_citationtrail_10_1002_anie_202002389 wiley_primary_10_1002_anie_202002389_ANIE202002389 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 11, 2020 |
PublicationDateYYYYMMDD | 2020-05-11 |
PublicationDate_xml | – month: 05 year: 2020 text: May 11, 2020 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 7 2017; 2 2013; 4 2013; 46 2017; 23 2010; 463 2008 1975; 15 2017; 29 2013; 341 2020; 11 2017 2017; 56 129 2015; 8 2016; 120 2014; 43 2013 2013; 52 125 2017; 139 2016; 7 2010; 20 2015; 25 2012; 175 2014; 5 2016 2016; 55 128 2015; 27 2012; 112 2015; 137 2010; 132 2018; 30 2016; 81 2014; 8 2014; 6 2016; 22 2018; 13 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_22_2 e_1_2_2_49_2 e_1_2_2_6_2 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_41_2 e_1_2_2_28_2 e_1_2_2_43_2 e_1_2_2_8_1 e_1_2_2_45_1 e_1_2_2_26_2 e_1_2_2_24_3 e_1_2_2_36_2 e_1_2_2_13_1 e_1_2_2_36_3 e_1_2_2_38_1 e_1_2_2_11_2 e_1_2_2_30_1 e_1_2_2_51_1 e_1_2_2_19_2 e_1_2_2_32_1 e_1_2_2_17_1 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_3_2 e_1_2_2_48_2 e_1_2_2_5_2 e_1_2_2_23_1 e_1_2_2_5_3 e_1_2_2_7_1 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_2 e_1_2_2_42_1 e_1_2_2_29_2 e_1_2_2_29_1 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_46_1 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_37_1 e_1_2_2_12_2 e_1_2_2_39_1 e_1_2_2_10_2 e_1_2_2_52_1 e_1_2_2_50_2 e_1_2_2_31_1 e_1_2_2_18_1 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_33_3 e_1_2_2_14_2 e_1_2_2_35_2 |
References_xml | – volume: 7 start-page: 13872 year: 2016 publication-title: Nat. Commun. – volume: 23 start-page: 5434 year: 2017 end-page: 5438 publication-title: Chem. Eur. J. – volume: 27 start-page: 3601 year: 2015 end-page: 3608 publication-title: Chem. Mater. – volume: 5 start-page: 9775 year: 2017 end-page: 9784 publication-title: J. Mater. Chem. A – volume: 7 start-page: 13415 year: 2016 publication-title: Nat. Commun. – volume: 120 start-page: 1002 year: 2016 end-page: 1007 publication-title: J. Phys. Chem. B – volume: 46 start-page: 2834 year: 2013 end-page: 2846 publication-title: Acc. Chem. Res. – volume: 5 start-page: 14525 year: 2017 end-page: 14529 publication-title: J. Mater. Chem. A – volume: 15 start-page: 955 year: 1975 end-page: 962 publication-title: Biophys. J. – volume: 5 start-page: 5532 year: 2014 publication-title: Nat. Commun. – volume: 56 129 start-page: 6176 6272 year: 2017 2017 end-page: 6180 6276 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 132 start-page: 14055 year: 2010 end-page: 14057 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 2858 year: 2013 end-page: 2864 publication-title: Chem. Sci. – volume: 22 start-page: 746 year: 2016 end-page: 752 publication-title: Chem. Eur. J. – volume: 139 start-page: 15604 year: 2017 end-page: 15607 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 202 year: 2014 end-page: 207 publication-title: Nat. Chem. – volume: 11 start-page: 1404 year: 2020 end-page: 1410 publication-title: Chem. Sci. – volume: 8 start-page: 441 year: 2015 end-page: 462 publication-title: Annu. Rev. Anal. Chem. – volume: 175 start-page: 92 year: 2012 end-page: 99 publication-title: Sens. Actuators B – volume: 81 start-page: 691 year: 2016 end-page: 701 publication-title: ChemPlusChem – volume: 341 start-page: 354 year: 2013 end-page: 355 publication-title: Science – volume: 25 start-page: 2091 year: 2015 end-page: 2098 publication-title: Adv. Funct. Mater. – volume: 55 128 start-page: 15120 15344 year: 2016 2016 end-page: 15124 15348 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 44427 year: 2017 publication-title: Sci. Rep. – volume: 20 start-page: 2636 year: 2010 end-page: 2642 publication-title: Adv. Funct. Mater. – volume: 341 year: 2013 publication-title: Science – volume: 56 129 start-page: 4976 5058 year: 2017 2017 end-page: 4981 5063 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 29 start-page: 3111 year: 2017 end-page: 3117 publication-title: Chem. Mater. – volume: 137 start-page: 3291 year: 2015 end-page: 3299 publication-title: J. Am. Chem. Soc. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 43 start-page: 5766 year: 2014 end-page: 5788 publication-title: Chem. Soc. Rev. – start-page: 1904 year: 2008 end-page: 1906 publication-title: Chem. Commun. – volume: 43 start-page: 148 year: 2014 end-page: 184 publication-title: Chem. Soc. Rev. – volume: 55 128 start-page: 8846 8992 year: 2016 2016 end-page: 8849 8995 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 13 start-page: 300 year: 2018 end-page: 303 publication-title: Nat. Nanotechnol. – volume: 43 start-page: 5913 year: 2014 end-page: 5932 publication-title: Chem. Soc. Rev. – volume: 112 start-page: 933 year: 2012 end-page: 969 publication-title: Chem. Rev. – volume: 2 start-page: 877 year: 2017 end-page: 883 publication-title: Nat. Energy – volume: 463 start-page: 98 year: 2010 end-page: 102 publication-title: Nature – volume: 8 start-page: 537 year: 2014 end-page: 545 publication-title: ACS Nano – volume: 52 125 start-page: 2688 2752 year: 2013 2013 end-page: 2700 2764 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_2_33_2 doi: 10.1002/anie.201607329 – ident: e_1_2_2_46_1 – ident: e_1_2_2_51_1 doi: 10.1038/s41565-017-0051-5 – ident: e_1_2_2_32_1 – ident: e_1_2_2_10_2 doi: 10.1021/nn4059852 – ident: e_1_2_2_16_2 doi: 10.1146/annurev-anchem-071114-040202 – ident: e_1_2_2_23_1 – ident: e_1_2_2_48_2 doi: 10.1002/chem.201503503 – ident: e_1_2_2_44_2 doi: 10.1039/C7TA03917D – ident: e_1_2_2_5_2 doi: 10.1002/anie.201601537 – ident: e_1_2_2_50_2 doi: 10.1039/c3sc21659d – ident: e_1_2_2_24_2 doi: 10.1002/anie.201206410 – ident: e_1_2_2_31_1 doi: 10.1039/C9SC04926F – ident: e_1_2_2_29_1 doi: 10.1002/anie.201700962 – ident: e_1_2_2_33_3 doi: 10.1002/ange.201607329 – ident: e_1_2_2_17_1 doi: 10.1126/science.1230444 – ident: e_1_2_2_3_2 doi: 10.1021/ja511788f – ident: e_1_2_2_28_2 doi: 10.1021/jacs.7b09163 – ident: e_1_2_2_37_1 doi: 10.1039/b719497h – ident: e_1_2_2_12_2 doi: 10.1002/adfm.201404160 – ident: e_1_2_2_27_2 doi: 10.1039/C4CS00093E – ident: e_1_2_2_5_3 doi: 10.1002/ange.201601537 – ident: e_1_2_2_29_2 doi: 10.1002/ange.201700962 – ident: e_1_2_2_39_1 – ident: e_1_2_2_11_2 doi: 10.1038/nchem.1858 – ident: e_1_2_2_35_2 doi: 10.1039/C7TA01526G – ident: e_1_2_2_41_2 doi: 10.1021/cm504623r – ident: e_1_2_2_1_1 – ident: e_1_2_2_47_2 doi: 10.1038/ncomms13872 – ident: e_1_2_2_7_1 doi: 10.1016/S0006-3495(75)85875-9 – ident: e_1_2_2_43_2 doi: 10.1038/s41560-017-0018-7 – ident: e_1_2_2_9_2 doi: 10.1002/adfm.201000239 – ident: e_1_2_2_36_2 doi: 10.1002/anie.201700686 – ident: e_1_2_2_14_2 doi: 10.1021/ar400024p – ident: e_1_2_2_15_2 doi: 10.1021/acs.jpcb.6b00370 – ident: e_1_2_2_40_2 doi: 10.1021/acs.chemmater.7b00147 – ident: e_1_2_2_49_2 doi: 10.1002/chem.201700989 – ident: e_1_2_2_38_1 doi: 10.1016/j.snb.2011.12.055 – ident: e_1_2_2_22_2 doi: 10.1126/science.1239872 – ident: e_1_2_2_21_2 doi: 10.1039/C4CS00006D – ident: e_1_2_2_42_1 – ident: e_1_2_2_30_1 doi: 10.1002/adma.201706551 – ident: e_1_2_2_34_2 doi: 10.1038/ncomms6532 – ident: e_1_2_2_2_2 doi: 10.1038/nature08652 – ident: e_1_2_2_18_1 – ident: e_1_2_2_20_2 doi: 10.1002/adma.201800702 – ident: e_1_2_2_19_2 doi: 10.1021/cr200304e – ident: e_1_2_2_45_1 doi: 10.1002/cplu.201600243 – ident: e_1_2_2_36_3 doi: 10.1002/ange.201700686 – ident: e_1_2_2_8_1 – ident: e_1_2_2_52_1 doi: 10.1039/C3CS60181A – ident: e_1_2_2_13_1 – ident: e_1_2_2_6_2 doi: 10.1038/srep44427 – ident: e_1_2_2_26_2 doi: 10.1002/adma.201705155 – ident: e_1_2_2_25_2 doi: 10.1021/ja107035w – ident: e_1_2_2_4_2 doi: 10.1038/ncomms13415 – ident: e_1_2_2_24_3 doi: 10.1002/ange.201206410 |
SSID | ssj0028806 |
Score | 2.6134834 |
Snippet | Mimicking biological proton pumps to achieve stimuli‐responsive protonic solids has long been of great interest for their diverse applications in fuel cells,... Mimicking biological proton pumps to achieve stimuli-responsive protonic solids has long been of great interest for their diverse applications in fuel cells,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7732 |
SubjectTerms | Chemical sensors Conductivity Electronic devices Electronic equipment Fuel cells hybrid membranes Irradiation Light irradiation Membranes Metal-organic frameworks Mimicry MOFs photoswitching proton conduction Protons Radiation Remote sensors Response time Sensors Spiropyrans sulfonated spiropyran Transistors |
Title | A Light‐Responsive Metal–Organic Framework Hybrid Membrane with High On/Off Photoswitchable Proton Conductivity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202002389 https://www.ncbi.nlm.nih.gov/pubmed/32090427 https://www.proquest.com/docview/2397465936 https://www.proquest.com/docview/2363087602 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEB5KXtqX3oebAxUKfVLW1hXv47Jk2ZbmIDSQN6PDItDULtndQPuUnxDoP8wv6YyvdltKoQU_WPYIydJI-iTPfAPwWpmoZVAZl9Y6rnIhuXXO8oi64rU0Ulo6Gjg4NPNT9e5Mn_3kxd_yQwwHbjQymvmaBrh1i9EP0lDywMb9nWhWHfLgI4MtQkUnA3-UwAJb9yIpOUWh71kbUzFaz76-Kv0GNdeRa7P0zB6A7SvdWpx83F0t3a7_-guf4_981UO43-FSNmkV6RHcKavHcHfah4N7AosJe08b-dvrm5POrvaqZAclgvfb62-tS6dns97Wi82_kC8YCnzC6lQlowNfRlYl7KgaHcXIjs_rZb3Ax_6c3LfY8SWmKzatK6KgbWJaPIXT2f6H6Zx3ERu4V1k65hEnCJk5pzXi0JC6aEuPICALqU6NGwcbrAoyRG11aZwSIUaVKStQT8Y09cpnsFHVVfkCWOpjbryKuXJ4hRyRYK59nhGmintGJ8D7Hit8R2dOUTUuipaIWRTUlMXQlAm8GeQ_t0Qef5Tc6hWg6Ab0ohCI25Sh8IcJvBpeYxfQ_xVsxXpFMob4FU0qEnjeKs5QlBTpmMKaJCCa7v9LHYrJ4dv9IfXyXzJtwj26J0uHLNuCjeXlqtxGALV0O80g-Q71ThOV |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZRLKc8GChgJiVO6iV8kx9XS1RZ2t1XVStwi24lVCUhQdxeJnvoTKvEP-0s6kxdaEEICKRc7tuzYY_vzZOYbgNdSeyVyGYfCGBvKhIvQWGtCj7LilNBCGFINzOZ6cirff1SdNSH5wjT8EL3CjVZGvV_TAieF9OAnayi5YOMFj9fHTnob7lBYb6LPf3fcM0hxbLJxMBIipDj0HW9jxAfr9dfPpd_A5jp2rQ-f8T2wXbcbm5NPe6ul3XMXvzA6_td3bcNWC03ZsJGl-3CrKB_A5qiLCPcQFkM2pbv89eXVcWta-61gswLx-_Xlj8ar07FxZ-7FJt_JHQwLfMH-lAUjnS8jwxJ2WA4OvWdHZ9WyWmC2OyMPLnZ0jumSjaqSWGjrsBaP4HS8fzKahG3QhtDJOEpDj3uEiK1VCqFoHllvCoc4IM4jFWmb5iY3Mhe5V0YV2kqeey9jaTiKSkq7r3gMG2VVFjvAIucT7aRPpMUnTxAMJsolMcEq_1arAMJuyjLXMppTYI3PWcPFzDMayqwfygDe9OW_Nlwefyy520lA1q7pRcYRuqGIpUIH8Kp_jVNAv1hwFKsVldFEsagjHsCTRnL6pgSPUopsEgCv5_8vfciG84P9PvX0Xyq9hM3JyWyaTQ_mH57BXconw4c43oWN5fmqeI54amlf1CvmBiZDF7E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL70eggJGQOKWb-NXkuNp2tYV2u6qo1FvkR6xKQFJ1d5Hg1J-AxD_sL2Em2QQWhJBAysXOWHbssf3ZmfkG4JXUQQkv01gYY2OZcREba00cUFecEloIQ1cDB1M9OZZvTtTJT178LT9Ef-FGM6NZr2mCn_kw-EEaSh7YeL7jza6TX4VrUic5BW_YOeoJpDjW2PoXCRFTGPqOtjHhg_Xy69vSb1hzHbo2e8_4Npiu1a3Jyfut5cJuuS-_EDr-z2fdgVsrYMqGrSbdhStldQ9ujLp4cPdhPmT7dJK_vPh6tDKs_VSygxLR--XFt9an07FxZ-zFJp_JGQwFPmJzqpLRjS8jsxJ2WA0OQ2Cz03pRzzHbnZL_FpudY7pio7oiDtomqMUDOB7vvhtN4lXIhtjJNMnjgCuESK1VCoGoT2wwpUMUkPpEJdrm3ngjvfBBGVVqK7kPQabScFSUnNZe8RA2qroqHwNLXMi0kyGTFh-fIRTMlMtSAlVhW6sI4m7ECrfiM6ewGh-KlomZF9SVRd-VEbzu5c9aJo8_Sm52ClCsZvS84AjcpKb4hxG87F_jENAPFuzFekkymggWdcIjeNQqTl-V4Kidkm9HwJvh_0sbiuF0b7dPPfmXQi_g-mxnXOzvTd8-hZuUTVYPaboJG4vzZfkMwdTCPm_my3fKdhZg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Light-Responsive+Metal-Organic+Framework+Hybrid+Membrane+with+High+On%2FOff+Photoswitchable+Proton+Conductivity&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liang%2C+Hong-Qing&rft.au=Guo%2C+Yi&rft.au=Shi%2C+Yanshu&rft.au=Peng%2C+Xinsheng&rft.date=2020-05-11&rft.eissn=1521-3773&rft.volume=59&rft.issue=20&rft.spage=7732&rft_id=info:doi/10.1002%2Fanie.202002389&rft_id=info%3Apmid%2F32090427&rft.externalDocID=32090427 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |