A New One‐Pot Fluorescence Derivatization Strategy for Highly Sensitive MicroRNA Analysis

MicroRNAs (miRNAs) modulate the expression of over 30 % of mammalian genes during development and apoptosis, and abnormal expression of miRNAs may lead to a range of human pathologies. Therefore, analysis of miRNAs is valuable for disease diagnostics. In this work, a novel one‐pot fluorescence deriv...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 26; no. 25; pp. 5639 - 5647
Main Authors Pan, Li, Zhang, Huaisheng, Zhao, Jingjin, Ogungbe, Ifedayo Victor, Zhao, Shulin, Liu, Yi‐Ming
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 04.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract MicroRNAs (miRNAs) modulate the expression of over 30 % of mammalian genes during development and apoptosis, and abnormal expression of miRNAs may lead to a range of human pathologies. Therefore, analysis of miRNAs is valuable for disease diagnostics. In this work, a novel one‐pot fluorescence derivatization strategy was developed for miRNA analysis. The mechanism of the derivatization reaction was explored by using instrumental methods, including liquid chromatography, fluorescence spectroscopy, and mass spectrometry. Highly fluorescent N6‐ethenoadenine (ϵ‐adenine) was formed and detached from the miRNA sequence through the reaction of adenine in nucleic acids with 2‐chloroacetaldehyde (CAA) at 100 °C. This is the first experimental evidence that the cooperation of formed ϵ‐adenine and water‐mediated hydrogen‐bond interaction between the proton at the 2′‐ and the oxyanion at 3′‐positions stabilized the oxocarbenium significantly, which makes the depurination and derivatization of miRNA highly effective. Based on this derivatization strategy, a facile and sensitive high‐performance liquid chromatography method was developed for quantitative assay of miRNAs. In combination with magnetic solid‐phase extraction (MSPE), the HPLC method was shown to be useful for the determination of microRNAs at sub‐picomolar level in serum samples. microRNAs made easy: A one‐pot fluorescence derivatization strategy has been developed for highly sensitive microRNA analysis. Based on this derivatization strategy, a facile and sensitive high‐performance liquid chromatography method was developed for quantitative assay of microRNAs.
AbstractList MicroRNAs (miRNAs) modulate the expression of over 30 % of mammalian genes during development and apoptosis, and abnormal expression of miRNAs may lead to a range of human pathologies. Therefore, analysis of miRNAs is valuable for disease diagnostics. In this work, a novel one-pot fluorescence derivatization strategy was developed for miRNA analysis. The mechanism of the derivatization reaction was explored by using instrumental methods, including liquid chromatography, fluorescence spectroscopy, and mass spectrometry. Highly fluorescent N6 -ethenoadenine (ϵ-adenine) was formed and detached from the miRNA sequence through the reaction of adenine in nucleic acids with 2-chloroacetaldehyde (CAA) at 100 °C. This is the first experimental evidence that the cooperation of formed ϵ-adenine and water-mediated hydrogen-bond interaction between the proton at the 2'- and the oxyanion at 3'-positions stabilized the oxocarbenium significantly, which makes the depurination and derivatization of miRNA highly effective. Based on this derivatization strategy, a facile and sensitive high-performance liquid chromatography method was developed for quantitative assay of miRNAs. In combination with magnetic solid-phase extraction (MSPE), the HPLC method was shown to be useful for the determination of microRNAs at sub-picomolar level in serum samples.MicroRNAs (miRNAs) modulate the expression of over 30 % of mammalian genes during development and apoptosis, and abnormal expression of miRNAs may lead to a range of human pathologies. Therefore, analysis of miRNAs is valuable for disease diagnostics. In this work, a novel one-pot fluorescence derivatization strategy was developed for miRNA analysis. The mechanism of the derivatization reaction was explored by using instrumental methods, including liquid chromatography, fluorescence spectroscopy, and mass spectrometry. Highly fluorescent N6 -ethenoadenine (ϵ-adenine) was formed and detached from the miRNA sequence through the reaction of adenine in nucleic acids with 2-chloroacetaldehyde (CAA) at 100 °C. This is the first experimental evidence that the cooperation of formed ϵ-adenine and water-mediated hydrogen-bond interaction between the proton at the 2'- and the oxyanion at 3'-positions stabilized the oxocarbenium significantly, which makes the depurination and derivatization of miRNA highly effective. Based on this derivatization strategy, a facile and sensitive high-performance liquid chromatography method was developed for quantitative assay of miRNAs. In combination with magnetic solid-phase extraction (MSPE), the HPLC method was shown to be useful for the determination of microRNAs at sub-picomolar level in serum samples.
MicroRNAs (miRNAs) modulate the expression of over 30 % of mammalian genes during development and apoptosis, and abnormal expression of miRNAs may lead to a range of human pathologies. Therefore, analysis of miRNAs is valuable for disease diagnostics. In this work, a novel one‐pot fluorescence derivatization strategy was developed for miRNA analysis. The mechanism of the derivatization reaction was explored by using instrumental methods, including liquid chromatography, fluorescence spectroscopy, and mass spectrometry. Highly fluorescent N6‐ethenoadenine (ϵ‐adenine) was formed and detached from the miRNA sequence through the reaction of adenine in nucleic acids with 2‐chloroacetaldehyde (CAA) at 100 °C. This is the first experimental evidence that the cooperation of formed ϵ‐adenine and water‐mediated hydrogen‐bond interaction between the proton at the 2′‐ and the oxyanion at 3′‐positions stabilized the oxocarbenium significantly, which makes the depurination and derivatization of miRNA highly effective. Based on this derivatization strategy, a facile and sensitive high‐performance liquid chromatography method was developed for quantitative assay of miRNAs. In combination with magnetic solid‐phase extraction (MSPE), the HPLC method was shown to be useful for the determination of microRNAs at sub‐picomolar level in serum samples.
MicroRNAs (miRNAs) modulate the expression of over 30 % of mammalian genes during development and apoptosis, and abnormal expression of miRNAs may lead to a range of human pathologies. Therefore, analysis of miRNAs is valuable for disease diagnostics. In this work, a novel one-pot fluorescence derivatization strategy was developed for miRNA analysis. The mechanism of the derivatization reaction was explored by using instrumental methods, including liquid chromatography, fluorescence spectroscopy, and mass spectrometry. Highly fluorescent N -ethenoadenine (ϵ-adenine) was formed and detached from the miRNA sequence through the reaction of adenine in nucleic acids with 2-chloroacetaldehyde (CAA) at 100 °C. This is the first experimental evidence that the cooperation of formed ϵ-adenine and water-mediated hydrogen-bond interaction between the proton at the 2'- and the oxyanion at 3'-positions stabilized the oxocarbenium significantly, which makes the depurination and derivatization of miRNA highly effective. Based on this derivatization strategy, a facile and sensitive high-performance liquid chromatography method was developed for quantitative assay of miRNAs. In combination with magnetic solid-phase extraction (MSPE), the HPLC method was shown to be useful for the determination of microRNAs at sub-picomolar level in serum samples.
MicroRNAs (miRNAs) modulate the expression of over 30 % of mammalian genes during development and apoptosis, and abnormal expression of miRNAs may lead to a range of human pathologies. Therefore, analysis of miRNAs is valuable for disease diagnostics. In this work, a novel one‐pot fluorescence derivatization strategy was developed for miRNA analysis. The mechanism of the derivatization reaction was explored by using instrumental methods, including liquid chromatography, fluorescence spectroscopy, and mass spectrometry. Highly fluorescent N 6 ‐ethenoadenine (ϵ‐adenine) was formed and detached from the miRNA sequence through the reaction of adenine in nucleic acids with 2‐chloroacetaldehyde (CAA) at 100 °C. This is the first experimental evidence that the cooperation of formed ϵ‐adenine and water‐mediated hydrogen‐bond interaction between the proton at the 2′‐ and the oxyanion at 3′‐positions stabilized the oxocarbenium significantly, which makes the depurination and derivatization of miRNA highly effective. Based on this derivatization strategy, a facile and sensitive high‐performance liquid chromatography method was developed for quantitative assay of miRNAs. In combination with magnetic solid‐phase extraction (MSPE), the HPLC method was shown to be useful for the determination of microRNAs at sub‐picomolar level in serum samples.
MicroRNAs (miRNAs) modulate the expression of over 30 % of mammalian genes during development and apoptosis, and abnormal expression of miRNAs may lead to a range of human pathologies. Therefore, analysis of miRNAs is valuable for disease diagnostics. In this work, a novel one‐pot fluorescence derivatization strategy was developed for miRNA analysis. The mechanism of the derivatization reaction was explored by using instrumental methods, including liquid chromatography, fluorescence spectroscopy, and mass spectrometry. Highly fluorescent N6‐ethenoadenine (ϵ‐adenine) was formed and detached from the miRNA sequence through the reaction of adenine in nucleic acids with 2‐chloroacetaldehyde (CAA) at 100 °C. This is the first experimental evidence that the cooperation of formed ϵ‐adenine and water‐mediated hydrogen‐bond interaction between the proton at the 2′‐ and the oxyanion at 3′‐positions stabilized the oxocarbenium significantly, which makes the depurination and derivatization of miRNA highly effective. Based on this derivatization strategy, a facile and sensitive high‐performance liquid chromatography method was developed for quantitative assay of miRNAs. In combination with magnetic solid‐phase extraction (MSPE), the HPLC method was shown to be useful for the determination of microRNAs at sub‐picomolar level in serum samples. microRNAs made easy: A one‐pot fluorescence derivatization strategy has been developed for highly sensitive microRNA analysis. Based on this derivatization strategy, a facile and sensitive high‐performance liquid chromatography method was developed for quantitative assay of microRNAs.
Author Liu, Yi‐Ming
Zhang, Huaisheng
Zhao, Jingjin
Zhao, Shulin
Ogungbe, Ifedayo Victor
Pan, Li
Author_xml – sequence: 1
  givenname: Li
  surname: Pan
  fullname: Pan, Li
  organization: Jackson State University
– sequence: 2
  givenname: Huaisheng
  surname: Zhang
  fullname: Zhang, Huaisheng
  organization: Jackson State University
– sequence: 3
  givenname: Jingjin
  surname: Zhao
  fullname: Zhao, Jingjin
  organization: Guangxi Normal University
– sequence: 4
  givenname: Ifedayo Victor
  surname: Ogungbe
  fullname: Ogungbe, Ifedayo Victor
  organization: Jackson State University
– sequence: 5
  givenname: Shulin
  orcidid: 0000-0002-2560-042X
  surname: Zhao
  fullname: Zhao, Shulin
  email: zhaoshulin001@163.com
  organization: Guangxi Normal University
– sequence: 6
  givenname: Yi‐Ming
  surname: Liu
  fullname: Liu, Yi‐Ming
  email: yiming_liu@jsums.edu
  organization: Jackson State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31953882$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1OGzEYRa2KqgTaLUtkiU03k_pvPPYySkNTiZ8K2lUXI8f5DEaTMdgzoOmKR-AZ-yR1GkolJIQsy5tzbH_37qCtNrSA0B4lY0oI-2QvYTVmhGpSSq7foBEtGS14JcstNCJaVIUsud5GOyldEUK05Pwd2uZUl1wpNkI_J_gE7vBpC7_vH76FDh82fYiQLLQW8GeI_tZ0_lfeocXnXTQdXAzYhYjn_uKyGfA5tMl3_hbwsbcxnJ1M8KQ1zZB8eo_eOtMk-PB47qIfh7Pv03lxdPrl63RyVFhBiS4WsLBcSrdUSy2M444COF6xyghDucirXGqirbSCKAXGUEaEVlxQu9DKOb6LPm7uvY7hpofU1SufB2ga00LoU80yKqlinGX04Bl6FfqY_7umdCUkLVWZqf1Hql-sYFlfR78ycaj_xZaB8QbIE6cUwT0hlNTrXup1L_VTL1kQzwTru7-h5kh987KmN9qdb2B45ZF6Op8d_3f_ALWMoh0
CitedBy_id crossref_primary_10_1021_acsomega_4c11277
crossref_primary_10_1016_j_ijbiomac_2021_04_101
crossref_primary_10_1039_D4AY00100A
crossref_primary_10_1080_10826076_2021_1952427
crossref_primary_10_1016_j_aca_2022_340636
Cites_doi 10.1038/nature02871
10.1038/nature10888
10.1016/j.aca.2018.10.004
10.1021/acs.analchem.7b00955
10.1016/j.ymeth.2010.01.032
10.1021/ja00779a040
10.1021/acs.analchem.8b02471
10.1021/ac203368h
10.1093/nar/gni178
10.1016/j.bios.2013.03.074
10.1016/0005-2787(78)90199-5
10.1021/jp070822j
10.1373/clinchem.2008.112805
10.1016/S0092-8674(04)00045-5
10.1038/nmeth704
10.1093/carcin/19.12.2081
10.1039/C0CC03957H
10.1021/ja300721s
10.1016/0003-2697(84)90352-X
10.1093/nar/gkm1165
10.1016/S0040-4039(01)96762-0
10.1021/jo800891c
10.1021/jo00323a040
10.1007/BF02401711
10.1016/j.talanta.2018.07.090
10.1002/anie.201309388
10.2144/000114002
10.1021/acs.analchem.5b01159
10.1016/S0021-9673(96)00605-X
10.1126/science.1064921
10.1093/nar/24.22.4535
10.3389/fchem.2016.00019
10.1006/abio.1994.1543
10.1021/jacs.5b01451
10.1021/jo010960j
10.1002/ange.201001375
10.1021/bi00821a005
10.1021/acs.analchem.7b05253
10.1021/ac4038043
10.1002/ange.201309388
10.1021/ja0477468
10.1093/carcin/3.6.663
10.1021/bi00427a036
10.1093/nar/5.3.789
10.1038/nbt.1692
10.1021/acs.analchem.7b01861
10.1021/jm00165a015
10.1002/anie.201001375
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201905639
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 5647
ExternalDocumentID 31953882
10_1002_chem_201905639
CHEM201905639
Genre article
Journal Article
GrantInformation_xml – fundername: Foundation for the National Institutes of Health
  funderid: GM089557
– fundername: National Natural Science Foundation of China
  funderid: 21874030
– fundername: National Natural Science Foundation of China
  grantid: 21874030
– fundername: Foundation for the National Institutes of Health
  grantid: GM089557
– fundername: NIMHD NIH HHS
  grantid: G12 MD007581
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4109-bebc366fd8d94af3f1eef3727a4a1343435d909c6c4088eaa120498341cb98ff3
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 10:29:52 EDT 2025
Fri Jul 25 10:21:40 EDT 2025
Mon Jul 21 05:54:56 EDT 2025
Tue Jul 01 01:30:05 EDT 2025
Thu Apr 24 23:12:30 EDT 2025
Wed Jan 22 16:35:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords dyes/pigments
RNA recognition
fluorescence spectroscopy
magnetic properties
synthetic methods
Language English
License 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4109-bebc366fd8d94af3f1eef3727a4a1343435d909c6c4088eaa120498341cb98ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2560-042X
PMID 31953882
PQID 2397461585
PQPubID 986340
PageCount 9
ParticipantIDs proquest_miscellaneous_2341618232
proquest_journals_2397461585
pubmed_primary_31953882
crossref_primary_10_1002_chem_201905639
crossref_citationtrail_10_1002_chem_201905639
wiley_primary_10_1002_chem_201905639_CHEM201905639
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 4, 2020
PublicationDateYYYYMMDD 2020-05-04
PublicationDate_xml – month: 05
  year: 2020
  text: May 4, 2020
  day: 04
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
1970; 9
2012; 482
1990; 33
2004; 126
2013; 47
2019; 192
2017; 89
2008; 36
1981; 46
1978; 5
2010 2010; 49 122
2004; 1
2008; 73
1978; 517
1983; 57
2019; 1047
1989; 28
2014; 86
2004; 431
2016; 4
2009; 55
1994; 223
1980; 16
2004; 116
2001; 294
1998; 19
2012; 134
2015; 137
2013; 54
2010; 28
2002; 67
1971; 12
2007; 111
1982; 3
1984; 137
2015; 87
1972; 50
1972; 94
2018; 90
2011; 47
1996; 24
2005; 33
1996; 755
2010; 50
2012; 84
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_7_1
e_1_2_7_19_1
Krzyzosiak W. J. (e_1_2_7_31_1) 1983; 57
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_25_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
Avigad G. (e_1_2_7_20_1) 1972; 50
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 89
  start-page: 8766
  year: 2017
  end-page: 8771
  publication-title: Anal. Chem.
– volume: 94
  start-page: 8532
  year: 1972
  end-page: 8541
  publication-title: J. Am. Chem. Soc.
– volume: 49 122
  start-page: 5498 5630
  year: 2010 2010
  end-page: 5501 5633
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 33
  year: 2005
  publication-title: Nucleic Acids Res.
– volume: 3
  start-page: 663
  year: 1982
  end-page: 665
  publication-title: Carcinogenesis
– volume: 90
  start-page: 10001
  year: 2018
  end-page: 10008
  publication-title: Anal. Chem.
– volume: 4
  start-page: 19
  year: 2016
  publication-title: Front. Chem.
– volume: 192
  start-page: 175
  year: 2019
  end-page: 181
  publication-title: Talanta
– volume: 1
  start-page: 47
  year: 2004
  end-page: 53
  publication-title: Nat. Methods
– volume: 482
  start-page: 347
  year: 2012
  end-page: 355
  publication-title: Nature
– volume: 28
  start-page: 261
  year: 1989
  end-page: 267
  publication-title: Biochemistry
– volume: 57
  start-page: 779
  year: 1983
  publication-title: Polish. J. Chem.
– volume: 55
  start-page: 623
  year: 2009
  end-page: 631
  publication-title: Clin. Chem.
– volume: 90
  start-page: 4039
  year: 2018
  end-page: 4045
  publication-title: Anal. Chem.
– volume: 67
  start-page: 1852
  year: 2002
  end-page: 1865
  publication-title: J. Org. Chem.
– volume: 137
  start-page: 6116
  year: 2015
  end-page: 6119
  publication-title: J. Am. Chem. Soc.
– volume: 294
  start-page: 853
  year: 2001
  end-page: 858
  publication-title: Science
– volume: 28
  start-page: 1208
  year: 2010
  end-page: 1212
  publication-title: Nat. Biotechnol.
– volume: 137
  start-page: 93
  year: 1984
  end-page: 100
  publication-title: Anal. Biochem.
– volume: 19
  start-page: 2081
  year: 1998
  end-page: 2084
  publication-title: Carcinogenesis
– volume: 9
  start-page: 3678
  year: 1970
  end-page: 3682
  publication-title: Biochemistry
– volume: 111
  start-page: 6071
  year: 2007
  end-page: 6077
  publication-title: J. Phys. Chem. B
– volume: 86
  start-page: 336
  year: 2014
  end-page: 339
  publication-title: Anal. Chem.
– volume: 33
  start-page: 978
  year: 1990
  end-page: 985
  publication-title: J. Med. Chem.
– volume: 134
  start-page: 5064
  year: 2012
  end-page: 5067
  publication-title: J. Am. Chem. Soc.
– volume: 116
  start-page: 281
  year: 2004
  end-page: 297
  publication-title: Cell
– volume: 12
  start-page: 1993
  year: 1971
  end-page: 1996
  publication-title: Tetrahedron Lett.
– volume: 53 126
  start-page: 2389 2421
  year: 2014 2014
  end-page: 2393 2425
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 755
  start-page: 271
  year: 1996
  end-page: 280
  publication-title: J. Chromatogr. A
– volume: 16
  start-page: 209
  year: 1980
  end-page: 221
  publication-title: Chem. Heterocycl. Compd.
– volume: 126
  start-page: 14710
  year: 2004
  end-page: 14711
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 789
  year: 1978
  end-page: 804
  publication-title: Nucleic Acids Res.
– volume: 431
  start-page: 350
  year: 2004
  end-page: 355
  publication-title: Nature
– volume: 47
  start-page: 2595
  year: 2011
  end-page: 2597
  publication-title: Chem. Commun.
– volume: 24
  start-page: 4535
  year: 1996
  end-page: 4532
  publication-title: Nucleic Acids Res.
– volume: 89
  start-page: 9850
  year: 2017
  end-page: 9856
  publication-title: Anal. Chem.
– volume: 87
  start-page: 6303
  year: 2015
  end-page: 6310
  publication-title: Anal. Chem.
– volume: 517
  start-page: 329
  year: 1978
  end-page: 337
  publication-title: Biochim. Biophys. Acta Nucleic Acids Protein Synth.
– volume: 50
  start-page: 298
  year: 2010
  end-page: 301
  publication-title: Methods
– volume: 54
  start-page: 155
  year: 2013
  end-page: 164
  publication-title: BioTechniques
– volume: 1047
  start-page: 172
  year: 2019
  end-page: 178
  publication-title: Anal. Chim. Acta
– volume: 50
  start-page: 321
  year: 1972
  end-page: 323
  publication-title: Anal. Chem.
– volume: 73
  start-page: 5907
  year: 2008
  end-page: 5914
  publication-title: J. Org. Chem.
– volume: 47
  start-page: 461
  year: 2013
  end-page: 466
  publication-title: Biosens. Bioelectron.
– volume: 84
  start-page: 6400
  year: 2012
  end-page: 6406
  publication-title: Anal. Chem.
– volume: 36
  year: 2008
  publication-title: Nucleic Acids Res.
– volume: 223
  start-page: 39
  year: 1994
  end-page: 46
  publication-title: Anal. Biochem.
– volume: 46
  start-page: 2171
  year: 1981
  end-page: 2173
  publication-title: J. Org. Chem.
– ident: e_1_2_7_2_1
  doi: 10.1038/nature02871
– ident: e_1_2_7_3_1
  doi: 10.1038/nature10888
– ident: e_1_2_7_42_1
  doi: 10.1016/j.aca.2018.10.004
– ident: e_1_2_7_43_1
  doi: 10.1021/acs.analchem.7b00955
– ident: e_1_2_7_39_1
  doi: 10.1016/j.ymeth.2010.01.032
– ident: e_1_2_7_24_1
  doi: 10.1021/ja00779a040
– ident: e_1_2_7_46_1
  doi: 10.1021/acs.analchem.8b02471
– ident: e_1_2_7_36_1
  doi: 10.1021/ac203368h
– ident: e_1_2_7_8_1
  doi: 10.1093/nar/gni178
– ident: e_1_2_7_38_1
  doi: 10.1016/j.bios.2013.03.074
– ident: e_1_2_7_27_1
  doi: 10.1016/0005-2787(78)90199-5
– ident: e_1_2_7_34_1
  doi: 10.1021/jp070822j
– ident: e_1_2_7_4_1
  doi: 10.1373/clinchem.2008.112805
– ident: e_1_2_7_1_1
  doi: 10.1016/S0092-8674(04)00045-5
– ident: e_1_2_7_6_1
  doi: 10.1038/nmeth704
– ident: e_1_2_7_21_1
  doi: 10.1093/carcin/19.12.2081
– ident: e_1_2_7_12_1
  doi: 10.1039/C0CC03957H
– ident: e_1_2_7_14_1
  doi: 10.1021/ja300721s
– ident: e_1_2_7_47_1
  doi: 10.1016/0003-2697(84)90352-X
– ident: e_1_2_7_37_1
  doi: 10.1093/nar/gkm1165
– ident: e_1_2_7_22_1
  doi: 10.1016/S0040-4039(01)96762-0
– ident: e_1_2_7_33_1
  doi: 10.1021/jo800891c
– ident: e_1_2_7_25_1
  doi: 10.1021/jo00323a040
– ident: e_1_2_7_32_1
  doi: 10.1007/BF02401711
– ident: e_1_2_7_41_1
  doi: 10.1016/j.talanta.2018.07.090
– ident: e_1_2_7_9_1
  doi: 10.1002/anie.201309388
– ident: e_1_2_7_40_1
  doi: 10.2144/000114002
– ident: e_1_2_7_48_1
  doi: 10.1021/acs.analchem.5b01159
– ident: e_1_2_7_18_1
  doi: 10.1016/S0021-9673(96)00605-X
– ident: e_1_2_7_5_1
  doi: 10.1126/science.1064921
– ident: e_1_2_7_15_1
  doi: 10.1093/nar/24.22.4535
– ident: e_1_2_7_19_1
  doi: 10.3389/fchem.2016.00019
– volume: 50
  start-page: 321
  year: 1972
  ident: e_1_2_7_20_1
  publication-title: Anal. Chem.
– ident: e_1_2_7_17_1
  doi: 10.1006/abio.1994.1543
– ident: e_1_2_7_11_1
  doi: 10.1021/jacs.5b01451
– ident: e_1_2_7_29_1
  doi: 10.1021/jo010960j
– ident: e_1_2_7_7_2
  doi: 10.1002/ange.201001375
– ident: e_1_2_7_28_1
  doi: 10.1021/bi00821a005
– ident: e_1_2_7_45_1
  doi: 10.1021/acs.analchem.7b05253
– ident: e_1_2_7_13_1
  doi: 10.1021/ac4038043
– ident: e_1_2_7_9_2
  doi: 10.1002/ange.201309388
– volume: 57
  start-page: 779
  year: 1983
  ident: e_1_2_7_31_1
  publication-title: Polish. J. Chem.
– ident: e_1_2_7_26_1
  doi: 10.1021/ja0477468
– ident: e_1_2_7_23_1
  doi: 10.1093/carcin/3.6.663
– ident: e_1_2_7_16_1
  doi: 10.1021/bi00427a036
– ident: e_1_2_7_30_1
  doi: 10.1093/nar/5.3.789
– ident: e_1_2_7_10_1
  doi: 10.1038/nbt.1692
– ident: e_1_2_7_44_1
  doi: 10.1021/acs.analchem.7b01861
– ident: e_1_2_7_35_1
  doi: 10.1021/jm00165a015
– ident: e_1_2_7_7_1
  doi: 10.1002/anie.201001375
SSID ssj0009633
Score 2.352037
Snippet MicroRNAs (miRNAs) modulate the expression of over 30 % of mammalian genes during development and apoptosis, and abnormal expression of miRNAs may lead to a...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5639
SubjectTerms Acetaldehyde - analogs & derivatives
Acetaldehyde - chemistry
Adenine
Adenine - chemistry
Apoptosis
Chemistry
Chloroacetaldehyde
Chromatography
Chromatography, High Pressure Liquid - methods
dyes/pigments
Fluorescence
Fluorescence spectroscopy
Gene expression
High performance liquid chromatography
Humans
Liquid chromatography
magnetic properties
Mass Spectrometry
Mass spectroscopy
MicroRNAs
MicroRNAs - analysis
miRNA
Nucleic acids
RNA recognition
Spectrometry, Fluorescence - methods
Strategy
synthetic methods
Water
Title A New One‐Pot Fluorescence Derivatization Strategy for Highly Sensitive MicroRNA Analysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201905639
https://www.ncbi.nlm.nih.gov/pubmed/31953882
https://www.proquest.com/docview/2397461585
https://www.proquest.com/docview/2341618232
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH6IF724L9VRIgieql3STnIcRgcRXHABwUNJ0vTi0JFx5qAnf4K_0V_ie910FBH0WJrQNHnLl7z3vgDsxoZIt7RP8cHM5VJJVwUidYXwiT0lMpmmiO7pWXx8w09uo9tPVfwlP0Rz4EaaUdhrUnClHw8-SEPxn6iSHB1ahF4WjTAlbBEquvzgj0LpKu-S522XOFhr1kYvOJjsPumVvkHNSeRauJ7ePKh60GXGyf3-eKT3zfMXPsf__NUCzFW4lHVKQVqEKZsvwUy3vg5uGe46DA0iO8_t28vrxWDEev3xYFiQQRnLDlGQ6XC3LOpkFeftE0NIzCiVpP_ErihVnowrO6UkwMuzDqsZUVbgpnd03T12q5sZXMN9T7raahPGcZaKVHKVhZlvbRYiFFJc-SEVq0ap9KSJDUcrZpXyA9yJCPSYRkuRZeEqTOeD3K4D46knZMrboY0sGhOptA7Q5mnd1tpT0nPArVcmMRVtOd2e0U9KwuUgoSlLmilzYK9p_1ASdvzYslUvdFIp7mMSID7jiPJE5MBO8xqnmuIoKreDMbWhXaFALOrAWikgzadCCkvirsWBoFjmX8aQEPFF87Txl06bMBvQGQAlYfIWTI-GY7uFQGmktwtleAdGNQli
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6V9lAuQPkNbamRQJzSJo6TtQ8cVl1WW9pdUGmlShyC7TiXrrJVuyu0nPoIvAqvwiPwJJ3JX7VFCAmpB45RnB_b8_PZnvkG4FViiXTLhHQ-mPtCaeVrLjNfypDYU2KbGzrRHY6SwbF4fxKfLMGPJhem4odoN9xIM0p7TQpOG9I716yh2ClKJUePFqObreMq9938K67aLt7u9XCKX3Pef3e0O_DrwgK-FWGgfOOMjZIkz2SmhM6jPHQuj9CTa6HDiHIt40wFyiZWoBI6rUOOQFqiwbdGyTyP8L13YIXKiBNdf-_wmrEK5bmqXi86PrG-NjyRAd9Z_N9FP_gbuF3EyqWz69-Hn80wVTEup9uzqdm2324wSP5X4_gA7tXQm3UrXVmDJVc8hNXdpuLdI_jcZWjz2YfC_br8_nEyZf3xbHJe8l1Zx3qoq7R_XeWtsprWd84Q9TOKlhnP2SfKBiD_wYYU53g46rKG9OUxHN9K357AcjEp3DNgIgukykQncrFDe6m0MRzNujEdYwKtAg_8RhRSWzOzU4GQcVpxSvOUpihtp8iDN237s4qT5I8tNxrJSmvbdJFyhKACgayMPXjZ3sahpqMiXbjJjNrQwlci3PbgaSWR7aciOnnFhZkHvJSrv_xDStwe7dXzf3loC1YHR8OD9GBvtL8OdzlteVDMqdiA5en5zG0iLpyaF6UmMvhy2yJ7BdauZ0Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgGX8k9TChgJxClt4jhZ-8Bh1WXVUrpUhUqVOATbsS-sslW7q2o58Qh9lL4Kr8CTMJO_akEICakHjlGcH9vz89me-QbgRWaJdMvEdD7oQ6G0CjWXRShlTOwpqfWGTnT3Rtn2oXh7lB4twUWbC1PzQ3QbbqQZlb0mBT8u_OYlaSj2iTLJ0aGl6GWbsMpdNz_DRdvp650BzvBLzodvPm5th01dgdCKOFKhccYmWeYLWSihfeJj53yCjlwLHSeUapkWKlI2swJ10Gkdc8TREu29NUp6n-B7r8F1kUWKikUMDi4Jq1Cc6-L1ohcS6WtLExnxzcX_XXSDv2HbRahc-brhbfjejlId4vJlYzY1G_brLwSS_9Mw3oGVBnizfq0pd2HJlffg5lZb7-4-fOoztPjsfel-fDvfn0zZcDybnFRsV9axAWoq7V7XWausIfWdM8T8jGJlxnP2gXIByHuwPYpyPBj1WUv58gAOr6RvD2G5nJRuFZgoIqkK0Utc6tBaKm0MR6NuTM-YSKsogLCVhNw2vOxUHmSc14zSPKcpyrspCuBV1_64ZiT5Y8v1VrDyxjKd5hwBqEAYK9MAnne3cajpoEiXbjKjNrTslQi2A3hUC2T3qYTOXXFZFgCvxOov_5ATs0d3tfYvDz2DG_uDYf5uZ7T7GG5x2u-ggFOxDsvTk5l7gqBwap5Wesjg81VL7E8ZMWXz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+One%E2%80%90Pot+Fluorescence+Derivatization+Strategy+for+Highly+Sensitive+MicroRNA+Analysis&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Pan%2C+Li&rft.au=Zhang%2C+Huaisheng&rft.au=Zhao%2C+Jingjin&rft.au=Ogungbe%2C+Ifedayo+Victor&rft.date=2020-05-04&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=26&rft.issue=25&rft.spage=5639&rft.epage=5647&rft_id=info:doi/10.1002%2Fchem.201905639&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_201905639
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon