Towards Sustainable High‐Performance Thermoplastics: Synthesis, Characterization, and Enzymatic Hydrolysis of Bisguaiacol‐Based Polyesters

The utilization of wood‐derived building blocks (xylochemicals) to replace fossil‐based precursors is an attractive research subject of modern polymer science. Here, we demonstrate that bisguaiacol (BG), a lignin‐derived bisphenol analogue, can be used to prepare biobased polyesters with remarkable...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 11; no. 15; pp. 2529 - 2539
Main Authors Curia, Silvio, Biundo, Antonino, Fischer, Isabel, Braunschmid, Verena, Gübitz, Georg M., Stanzione, Joseph F.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 09.08.2018
Subjects
Online AccessGet full text
ISSN1864-5631
1864-564X
1864-564X
DOI10.1002/cssc.201801059

Cover

Abstract The utilization of wood‐derived building blocks (xylochemicals) to replace fossil‐based precursors is an attractive research subject of modern polymer science. Here, we demonstrate that bisguaiacol (BG), a lignin‐derived bisphenol analogue, can be used to prepare biobased polyesters with remarkable thermal properties. BG was treated with different activated diacids to investigate the effect of co‐monomer structures on the physical properties of the products. Namely, derivatives of adipic acid, succinic acid, and 2,5‐furandicarboxylic acid were used. Moreover, a terephthalic acid derivative was used for comparison purposes. The products were characterized by 1H NMR spectroscopy, attenuated total reflectance FTIR spectroscopy, gel‐permeation chromatography, thermogravimetric analysis, and differential scanning calorimetry to assess their structural and thermal properties in detail. The polymers showed glass‐transition temperatures ranging up to 160 °C and thermal stabilities in excess of 300 °C. Furthermore, the susceptibility of the polyester to enzymatic hydrolysis was investigated to assess the potential for further surface functionalization and/or recycling and biodegradation. Indeed, hydrolysis with two different enzymes from the bacteria Thermobifida cellulosilytica led to the release of monomers, as quantified by HPLC. The results of this study indicate that our new polyesters represent promising renewable and biodegradable alternatives to petroleum‐based polyesters currently employed in the plastics industry, specifically for applications in which high‐temperature stability is essential to ensure overall system integrity. Think BG: Bisguaiacol (BG), a lignin‐derived bisphenol analogue, is treated with different activated diacids to investigate the effect of the co‐monomer structures on the physical properties of the products. The polymers show glass‐transition temperatures ranging up to 160 °C and thermal stabilities in excess of 300 °C. These new polyesters hold promise for use as renewable and biodegradable alternatives to petroleum‐based polyesters.
AbstractList The utilization of wood-derived building blocks (xylochemicals) to replace fossil-based precursors is an attractive research subject of modern polymer science. Here, we demonstrate that bisguaiacol (BG), a lignin-derived bisphenol analogue, can be used to prepare biobased polyesters with remarkable thermal properties. BG was treated with different activated diacids to investigate the effect of co-monomer structures on the physical properties of the products. Namely, derivatives of adipic acid, succinic acid, and 2,5-furandicarboxylic acid were used. Moreover, a terephthalic acid derivative was used for comparison purposes. The products were characterized by 1 H NMR spectroscopy, attenuated total reflectance FTIR spectroscopy, gel-permeation chromatography, thermogravimetric analysis, and differential scanning calorimetry to assess their structural and thermal properties in detail. The polymers showed glass-transition temperatures ranging up to 160 °C and thermal stabilities in excess of 300 °C. Furthermore, the susceptibility of the polyester to enzymatic hydrolysis was investigated to assess the potential for further surface functionalization and/or recycling and biodegradation. Indeed, hydrolysis with two different enzymes from the bacteria Thermobifida cellulosilytica led to the release of monomers, as quantified by HPLC. The results of this study indicate that our new polyesters represent promising renewable and biodegradable alternatives to petroleum-based polyesters currently employed in the plastics industry, specifically for applications in which high-temperature stability is essential to ensure overall system integrity.The utilization of wood-derived building blocks (xylochemicals) to replace fossil-based precursors is an attractive research subject of modern polymer science. Here, we demonstrate that bisguaiacol (BG), a lignin-derived bisphenol analogue, can be used to prepare biobased polyesters with remarkable thermal properties. BG was treated with different activated diacids to investigate the effect of co-monomer structures on the physical properties of the products. Namely, derivatives of adipic acid, succinic acid, and 2,5-furandicarboxylic acid were used. Moreover, a terephthalic acid derivative was used for comparison purposes. The products were characterized by 1 H NMR spectroscopy, attenuated total reflectance FTIR spectroscopy, gel-permeation chromatography, thermogravimetric analysis, and differential scanning calorimetry to assess their structural and thermal properties in detail. The polymers showed glass-transition temperatures ranging up to 160 °C and thermal stabilities in excess of 300 °C. Furthermore, the susceptibility of the polyester to enzymatic hydrolysis was investigated to assess the potential for further surface functionalization and/or recycling and biodegradation. Indeed, hydrolysis with two different enzymes from the bacteria Thermobifida cellulosilytica led to the release of monomers, as quantified by HPLC. The results of this study indicate that our new polyesters represent promising renewable and biodegradable alternatives to petroleum-based polyesters currently employed in the plastics industry, specifically for applications in which high-temperature stability is essential to ensure overall system integrity.
The utilization of wood‐derived building blocks (xylochemicals) to replace fossil‐based precursors is an attractive research subject of modern polymer science. Here, we demonstrate that bisguaiacol (BG), a lignin‐derived bisphenol analogue, can be used to prepare biobased polyesters with remarkable thermal properties. BG was treated with different activated diacids to investigate the effect of co‐monomer structures on the physical properties of the products. Namely, derivatives of adipic acid, succinic acid, and 2,5‐furandicarboxylic acid were used. Moreover, a terephthalic acid derivative was used for comparison purposes. The products were characterized by 1H NMR spectroscopy, attenuated total reflectance FTIR spectroscopy, gel‐permeation chromatography, thermogravimetric analysis, and differential scanning calorimetry to assess their structural and thermal properties in detail. The polymers showed glass‐transition temperatures ranging up to 160 °C and thermal stabilities in excess of 300 °C. Furthermore, the susceptibility of the polyester to enzymatic hydrolysis was investigated to assess the potential for further surface functionalization and/or recycling and biodegradation. Indeed, hydrolysis with two different enzymes from the bacteria Thermobifida cellulosilytica led to the release of monomers, as quantified by HPLC. The results of this study indicate that our new polyesters represent promising renewable and biodegradable alternatives to petroleum‐based polyesters currently employed in the plastics industry, specifically for applications in which high‐temperature stability is essential to ensure overall system integrity.
The utilization of wood-derived building blocks (xylochemicals) to replace fossil-based precursors is an attractive research subject of modern polymer science. Here, we demonstrate that bisguaiacol (BG), a lignin-derived bisphenol analogue, can be used to prepare biobased polyesters with remarkable thermal properties. BG was treated with different activated diacids to investigate the effect of co-monomer structures on the physical properties of the products. Namely, derivatives of adipic acid, succinic acid, and 2,5-furandicarboxylic acid were used. Moreover, a terephthalic acid derivative was used for comparison purposes. The products were characterized by H NMR spectroscopy, attenuated total reflectance FTIR spectroscopy, gel-permeation chromatography, thermogravimetric analysis, and differential scanning calorimetry to assess their structural and thermal properties in detail. The polymers showed glass-transition temperatures ranging up to 160 °C and thermal stabilities in excess of 300 °C. Furthermore, the susceptibility of the polyester to enzymatic hydrolysis was investigated to assess the potential for further surface functionalization and/or recycling and biodegradation. Indeed, hydrolysis with two different enzymes from the bacteria Thermobifida cellulosilytica led to the release of monomers, as quantified by HPLC. The results of this study indicate that our new polyesters represent promising renewable and biodegradable alternatives to petroleum-based polyesters currently employed in the plastics industry, specifically for applications in which high-temperature stability is essential to ensure overall system integrity.
The utilization of wood‐derived building blocks (xylochemicals) to replace fossil‐based precursors is an attractive research subject of modern polymer science. Here, we demonstrate that bisguaiacol (BG), a lignin‐derived bisphenol analogue, can be used to prepare biobased polyesters with remarkable thermal properties. BG was treated with different activated diacids to investigate the effect of co‐monomer structures on the physical properties of the products. Namely, derivatives of adipic acid, succinic acid, and 2,5‐furandicarboxylic acid were used. Moreover, a terephthalic acid derivative was used for comparison purposes. The products were characterized by 1 H NMR spectroscopy, attenuated total reflectance FTIR spectroscopy, gel‐permeation chromatography, thermogravimetric analysis, and differential scanning calorimetry to assess their structural and thermal properties in detail. The polymers showed glass‐transition temperatures ranging up to 160 °C and thermal stabilities in excess of 300 °C. Furthermore, the susceptibility of the polyester to enzymatic hydrolysis was investigated to assess the potential for further surface functionalization and/or recycling and biodegradation. Indeed, hydrolysis with two different enzymes from the bacteria Thermobifida cellulosilytica led to the release of monomers, as quantified by HPLC. The results of this study indicate that our new polyesters represent promising renewable and biodegradable alternatives to petroleum‐based polyesters currently employed in the plastics industry, specifically for applications in which high‐temperature stability is essential to ensure overall system integrity.
The utilization of wood‐derived building blocks (xylochemicals) to replace fossil‐based precursors is an attractive research subject of modern polymer science. Here, we demonstrate that bisguaiacol (BG), a lignin‐derived bisphenol analogue, can be used to prepare biobased polyesters with remarkable thermal properties. BG was treated with different activated diacids to investigate the effect of co‐monomer structures on the physical properties of the products. Namely, derivatives of adipic acid, succinic acid, and 2,5‐furandicarboxylic acid were used. Moreover, a terephthalic acid derivative was used for comparison purposes. The products were characterized by 1H NMR spectroscopy, attenuated total reflectance FTIR spectroscopy, gel‐permeation chromatography, thermogravimetric analysis, and differential scanning calorimetry to assess their structural and thermal properties in detail. The polymers showed glass‐transition temperatures ranging up to 160 °C and thermal stabilities in excess of 300 °C. Furthermore, the susceptibility of the polyester to enzymatic hydrolysis was investigated to assess the potential for further surface functionalization and/or recycling and biodegradation. Indeed, hydrolysis with two different enzymes from the bacteria Thermobifida cellulosilytica led to the release of monomers, as quantified by HPLC. The results of this study indicate that our new polyesters represent promising renewable and biodegradable alternatives to petroleum‐based polyesters currently employed in the plastics industry, specifically for applications in which high‐temperature stability is essential to ensure overall system integrity. Think BG: Bisguaiacol (BG), a lignin‐derived bisphenol analogue, is treated with different activated diacids to investigate the effect of the co‐monomer structures on the physical properties of the products. The polymers show glass‐transition temperatures ranging up to 160 °C and thermal stabilities in excess of 300 °C. These new polyesters hold promise for use as renewable and biodegradable alternatives to petroleum‐based polyesters.
Author Fischer, Isabel
Biundo, Antonino
Curia, Silvio
Stanzione, Joseph F.
Braunschmid, Verena
Gübitz, Georg M.
Author_xml – sequence: 1
  givenname: Silvio
  orcidid: 0000-0003-3386-7199
  surname: Curia
  fullname: Curia, Silvio
  email: curia@rowan.edu
  organization: Rowan University
– sequence: 2
  givenname: Antonino
  surname: Biundo
  fullname: Biundo, Antonino
  organization: Austrian Centre of Industrial Biotechnology (ACIB)
– sequence: 3
  givenname: Isabel
  surname: Fischer
  fullname: Fischer, Isabel
  organization: Austrian Centre of Industrial Biotechnology (ACIB)
– sequence: 4
  givenname: Verena
  surname: Braunschmid
  fullname: Braunschmid, Verena
  organization: Austrian Centre of Industrial Biotechnology (ACIB)
– sequence: 5
  givenname: Georg M.
  surname: Gübitz
  fullname: Gübitz, Georg M.
  organization: University of Natural Resources and Life Sciences (BOKU)
– sequence: 6
  givenname: Joseph F.
  orcidid: 0000-0003-0464-835X
  surname: Stanzione
  fullname: Stanzione, Joseph F.
  email: stanzione@rowan.edu
  organization: Rowan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29924915$$D View this record in MEDLINE/PubMed
BookMark eNqFkd9qFDEUxgep2D9666UEvPGiuyaZTDbxzg6tKxQs7ArehTNJppsyk6zJDGV65RNIn9EnMXXbCgXx6uSQ3_edw_kOiz0fvC2K1wTPCcb0vU5JzykmAhNcyWfFARGczSrOvu09vkuyXxymdIUxx5LzF8U-lZIySaqD4uc6XEM0Ca3GNIDz0HQWLd3l5teP2wsb2xB78Nqi9cbGPmw7SIPT6QNaTX7Y2OTSMao3EEEPNrobGFzwxwi8Qaf-Zupzr9FyMjF0U2ZRaNGJS5cjONChyyNOIFmDLvK3TdkhvSyet9Al--q-HhVfz07X9XJ2_uXT5_rj-UwzguWsqYRZSCKBaeCgNS0bKo1li0ZKaKnQpcGcmQpaUXJtbAO25IIRKBeMMS3Ko-Ldzncbw_cxz1a9S9p2HXgbxqQorhaCL7DAGX37BL0KY_R5u0wJjgWtCM3Um3tqbHpr1Da6HuKkHi6dAbYDdAwpRdsq7YY_9xoiuE4RrO4CVXeBqsdAs2z-RPbg_E-B3AmuXWen_9CqXq3qv9rfSoa4Qg
CitedBy_id crossref_primary_10_1039_D1RA02197D
crossref_primary_10_1080_25740881_2024_2352148
crossref_primary_10_1016_j_supflu_2020_104785
crossref_primary_10_1038_s41893_023_01201_w
crossref_primary_10_3390_app11178112
crossref_primary_10_1039_D1PY00909E
crossref_primary_10_1021_acs_chemrev_3c00848
crossref_primary_10_1007_s13726_024_01392_9
crossref_primary_10_1039_C9GC03055G
crossref_primary_10_1021_acs_jafc_8b03746
crossref_primary_10_1039_D2IM00054G
crossref_primary_10_1016_j_mset_2021_10_002
crossref_primary_10_1021_acssuschemeng_8b03340
crossref_primary_10_1021_acs_biomac_8b01361
crossref_primary_10_1039_D0CS00134A
crossref_primary_10_1039_D0GC01688H
crossref_primary_10_1039_D0GC03982A
crossref_primary_10_1021_acs_biomac_3c00918
crossref_primary_10_1186_s13068_022_02139_5
crossref_primary_10_1016_j_polymdegradstab_2023_110514
crossref_primary_10_1021_acssuschemeng_2c05998
crossref_primary_10_1021_acsmacrolett_0c00024
crossref_primary_10_1021_acssuschemeng_0c05712
crossref_primary_10_1021_acssuschemeng_9b03471
crossref_primary_10_1039_D2CS00773H
crossref_primary_10_1002_pola_29534
crossref_primary_10_1016_j_cogsc_2024_100919
crossref_primary_10_1021_acscentsci_9b00781
crossref_primary_10_1039_C9GC02619C
crossref_primary_10_31025_2611_4135_2022_15214
crossref_primary_10_1002_bbb_2411
crossref_primary_10_1002_pc_27000
crossref_primary_10_1021_acssuschemeng_0c01862
crossref_primary_10_1021_acssuschemeng_8b06286
crossref_primary_10_1039_D0CS00179A
crossref_primary_10_1039_D1GC02082J
crossref_primary_10_1016_j_indcrop_2024_119389
Cites_doi 10.1002/pola.24812
10.1016/j.actbio.2009.07.020
10.1021/bm301854c
10.1016/S0032-3861(01)00406-2
10.1007/s10965-013-0279-1
10.1016/j.porgcoat.2013.09.012
10.1039/C5PY01938A
10.1093/hesc/9780198503897.001.0001
10.1002/adfm.201101889
10.1021/ma401439z
10.1002/cssc.201402935
10.1002/pi.5087
10.1002/lite.201200230
10.1515/hfsg.1983.37.4.205
10.1016/j.polymdegradstab.2004.12.001
10.3109/10242422.2012.644435
10.1016/j.tifs.2008.07.003
10.1002/047147875X
10.1007/s00253-007-1057-y
10.1021/acs.cgd.5b01136
10.1271/bbb1961.52.1937
10.1002/biot.201500074
10.1016/S0032-3861(02)00427-5
10.1002/app.32914
10.1016/j.polymer.2014.12.021
10.1098/rsta.2015.0073
10.1016/j.polymer.2015.05.026
10.1002/ente.201300174
10.1002/9783527698202.ch8
10.1002/marc.201500474
10.1002/bbb.1427
10.1002/app.11138
10.1002/mren.201400070
10.1016/j.indcrop.2008.04.015
10.1039/b008188o
10.1039/C5PY00686D
10.1039/C5PY00824G
10.1002/cssc.201000157
10.1007/978-94-015-9231-4
10.1039/c2gc35933b
10.1039/C7FD00057J
10.1016/j.polymdegradstab.2007.02.008
10.1021/om100106e
10.1016/j.reprotox.2007.07.010
10.1002/macp.201300702
10.1002/app.44103
10.1002/pola.25859
10.1039/C3GC42184H
10.3390/ijerph13070705
10.1007/s00253-015-7031-1
10.1016/j.enconman.2016.10.019
10.1002/bit.24930
10.1021/ed079p1072.1
10.1021/ma200949p
10.1007/BF00365615
10.1021/ma801735u
10.1039/C6PY00066E
10.1002/bbb.1474
10.1039/C5GC01771H
10.1039/C7CY00168A
10.1007/s10965-014-0617-y
10.1021/acssuschemeng.6b00835
10.1007/s00253-018-8850-7
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.201801059
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 2539
ExternalDocumentID 29924915
10_1002_cssc_201801059
CSSC201801059
Genre article
Journal Article
GrantInformation_xml – fundername: Army Research Laboratory
  funderid: W911NF-14-2-0086; W911NF-16-2-0225
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
AEYWJ
AGYGG
CITATION
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
K9.
7X8
ID FETCH-LOGICAL-c4109-b58d7919a4ca6acc23b29de47b99af28c3d064d5af836cdebae36841a37444c83
IEDL.DBID DR2
ISSN 1864-5631
1864-564X
IngestDate Fri Jul 11 11:35:30 EDT 2025
Fri Jul 25 12:24:55 EDT 2025
Wed Feb 19 02:34:12 EST 2025
Thu Apr 24 23:00:19 EDT 2025
Tue Jul 01 00:36:04 EDT 2025
Wed Jan 22 16:31:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords renewable resources
building blocks
polymers
polyesters
xylochemicals
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4109-b58d7919a4ca6acc23b29de47b99af28c3d064d5af836cdebae36841a37444c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0464-835X
0000-0003-3386-7199
PMID 29924915
PQID 2086082512
PQPubID 986333
PageCount 11
ParticipantIDs proquest_miscellaneous_2057867080
proquest_journals_2086082512
pubmed_primary_29924915
crossref_citationtrail_10_1002_cssc_201801059
crossref_primary_10_1002_cssc_201801059
wiley_primary_10_1002_cssc_201801059_CSSC201801059
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 9, 2018
PublicationDateYYYYMMDD 2018-08-09
PublicationDate_xml – month: 08
  year: 2018
  text: August 9, 2018
  day: 09
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 215
2017; 7
2011; 119
2013; 20
2016; 100
2012; 14
2007; 76
2016; 37
2014; 21
2001; 42
2013; 14
2014; 2
2001
2002; 86
2000
2010; 29
2002; 43
2015; 373
2014; 16
2013; 110
2010; 3
2014; 8
2012; 24
2012; 22
2017; 202
2007; 24
2010; 6
2015; 59
2015; 15
2015; 6
2012
2011
2013; 46
2016; 129
2018; 102
2002; 79
2008; 19
2015; 10
1998
2007; 92
2005
2004
1988; 52
2016; 18
2015; 9
1983; 37
2015; 8
2005; 88
2016; 13
2009; 29
2012; 30
1999
2012; 50
2016; 4
2016; 7
2015; 69
2016; 65
2016; 133
2011; 44
2016
1977; 11
2008; 41
2014
2013
2011; 49
2018; 10
2014; 77
e_1_2_7_5_2
(e_1_2_7_81_1) 2012
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_2
e_1_2_7_15_1
e_1_2_7_64_1
Walton D. J. (e_1_2_7_78_2) 2000
e_1_2_7_87_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_62_2
e_1_2_7_43_1
e_1_2_7_11_2
e_1_2_7_68_1
e_1_2_7_45_2
e_1_2_7_66_2
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_26_1
Bai Z. (e_1_2_7_92_2) 2018; 10
e_1_2_7_49_2
e_1_2_7_28_2
Osswald T. A. (e_1_2_7_84_1) 1998
(e_1_2_7_85_1) 2014
(e_1_2_7_4_2) 2013
e_1_2_7_90_2
e_1_2_7_71_2
e_1_2_7_73_1
e_1_2_7_94_1
e_1_2_7_50_2
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_77_1
e_1_2_7_31_2
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_2
e_1_2_7_79_2
e_1_2_7_56_1
e_1_2_7_35_2
e_1_2_7_58_1
e_1_2_7_39_2
(e_1_2_7_37_1) 2005
e_1_2_7_2_2
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_61_2
e_1_2_7_16_1
e_1_2_7_82_1
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_14_1
e_1_2_7_88_1
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_86_1
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_69_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_95_1
(e_1_2_7_3_2) 2011
e_1_2_7_72_2
e_1_2_7_51_1
e_1_2_7_93_1
e_1_2_7_70_2
e_1_2_7_91_2
e_1_2_7_30_1
e_1_2_7_76_1
e_1_2_7_24_2
e_1_2_7_55_1
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_74_2
e_1_2_7_57_1
e_1_2_7_34_2
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – year: 2011
– volume: 22
  start-page: 1684
  year: 2012
  end-page: 1691
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 1739
  year: 2015
  end-page: 1749
  publication-title: Biotechnol. J.
– volume: 59
  start-page: 234
  year: 2015
  end-page: 242
  publication-title: Polymer
– volume: 24
  start-page: 139
  year: 2007
  end-page: 177
  publication-title: Reprod. Toxicol.
– year: 2005
– volume: 30
  start-page: 2
  year: 2012
  end-page: 9
  publication-title: Biocatal. Biotransform.
– volume: 102
  start-page: 3551
  year: 2018
  end-page: 3559
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 19
  start-page: 634
  year: 2008
  end-page: 643
  publication-title: Trends Food Sci. Technol.
– volume: 16
  start-page: 1957
  year: 2014
  end-page: 1966
  publication-title: Green Chem.
– volume: 202
  start-page: 61
  year: 2017
  end-page: 77
  publication-title: Faraday Discuss.
– volume: 6
  start-page: 5961
  year: 2015
  end-page: 5983
  publication-title: Polym. Chem.
– volume: 110
  start-page: 2581
  year: 2013
  end-page: 2590
  publication-title: Biotechnol. Bioeng.
– volume: 79
  start-page: 1072
  year: 2002
  publication-title: J. Chem. Educ.
– volume: 7
  start-page: 2130
  year: 2016
  end-page: 2142
  publication-title: Polym. Chem.
– volume: 46
  start-page: 8136
  year: 2013
  end-page: 8143
  publication-title: Macromolecules
– volume: 52
  start-page: 1937
  year: 1988
  end-page: 1943
  publication-title: Agricult. Biol. Chem.
– volume: 7
  start-page: 1584
  year: 2016
  end-page: 1592
  publication-title: Polym. Chem.
– volume: 7
  start-page: 1440
  year: 2017
  end-page: 1447
  publication-title: Catal. Sci. Technol.
– volume: 119
  start-page: 1923
  year: 2011
  end-page: 1930
  publication-title: J. Appl. Polym. Sci.
– year: 2014
– volume: 3
  start-page: 1227
  year: 2010
  end-page: 1235
  publication-title: ChemSusChem
– year: 1998
– volume: 86
  start-page: 1278
  year: 2002
  end-page: 1284
  publication-title: J. Appl. Polym. Sci.
– volume: 2
  start-page: 269
  year: 2014
  end-page: 274
  publication-title: Energy Technol.
– volume: 69
  start-page: 17
  year: 2015
  end-page: 24
  publication-title: Polymer
– volume: 14
  start-page: 3295
  year: 2012
  end-page: 3303
  publication-title: Green Chem.
– volume: 88
  start-page: 371
  year: 2005
  end-page: 381
  publication-title: Polym. Degrad. Stab.
– volume: 20
  start-page: 279
  year: 2013
  publication-title: J. Polym. Res.
– volume: 15
  start-page: 5505
  year: 2015
  end-page: 5512
  publication-title: Cryst. Growth Des.
– volume: 14
  start-page: 781
  year: 2013
  end-page: 793
  publication-title: Biomacromolecules
– volume: 18
  start-page: 342
  year: 2016
  end-page: 359
  publication-title: Green Chem.
– volume: 29
  start-page: 2176
  year: 2010
  end-page: 2179
  publication-title: Organometallics
– year: 2004
– volume: 215
  start-page: 431
  year: 2014
  end-page: 439
  publication-title: Macromol. Chem. Phys.
– volume: 133
  year: 2016
  publication-title: J. Appl. Polym. Sci.
– volume: 8
  start-page: 16
  year: 2014
  end-page: 29
  publication-title: Biofuels Bioprod. Biorefin.
– volume: 76
  start-page: 727
  year: 2007
  end-page: 740
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 10
  year: 2018
  publication-title: Polymer
– volume: 8
  start-page: 67
  year: 2015
  end-page: 72
  publication-title: ChemSusChem
– volume: 4
  start-page: 4328
  year: 2016
  end-page: 4339
  publication-title: ACS Sustainable Chem. Eng.
– volume: 41
  start-page: 9491
  year: 2008
  end-page: 9504
  publication-title: Macromolecules
– volume: 77
  start-page: 277
  year: 2014
  end-page: 284
  publication-title: Prog. Org. Coat.
– volume: 373
  start-page: 20150073
  year: 2015
  publication-title: Philos. Trans. R. Soc. London Ser. A
– volume: 49
  start-page: 3759
  year: 2011
  end-page: 3768
  publication-title: J. Polym. Sci. Part A
– volume: 100
  start-page: 1753
  year: 2016
  end-page: 1764
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 44
  start-page: 4632
  year: 2011
  end-page: 4640
  publication-title: Macromolecules
– volume: 129
  start-page: 75
  year: 2016
  end-page: 80
  publication-title: Energy Convers. Manage.
– volume: 21
  start-page: 617
  year: 2014
  publication-title: J. Polym. Res.
– volume: 50
  start-page: 1026
  year: 2012
  end-page: 1036
  publication-title: J. Polym. Sci. Part A
– year: 2000
– volume: 6
  start-page: 130
  year: 2010
  end-page: 136
  publication-title: Acta Biomater.
– volume: 42
  start-page: 8695
  year: 2001
  end-page: 8702
  publication-title: Polymer
– volume: 6
  start-page: 6058
  year: 2015
  end-page: 6066
  publication-title: Polym. Chem.
– volume: 65
  start-page: 861
  year: 2016
  end-page: 871
  publication-title: Polym. Int.
– start-page: 109
  year: 2001
  end-page: 110
  publication-title: Chem. Commun.
– volume: 13
  start-page: 705
  year: 2016
  publication-title: Int. J. Environ. Res. Public Health
– volume: 8
  start-page: 645
  year: 2014
  end-page: 657
  publication-title: Biofuels Bioprod. Biorefin.
– year: 2012
– volume: 43
  start-page: 5463
  year: 2002
  end-page: 5472
  publication-title: Polymer
– start-page: 191
  year: 2016
  end-page: 216
– volume: 11
  start-page: 169
  year: 1977
  end-page: 218
  publication-title: Wood Sci. Technol.
– volume: 37
  start-page: 9
  year: 2016
  end-page: 28
  publication-title: Macromol. Rapid Commun.
– volume: 92
  start-page: 1053
  year: 2007
  end-page: 1060
  publication-title: Polym. Degrad. Stab.
– publication-title: Standard Test Method for Purity by Differential Scanning Calorimetry
– volume: 29
  start-page: 126
  year: 2009
  end-page: 132
  publication-title: Ind. Crops Prod.
– volume: 37
  start-page: 205
  year: 1983
  end-page: 2011
  publication-title: Holzforschung
– volume: 9
  start-page: 401
  year: 2015
  end-page: 408
  publication-title: Macromol. React. Eng.
– volume: 24
  start-page: 223
  year: 2012
  end-page: 225
  publication-title: Lipid Technol.
– year: 2013
– year: 1999
– ident: e_1_2_7_39_2
  doi: 10.1002/pola.24812
– ident: e_1_2_7_73_1
– ident: e_1_2_7_10_2
– ident: e_1_2_7_20_1
– ident: e_1_2_7_17_2
  doi: 10.1016/j.actbio.2009.07.020
– ident: e_1_2_7_29_2
  doi: 10.1021/bm301854c
– ident: e_1_2_7_51_1
– ident: e_1_2_7_87_1
  doi: 10.1016/S0032-3861(01)00406-2
– ident: e_1_2_7_35_2
  doi: 10.1007/s10965-013-0279-1
– ident: e_1_2_7_22_2
  doi: 10.1016/j.porgcoat.2013.09.012
– ident: e_1_2_7_32_2
  doi: 10.1039/C5PY01938A
– volume-title: Polymers
  year: 2000
  ident: e_1_2_7_78_2
  doi: 10.1093/hesc/9780198503897.001.0001
– ident: e_1_2_7_18_2
  doi: 10.1002/adfm.201101889
– ident: e_1_2_7_19_2
  doi: 10.1021/ma401439z
– ident: e_1_2_7_33_1
– ident: e_1_2_7_42_2
  doi: 10.1002/cssc.201402935
– ident: e_1_2_7_82_1
– ident: e_1_2_7_9_2
  doi: 10.1002/pi.5087
– ident: e_1_2_7_60_1
– ident: e_1_2_7_72_2
  doi: 10.1002/lite.201200230
– ident: e_1_2_7_47_1
– volume-title: Polymer Processing Fundamentals
  year: 1998
  ident: e_1_2_7_84_1
– ident: e_1_2_7_14_1
  doi: 10.1515/hfsg.1983.37.4.205
– ident: e_1_2_7_8_1
– ident: e_1_2_7_16_1
– ident: e_1_2_7_93_1
  doi: 10.1016/j.polymdegradstab.2004.12.001
– volume-title: Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters
  year: 2005
  ident: e_1_2_7_37_1
– ident: e_1_2_7_61_2
  doi: 10.3109/10242422.2012.644435
– ident: e_1_2_7_15_1
  doi: 10.1016/j.tifs.2008.07.003
– ident: e_1_2_7_30_1
– ident: e_1_2_7_38_1
– ident: e_1_2_7_79_2
  doi: 10.1002/047147875X
– ident: e_1_2_7_70_2
  doi: 10.1007/s00253-007-1057-y
– ident: e_1_2_7_83_1
  doi: 10.1021/acs.cgd.5b01136
– ident: e_1_2_7_90_2
  doi: 10.1271/bbb1961.52.1937
– ident: e_1_2_7_43_1
– ident: e_1_2_7_62_2
  doi: 10.1002/biot.201500074
– ident: e_1_2_7_28_2
  doi: 10.1016/S0032-3861(02)00427-5
– ident: e_1_2_7_34_2
  doi: 10.1002/app.32914
– ident: e_1_2_7_41_2
  doi: 10.1016/j.polymer.2014.12.021
– ident: e_1_2_7_75_2
– ident: e_1_2_7_21_2
  doi: 10.1098/rsta.2015.0073
– ident: e_1_2_7_25_2
  doi: 10.1016/j.polymer.2015.05.026
– volume: 10
  year: 2018
  ident: e_1_2_7_92_2
  publication-title: Polymer
– ident: e_1_2_7_86_1
  doi: 10.1002/ente.201300174
– ident: e_1_2_7_46_1
  doi: 10.1002/9783527698202.ch8
– ident: e_1_2_7_48_2
  doi: 10.1002/marc.201500474
– ident: e_1_2_7_71_2
  doi: 10.1002/bbb.1427
– ident: e_1_2_7_27_2
  doi: 10.1002/app.11138
– ident: e_1_2_7_88_1
  doi: 10.1002/mren.201400070
– ident: e_1_2_7_6_2
  doi: 10.1016/j.indcrop.2008.04.015
– ident: e_1_2_7_68_1
– volume-title: Monomers, Polymers and Composites from Renewable Resources
  year: 2011
  ident: e_1_2_7_3_2
– ident: e_1_2_7_24_2
  doi: 10.1039/b008188o
– ident: e_1_2_7_59_1
  doi: 10.1039/C5PY00686D
– ident: e_1_2_7_31_2
  doi: 10.1039/C5PY00824G
– volume-title: Biobased Monomers, Polymers, and Materials
  year: 2013
  ident: e_1_2_7_4_2
– ident: e_1_2_7_53_2
  doi: 10.1002/cssc.201000157
– ident: e_1_2_7_57_1
  doi: 10.1007/978-94-015-9231-4
– ident: e_1_2_7_54_1
  doi: 10.1039/c2gc35933b
– ident: e_1_2_7_80_1
  doi: 10.1039/C7FD00057J
– ident: e_1_2_7_91_2
  doi: 10.1016/j.polymdegradstab.2007.02.008
– ident: e_1_2_7_95_1
  doi: 10.1021/om100106e
– ident: e_1_2_7_36_1
  doi: 10.1016/j.reprotox.2007.07.010
– ident: e_1_2_7_13_2
  doi: 10.1002/macp.201300702
– ident: e_1_2_7_49_2
  doi: 10.1002/app.44103
– ident: e_1_2_7_44_2
  doi: 10.1002/pola.25859
– ident: e_1_2_7_67_1
– ident: e_1_2_7_45_2
  doi: 10.1039/C3GC42184H
– ident: e_1_2_7_56_1
  doi: 10.3390/ijerph13070705
– volume-title: Material Recycling: Trends and Perspectives
  year: 2012
  ident: e_1_2_7_81_1
– ident: e_1_2_7_63_2
  doi: 10.1007/s00253-015-7031-1
– ident: e_1_2_7_69_2
  doi: 10.1016/j.enconman.2016.10.019
– ident: e_1_2_7_94_1
  doi: 10.1002/bit.24930
– ident: e_1_2_7_1_1
– ident: e_1_2_7_89_1
– ident: e_1_2_7_2_2
  doi: 10.1021/ed079p1072.1
– ident: e_1_2_7_12_2
– ident: e_1_2_7_66_2
  doi: 10.1021/ma200949p
– ident: e_1_2_7_52_2
  doi: 10.1007/BF00365615
– ident: e_1_2_7_5_2
  doi: 10.1021/ma801735u
– ident: e_1_2_7_7_2
  doi: 10.1039/C6PY00066E
– ident: e_1_2_7_55_1
  doi: 10.1002/bbb.1474
– ident: e_1_2_7_58_1
– volume-title: Natural and Synthetic Biomedical Polymers
  year: 2014
  ident: e_1_2_7_85_1
– ident: e_1_2_7_77_1
– ident: e_1_2_7_76_1
  doi: 10.1039/C5GC01771H
– ident: e_1_2_7_11_2
– ident: e_1_2_7_64_1
– ident: e_1_2_7_96_1
  doi: 10.1039/C7CY00168A
– ident: e_1_2_7_74_2
– ident: e_1_2_7_40_2
  doi: 10.1007/s10965-014-0617-y
– ident: e_1_2_7_50_2
  doi: 10.1021/acssuschemeng.6b00835
– ident: e_1_2_7_26_1
– ident: e_1_2_7_65_2
  doi: 10.1007/s00253-018-8850-7
– ident: e_1_2_7_23_1
SSID ssj0060966
Score 2.4101534
Snippet The utilization of wood‐derived building blocks (xylochemicals) to replace fossil‐based precursors is an attractive research subject of modern polymer science....
The utilization of wood-derived building blocks (xylochemicals) to replace fossil-based precursors is an attractive research subject of modern polymer science....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2529
SubjectTerms Acids
Biodegradability
Biodegradation
building blocks
Differential scanning calorimetry
Fourier transforms
High performance liquid chromatography
Hydrolysis
Monomers
NMR spectroscopy
Physical properties
Plastics industry
Polyester resins
Polyesters
Polymers
Reflectance
renewable resources
Spectrum analysis
Succinic acid
Terephthalic acid
Thermodynamic properties
Thermogravimetric analysis
Thermoplastic resins
xylochemicals
Title Towards Sustainable High‐Performance Thermoplastics: Synthesis, Characterization, and Enzymatic Hydrolysis of Bisguaiacol‐Based Polyesters
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201801059
https://www.ncbi.nlm.nih.gov/pubmed/29924915
https://www.proquest.com/docview/2086082512
https://www.proquest.com/docview/2057867080
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LbtQwFIYt1A1suF8CBRkJiU3Txpc4NjsaWo2QQBXTSt1FvqUaAUk1mVlMVzwB4hl5Eo6dSYYBISTYJbItJ_axz-_E5zNCL4KXVhkYL2HCppzXWSpz51NT5FQTBz4nC9HI796LyRl_e56f_xTF3_Mhxg9uYWTE-ToMcG26gw001HZdQBASGc54DBF8UFuA57_5MPKjBOjzGF4kBU9zwchAbczowXbxba_0m9TcVq7R9RzfQnp46H7Hycf95cLs26tfeI7_81a30c21LsWve0O6g6755i66Xg7Hwd1DX0_jBtsOTzchVzjsEvn-5dvJJvoAg93NP7eXIMoDAPoVnq4a0JjdrNvD5QiH7mM_97BuHD5qrlaRG4snKzdvIyIFtzU-nHUXSz0LWG2o4hC8rcMnkBzRDt19dHZ8dFpO0vVhDqnlJFOpyaUrFFGaWy20tZQZqpznhVFK11Ra5kAduVzXEqzGeaM9E5ITzQrOuZXsAdpp2sY_QtjmhmvLiLHaw-qSGs01E17VhlErtUhQOnRmZdek83DgxqeqZzTTKrRyNbZygl6O-S97xscfc-4OtlGtx3oHqVKEhTahCXo-JkPvhF8vuvHtMuSBmVEUIM8T9LC3qbEqEASwBiZ5gmi0jL88Q1VOp-V49_hfCj1BN8J13MeodtHOYr70T0FbLcyzOH5-AIW3H-w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagHMql_JdAASMhcWna2HEcmxtdWi3QVhW7lbhF_gtaFZJqs3vYnngCxDPyJIydTVYLQkhwTGzLjj32fOPMfIPQC6-lZQLCS1JuYsbKJBaZdbHOM6qIBZ2T-Gjkk1M-PGfvPmadN6GPhWn5IfoLN78zwnntN7i_kN5fsYaapvEchET4JI_yOrrBAG14--vNh55BigNCDwFGgrM44ynpeBsTur_efl0v_QY217FrUD5Ht5Duht36nFzszWd6z1z9wuj4X991G20toSl-3crSHXTNVXfR5qDLCHcPfRsHH9sGj1ZRV9g7ivz4-v1sFYCAQfSmX-pLwOWeA_oVHi0qgJnNpNnFg54fug3_3MWqsviwuloE6lg8XNhpHVhScF3ig0nzaa4mnlkbujgAhWvxGRQHdofmPjo_OhwPhvEyn0NsGElkrDNhc0mkYkZxZQxNNZXWsVxLqUoqTGoBINlMlQIExzqtXMoFIyrNGWNGpA_QRlVX7iHCJtNMmZRooxwYmFQrplLuZKlTaoTiEYq71SzMkuzc59z4XLQ0zbTws1z0sxyhl339y5bm4481dzrhKJbbvYFSwb2tTWiEnvfFsDr-74uqXD33deBw5Dkg9Ahtt0LVdwWYAMxgkkWIBtH4yxiKwWg06J8e_UujZ2hzOD45Lo7fnr5_jG7698GtUe6gjdl07p4A1Jrpp2Ez_QRyLyQL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSNAL70KggJGQuDRt_Ihjc6Ohq-VVrdhW6i3yK2hVSFab3cP2xC9A_EZ-CbazybIghATHxLbs2DOez87MNwA881ZaJE54EWE6prRMYp4aG6ssxRIZZ3MSH438_pgNT-mbs_Tspyj-lh-iv3DzmhH2a6_gU1MerElDddN4CkLEfY5HcRlcoczBCQ-LPvQEUswB9BBfxBmNU0ZQR9uY4IPN9ptm6TesuQldg-0Z3ACyG3XrcnK-v5irfX3xC6Hj_3zWTXB9BUzhy1aSboFLtroNruVdPrg74OtJ8LBt4HgdcwW9m8j3L99G6_AD6ARv9rmeOlTuGaBfwPGyciCzmTR7MO_Zodvgzz0oKwOPqotlII6Fw6WZ1YEjBdYlPJw0Hxdy4nm1XReHztwaOHLFgduhuQtOB0cn-TBeZXOINUWJiFXKTSaQkFRLJrXGRGFhLM2UELLEXBPj4JFJZcmd2BirpCWMUyRJRinVnOyAraqu7H0Adaqo1AQpLa07XmIlqSTMilIRrLlkEYi7xSz0iurcZ9z4VLQkzbjws1z0sxyB5339aUvy8ceau51sFCtlb1wpZ_6kjXAEnvbFbnX8vxdZ2Xrh67itkWUOn0fgXitTfVcOEbhDMEojgINk_GUMRT4e5_3Tg39p9ARcHb0aFO9eH799CLb96-DTKHbB1ny2sI8czpqrx0GVfgDxlyK6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Sustainable+High%E2%80%90Performance+Thermoplastics%3A+Synthesis%2C+Characterization%2C+and+Enzymatic+Hydrolysis+of+Bisguaiacol%E2%80%90Based+Polyesters&rft.jtitle=ChemSusChem&rft.au=Curia%2C+Silvio&rft.au=Biundo%2C+Antonino&rft.au=Fischer%2C+Isabel&rft.au=Braunschmid%2C+Verena&rft.date=2018-08-09&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=11&rft.issue=15&rft.spage=2529&rft.epage=2539&rft_id=info:doi/10.1002%2Fcssc.201801059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cssc_201801059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon