A New One‐Pot Fluorescence Derivatization Strategy for Highly Sensitive MicroRNA Analysis
MicroRNAs (miRNAs) modulate the expression of over 30 % of mammalian genes during development and apoptosis, and abnormal expression of miRNAs may lead to a range of human pathologies. Therefore, analysis of miRNAs is valuable for disease diagnostics. In this work, a novel one‐pot fluorescence deriv...
Saved in:
Published in | Chemistry : a European journal Vol. 26; no. 25; pp. 5639 - 5647 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
04.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | MicroRNAs (miRNAs) modulate the expression of over 30 % of mammalian genes during development and apoptosis, and abnormal expression of miRNAs may lead to a range of human pathologies. Therefore, analysis of miRNAs is valuable for disease diagnostics. In this work, a novel one‐pot fluorescence derivatization strategy was developed for miRNA analysis. The mechanism of the derivatization reaction was explored by using instrumental methods, including liquid chromatography, fluorescence spectroscopy, and mass spectrometry. Highly fluorescent N6‐ethenoadenine (ϵ‐adenine) was formed and detached from the miRNA sequence through the reaction of adenine in nucleic acids with 2‐chloroacetaldehyde (CAA) at 100 °C. This is the first experimental evidence that the cooperation of formed ϵ‐adenine and water‐mediated hydrogen‐bond interaction between the proton at the 2′‐ and the oxyanion at 3′‐positions stabilized the oxocarbenium significantly, which makes the depurination and derivatization of miRNA highly effective. Based on this derivatization strategy, a facile and sensitive high‐performance liquid chromatography method was developed for quantitative assay of miRNAs. In combination with magnetic solid‐phase extraction (MSPE), the HPLC method was shown to be useful for the determination of microRNAs at sub‐picomolar level in serum samples.
microRNAs made easy: A one‐pot fluorescence derivatization strategy has been developed for highly sensitive microRNA analysis. Based on this derivatization strategy, a facile and sensitive high‐performance liquid chromatography method was developed for quantitative assay of microRNAs. |
---|---|
AbstractList | MicroRNAs (miRNAs) modulate the expression of over 30 % of mammalian genes during development and apoptosis, and abnormal expression of miRNAs may lead to a range of human pathologies. Therefore, analysis of miRNAs is valuable for disease diagnostics. In this work, a novel one-pot fluorescence derivatization strategy was developed for miRNA analysis. The mechanism of the derivatization reaction was explored by using instrumental methods, including liquid chromatography, fluorescence spectroscopy, and mass spectrometry. Highly fluorescent N6 -ethenoadenine (ϵ-adenine) was formed and detached from the miRNA sequence through the reaction of adenine in nucleic acids with 2-chloroacetaldehyde (CAA) at 100 °C. This is the first experimental evidence that the cooperation of formed ϵ-adenine and water-mediated hydrogen-bond interaction between the proton at the 2'- and the oxyanion at 3'-positions stabilized the oxocarbenium significantly, which makes the depurination and derivatization of miRNA highly effective. Based on this derivatization strategy, a facile and sensitive high-performance liquid chromatography method was developed for quantitative assay of miRNAs. In combination with magnetic solid-phase extraction (MSPE), the HPLC method was shown to be useful for the determination of microRNAs at sub-picomolar level in serum samples.MicroRNAs (miRNAs) modulate the expression of over 30 % of mammalian genes during development and apoptosis, and abnormal expression of miRNAs may lead to a range of human pathologies. Therefore, analysis of miRNAs is valuable for disease diagnostics. In this work, a novel one-pot fluorescence derivatization strategy was developed for miRNA analysis. The mechanism of the derivatization reaction was explored by using instrumental methods, including liquid chromatography, fluorescence spectroscopy, and mass spectrometry. Highly fluorescent N6 -ethenoadenine (ϵ-adenine) was formed and detached from the miRNA sequence through the reaction of adenine in nucleic acids with 2-chloroacetaldehyde (CAA) at 100 °C. This is the first experimental evidence that the cooperation of formed ϵ-adenine and water-mediated hydrogen-bond interaction between the proton at the 2'- and the oxyanion at 3'-positions stabilized the oxocarbenium significantly, which makes the depurination and derivatization of miRNA highly effective. Based on this derivatization strategy, a facile and sensitive high-performance liquid chromatography method was developed for quantitative assay of miRNAs. In combination with magnetic solid-phase extraction (MSPE), the HPLC method was shown to be useful for the determination of microRNAs at sub-picomolar level in serum samples. MicroRNAs (miRNAs) modulate the expression of over 30 % of mammalian genes during development and apoptosis, and abnormal expression of miRNAs may lead to a range of human pathologies. Therefore, analysis of miRNAs is valuable for disease diagnostics. In this work, a novel one‐pot fluorescence derivatization strategy was developed for miRNA analysis. The mechanism of the derivatization reaction was explored by using instrumental methods, including liquid chromatography, fluorescence spectroscopy, and mass spectrometry. Highly fluorescent N6‐ethenoadenine (ϵ‐adenine) was formed and detached from the miRNA sequence through the reaction of adenine in nucleic acids with 2‐chloroacetaldehyde (CAA) at 100 °C. This is the first experimental evidence that the cooperation of formed ϵ‐adenine and water‐mediated hydrogen‐bond interaction between the proton at the 2′‐ and the oxyanion at 3′‐positions stabilized the oxocarbenium significantly, which makes the depurination and derivatization of miRNA highly effective. Based on this derivatization strategy, a facile and sensitive high‐performance liquid chromatography method was developed for quantitative assay of miRNAs. In combination with magnetic solid‐phase extraction (MSPE), the HPLC method was shown to be useful for the determination of microRNAs at sub‐picomolar level in serum samples. MicroRNAs (miRNAs) modulate the expression of over 30 % of mammalian genes during development and apoptosis, and abnormal expression of miRNAs may lead to a range of human pathologies. Therefore, analysis of miRNAs is valuable for disease diagnostics. In this work, a novel one-pot fluorescence derivatization strategy was developed for miRNA analysis. The mechanism of the derivatization reaction was explored by using instrumental methods, including liquid chromatography, fluorescence spectroscopy, and mass spectrometry. Highly fluorescent N -ethenoadenine (ϵ-adenine) was formed and detached from the miRNA sequence through the reaction of adenine in nucleic acids with 2-chloroacetaldehyde (CAA) at 100 °C. This is the first experimental evidence that the cooperation of formed ϵ-adenine and water-mediated hydrogen-bond interaction between the proton at the 2'- and the oxyanion at 3'-positions stabilized the oxocarbenium significantly, which makes the depurination and derivatization of miRNA highly effective. Based on this derivatization strategy, a facile and sensitive high-performance liquid chromatography method was developed for quantitative assay of miRNAs. In combination with magnetic solid-phase extraction (MSPE), the HPLC method was shown to be useful for the determination of microRNAs at sub-picomolar level in serum samples. MicroRNAs (miRNAs) modulate the expression of over 30 % of mammalian genes during development and apoptosis, and abnormal expression of miRNAs may lead to a range of human pathologies. Therefore, analysis of miRNAs is valuable for disease diagnostics. In this work, a novel one‐pot fluorescence derivatization strategy was developed for miRNA analysis. The mechanism of the derivatization reaction was explored by using instrumental methods, including liquid chromatography, fluorescence spectroscopy, and mass spectrometry. Highly fluorescent N 6 ‐ethenoadenine (ϵ‐adenine) was formed and detached from the miRNA sequence through the reaction of adenine in nucleic acids with 2‐chloroacetaldehyde (CAA) at 100 °C. This is the first experimental evidence that the cooperation of formed ϵ‐adenine and water‐mediated hydrogen‐bond interaction between the proton at the 2′‐ and the oxyanion at 3′‐positions stabilized the oxocarbenium significantly, which makes the depurination and derivatization of miRNA highly effective. Based on this derivatization strategy, a facile and sensitive high‐performance liquid chromatography method was developed for quantitative assay of miRNAs. In combination with magnetic solid‐phase extraction (MSPE), the HPLC method was shown to be useful for the determination of microRNAs at sub‐picomolar level in serum samples. MicroRNAs (miRNAs) modulate the expression of over 30 % of mammalian genes during development and apoptosis, and abnormal expression of miRNAs may lead to a range of human pathologies. Therefore, analysis of miRNAs is valuable for disease diagnostics. In this work, a novel one‐pot fluorescence derivatization strategy was developed for miRNA analysis. The mechanism of the derivatization reaction was explored by using instrumental methods, including liquid chromatography, fluorescence spectroscopy, and mass spectrometry. Highly fluorescent N6‐ethenoadenine (ϵ‐adenine) was formed and detached from the miRNA sequence through the reaction of adenine in nucleic acids with 2‐chloroacetaldehyde (CAA) at 100 °C. This is the first experimental evidence that the cooperation of formed ϵ‐adenine and water‐mediated hydrogen‐bond interaction between the proton at the 2′‐ and the oxyanion at 3′‐positions stabilized the oxocarbenium significantly, which makes the depurination and derivatization of miRNA highly effective. Based on this derivatization strategy, a facile and sensitive high‐performance liquid chromatography method was developed for quantitative assay of miRNAs. In combination with magnetic solid‐phase extraction (MSPE), the HPLC method was shown to be useful for the determination of microRNAs at sub‐picomolar level in serum samples. microRNAs made easy: A one‐pot fluorescence derivatization strategy has been developed for highly sensitive microRNA analysis. Based on this derivatization strategy, a facile and sensitive high‐performance liquid chromatography method was developed for quantitative assay of microRNAs. |
Author | Liu, Yi‐Ming Zhang, Huaisheng Zhao, Jingjin Zhao, Shulin Ogungbe, Ifedayo Victor Pan, Li |
Author_xml | – sequence: 1 givenname: Li surname: Pan fullname: Pan, Li organization: Jackson State University – sequence: 2 givenname: Huaisheng surname: Zhang fullname: Zhang, Huaisheng organization: Jackson State University – sequence: 3 givenname: Jingjin surname: Zhao fullname: Zhao, Jingjin organization: Guangxi Normal University – sequence: 4 givenname: Ifedayo Victor surname: Ogungbe fullname: Ogungbe, Ifedayo Victor organization: Jackson State University – sequence: 5 givenname: Shulin orcidid: 0000-0002-2560-042X surname: Zhao fullname: Zhao, Shulin email: zhaoshulin001@163.com organization: Guangxi Normal University – sequence: 6 givenname: Yi‐Ming surname: Liu fullname: Liu, Yi‐Ming email: yiming_liu@jsums.edu organization: Jackson State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31953882$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1OGzEYRa2KqgTaLUtkiU03k_pvPPYySkNTiZ8K2lUXI8f5DEaTMdgzoOmKR-AZ-yR1GkolJIQsy5tzbH_37qCtNrSA0B4lY0oI-2QvYTVmhGpSSq7foBEtGS14JcstNCJaVIUsud5GOyldEUK05Pwd2uZUl1wpNkI_J_gE7vBpC7_vH76FDh82fYiQLLQW8GeI_tZ0_lfeocXnXTQdXAzYhYjn_uKyGfA5tMl3_hbwsbcxnJ1M8KQ1zZB8eo_eOtMk-PB47qIfh7Pv03lxdPrl63RyVFhBiS4WsLBcSrdUSy2M444COF6xyghDucirXGqirbSCKAXGUEaEVlxQu9DKOb6LPm7uvY7hpofU1SufB2ga00LoU80yKqlinGX04Bl6FfqY_7umdCUkLVWZqf1Hql-sYFlfR78ycaj_xZaB8QbIE6cUwT0hlNTrXup1L_VTL1kQzwTru7-h5kh987KmN9qdb2B45ZF6Op8d_3f_ALWMoh0 |
CitedBy_id | crossref_primary_10_1021_acsomega_4c11277 crossref_primary_10_1016_j_ijbiomac_2021_04_101 crossref_primary_10_1039_D4AY00100A crossref_primary_10_1080_10826076_2021_1952427 crossref_primary_10_1016_j_aca_2022_340636 |
Cites_doi | 10.1038/nature02871 10.1038/nature10888 10.1016/j.aca.2018.10.004 10.1021/acs.analchem.7b00955 10.1016/j.ymeth.2010.01.032 10.1021/ja00779a040 10.1021/acs.analchem.8b02471 10.1021/ac203368h 10.1093/nar/gni178 10.1016/j.bios.2013.03.074 10.1016/0005-2787(78)90199-5 10.1021/jp070822j 10.1373/clinchem.2008.112805 10.1016/S0092-8674(04)00045-5 10.1038/nmeth704 10.1093/carcin/19.12.2081 10.1039/C0CC03957H 10.1021/ja300721s 10.1016/0003-2697(84)90352-X 10.1093/nar/gkm1165 10.1016/S0040-4039(01)96762-0 10.1021/jo800891c 10.1021/jo00323a040 10.1007/BF02401711 10.1016/j.talanta.2018.07.090 10.1002/anie.201309388 10.2144/000114002 10.1021/acs.analchem.5b01159 10.1016/S0021-9673(96)00605-X 10.1126/science.1064921 10.1093/nar/24.22.4535 10.3389/fchem.2016.00019 10.1006/abio.1994.1543 10.1021/jacs.5b01451 10.1021/jo010960j 10.1002/ange.201001375 10.1021/bi00821a005 10.1021/acs.analchem.7b05253 10.1021/ac4038043 10.1002/ange.201309388 10.1021/ja0477468 10.1093/carcin/3.6.663 10.1021/bi00427a036 10.1093/nar/5.3.789 10.1038/nbt.1692 10.1021/acs.analchem.7b01861 10.1021/jm00165a015 10.1002/anie.201001375 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.201905639 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 5647 |
ExternalDocumentID | 31953882 10_1002_chem_201905639 CHEM201905639 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Foundation for the National Institutes of Health funderid: GM089557 – fundername: National Natural Science Foundation of China funderid: 21874030 – fundername: National Natural Science Foundation of China grantid: 21874030 – fundername: Foundation for the National Institutes of Health grantid: GM089557 – fundername: NIMHD NIH HHS grantid: G12 MD007581 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c4109-bebc366fd8d94af3f1eef3727a4a1343435d909c6c4088eaa120498341cb98ff3 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 10:29:52 EDT 2025 Fri Jul 25 10:21:40 EDT 2025 Mon Jul 21 05:54:56 EDT 2025 Tue Jul 01 01:30:05 EDT 2025 Thu Apr 24 23:12:30 EDT 2025 Wed Jan 22 16:35:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Keywords | dyes/pigments RNA recognition fluorescence spectroscopy magnetic properties synthetic methods |
Language | English |
License | 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4109-bebc366fd8d94af3f1eef3727a4a1343435d909c6c4088eaa120498341cb98ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2560-042X |
PMID | 31953882 |
PQID | 2397461585 |
PQPubID | 986340 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2341618232 proquest_journals_2397461585 pubmed_primary_31953882 crossref_primary_10_1002_chem_201905639 crossref_citationtrail_10_1002_chem_201905639 wiley_primary_10_1002_chem_201905639_CHEM201905639 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 4, 2020 |
PublicationDateYYYYMMDD | 2020-05-04 |
PublicationDate_xml | – month: 05 year: 2020 text: May 4, 2020 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 1970; 9 2012; 482 1990; 33 2004; 126 2013; 47 2019; 192 2017; 89 2008; 36 1981; 46 1978; 5 2010 2010; 49 122 2004; 1 2008; 73 1978; 517 1983; 57 2019; 1047 1989; 28 2014; 86 2004; 431 2016; 4 2009; 55 1994; 223 1980; 16 2004; 116 2001; 294 1998; 19 2012; 134 2015; 137 2013; 54 2010; 28 2002; 67 1971; 12 2007; 111 1982; 3 1984; 137 2015; 87 1972; 50 1972; 94 2018; 90 2011; 47 1996; 24 2005; 33 1996; 755 2010; 50 2012; 84 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_7_1 e_1_2_7_19_1 Krzyzosiak W. J. (e_1_2_7_31_1) 1983; 57 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_25_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 Avigad G. (e_1_2_7_20_1) 1972; 50 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 89 start-page: 8766 year: 2017 end-page: 8771 publication-title: Anal. Chem. – volume: 94 start-page: 8532 year: 1972 end-page: 8541 publication-title: J. Am. Chem. Soc. – volume: 49 122 start-page: 5498 5630 year: 2010 2010 end-page: 5501 5633 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 33 year: 2005 publication-title: Nucleic Acids Res. – volume: 3 start-page: 663 year: 1982 end-page: 665 publication-title: Carcinogenesis – volume: 90 start-page: 10001 year: 2018 end-page: 10008 publication-title: Anal. Chem. – volume: 4 start-page: 19 year: 2016 publication-title: Front. Chem. – volume: 192 start-page: 175 year: 2019 end-page: 181 publication-title: Talanta – volume: 1 start-page: 47 year: 2004 end-page: 53 publication-title: Nat. Methods – volume: 482 start-page: 347 year: 2012 end-page: 355 publication-title: Nature – volume: 28 start-page: 261 year: 1989 end-page: 267 publication-title: Biochemistry – volume: 57 start-page: 779 year: 1983 publication-title: Polish. J. Chem. – volume: 55 start-page: 623 year: 2009 end-page: 631 publication-title: Clin. Chem. – volume: 90 start-page: 4039 year: 2018 end-page: 4045 publication-title: Anal. Chem. – volume: 67 start-page: 1852 year: 2002 end-page: 1865 publication-title: J. Org. Chem. – volume: 137 start-page: 6116 year: 2015 end-page: 6119 publication-title: J. Am. Chem. Soc. – volume: 294 start-page: 853 year: 2001 end-page: 858 publication-title: Science – volume: 28 start-page: 1208 year: 2010 end-page: 1212 publication-title: Nat. Biotechnol. – volume: 137 start-page: 93 year: 1984 end-page: 100 publication-title: Anal. Biochem. – volume: 19 start-page: 2081 year: 1998 end-page: 2084 publication-title: Carcinogenesis – volume: 9 start-page: 3678 year: 1970 end-page: 3682 publication-title: Biochemistry – volume: 111 start-page: 6071 year: 2007 end-page: 6077 publication-title: J. Phys. Chem. B – volume: 86 start-page: 336 year: 2014 end-page: 339 publication-title: Anal. Chem. – volume: 33 start-page: 978 year: 1990 end-page: 985 publication-title: J. Med. Chem. – volume: 134 start-page: 5064 year: 2012 end-page: 5067 publication-title: J. Am. Chem. Soc. – volume: 116 start-page: 281 year: 2004 end-page: 297 publication-title: Cell – volume: 12 start-page: 1993 year: 1971 end-page: 1996 publication-title: Tetrahedron Lett. – volume: 53 126 start-page: 2389 2421 year: 2014 2014 end-page: 2393 2425 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 755 start-page: 271 year: 1996 end-page: 280 publication-title: J. Chromatogr. A – volume: 16 start-page: 209 year: 1980 end-page: 221 publication-title: Chem. Heterocycl. Compd. – volume: 126 start-page: 14710 year: 2004 end-page: 14711 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 789 year: 1978 end-page: 804 publication-title: Nucleic Acids Res. – volume: 431 start-page: 350 year: 2004 end-page: 355 publication-title: Nature – volume: 47 start-page: 2595 year: 2011 end-page: 2597 publication-title: Chem. Commun. – volume: 24 start-page: 4535 year: 1996 end-page: 4532 publication-title: Nucleic Acids Res. – volume: 89 start-page: 9850 year: 2017 end-page: 9856 publication-title: Anal. Chem. – volume: 87 start-page: 6303 year: 2015 end-page: 6310 publication-title: Anal. Chem. – volume: 517 start-page: 329 year: 1978 end-page: 337 publication-title: Biochim. Biophys. Acta Nucleic Acids Protein Synth. – volume: 50 start-page: 298 year: 2010 end-page: 301 publication-title: Methods – volume: 54 start-page: 155 year: 2013 end-page: 164 publication-title: BioTechniques – volume: 1047 start-page: 172 year: 2019 end-page: 178 publication-title: Anal. Chim. Acta – volume: 50 start-page: 321 year: 1972 end-page: 323 publication-title: Anal. Chem. – volume: 73 start-page: 5907 year: 2008 end-page: 5914 publication-title: J. Org. Chem. – volume: 47 start-page: 461 year: 2013 end-page: 466 publication-title: Biosens. Bioelectron. – volume: 84 start-page: 6400 year: 2012 end-page: 6406 publication-title: Anal. Chem. – volume: 36 year: 2008 publication-title: Nucleic Acids Res. – volume: 223 start-page: 39 year: 1994 end-page: 46 publication-title: Anal. Biochem. – volume: 46 start-page: 2171 year: 1981 end-page: 2173 publication-title: J. Org. Chem. – ident: e_1_2_7_2_1 doi: 10.1038/nature02871 – ident: e_1_2_7_3_1 doi: 10.1038/nature10888 – ident: e_1_2_7_42_1 doi: 10.1016/j.aca.2018.10.004 – ident: e_1_2_7_43_1 doi: 10.1021/acs.analchem.7b00955 – ident: e_1_2_7_39_1 doi: 10.1016/j.ymeth.2010.01.032 – ident: e_1_2_7_24_1 doi: 10.1021/ja00779a040 – ident: e_1_2_7_46_1 doi: 10.1021/acs.analchem.8b02471 – ident: e_1_2_7_36_1 doi: 10.1021/ac203368h – ident: e_1_2_7_8_1 doi: 10.1093/nar/gni178 – ident: e_1_2_7_38_1 doi: 10.1016/j.bios.2013.03.074 – ident: e_1_2_7_27_1 doi: 10.1016/0005-2787(78)90199-5 – ident: e_1_2_7_34_1 doi: 10.1021/jp070822j – ident: e_1_2_7_4_1 doi: 10.1373/clinchem.2008.112805 – ident: e_1_2_7_1_1 doi: 10.1016/S0092-8674(04)00045-5 – ident: e_1_2_7_6_1 doi: 10.1038/nmeth704 – ident: e_1_2_7_21_1 doi: 10.1093/carcin/19.12.2081 – ident: e_1_2_7_12_1 doi: 10.1039/C0CC03957H – ident: e_1_2_7_14_1 doi: 10.1021/ja300721s – ident: e_1_2_7_47_1 doi: 10.1016/0003-2697(84)90352-X – ident: e_1_2_7_37_1 doi: 10.1093/nar/gkm1165 – ident: e_1_2_7_22_1 doi: 10.1016/S0040-4039(01)96762-0 – ident: e_1_2_7_33_1 doi: 10.1021/jo800891c – ident: e_1_2_7_25_1 doi: 10.1021/jo00323a040 – ident: e_1_2_7_32_1 doi: 10.1007/BF02401711 – ident: e_1_2_7_41_1 doi: 10.1016/j.talanta.2018.07.090 – ident: e_1_2_7_9_1 doi: 10.1002/anie.201309388 – ident: e_1_2_7_40_1 doi: 10.2144/000114002 – ident: e_1_2_7_48_1 doi: 10.1021/acs.analchem.5b01159 – ident: e_1_2_7_18_1 doi: 10.1016/S0021-9673(96)00605-X – ident: e_1_2_7_5_1 doi: 10.1126/science.1064921 – ident: e_1_2_7_15_1 doi: 10.1093/nar/24.22.4535 – ident: e_1_2_7_19_1 doi: 10.3389/fchem.2016.00019 – volume: 50 start-page: 321 year: 1972 ident: e_1_2_7_20_1 publication-title: Anal. Chem. – ident: e_1_2_7_17_1 doi: 10.1006/abio.1994.1543 – ident: e_1_2_7_11_1 doi: 10.1021/jacs.5b01451 – ident: e_1_2_7_29_1 doi: 10.1021/jo010960j – ident: e_1_2_7_7_2 doi: 10.1002/ange.201001375 – ident: e_1_2_7_28_1 doi: 10.1021/bi00821a005 – ident: e_1_2_7_45_1 doi: 10.1021/acs.analchem.7b05253 – ident: e_1_2_7_13_1 doi: 10.1021/ac4038043 – ident: e_1_2_7_9_2 doi: 10.1002/ange.201309388 – volume: 57 start-page: 779 year: 1983 ident: e_1_2_7_31_1 publication-title: Polish. J. Chem. – ident: e_1_2_7_26_1 doi: 10.1021/ja0477468 – ident: e_1_2_7_23_1 doi: 10.1093/carcin/3.6.663 – ident: e_1_2_7_16_1 doi: 10.1021/bi00427a036 – ident: e_1_2_7_30_1 doi: 10.1093/nar/5.3.789 – ident: e_1_2_7_10_1 doi: 10.1038/nbt.1692 – ident: e_1_2_7_44_1 doi: 10.1021/acs.analchem.7b01861 – ident: e_1_2_7_35_1 doi: 10.1021/jm00165a015 – ident: e_1_2_7_7_1 doi: 10.1002/anie.201001375 |
SSID | ssj0009633 |
Score | 2.352037 |
Snippet | MicroRNAs (miRNAs) modulate the expression of over 30 % of mammalian genes during development and apoptosis, and abnormal expression of miRNAs may lead to a... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5639 |
SubjectTerms | Acetaldehyde - analogs & derivatives Acetaldehyde - chemistry Adenine Adenine - chemistry Apoptosis Chemistry Chloroacetaldehyde Chromatography Chromatography, High Pressure Liquid - methods dyes/pigments Fluorescence Fluorescence spectroscopy Gene expression High performance liquid chromatography Humans Liquid chromatography magnetic properties Mass Spectrometry Mass spectroscopy MicroRNAs MicroRNAs - analysis miRNA Nucleic acids RNA recognition Spectrometry, Fluorescence - methods Strategy synthetic methods Water |
Title | A New One‐Pot Fluorescence Derivatization Strategy for Highly Sensitive MicroRNA Analysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201905639 https://www.ncbi.nlm.nih.gov/pubmed/31953882 https://www.proquest.com/docview/2397461585 https://www.proquest.com/docview/2341618232 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH6IF724L9VRIgieql3STnIcRgcRXHABwUNJ0vTi0JFx5qAnf4K_0V_ie910FBH0WJrQNHnLl7z3vgDsxoZIt7RP8cHM5VJJVwUidYXwiT0lMpmmiO7pWXx8w09uo9tPVfwlP0Rz4EaaUdhrUnClHw8-SEPxn6iSHB1ahF4WjTAlbBEquvzgj0LpKu-S522XOFhr1kYvOJjsPumVvkHNSeRauJ7ePKh60GXGyf3-eKT3zfMXPsf__NUCzFW4lHVKQVqEKZsvwUy3vg5uGe46DA0iO8_t28vrxWDEev3xYFiQQRnLDlGQ6XC3LOpkFeftE0NIzCiVpP_ErihVnowrO6UkwMuzDqsZUVbgpnd03T12q5sZXMN9T7raahPGcZaKVHKVhZlvbRYiFFJc-SEVq0ap9KSJDUcrZpXyA9yJCPSYRkuRZeEqTOeD3K4D46knZMrboY0sGhOptA7Q5mnd1tpT0nPArVcmMRVtOd2e0U9KwuUgoSlLmilzYK9p_1ASdvzYslUvdFIp7mMSID7jiPJE5MBO8xqnmuIoKreDMbWhXaFALOrAWikgzadCCkvirsWBoFjmX8aQEPFF87Txl06bMBvQGQAlYfIWTI-GY7uFQGmktwtleAdGNQli |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6V9lAuQPkNbamRQJzSJo6TtQ8cVl1WW9pdUGmlShyC7TiXrrJVuyu0nPoIvAqvwiPwJJ3JX7VFCAmpB45RnB_b8_PZnvkG4FViiXTLhHQ-mPtCaeVrLjNfypDYU2KbGzrRHY6SwbF4fxKfLMGPJhem4odoN9xIM0p7TQpOG9I716yh2ClKJUePFqObreMq9938K67aLt7u9XCKX3Pef3e0O_DrwgK-FWGgfOOMjZIkz2SmhM6jPHQuj9CTa6HDiHIt40wFyiZWoBI6rUOOQFqiwbdGyTyP8L13YIXKiBNdf-_wmrEK5bmqXi86PrG-NjyRAd9Z_N9FP_gbuF3EyqWz69-Hn80wVTEup9uzqdm2324wSP5X4_gA7tXQm3UrXVmDJVc8hNXdpuLdI_jcZWjz2YfC_br8_nEyZf3xbHJe8l1Zx3qoq7R_XeWtsprWd84Q9TOKlhnP2SfKBiD_wYYU53g46rKG9OUxHN9K357AcjEp3DNgIgukykQncrFDe6m0MRzNujEdYwKtAg_8RhRSWzOzU4GQcVpxSvOUpihtp8iDN237s4qT5I8tNxrJSmvbdJFyhKACgayMPXjZ3sahpqMiXbjJjNrQwlci3PbgaSWR7aciOnnFhZkHvJSrv_xDStwe7dXzf3loC1YHR8OD9GBvtL8OdzlteVDMqdiA5en5zG0iLpyaF6UmMvhy2yJ7BdauZ0Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgGX8k9TChgJxClt4jhZ-8Bh1WXVUrpUhUqVOATbsS-sslW7q2o58Qh9lL4Kr8CTMJO_akEICakHjlGcH9vz89me-QbgRWaJdMvEdD7oQ6G0CjWXRShlTOwpqfWGTnT3Rtn2oXh7lB4twUWbC1PzQ3QbbqQZlb0mBT8u_OYlaSj2iTLJ0aGl6GWbsMpdNz_DRdvp650BzvBLzodvPm5th01dgdCKOFKhccYmWeYLWSihfeJj53yCjlwLHSeUapkWKlI2swJ10Gkdc8TREu29NUp6n-B7r8F1kUWKikUMDi4Jq1Cc6-L1ohcS6WtLExnxzcX_XXSDv2HbRahc-brhbfjejlId4vJlYzY1G_brLwSS_9Mw3oGVBnizfq0pd2HJlffg5lZb7-4-fOoztPjsfel-fDvfn0zZcDybnFRsV9axAWoq7V7XWausIfWdM8T8jGJlxnP2gXIByHuwPYpyPBj1WUv58gAOr6RvD2G5nJRuFZgoIqkK0Utc6tBaKm0MR6NuTM-YSKsogLCVhNw2vOxUHmSc14zSPKcpyrspCuBV1_64ZiT5Y8v1VrDyxjKd5hwBqEAYK9MAnne3cajpoEiXbjKjNrTslQi2A3hUC2T3qYTOXXFZFgCvxOov_5ATs0d3tfYvDz2DG_uDYf5uZ7T7GG5x2u-ggFOxDsvTk5l7gqBwap5Wesjg81VL7E8ZMWXz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+One%E2%80%90Pot+Fluorescence+Derivatization+Strategy+for+Highly+Sensitive+MicroRNA+Analysis&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Pan%2C+Li&rft.au=Zhang%2C+Huaisheng&rft.au=Zhao%2C+Jingjin&rft.au=Ogungbe%2C+Ifedayo+Victor&rft.date=2020-05-04&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=26&rft.issue=25&rft.spage=5639&rft.epage=5647&rft_id=info:doi/10.1002%2Fchem.201905639&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_201905639 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |