Towards Sustainable High‐Performance Thermoplastics: Synthesis, Characterization, and Enzymatic Hydrolysis of Bisguaiacol‐Based Polyesters
The utilization of wood‐derived building blocks (xylochemicals) to replace fossil‐based precursors is an attractive research subject of modern polymer science. Here, we demonstrate that bisguaiacol (BG), a lignin‐derived bisphenol analogue, can be used to prepare biobased polyesters with remarkable...
Saved in:
Published in | ChemSusChem Vol. 11; no. 15; pp. 2529 - 2539 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
09.08.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1864-5631 1864-564X 1864-564X |
DOI | 10.1002/cssc.201801059 |
Cover
Abstract | The utilization of wood‐derived building blocks (xylochemicals) to replace fossil‐based precursors is an attractive research subject of modern polymer science. Here, we demonstrate that bisguaiacol (BG), a lignin‐derived bisphenol analogue, can be used to prepare biobased polyesters with remarkable thermal properties. BG was treated with different activated diacids to investigate the effect of co‐monomer structures on the physical properties of the products. Namely, derivatives of adipic acid, succinic acid, and 2,5‐furandicarboxylic acid were used. Moreover, a terephthalic acid derivative was used for comparison purposes. The products were characterized by 1H NMR spectroscopy, attenuated total reflectance FTIR spectroscopy, gel‐permeation chromatography, thermogravimetric analysis, and differential scanning calorimetry to assess their structural and thermal properties in detail. The polymers showed glass‐transition temperatures ranging up to 160 °C and thermal stabilities in excess of 300 °C. Furthermore, the susceptibility of the polyester to enzymatic hydrolysis was investigated to assess the potential for further surface functionalization and/or recycling and biodegradation. Indeed, hydrolysis with two different enzymes from the bacteria Thermobifida cellulosilytica led to the release of monomers, as quantified by HPLC. The results of this study indicate that our new polyesters represent promising renewable and biodegradable alternatives to petroleum‐based polyesters currently employed in the plastics industry, specifically for applications in which high‐temperature stability is essential to ensure overall system integrity.
Think BG: Bisguaiacol (BG), a lignin‐derived bisphenol analogue, is treated with different activated diacids to investigate the effect of the co‐monomer structures on the physical properties of the products. The polymers show glass‐transition temperatures ranging up to 160 °C and thermal stabilities in excess of 300 °C. These new polyesters hold promise for use as renewable and biodegradable alternatives to petroleum‐based polyesters. |
---|---|
AbstractList | The utilization of wood-derived building blocks (xylochemicals) to replace fossil-based precursors is an attractive research subject of modern polymer science. Here, we demonstrate that bisguaiacol (BG), a lignin-derived bisphenol analogue, can be used to prepare biobased polyesters with remarkable thermal properties. BG was treated with different activated diacids to investigate the effect of co-monomer structures on the physical properties of the products. Namely, derivatives of adipic acid, succinic acid, and 2,5-furandicarboxylic acid were used. Moreover, a terephthalic acid derivative was used for comparison purposes. The products were characterized by 1 H NMR spectroscopy, attenuated total reflectance FTIR spectroscopy, gel-permeation chromatography, thermogravimetric analysis, and differential scanning calorimetry to assess their structural and thermal properties in detail. The polymers showed glass-transition temperatures ranging up to 160 °C and thermal stabilities in excess of 300 °C. Furthermore, the susceptibility of the polyester to enzymatic hydrolysis was investigated to assess the potential for further surface functionalization and/or recycling and biodegradation. Indeed, hydrolysis with two different enzymes from the bacteria Thermobifida cellulosilytica led to the release of monomers, as quantified by HPLC. The results of this study indicate that our new polyesters represent promising renewable and biodegradable alternatives to petroleum-based polyesters currently employed in the plastics industry, specifically for applications in which high-temperature stability is essential to ensure overall system integrity.The utilization of wood-derived building blocks (xylochemicals) to replace fossil-based precursors is an attractive research subject of modern polymer science. Here, we demonstrate that bisguaiacol (BG), a lignin-derived bisphenol analogue, can be used to prepare biobased polyesters with remarkable thermal properties. BG was treated with different activated diacids to investigate the effect of co-monomer structures on the physical properties of the products. Namely, derivatives of adipic acid, succinic acid, and 2,5-furandicarboxylic acid were used. Moreover, a terephthalic acid derivative was used for comparison purposes. The products were characterized by 1 H NMR spectroscopy, attenuated total reflectance FTIR spectroscopy, gel-permeation chromatography, thermogravimetric analysis, and differential scanning calorimetry to assess their structural and thermal properties in detail. The polymers showed glass-transition temperatures ranging up to 160 °C and thermal stabilities in excess of 300 °C. Furthermore, the susceptibility of the polyester to enzymatic hydrolysis was investigated to assess the potential for further surface functionalization and/or recycling and biodegradation. Indeed, hydrolysis with two different enzymes from the bacteria Thermobifida cellulosilytica led to the release of monomers, as quantified by HPLC. The results of this study indicate that our new polyesters represent promising renewable and biodegradable alternatives to petroleum-based polyesters currently employed in the plastics industry, specifically for applications in which high-temperature stability is essential to ensure overall system integrity. The utilization of wood‐derived building blocks (xylochemicals) to replace fossil‐based precursors is an attractive research subject of modern polymer science. Here, we demonstrate that bisguaiacol (BG), a lignin‐derived bisphenol analogue, can be used to prepare biobased polyesters with remarkable thermal properties. BG was treated with different activated diacids to investigate the effect of co‐monomer structures on the physical properties of the products. Namely, derivatives of adipic acid, succinic acid, and 2,5‐furandicarboxylic acid were used. Moreover, a terephthalic acid derivative was used for comparison purposes. The products were characterized by 1H NMR spectroscopy, attenuated total reflectance FTIR spectroscopy, gel‐permeation chromatography, thermogravimetric analysis, and differential scanning calorimetry to assess their structural and thermal properties in detail. The polymers showed glass‐transition temperatures ranging up to 160 °C and thermal stabilities in excess of 300 °C. Furthermore, the susceptibility of the polyester to enzymatic hydrolysis was investigated to assess the potential for further surface functionalization and/or recycling and biodegradation. Indeed, hydrolysis with two different enzymes from the bacteria Thermobifida cellulosilytica led to the release of monomers, as quantified by HPLC. The results of this study indicate that our new polyesters represent promising renewable and biodegradable alternatives to petroleum‐based polyesters currently employed in the plastics industry, specifically for applications in which high‐temperature stability is essential to ensure overall system integrity. The utilization of wood-derived building blocks (xylochemicals) to replace fossil-based precursors is an attractive research subject of modern polymer science. Here, we demonstrate that bisguaiacol (BG), a lignin-derived bisphenol analogue, can be used to prepare biobased polyesters with remarkable thermal properties. BG was treated with different activated diacids to investigate the effect of co-monomer structures on the physical properties of the products. Namely, derivatives of adipic acid, succinic acid, and 2,5-furandicarboxylic acid were used. Moreover, a terephthalic acid derivative was used for comparison purposes. The products were characterized by H NMR spectroscopy, attenuated total reflectance FTIR spectroscopy, gel-permeation chromatography, thermogravimetric analysis, and differential scanning calorimetry to assess their structural and thermal properties in detail. The polymers showed glass-transition temperatures ranging up to 160 °C and thermal stabilities in excess of 300 °C. Furthermore, the susceptibility of the polyester to enzymatic hydrolysis was investigated to assess the potential for further surface functionalization and/or recycling and biodegradation. Indeed, hydrolysis with two different enzymes from the bacteria Thermobifida cellulosilytica led to the release of monomers, as quantified by HPLC. The results of this study indicate that our new polyesters represent promising renewable and biodegradable alternatives to petroleum-based polyesters currently employed in the plastics industry, specifically for applications in which high-temperature stability is essential to ensure overall system integrity. The utilization of wood‐derived building blocks (xylochemicals) to replace fossil‐based precursors is an attractive research subject of modern polymer science. Here, we demonstrate that bisguaiacol (BG), a lignin‐derived bisphenol analogue, can be used to prepare biobased polyesters with remarkable thermal properties. BG was treated with different activated diacids to investigate the effect of co‐monomer structures on the physical properties of the products. Namely, derivatives of adipic acid, succinic acid, and 2,5‐furandicarboxylic acid were used. Moreover, a terephthalic acid derivative was used for comparison purposes. The products were characterized by 1 H NMR spectroscopy, attenuated total reflectance FTIR spectroscopy, gel‐permeation chromatography, thermogravimetric analysis, and differential scanning calorimetry to assess their structural and thermal properties in detail. The polymers showed glass‐transition temperatures ranging up to 160 °C and thermal stabilities in excess of 300 °C. Furthermore, the susceptibility of the polyester to enzymatic hydrolysis was investigated to assess the potential for further surface functionalization and/or recycling and biodegradation. Indeed, hydrolysis with two different enzymes from the bacteria Thermobifida cellulosilytica led to the release of monomers, as quantified by HPLC. The results of this study indicate that our new polyesters represent promising renewable and biodegradable alternatives to petroleum‐based polyesters currently employed in the plastics industry, specifically for applications in which high‐temperature stability is essential to ensure overall system integrity. The utilization of wood‐derived building blocks (xylochemicals) to replace fossil‐based precursors is an attractive research subject of modern polymer science. Here, we demonstrate that bisguaiacol (BG), a lignin‐derived bisphenol analogue, can be used to prepare biobased polyesters with remarkable thermal properties. BG was treated with different activated diacids to investigate the effect of co‐monomer structures on the physical properties of the products. Namely, derivatives of adipic acid, succinic acid, and 2,5‐furandicarboxylic acid were used. Moreover, a terephthalic acid derivative was used for comparison purposes. The products were characterized by 1H NMR spectroscopy, attenuated total reflectance FTIR spectroscopy, gel‐permeation chromatography, thermogravimetric analysis, and differential scanning calorimetry to assess their structural and thermal properties in detail. The polymers showed glass‐transition temperatures ranging up to 160 °C and thermal stabilities in excess of 300 °C. Furthermore, the susceptibility of the polyester to enzymatic hydrolysis was investigated to assess the potential for further surface functionalization and/or recycling and biodegradation. Indeed, hydrolysis with two different enzymes from the bacteria Thermobifida cellulosilytica led to the release of monomers, as quantified by HPLC. The results of this study indicate that our new polyesters represent promising renewable and biodegradable alternatives to petroleum‐based polyesters currently employed in the plastics industry, specifically for applications in which high‐temperature stability is essential to ensure overall system integrity. Think BG: Bisguaiacol (BG), a lignin‐derived bisphenol analogue, is treated with different activated diacids to investigate the effect of the co‐monomer structures on the physical properties of the products. The polymers show glass‐transition temperatures ranging up to 160 °C and thermal stabilities in excess of 300 °C. These new polyesters hold promise for use as renewable and biodegradable alternatives to petroleum‐based polyesters. |
Author | Fischer, Isabel Biundo, Antonino Curia, Silvio Stanzione, Joseph F. Braunschmid, Verena Gübitz, Georg M. |
Author_xml | – sequence: 1 givenname: Silvio orcidid: 0000-0003-3386-7199 surname: Curia fullname: Curia, Silvio email: curia@rowan.edu organization: Rowan University – sequence: 2 givenname: Antonino surname: Biundo fullname: Biundo, Antonino organization: Austrian Centre of Industrial Biotechnology (ACIB) – sequence: 3 givenname: Isabel surname: Fischer fullname: Fischer, Isabel organization: Austrian Centre of Industrial Biotechnology (ACIB) – sequence: 4 givenname: Verena surname: Braunschmid fullname: Braunschmid, Verena organization: Austrian Centre of Industrial Biotechnology (ACIB) – sequence: 5 givenname: Georg M. surname: Gübitz fullname: Gübitz, Georg M. organization: University of Natural Resources and Life Sciences (BOKU) – sequence: 6 givenname: Joseph F. orcidid: 0000-0003-0464-835X surname: Stanzione fullname: Stanzione, Joseph F. email: stanzione@rowan.edu organization: Rowan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29924915$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd9qFDEUxgep2D9666UEvPGiuyaZTDbxzg6tKxQs7ArehTNJppsyk6zJDGV65RNIn9EnMXXbCgXx6uSQ3_edw_kOiz0fvC2K1wTPCcb0vU5JzykmAhNcyWfFARGczSrOvu09vkuyXxymdIUxx5LzF8U-lZIySaqD4uc6XEM0Ca3GNIDz0HQWLd3l5teP2wsb2xB78Nqi9cbGPmw7SIPT6QNaTX7Y2OTSMao3EEEPNrobGFzwxwi8Qaf-Zupzr9FyMjF0U2ZRaNGJS5cjONChyyNOIFmDLvK3TdkhvSyet9Al--q-HhVfz07X9XJ2_uXT5_rj-UwzguWsqYRZSCKBaeCgNS0bKo1li0ZKaKnQpcGcmQpaUXJtbAO25IIRKBeMMS3Ko-Ldzncbw_cxz1a9S9p2HXgbxqQorhaCL7DAGX37BL0KY_R5u0wJjgWtCM3Um3tqbHpr1Da6HuKkHi6dAbYDdAwpRdsq7YY_9xoiuE4RrO4CVXeBqsdAs2z-RPbg_E-B3AmuXWen_9CqXq3qv9rfSoa4Qg |
CitedBy_id | crossref_primary_10_1039_D1RA02197D crossref_primary_10_1080_25740881_2024_2352148 crossref_primary_10_1016_j_supflu_2020_104785 crossref_primary_10_1038_s41893_023_01201_w crossref_primary_10_3390_app11178112 crossref_primary_10_1039_D1PY00909E crossref_primary_10_1021_acs_chemrev_3c00848 crossref_primary_10_1007_s13726_024_01392_9 crossref_primary_10_1039_C9GC03055G crossref_primary_10_1021_acs_jafc_8b03746 crossref_primary_10_1039_D2IM00054G crossref_primary_10_1016_j_mset_2021_10_002 crossref_primary_10_1021_acssuschemeng_8b03340 crossref_primary_10_1021_acs_biomac_8b01361 crossref_primary_10_1039_D0CS00134A crossref_primary_10_1039_D0GC01688H crossref_primary_10_1039_D0GC03982A crossref_primary_10_1021_acs_biomac_3c00918 crossref_primary_10_1186_s13068_022_02139_5 crossref_primary_10_1016_j_polymdegradstab_2023_110514 crossref_primary_10_1021_acssuschemeng_2c05998 crossref_primary_10_1021_acsmacrolett_0c00024 crossref_primary_10_1021_acssuschemeng_0c05712 crossref_primary_10_1021_acssuschemeng_9b03471 crossref_primary_10_1039_D2CS00773H crossref_primary_10_1002_pola_29534 crossref_primary_10_1016_j_cogsc_2024_100919 crossref_primary_10_1021_acscentsci_9b00781 crossref_primary_10_1039_C9GC02619C crossref_primary_10_31025_2611_4135_2022_15214 crossref_primary_10_1002_bbb_2411 crossref_primary_10_1002_pc_27000 crossref_primary_10_1021_acssuschemeng_0c01862 crossref_primary_10_1021_acssuschemeng_8b06286 crossref_primary_10_1039_D0CS00179A crossref_primary_10_1039_D1GC02082J crossref_primary_10_1016_j_indcrop_2024_119389 |
Cites_doi | 10.1002/pola.24812 10.1016/j.actbio.2009.07.020 10.1021/bm301854c 10.1016/S0032-3861(01)00406-2 10.1007/s10965-013-0279-1 10.1016/j.porgcoat.2013.09.012 10.1039/C5PY01938A 10.1093/hesc/9780198503897.001.0001 10.1002/adfm.201101889 10.1021/ma401439z 10.1002/cssc.201402935 10.1002/pi.5087 10.1002/lite.201200230 10.1515/hfsg.1983.37.4.205 10.1016/j.polymdegradstab.2004.12.001 10.3109/10242422.2012.644435 10.1016/j.tifs.2008.07.003 10.1002/047147875X 10.1007/s00253-007-1057-y 10.1021/acs.cgd.5b01136 10.1271/bbb1961.52.1937 10.1002/biot.201500074 10.1016/S0032-3861(02)00427-5 10.1002/app.32914 10.1016/j.polymer.2014.12.021 10.1098/rsta.2015.0073 10.1016/j.polymer.2015.05.026 10.1002/ente.201300174 10.1002/9783527698202.ch8 10.1002/marc.201500474 10.1002/bbb.1427 10.1002/app.11138 10.1002/mren.201400070 10.1016/j.indcrop.2008.04.015 10.1039/b008188o 10.1039/C5PY00686D 10.1039/C5PY00824G 10.1002/cssc.201000157 10.1007/978-94-015-9231-4 10.1039/c2gc35933b 10.1039/C7FD00057J 10.1016/j.polymdegradstab.2007.02.008 10.1021/om100106e 10.1016/j.reprotox.2007.07.010 10.1002/macp.201300702 10.1002/app.44103 10.1002/pola.25859 10.1039/C3GC42184H 10.3390/ijerph13070705 10.1007/s00253-015-7031-1 10.1016/j.enconman.2016.10.019 10.1002/bit.24930 10.1021/ed079p1072.1 10.1021/ma200949p 10.1007/BF00365615 10.1021/ma801735u 10.1039/C6PY00066E 10.1002/bbb.1474 10.1039/C5GC01771H 10.1039/C7CY00168A 10.1007/s10965-014-0617-y 10.1021/acssuschemeng.6b00835 10.1007/s00253-018-8850-7 |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/cssc.201801059 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1864-564X |
EndPage | 2539 |
ExternalDocumentID | 29924915 10_1002_cssc_201801059 CSSC201801059 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Army Research Laboratory funderid: W911NF-14-2-0086; W911NF-16-2-0225 |
GroupedDBID | --- 05W 0R~ 1OC 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX AEYWJ AGYGG CITATION NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c4109-b58d7919a4ca6acc23b29de47b99af28c3d064d5af836cdebae36841a37444c83 |
IEDL.DBID | DR2 |
ISSN | 1864-5631 1864-564X |
IngestDate | Fri Jul 11 11:35:30 EDT 2025 Fri Jul 25 12:24:55 EDT 2025 Wed Feb 19 02:34:12 EST 2025 Thu Apr 24 23:00:19 EDT 2025 Tue Jul 01 00:36:04 EDT 2025 Wed Jan 22 16:31:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | renewable resources building blocks polymers polyesters xylochemicals |
Language | English |
License | 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4109-b58d7919a4ca6acc23b29de47b99af28c3d064d5af836cdebae36841a37444c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0464-835X 0000-0003-3386-7199 |
PMID | 29924915 |
PQID | 2086082512 |
PQPubID | 986333 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2057867080 proquest_journals_2086082512 pubmed_primary_29924915 crossref_citationtrail_10_1002_cssc_201801059 crossref_primary_10_1002_cssc_201801059 wiley_primary_10_1002_cssc_201801059_CSSC201801059 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 9, 2018 |
PublicationDateYYYYMMDD | 2018-08-09 |
PublicationDate_xml | – month: 08 year: 2018 text: August 9, 2018 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | ChemSusChem |
PublicationTitleAlternate | ChemSusChem |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014; 215 2017; 7 2011; 119 2013; 20 2016; 100 2012; 14 2007; 76 2016; 37 2014; 21 2001; 42 2013; 14 2014; 2 2001 2002; 86 2000 2010; 29 2002; 43 2015; 373 2014; 16 2013; 110 2010; 3 2014; 8 2012; 24 2012; 22 2017; 202 2007; 24 2010; 6 2015; 59 2015; 15 2015; 6 2012 2011 2013; 46 2016; 129 2018; 102 2002; 79 2008; 19 2015; 10 1998 2007; 92 2005 2004 1988; 52 2016; 18 2015; 9 1983; 37 2015; 8 2005; 88 2016; 13 2009; 29 2012; 30 1999 2012; 50 2016; 4 2016; 7 2015; 69 2016; 65 2016; 133 2011; 44 2016 1977; 11 2008; 41 2014 2013 2011; 49 2018; 10 2014; 77 e_1_2_7_5_2 (e_1_2_7_81_1) 2012 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_2 e_1_2_7_15_1 e_1_2_7_64_1 Walton D. J. (e_1_2_7_78_2) 2000 e_1_2_7_87_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_62_2 e_1_2_7_43_1 e_1_2_7_11_2 e_1_2_7_68_1 e_1_2_7_45_2 e_1_2_7_66_2 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_26_1 Bai Z. (e_1_2_7_92_2) 2018; 10 e_1_2_7_49_2 e_1_2_7_28_2 Osswald T. A. (e_1_2_7_84_1) 1998 (e_1_2_7_85_1) 2014 (e_1_2_7_4_2) 2013 e_1_2_7_90_2 e_1_2_7_71_2 e_1_2_7_73_1 e_1_2_7_94_1 e_1_2_7_50_2 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_77_1 e_1_2_7_31_2 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_2 e_1_2_7_79_2 e_1_2_7_56_1 e_1_2_7_35_2 e_1_2_7_58_1 e_1_2_7_39_2 (e_1_2_7_37_1) 2005 e_1_2_7_2_2 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_61_2 e_1_2_7_16_1 e_1_2_7_82_1 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_14_1 e_1_2_7_88_1 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_86_1 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_69_2 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_95_1 (e_1_2_7_3_2) 2011 e_1_2_7_72_2 e_1_2_7_51_1 e_1_2_7_93_1 e_1_2_7_70_2 e_1_2_7_91_2 e_1_2_7_30_1 e_1_2_7_76_1 e_1_2_7_24_2 e_1_2_7_55_1 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_74_2 e_1_2_7_57_1 e_1_2_7_34_2 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – year: 2011 – volume: 22 start-page: 1684 year: 2012 end-page: 1691 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 1739 year: 2015 end-page: 1749 publication-title: Biotechnol. J. – volume: 59 start-page: 234 year: 2015 end-page: 242 publication-title: Polymer – volume: 24 start-page: 139 year: 2007 end-page: 177 publication-title: Reprod. Toxicol. – year: 2005 – volume: 30 start-page: 2 year: 2012 end-page: 9 publication-title: Biocatal. Biotransform. – volume: 102 start-page: 3551 year: 2018 end-page: 3559 publication-title: Appl. Microbiol. Biotechnol. – volume: 19 start-page: 634 year: 2008 end-page: 643 publication-title: Trends Food Sci. Technol. – volume: 16 start-page: 1957 year: 2014 end-page: 1966 publication-title: Green Chem. – volume: 202 start-page: 61 year: 2017 end-page: 77 publication-title: Faraday Discuss. – volume: 6 start-page: 5961 year: 2015 end-page: 5983 publication-title: Polym. Chem. – volume: 110 start-page: 2581 year: 2013 end-page: 2590 publication-title: Biotechnol. Bioeng. – volume: 79 start-page: 1072 year: 2002 publication-title: J. Chem. Educ. – volume: 7 start-page: 2130 year: 2016 end-page: 2142 publication-title: Polym. Chem. – volume: 46 start-page: 8136 year: 2013 end-page: 8143 publication-title: Macromolecules – volume: 52 start-page: 1937 year: 1988 end-page: 1943 publication-title: Agricult. Biol. Chem. – volume: 7 start-page: 1584 year: 2016 end-page: 1592 publication-title: Polym. Chem. – volume: 7 start-page: 1440 year: 2017 end-page: 1447 publication-title: Catal. Sci. Technol. – volume: 119 start-page: 1923 year: 2011 end-page: 1930 publication-title: J. Appl. Polym. Sci. – year: 2014 – volume: 3 start-page: 1227 year: 2010 end-page: 1235 publication-title: ChemSusChem – year: 1998 – volume: 86 start-page: 1278 year: 2002 end-page: 1284 publication-title: J. Appl. Polym. Sci. – volume: 2 start-page: 269 year: 2014 end-page: 274 publication-title: Energy Technol. – volume: 69 start-page: 17 year: 2015 end-page: 24 publication-title: Polymer – volume: 14 start-page: 3295 year: 2012 end-page: 3303 publication-title: Green Chem. – volume: 88 start-page: 371 year: 2005 end-page: 381 publication-title: Polym. Degrad. Stab. – volume: 20 start-page: 279 year: 2013 publication-title: J. Polym. Res. – volume: 15 start-page: 5505 year: 2015 end-page: 5512 publication-title: Cryst. Growth Des. – volume: 14 start-page: 781 year: 2013 end-page: 793 publication-title: Biomacromolecules – volume: 18 start-page: 342 year: 2016 end-page: 359 publication-title: Green Chem. – volume: 29 start-page: 2176 year: 2010 end-page: 2179 publication-title: Organometallics – year: 2004 – volume: 215 start-page: 431 year: 2014 end-page: 439 publication-title: Macromol. Chem. Phys. – volume: 133 year: 2016 publication-title: J. Appl. Polym. Sci. – volume: 8 start-page: 16 year: 2014 end-page: 29 publication-title: Biofuels Bioprod. Biorefin. – volume: 76 start-page: 727 year: 2007 end-page: 740 publication-title: Appl. Microbiol. Biotechnol. – volume: 10 year: 2018 publication-title: Polymer – volume: 8 start-page: 67 year: 2015 end-page: 72 publication-title: ChemSusChem – volume: 4 start-page: 4328 year: 2016 end-page: 4339 publication-title: ACS Sustainable Chem. Eng. – volume: 41 start-page: 9491 year: 2008 end-page: 9504 publication-title: Macromolecules – volume: 77 start-page: 277 year: 2014 end-page: 284 publication-title: Prog. Org. Coat. – volume: 373 start-page: 20150073 year: 2015 publication-title: Philos. Trans. R. Soc. London Ser. A – volume: 49 start-page: 3759 year: 2011 end-page: 3768 publication-title: J. Polym. Sci. Part A – volume: 100 start-page: 1753 year: 2016 end-page: 1764 publication-title: Appl. Microbiol. Biotechnol. – volume: 44 start-page: 4632 year: 2011 end-page: 4640 publication-title: Macromolecules – volume: 129 start-page: 75 year: 2016 end-page: 80 publication-title: Energy Convers. Manage. – volume: 21 start-page: 617 year: 2014 publication-title: J. Polym. Res. – volume: 50 start-page: 1026 year: 2012 end-page: 1036 publication-title: J. Polym. Sci. Part A – year: 2000 – volume: 6 start-page: 130 year: 2010 end-page: 136 publication-title: Acta Biomater. – volume: 42 start-page: 8695 year: 2001 end-page: 8702 publication-title: Polymer – volume: 6 start-page: 6058 year: 2015 end-page: 6066 publication-title: Polym. Chem. – volume: 65 start-page: 861 year: 2016 end-page: 871 publication-title: Polym. Int. – start-page: 109 year: 2001 end-page: 110 publication-title: Chem. Commun. – volume: 13 start-page: 705 year: 2016 publication-title: Int. J. Environ. Res. Public Health – volume: 8 start-page: 645 year: 2014 end-page: 657 publication-title: Biofuels Bioprod. Biorefin. – year: 2012 – volume: 43 start-page: 5463 year: 2002 end-page: 5472 publication-title: Polymer – start-page: 191 year: 2016 end-page: 216 – volume: 11 start-page: 169 year: 1977 end-page: 218 publication-title: Wood Sci. Technol. – volume: 37 start-page: 9 year: 2016 end-page: 28 publication-title: Macromol. Rapid Commun. – volume: 92 start-page: 1053 year: 2007 end-page: 1060 publication-title: Polym. Degrad. Stab. – publication-title: Standard Test Method for Purity by Differential Scanning Calorimetry – volume: 29 start-page: 126 year: 2009 end-page: 132 publication-title: Ind. Crops Prod. – volume: 37 start-page: 205 year: 1983 end-page: 2011 publication-title: Holzforschung – volume: 9 start-page: 401 year: 2015 end-page: 408 publication-title: Macromol. React. Eng. – volume: 24 start-page: 223 year: 2012 end-page: 225 publication-title: Lipid Technol. – year: 2013 – year: 1999 – ident: e_1_2_7_39_2 doi: 10.1002/pola.24812 – ident: e_1_2_7_73_1 – ident: e_1_2_7_10_2 – ident: e_1_2_7_20_1 – ident: e_1_2_7_17_2 doi: 10.1016/j.actbio.2009.07.020 – ident: e_1_2_7_29_2 doi: 10.1021/bm301854c – ident: e_1_2_7_51_1 – ident: e_1_2_7_87_1 doi: 10.1016/S0032-3861(01)00406-2 – ident: e_1_2_7_35_2 doi: 10.1007/s10965-013-0279-1 – ident: e_1_2_7_22_2 doi: 10.1016/j.porgcoat.2013.09.012 – ident: e_1_2_7_32_2 doi: 10.1039/C5PY01938A – volume-title: Polymers year: 2000 ident: e_1_2_7_78_2 doi: 10.1093/hesc/9780198503897.001.0001 – ident: e_1_2_7_18_2 doi: 10.1002/adfm.201101889 – ident: e_1_2_7_19_2 doi: 10.1021/ma401439z – ident: e_1_2_7_33_1 – ident: e_1_2_7_42_2 doi: 10.1002/cssc.201402935 – ident: e_1_2_7_82_1 – ident: e_1_2_7_9_2 doi: 10.1002/pi.5087 – ident: e_1_2_7_60_1 – ident: e_1_2_7_72_2 doi: 10.1002/lite.201200230 – ident: e_1_2_7_47_1 – volume-title: Polymer Processing Fundamentals year: 1998 ident: e_1_2_7_84_1 – ident: e_1_2_7_14_1 doi: 10.1515/hfsg.1983.37.4.205 – ident: e_1_2_7_8_1 – ident: e_1_2_7_16_1 – ident: e_1_2_7_93_1 doi: 10.1016/j.polymdegradstab.2004.12.001 – volume-title: Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters year: 2005 ident: e_1_2_7_37_1 – ident: e_1_2_7_61_2 doi: 10.3109/10242422.2012.644435 – ident: e_1_2_7_15_1 doi: 10.1016/j.tifs.2008.07.003 – ident: e_1_2_7_30_1 – ident: e_1_2_7_38_1 – ident: e_1_2_7_79_2 doi: 10.1002/047147875X – ident: e_1_2_7_70_2 doi: 10.1007/s00253-007-1057-y – ident: e_1_2_7_83_1 doi: 10.1021/acs.cgd.5b01136 – ident: e_1_2_7_90_2 doi: 10.1271/bbb1961.52.1937 – ident: e_1_2_7_43_1 – ident: e_1_2_7_62_2 doi: 10.1002/biot.201500074 – ident: e_1_2_7_28_2 doi: 10.1016/S0032-3861(02)00427-5 – ident: e_1_2_7_34_2 doi: 10.1002/app.32914 – ident: e_1_2_7_41_2 doi: 10.1016/j.polymer.2014.12.021 – ident: e_1_2_7_75_2 – ident: e_1_2_7_21_2 doi: 10.1098/rsta.2015.0073 – ident: e_1_2_7_25_2 doi: 10.1016/j.polymer.2015.05.026 – volume: 10 year: 2018 ident: e_1_2_7_92_2 publication-title: Polymer – ident: e_1_2_7_86_1 doi: 10.1002/ente.201300174 – ident: e_1_2_7_46_1 doi: 10.1002/9783527698202.ch8 – ident: e_1_2_7_48_2 doi: 10.1002/marc.201500474 – ident: e_1_2_7_71_2 doi: 10.1002/bbb.1427 – ident: e_1_2_7_27_2 doi: 10.1002/app.11138 – ident: e_1_2_7_88_1 doi: 10.1002/mren.201400070 – ident: e_1_2_7_6_2 doi: 10.1016/j.indcrop.2008.04.015 – ident: e_1_2_7_68_1 – volume-title: Monomers, Polymers and Composites from Renewable Resources year: 2011 ident: e_1_2_7_3_2 – ident: e_1_2_7_24_2 doi: 10.1039/b008188o – ident: e_1_2_7_59_1 doi: 10.1039/C5PY00686D – ident: e_1_2_7_31_2 doi: 10.1039/C5PY00824G – volume-title: Biobased Monomers, Polymers, and Materials year: 2013 ident: e_1_2_7_4_2 – ident: e_1_2_7_53_2 doi: 10.1002/cssc.201000157 – ident: e_1_2_7_57_1 doi: 10.1007/978-94-015-9231-4 – ident: e_1_2_7_54_1 doi: 10.1039/c2gc35933b – ident: e_1_2_7_80_1 doi: 10.1039/C7FD00057J – ident: e_1_2_7_91_2 doi: 10.1016/j.polymdegradstab.2007.02.008 – ident: e_1_2_7_95_1 doi: 10.1021/om100106e – ident: e_1_2_7_36_1 doi: 10.1016/j.reprotox.2007.07.010 – ident: e_1_2_7_13_2 doi: 10.1002/macp.201300702 – ident: e_1_2_7_49_2 doi: 10.1002/app.44103 – ident: e_1_2_7_44_2 doi: 10.1002/pola.25859 – ident: e_1_2_7_67_1 – ident: e_1_2_7_45_2 doi: 10.1039/C3GC42184H – ident: e_1_2_7_56_1 doi: 10.3390/ijerph13070705 – volume-title: Material Recycling: Trends and Perspectives year: 2012 ident: e_1_2_7_81_1 – ident: e_1_2_7_63_2 doi: 10.1007/s00253-015-7031-1 – ident: e_1_2_7_69_2 doi: 10.1016/j.enconman.2016.10.019 – ident: e_1_2_7_94_1 doi: 10.1002/bit.24930 – ident: e_1_2_7_1_1 – ident: e_1_2_7_89_1 – ident: e_1_2_7_2_2 doi: 10.1021/ed079p1072.1 – ident: e_1_2_7_12_2 – ident: e_1_2_7_66_2 doi: 10.1021/ma200949p – ident: e_1_2_7_52_2 doi: 10.1007/BF00365615 – ident: e_1_2_7_5_2 doi: 10.1021/ma801735u – ident: e_1_2_7_7_2 doi: 10.1039/C6PY00066E – ident: e_1_2_7_55_1 doi: 10.1002/bbb.1474 – ident: e_1_2_7_58_1 – volume-title: Natural and Synthetic Biomedical Polymers year: 2014 ident: e_1_2_7_85_1 – ident: e_1_2_7_77_1 – ident: e_1_2_7_76_1 doi: 10.1039/C5GC01771H – ident: e_1_2_7_11_2 – ident: e_1_2_7_64_1 – ident: e_1_2_7_96_1 doi: 10.1039/C7CY00168A – ident: e_1_2_7_74_2 – ident: e_1_2_7_40_2 doi: 10.1007/s10965-014-0617-y – ident: e_1_2_7_50_2 doi: 10.1021/acssuschemeng.6b00835 – ident: e_1_2_7_26_1 – ident: e_1_2_7_65_2 doi: 10.1007/s00253-018-8850-7 – ident: e_1_2_7_23_1 |
SSID | ssj0060966 |
Score | 2.4101534 |
Snippet | The utilization of wood‐derived building blocks (xylochemicals) to replace fossil‐based precursors is an attractive research subject of modern polymer science.... The utilization of wood-derived building blocks (xylochemicals) to replace fossil-based precursors is an attractive research subject of modern polymer science.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2529 |
SubjectTerms | Acids Biodegradability Biodegradation building blocks Differential scanning calorimetry Fourier transforms High performance liquid chromatography Hydrolysis Monomers NMR spectroscopy Physical properties Plastics industry Polyester resins Polyesters Polymers Reflectance renewable resources Spectrum analysis Succinic acid Terephthalic acid Thermodynamic properties Thermogravimetric analysis Thermoplastic resins xylochemicals |
Title | Towards Sustainable High‐Performance Thermoplastics: Synthesis, Characterization, and Enzymatic Hydrolysis of Bisguaiacol‐Based Polyesters |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201801059 https://www.ncbi.nlm.nih.gov/pubmed/29924915 https://www.proquest.com/docview/2086082512 https://www.proquest.com/docview/2057867080 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LbtQwFIYt1A1suF8CBRkJiU3Txpc4NjsaWo2QQBXTSt1FvqUaAUk1mVlMVzwB4hl5Eo6dSYYBISTYJbItJ_axz-_E5zNCL4KXVhkYL2HCppzXWSpz51NT5FQTBz4nC9HI796LyRl_e56f_xTF3_Mhxg9uYWTE-ToMcG26gw001HZdQBASGc54DBF8UFuA57_5MPKjBOjzGF4kBU9zwchAbczowXbxba_0m9TcVq7R9RzfQnp46H7Hycf95cLs26tfeI7_81a30c21LsWve0O6g6755i66Xg7Hwd1DX0_jBtsOTzchVzjsEvn-5dvJJvoAg93NP7eXIMoDAPoVnq4a0JjdrNvD5QiH7mM_97BuHD5qrlaRG4snKzdvIyIFtzU-nHUXSz0LWG2o4hC8rcMnkBzRDt19dHZ8dFpO0vVhDqnlJFOpyaUrFFGaWy20tZQZqpznhVFK11Ra5kAduVzXEqzGeaM9E5ITzQrOuZXsAdpp2sY_QtjmhmvLiLHaw-qSGs01E17VhlErtUhQOnRmZdek83DgxqeqZzTTKrRyNbZygl6O-S97xscfc-4OtlGtx3oHqVKEhTahCXo-JkPvhF8vuvHtMuSBmVEUIM8T9LC3qbEqEASwBiZ5gmi0jL88Q1VOp-V49_hfCj1BN8J13MeodtHOYr70T0FbLcyzOH5-AIW3H-w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagHMql_JdAASMhcWna2HEcmxtdWi3QVhW7lbhF_gtaFZJqs3vYnngCxDPyJIydTVYLQkhwTGzLjj32fOPMfIPQC6-lZQLCS1JuYsbKJBaZdbHOM6qIBZ2T-Gjkk1M-PGfvPmadN6GPhWn5IfoLN78zwnntN7i_kN5fsYaapvEchET4JI_yOrrBAG14--vNh55BigNCDwFGgrM44ynpeBsTur_efl0v_QY217FrUD5Ht5Duht36nFzszWd6z1z9wuj4X991G20toSl-3crSHXTNVXfR5qDLCHcPfRsHH9sGj1ZRV9g7ivz4-v1sFYCAQfSmX-pLwOWeA_oVHi0qgJnNpNnFg54fug3_3MWqsviwuloE6lg8XNhpHVhScF3ig0nzaa4mnlkbujgAhWvxGRQHdofmPjo_OhwPhvEyn0NsGElkrDNhc0mkYkZxZQxNNZXWsVxLqUoqTGoBINlMlQIExzqtXMoFIyrNGWNGpA_QRlVX7iHCJtNMmZRooxwYmFQrplLuZKlTaoTiEYq71SzMkuzc59z4XLQ0zbTws1z0sxyhl339y5bm4481dzrhKJbbvYFSwb2tTWiEnvfFsDr-74uqXD33deBw5Dkg9Ahtt0LVdwWYAMxgkkWIBtH4yxiKwWg06J8e_UujZ2hzOD45Lo7fnr5_jG7698GtUe6gjdl07p4A1Jrpp2Ez_QRyLyQL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSNAL70KggJGQuDRt_Ihjc6Ohq-VVrdhW6i3yK2hVSFab3cP2xC9A_EZ-CbazybIghATHxLbs2DOez87MNwA881ZaJE54EWE6prRMYp4aG6ssxRIZZ3MSH438_pgNT-mbs_Tspyj-lh-iv3DzmhH2a6_gU1MerElDddN4CkLEfY5HcRlcoczBCQ-LPvQEUswB9BBfxBmNU0ZQR9uY4IPN9ptm6TesuQldg-0Z3ACyG3XrcnK-v5irfX3xC6Hj_3zWTXB9BUzhy1aSboFLtroNruVdPrg74OtJ8LBt4HgdcwW9m8j3L99G6_AD6ARv9rmeOlTuGaBfwPGyciCzmTR7MO_Zodvgzz0oKwOPqotlII6Fw6WZ1YEjBdYlPJw0Hxdy4nm1XReHztwaOHLFgduhuQtOB0cn-TBeZXOINUWJiFXKTSaQkFRLJrXGRGFhLM2UELLEXBPj4JFJZcmd2BirpCWMUyRJRinVnOyAraqu7H0Adaqo1AQpLa07XmIlqSTMilIRrLlkEYi7xSz0iurcZ9z4VLQkzbjws1z0sxyB5339aUvy8ceau51sFCtlb1wpZ_6kjXAEnvbFbnX8vxdZ2Xrh67itkWUOn0fgXitTfVcOEbhDMEojgINk_GUMRT4e5_3Tg39p9ARcHb0aFO9eH799CLb96-DTKHbB1ny2sI8czpqrx0GVfgDxlyK6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Sustainable+High%E2%80%90Performance+Thermoplastics%3A+Synthesis%2C+Characterization%2C+and+Enzymatic+Hydrolysis+of+Bisguaiacol%E2%80%90Based+Polyesters&rft.jtitle=ChemSusChem&rft.au=Curia%2C+Silvio&rft.au=Biundo%2C+Antonino&rft.au=Fischer%2C+Isabel&rft.au=Braunschmid%2C+Verena&rft.date=2018-08-09&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=11&rft.issue=15&rft.spage=2529&rft.epage=2539&rft_id=info:doi/10.1002%2Fcssc.201801059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cssc_201801059 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |