Functionalized Graphene Quantum Dot Modification of Yolk–Shell NiO Microspheres for Superior Lithium Storage

Yolk–shell NiO microspheres are modified by two types of functionalized graphene quantum dots (denoted as NiO/GQDs) via a facile solvothermal treatment. The modification of GQDs on the surface of NiO greatly boosts the stability of the NiO/GQD electrode during long‐term cycling. Specifically, the Ni...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 22; pp. e1800589 - n/a
Main Authors Yin, Xiaojie, Chen, Hengqiao, Zhi, Chuanwei, Sun, Weiwei, Lv, Li‐Ping, Wang, Yong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Yolk–shell NiO microspheres are modified by two types of functionalized graphene quantum dots (denoted as NiO/GQDs) via a facile solvothermal treatment. The modification of GQDs on the surface of NiO greatly boosts the stability of the NiO/GQD electrode during long‐term cycling. Specifically, the NiO with carboxyl‐functionalized GQDs (NiO/GQDsCOOH) exhibits better performances than NiO with amino‐functionalized GQDs (NiO/GQDsNH2). It delivers a capacity of ≈1081 mAh g−1 (NiO contribution: ≈1182 mAh g−1) after 250 cycles at 0.1 A g−1. In comparison, NiO/GQDsNH2 electrode holds ≈834 mAh g−1 of capacity, while the bald NiO exhibits an obvious decline in capacity with ≈396 mAh g−1 retained after cycling. Except for the yolk–shell and mesoporous merits, the superior performances of the NiO/GQD electrode are mainly ascribed to the assistance of GQDs. The GQD modification can support as a buffer alleviating the volume change, improve the electronic conductivity, and act as a reservoir for electrolytes to facilitate the transportation of Li+. Moreover, the enrichment of carboxyl/amino groups on GQDs can further donate more active sites for the diffusion of Li+ and facilitate the electrochemical redox kinetics of the electrode, thus together leading to the superior lithium storage performance. Metal–organic frameworks–derived yolk–shell NiO microspheres are modified by two types of functionalized graphene quantum dots (NiO/GQDs) via a facile solvothermal treatment. The modification of GQDs on the surface of NiO greatly boosts the stability of the NiO/GQD electrode with a superior lithium storage performance during long‐term cycling.
AbstractList Yolk-shell NiO microspheres are modified by two types of functionalized graphene quantum dots (denoted as NiO/GQDs) via a facile solvothermal treatment. The modification of GQDs on the surface of NiO greatly boosts the stability of the NiO/GQD electrode during long-term cycling. Specifically, the NiO with carboxyl-functionalized GQDs (NiO/GQDsCOOH) exhibits better performances than NiO with amino-functionalized GQDs (NiO/GQDsNH ). It delivers a capacity of ≈1081 mAh g (NiO contribution: ≈1182 mAh g ) after 250 cycles at 0.1 A g . In comparison, NiO/GQDsNH electrode holds ≈834 mAh g of capacity, while the bald NiO exhibits an obvious decline in capacity with ≈396 mAh g retained after cycling. Except for the yolk-shell and mesoporous merits, the superior performances of the NiO/GQD electrode are mainly ascribed to the assistance of GQDs. The GQD modification can support as a buffer alleviating the volume change, improve the electronic conductivity, and act as a reservoir for electrolytes to facilitate the transportation of Li . Moreover, the enrichment of carboxyl/amino groups on GQDs can further donate more active sites for the diffusion of Li and facilitate the electrochemical redox kinetics of the electrode, thus together leading to the superior lithium storage performance.
Yolk–shell NiO microspheres are modified by two types of functionalized graphene quantum dots (denoted as NiO/GQDs) via a facile solvothermal treatment. The modification of GQDs on the surface of NiO greatly boosts the stability of the NiO/GQD electrode during long‐term cycling. Specifically, the NiO with carboxyl‐functionalized GQDs (NiO/GQDsCOOH) exhibits better performances than NiO with amino‐functionalized GQDs (NiO/GQDsNH2). It delivers a capacity of ≈1081 mAh g−1 (NiO contribution: ≈1182 mAh g−1) after 250 cycles at 0.1 A g−1. In comparison, NiO/GQDsNH2 electrode holds ≈834 mAh g−1 of capacity, while the bald NiO exhibits an obvious decline in capacity with ≈396 mAh g−1 retained after cycling. Except for the yolk–shell and mesoporous merits, the superior performances of the NiO/GQD electrode are mainly ascribed to the assistance of GQDs. The GQD modification can support as a buffer alleviating the volume change, improve the electronic conductivity, and act as a reservoir for electrolytes to facilitate the transportation of Li+. Moreover, the enrichment of carboxyl/amino groups on GQDs can further donate more active sites for the diffusion of Li+ and facilitate the electrochemical redox kinetics of the electrode, thus together leading to the superior lithium storage performance. Metal–organic frameworks–derived yolk–shell NiO microspheres are modified by two types of functionalized graphene quantum dots (NiO/GQDs) via a facile solvothermal treatment. The modification of GQDs on the surface of NiO greatly boosts the stability of the NiO/GQD electrode with a superior lithium storage performance during long‐term cycling.
Yolk-shell NiO microspheres are modified by two types of functionalized graphene quantum dots (denoted as NiO/GQDs) via a facile solvothermal treatment. The modification of GQDs on the surface of NiO greatly boosts the stability of the NiO/GQD electrode during long-term cycling. Specifically, the NiO with carboxyl-functionalized GQDs (NiO/GQDsCOOH) exhibits better performances than NiO with amino-functionalized GQDs (NiO/GQDsNH2 ). It delivers a capacity of ≈1081 mAh g-1 (NiO contribution: ≈1182 mAh g-1 ) after 250 cycles at 0.1 A g-1 . In comparison, NiO/GQDsNH2 electrode holds ≈834 mAh g-1 of capacity, while the bald NiO exhibits an obvious decline in capacity with ≈396 mAh g-1 retained after cycling. Except for the yolk-shell and mesoporous merits, the superior performances of the NiO/GQD electrode are mainly ascribed to the assistance of GQDs. The GQD modification can support as a buffer alleviating the volume change, improve the electronic conductivity, and act as a reservoir for electrolytes to facilitate the transportation of Li+ . Moreover, the enrichment of carboxyl/amino groups on GQDs can further donate more active sites for the diffusion of Li+ and facilitate the electrochemical redox kinetics of the electrode, thus together leading to the superior lithium storage performance.Yolk-shell NiO microspheres are modified by two types of functionalized graphene quantum dots (denoted as NiO/GQDs) via a facile solvothermal treatment. The modification of GQDs on the surface of NiO greatly boosts the stability of the NiO/GQD electrode during long-term cycling. Specifically, the NiO with carboxyl-functionalized GQDs (NiO/GQDsCOOH) exhibits better performances than NiO with amino-functionalized GQDs (NiO/GQDsNH2 ). It delivers a capacity of ≈1081 mAh g-1 (NiO contribution: ≈1182 mAh g-1 ) after 250 cycles at 0.1 A g-1 . In comparison, NiO/GQDsNH2 electrode holds ≈834 mAh g-1 of capacity, while the bald NiO exhibits an obvious decline in capacity with ≈396 mAh g-1 retained after cycling. Except for the yolk-shell and mesoporous merits, the superior performances of the NiO/GQD electrode are mainly ascribed to the assistance of GQDs. The GQD modification can support as a buffer alleviating the volume change, improve the electronic conductivity, and act as a reservoir for electrolytes to facilitate the transportation of Li+ . Moreover, the enrichment of carboxyl/amino groups on GQDs can further donate more active sites for the diffusion of Li+ and facilitate the electrochemical redox kinetics of the electrode, thus together leading to the superior lithium storage performance.
Yolk–shell NiO microspheres are modified by two types of functionalized graphene quantum dots (denoted as NiO/GQDs) via a facile solvothermal treatment. The modification of GQDs on the surface of NiO greatly boosts the stability of the NiO/GQD electrode during long‐term cycling. Specifically, the NiO with carboxyl‐functionalized GQDs (NiO/GQDsCOOH) exhibits better performances than NiO with amino‐functionalized GQDs (NiO/GQDsNH 2 ). It delivers a capacity of ≈1081 mAh g −1 (NiO contribution: ≈1182 mAh g −1 ) after 250 cycles at 0.1 A g −1 . In comparison, NiO/GQDsNH 2 electrode holds ≈834 mAh g −1 of capacity, while the bald NiO exhibits an obvious decline in capacity with ≈396 mAh g −1 retained after cycling. Except for the yolk–shell and mesoporous merits, the superior performances of the NiO/GQD electrode are mainly ascribed to the assistance of GQDs. The GQD modification can support as a buffer alleviating the volume change, improve the electronic conductivity, and act as a reservoir for electrolytes to facilitate the transportation of Li + . Moreover, the enrichment of carboxyl/amino groups on GQDs can further donate more active sites for the diffusion of Li + and facilitate the electrochemical redox kinetics of the electrode, thus together leading to the superior lithium storage performance.
Yolk–shell NiO microspheres are modified by two types of functionalized graphene quantum dots (denoted as NiO/GQDs) via a facile solvothermal treatment. The modification of GQDs on the surface of NiO greatly boosts the stability of the NiO/GQD electrode during long‐term cycling. Specifically, the NiO with carboxyl‐functionalized GQDs (NiO/GQDsCOOH) exhibits better performances than NiO with amino‐functionalized GQDs (NiO/GQDsNH2). It delivers a capacity of ≈1081 mAh g−1 (NiO contribution: ≈1182 mAh g−1) after 250 cycles at 0.1 A g−1. In comparison, NiO/GQDsNH2 electrode holds ≈834 mAh g−1 of capacity, while the bald NiO exhibits an obvious decline in capacity with ≈396 mAh g−1 retained after cycling. Except for the yolk–shell and mesoporous merits, the superior performances of the NiO/GQD electrode are mainly ascribed to the assistance of GQDs. The GQD modification can support as a buffer alleviating the volume change, improve the electronic conductivity, and act as a reservoir for electrolytes to facilitate the transportation of Li+. Moreover, the enrichment of carboxyl/amino groups on GQDs can further donate more active sites for the diffusion of Li+ and facilitate the electrochemical redox kinetics of the electrode, thus together leading to the superior lithium storage performance.
Author Chen, Hengqiao
Lv, Li‐Ping
Zhi, Chuanwei
Yin, Xiaojie
Wang, Yong
Sun, Weiwei
Author_xml – sequence: 1
  givenname: Xiaojie
  surname: Yin
  fullname: Yin, Xiaojie
  organization: Shanghai University
– sequence: 2
  givenname: Hengqiao
  surname: Chen
  fullname: Chen, Hengqiao
  organization: Shanghai University
– sequence: 3
  givenname: Chuanwei
  surname: Zhi
  fullname: Zhi, Chuanwei
  organization: Shanghai University
– sequence: 4
  givenname: Weiwei
  surname: Sun
  fullname: Sun, Weiwei
  organization: Shanghai University
– sequence: 5
  givenname: Li‐Ping
  surname: Lv
  fullname: Lv, Li‐Ping
  email: liping_lv@shu.edu.cn
  organization: Shanghai University
– sequence: 6
  givenname: Yong
  orcidid: 0000-0003-3489-7672
  surname: Wang
  fullname: Wang, Yong
  email: yongwang@shu.edu.cn
  organization: Shanghai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29687604$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUha2qqH902yWyxIbNDLbjieMlKrQgZaiqgQUry7FvGLdOPLUTobLiHXhDngSHaYtUqerKd_F9R9Y5h2i3Dz0gdELJnBLC3qbO-zkjtCJkUckddEBLWszKisndh5uSfXSY0hUhBWVc7KF9JstKlIQfoP5s7M3gQq-9-wkWn0e9WUMP-HLU_TB2-H0Y8DJY1zqjJw6HFn8L_vrPr9-rNXiPP7sLvHQmhpTFCAm3IeLVuIHo8lG7Ye1yzGoIUX-Hl-hFq32C47v3CH09-_Dl9OOsvjj_dPqunhlOiZzp0uoCmCWWNG1hW91IBqUUtBG6Ig1YW3DGabngXFBirODcCGGZKME0lMviCL3Z5m5iuBkhDapzyeTv6h7CmBTLVRBWcbnI6OtH6FUYY-5jorgo5CKDmXp1R41NB1Ztout0vFX3TWaAb4GpiRShVcYN_xobonZeUaKmwdQ0mHoYLGvzR9p98pOC3Ao_nIfbZ2i1Wtb1f_cvlTaqPw
CitedBy_id crossref_primary_10_1039_C9QM00328B
crossref_primary_10_1002_adfm_202101199
crossref_primary_10_1063_5_0049183
crossref_primary_10_1016_j_nanoen_2019_104373
crossref_primary_10_1039_D0TA07674K
crossref_primary_10_1016_j_apsusc_2023_157124
crossref_primary_10_1016_j_jallcom_2022_165693
crossref_primary_10_1016_j_est_2024_112111
crossref_primary_10_1039_D3TA07253C
crossref_primary_10_1016_j_matchemphys_2019_05_007
crossref_primary_10_1002_celc_202000747
crossref_primary_10_3389_fchem_2018_00654
crossref_primary_10_1126_sciadv_add6596
crossref_primary_10_1021_acs_inorgchem_4c04811
crossref_primary_10_1016_j_electacta_2019_134625
crossref_primary_10_1016_j_partic_2023_03_007
crossref_primary_10_1021_acsanm_8b01398
crossref_primary_10_1007_s11581_020_03610_9
crossref_primary_10_1002_smll_201803043
crossref_primary_10_1039_C9TA05632G
crossref_primary_10_1016_j_jallcom_2018_12_373
crossref_primary_10_1002_smll_202204121
crossref_primary_10_1016_j_cej_2019_05_038
crossref_primary_10_3390_ma15227888
crossref_primary_10_1016_j_jallcom_2019_05_357
crossref_primary_10_1016_j_ccr_2020_213434
crossref_primary_10_1016_j_compositesb_2021_109083
crossref_primary_10_1039_C8NR09893J
crossref_primary_10_1016_j_apsusc_2019_144525
crossref_primary_10_1039_C9TA04235K
crossref_primary_10_1016_j_fuel_2018_12_030
crossref_primary_10_3389_fchem_2019_00521
crossref_primary_10_1016_j_diamond_2022_108979
crossref_primary_10_1016_j_ensm_2019_11_006
crossref_primary_10_1016_j_ceramint_2024_09_142
crossref_primary_10_1039_C8NR08611G
crossref_primary_10_1002_aenm_201803690
crossref_primary_10_1002_cnma_202300242
crossref_primary_10_1149_2_1251915jes
crossref_primary_10_1002_aenm_202001275
crossref_primary_10_1016_j_jcis_2023_11_098
crossref_primary_10_1016_j_surfin_2025_105965
crossref_primary_10_1007_s10008_019_04281_x
crossref_primary_10_1016_j_cej_2019_05_100
crossref_primary_10_1021_acsnano_0c10624
crossref_primary_10_1002_cssc_202100837
crossref_primary_10_1039_D1TA06747H
crossref_primary_10_1016_j_jcis_2023_03_132
crossref_primary_10_1021_acscentsci_0c01306
crossref_primary_10_1039_C9NJ02626F
crossref_primary_10_1039_D4DT01162G
crossref_primary_10_3390_pr12071422
crossref_primary_10_1002_eem2_12167
crossref_primary_10_1039_D3NR05334B
crossref_primary_10_1002_smll_201900069
crossref_primary_10_1039_C8CC08968J
crossref_primary_10_1016_j_flatc_2023_100516
crossref_primary_10_1016_j_apmt_2022_101452
crossref_primary_10_1002_smll_201801479
crossref_primary_10_1016_j_colsurfa_2024_135931
crossref_primary_10_1016_j_jallcom_2019_151854
crossref_primary_10_1016_j_fuproc_2020_106714
crossref_primary_10_1016_j_jcis_2023_07_111
crossref_primary_10_1016_j_ensm_2022_08_003
crossref_primary_10_1016_j_mtener_2020_100478
crossref_primary_10_1016_j_cej_2019_123111
crossref_primary_10_1016_j_mtener_2021_100734
crossref_primary_10_3390_molecules28031098
crossref_primary_10_1002_smll_201804158
crossref_primary_10_1039_C8TA11982A
crossref_primary_10_1016_j_ensm_2021_01_020
crossref_primary_10_1002_smll_201900015
crossref_primary_10_1002_smll_201901343
crossref_primary_10_1007_s11082_023_05427_y
crossref_primary_10_1016_j_micromeso_2022_111719
crossref_primary_10_1016_j_apsusc_2018_08_247
crossref_primary_10_1016_j_jallcom_2020_155888
crossref_primary_10_1039_D2TA05746H
crossref_primary_10_1002_celc_202300573
crossref_primary_10_1007_s10854_024_12560_1
crossref_primary_10_1039_D0QM00598C
crossref_primary_10_1016_j_colsurfa_2022_130459
crossref_primary_10_1016_j_jpowsour_2019_227026
crossref_primary_10_1007_s10853_019_03939_1
crossref_primary_10_1016_j_electacta_2020_136138
crossref_primary_10_1016_j_jallcom_2020_157264
Cites_doi 10.1021/acsnano.5b05610
10.1039/C7TA02789C
10.1016/j.electacta.2016.03.034
10.1002/aenm.201602733
10.1021/am404232x
10.1039/C7TA02956J
10.1039/C4CC03807J
10.1039/C6RA15257K
10.1016/j.cej.2016.08.132
10.1002/smll.201700521
10.1021/acsnano.7b01152
10.1021/ja3091438
10.1002/adma.201604898
10.1021/ja206030c
10.1021/acssuschemeng.5b00771
10.1016/j.nanoen.2015.01.003
10.1039/C7TA05759H
10.1002/admi.201400499
10.1016/j.electacta.2016.07.094
10.1016/j.nanoen.2015.09.013
10.1002/aenm.201601424
10.1021/acsami.6b01958
10.1016/j.electacta.2016.06.163
10.1016/j.nanoen.2017.09.002
10.1038/srep37752
10.1002/adma.201200469
10.1039/C6TA09060E
10.1016/j.matlet.2013.08.058
10.1039/C4NR02999B
10.1016/j.materresbull.2016.12.005
10.1002/aenm.201601906
10.1016/j.electacta.2017.01.189
10.1016/j.jpowsour.2014.04.103
10.1021/acsnano.6b05566
10.1016/j.jallcom.2016.05.264
10.1002/adfm.201601631
10.1039/C6TA00592F
10.1088/1361-6528/aa53f3
10.1039/C6TA07936A
10.1016/j.cej.2016.09.061
10.1021/acssuschemeng.5b00556
10.1002/adma.201202146
10.1016/j.cej.2017.06.009
10.1039/C4TA04809A
10.1021/acsami.6b10143
10.1002/adma.201703614
10.1016/j.elecom.2017.09.019
10.1039/C7TA05283A
10.1039/C6TA07991A
10.1007/s10853-017-0885-0
10.1016/j.cej.2017.03.146
10.1002/advs.201500185
10.1016/j.jpowsour.2016.12.095
10.1016/j.est.2016.08.008
10.1016/j.electacta.2015.08.018
10.1002/anie.201707647
10.1016/j.cej.2017.09.070
10.1002/adfm.201504312
10.1039/C7TA07272D
10.1016/j.electacta.2017.06.039
10.1016/j.optlastec.2017.11.012
10.1021/acsami.6b05592
10.1038/ncomms6357
10.1021/nl504038s
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201800589
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 29687604
10_1002_smll_201800589
SMLL201800589
Genre article
Journal Article
GrantInformation_xml – fundername: The National Natural Science Foundation of China
  funderid: 51603119
– fundername: Shanghai Municipal Science and Technology Commission
  funderid: 15520720600; 16YF1404200; 17010500300
– fundername: Shanghai Municipal Education Commission
  funderid: ZZSD15114; QD2016027; 16CG46
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c4109-a6da3e2d0d0bf3dfab92e6971b7a80bedd342416544710cd744c77d276ecb1493
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 03:52:49 EDT 2025
Fri Jul 25 12:15:18 EDT 2025
Wed Feb 19 02:34:51 EST 2025
Tue Jul 01 02:10:35 EDT 2025
Thu Apr 24 22:56:52 EDT 2025
Wed Jan 22 16:21:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords nickel oxide
lithium storage
yolk-shell
graphene quantum dots
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4109-a6da3e2d0d0bf3dfab92e6971b7a80bedd342416544710cd744c77d276ecb1493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3489-7672
PMID 29687604
PQID 2047395028
PQPubID 1046358
PageCount 10
ParticipantIDs proquest_miscellaneous_2031028495
proquest_journals_2047395028
pubmed_primary_29687604
crossref_citationtrail_10_1002_smll_201800589
crossref_primary_10_1002_smll_201800589
wiley_primary_10_1002_smll_201800589_SMLL201800589
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-May
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-May
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2015; 2
2017; 40
2017; 84
2015; 12
2017; 7
2015; 15
2015; 18
2015; 3
2017; 28
2016; 306
2017; 87
2018; 101
2016; 685
2016; 10
2017; 29
2017; 230
2015; 9
2017; 9
2016; 4
2017; 307
2017; 308
2016; 6
2017; 52
2014; 5
2012; 134
2014; 2
2016; 3
2017; 11
2015; 178
2018; 332
2017; 13
2017; 56
2013; 111
2013; 135
2016; 198
2016; 213
2017; 342
2014; 264
2017; 321
2012; 24
2017; 245
2014; 50
2016; 26
2014; 6
2016; 8
2017; 326
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
Wang B. (e_1_2_7_37_1) 2016; 306
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 264
  start-page: 161
  year: 2014
  publication-title: J. Power Sources
– volume: 84
  start-page: 80
  year: 2017
  publication-title: Electrochem. Commun.
– volume: 3
  start-page: 1500185
  year: 2016
  publication-title: Adv. Sci.
– volume: 40
  start-page: 576
  year: 2017
  publication-title: Nano Energy
– volume: 5
  start-page: 1687
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 76344
  year: 2016
  publication-title: RSC Adv.
– volume: 230
  start-page: 98
  year: 2017
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 20022
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 13469
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 11528
  year: 2014
  publication-title: Nanoscale
– volume: 24
  start-page: 5166
  year: 2012
  publication-title: Adv. Mater.
– volume: 9
  start-page: 11462
  year: 2015
  publication-title: ACS Nano
– volume: 12
  start-page: 437
  year: 2015
  publication-title: Nano Energy
– volume: 26
  start-page: 1098
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 332
  start-page: 49
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 4783
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 52
  start-page: 6498
  year: 2017
  publication-title: J. Mater. Sci.
– volume: 135
  start-page: 1167
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 11507
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 21994
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 308
  start-page: 240
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 306
  start-page: 1193
  year: 2016
  publication-title: Chem. ‐ Eur. J.
– volume: 10
  start-page: 10211
  year: 2016
  publication-title: ACS Nano
– volume: 11
  start-page: 4198
  year: 2017
  publication-title: ACS Nano
– volume: 5
  start-page: 17777
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 1601424
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 18
  start-page: 47
  year: 2015
  publication-title: Nano Energy
– volume: 178
  start-page: 303
  year: 2015
  publication-title: Electrochim. Acta
– volume: 321
  start-page: 495
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 198
  year: 2016
  publication-title: J. Energy Storage
– volume: 5
  start-page: 14996
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 26
  start-page: 8345
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 87
  start-page: 224
  year: 2017
  publication-title: Mater. Res. Bull.
– volume: 213
  start-page: 351
  year: 2016
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 2312
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 19179
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 50
  start-page: 9485
  year: 2014
  publication-title: Chem. Commun.
– volume: 28
  start-page: 075603
  year: 2017
  publication-title: Nanotechnology
– volume: 24
  start-page: 1903
  year: 2012
  publication-title: Adv. Mater.
– volume: 342
  start-page: 495
  year: 2017
  publication-title: J. Power Sources
– volume: 8
  start-page: 19484
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 685
  start-page: 8
  year: 2016
  publication-title: J. Alloys Compd.
– volume: 198
  start-page: 144
  year: 2016
  publication-title: Electrochim. Acta
– volume: 245
  start-page: 941
  year: 2017
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 5357
  year: 2014
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1604898
  year: 2017
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1703614
  year: 2017
  publication-title: Adv. Mater.
– volume: 56
  start-page: 12649
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 213
  start-page: 75
  year: 2016
  publication-title: Electrochim. Acta
– volume: 326
  start-page: 680
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 307
  start-page: 583
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: 311
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 101
  start-page: 91
  year: 2018
  publication-title: Opt. Laser Technol.
– volume: 15
  start-page: 565
  year: 2015
  publication-title: Nano Lett.
– volume: 13
  start-page: 1700521
  year: 2017
  publication-title: Small
– volume: 111
  start-page: 1
  year: 2013
  publication-title: Mater. Lett.
– volume: 134
  start-page: 15
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1400499
  year: 2015
  publication-title: Adv. Mater. Interfaces
– volume: 5
  start-page: 19521
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 37752
  year: 2016
  publication-title: Sci. Rep.
– volume: 7
  start-page: 1601906
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 874
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 1602733
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 1830
  year: 2015
  publication-title: ACS Sustainable Chem. Eng.
– volume: 3
  start-page: 2405
  year: 2015
  publication-title: ACS Sustainable Chem. Eng.
– ident: e_1_2_7_27_1
  doi: 10.1021/acsnano.5b05610
– ident: e_1_2_7_10_1
  doi: 10.1039/C7TA02789C
– ident: e_1_2_7_51_1
  doi: 10.1016/j.electacta.2016.03.034
– ident: e_1_2_7_2_1
  doi: 10.1002/aenm.201602733
– ident: e_1_2_7_28_1
  doi: 10.1021/am404232x
– ident: e_1_2_7_8_1
  doi: 10.1039/C7TA02956J
– ident: e_1_2_7_29_1
  doi: 10.1039/C4CC03807J
– ident: e_1_2_7_54_1
  doi: 10.1039/C6RA15257K
– ident: e_1_2_7_13_1
  doi: 10.1016/j.cej.2016.08.132
– ident: e_1_2_7_31_1
  doi: 10.1002/smll.201700521
– ident: e_1_2_7_36_1
  doi: 10.1021/acsnano.7b01152
– ident: e_1_2_7_4_1
  doi: 10.1021/ja3091438
– ident: e_1_2_7_30_1
  doi: 10.1002/adma.201604898
– ident: e_1_2_7_47_1
  doi: 10.1021/ja206030c
– ident: e_1_2_7_48_1
  doi: 10.1021/acssuschemeng.5b00771
– ident: e_1_2_7_9_1
  doi: 10.1016/j.nanoen.2015.01.003
– ident: e_1_2_7_44_1
  doi: 10.1039/C7TA05759H
– ident: e_1_2_7_50_1
  doi: 10.1002/admi.201400499
– ident: e_1_2_7_40_1
  doi: 10.1016/j.electacta.2016.07.094
– ident: e_1_2_7_19_1
  doi: 10.1016/j.nanoen.2015.09.013
– ident: e_1_2_7_1_1
  doi: 10.1002/aenm.201601424
– ident: e_1_2_7_43_1
  doi: 10.1021/acsami.6b01958
– ident: e_1_2_7_15_1
  doi: 10.1016/j.electacta.2016.06.163
– ident: e_1_2_7_55_1
  doi: 10.1016/j.nanoen.2017.09.002
– ident: e_1_2_7_39_1
  doi: 10.1038/srep37752
– ident: e_1_2_7_57_1
  doi: 10.1002/adma.201200469
– ident: e_1_2_7_32_1
  doi: 10.1039/C6TA09060E
– ident: e_1_2_7_18_1
  doi: 10.1016/j.matlet.2013.08.058
– ident: e_1_2_7_45_1
  doi: 10.1039/C4NR02999B
– ident: e_1_2_7_26_1
  doi: 10.1016/j.materresbull.2016.12.005
– ident: e_1_2_7_7_1
  doi: 10.1002/aenm.201601906
– ident: e_1_2_7_14_1
  doi: 10.1016/j.electacta.2017.01.189
– ident: e_1_2_7_21_1
  doi: 10.1016/j.jpowsour.2014.04.103
– ident: e_1_2_7_63_1
  doi: 10.1021/acsnano.6b05566
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jallcom.2016.05.264
– ident: e_1_2_7_5_1
  doi: 10.1002/adfm.201601631
– ident: e_1_2_7_53_1
  doi: 10.1039/C6TA00592F
– ident: e_1_2_7_22_1
  doi: 10.1088/1361-6528/aa53f3
– ident: e_1_2_7_41_1
  doi: 10.1039/C6TA07936A
– ident: e_1_2_7_12_1
  doi: 10.1016/j.cej.2016.09.061
– ident: e_1_2_7_24_1
  doi: 10.1021/acssuschemeng.5b00556
– ident: e_1_2_7_61_1
  doi: 10.1002/adma.201202146
– ident: e_1_2_7_64_1
  doi: 10.1016/j.cej.2017.06.009
– ident: e_1_2_7_17_1
  doi: 10.1039/C4TA04809A
– ident: e_1_2_7_62_1
  doi: 10.1021/acsami.6b10143
– ident: e_1_2_7_33_1
  doi: 10.1002/adma.201703614
– ident: e_1_2_7_58_1
  doi: 10.1016/j.elecom.2017.09.019
– ident: e_1_2_7_6_1
  doi: 10.1039/C7TA05283A
– ident: e_1_2_7_3_1
  doi: 10.1039/C6TA07991A
– ident: e_1_2_7_23_1
  doi: 10.1007/s10853-017-0885-0
– ident: e_1_2_7_38_1
  doi: 10.1016/j.cej.2017.03.146
– ident: e_1_2_7_34_1
  doi: 10.1002/advs.201500185
– ident: e_1_2_7_11_1
  doi: 10.1016/j.jpowsour.2016.12.095
– ident: e_1_2_7_42_1
  doi: 10.1016/j.est.2016.08.008
– ident: e_1_2_7_52_1
  doi: 10.1016/j.electacta.2015.08.018
– ident: e_1_2_7_59_1
  doi: 10.1002/anie.201707647
– ident: e_1_2_7_65_1
  doi: 10.1016/j.cej.2017.09.070
– ident: e_1_2_7_35_1
  doi: 10.1002/adfm.201504312
– ident: e_1_2_7_60_1
  doi: 10.1039/C7TA07272D
– ident: e_1_2_7_16_1
  doi: 10.1016/j.electacta.2017.06.039
– ident: e_1_2_7_56_1
  doi: 10.1016/j.optlastec.2017.11.012
– ident: e_1_2_7_20_1
  doi: 10.1021/acsami.6b05592
– volume: 306
  start-page: 1193
  year: 2016
  ident: e_1_2_7_37_1
  publication-title: Chem. ‐ Eur. J.
– ident: e_1_2_7_46_1
  doi: 10.1038/ncomms6357
– ident: e_1_2_7_49_1
  doi: 10.1021/nl504038s
SSID ssj0031247
Score 2.5392008
Snippet Yolk–shell NiO microspheres are modified by two types of functionalized graphene quantum dots (denoted as NiO/GQDs) via a facile solvothermal treatment. The...
Yolk-shell NiO microspheres are modified by two types of functionalized graphene quantum dots (denoted as NiO/GQDs) via a facile solvothermal treatment. The...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1800589
SubjectTerms Electrodes
Graphene
graphene quantum dots
Lithium
lithium storage
Microspheres
Nanotechnology
nickel oxide
Nickel oxides
Quantum dots
Surface stability
yolk–shell
Title Functionalized Graphene Quantum Dot Modification of Yolk–Shell NiO Microspheres for Superior Lithium Storage
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201800589
https://www.ncbi.nlm.nih.gov/pubmed/29687604
https://www.proquest.com/docview/2047395028
https://www.proquest.com/docview/2031028495
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5VPdEDP6VAoFRGQuKUNrG9zu4RUZaq2i2CpVI5Rf6FVbcJIsmlJ96BN-RJOpPshm5RhQQ3J7YTx-OZ-WxPPgO85EJLLbyJPXq3WAa0g1oYgUAuxTmLcnbQbsVMT9TRqTw-G5xd-4u_44foF9xIM1p7TQquTXXwmzS0uljQ1kE6bE_GQyNMAVuEij72_FECnVd7ugr6rJiIt1asjQk_WK--7pX-gJrryLV1PeN7oFeN7iJOzveb2uzbyxt8jv_zVffh7hKXstfdQHoAG77Yhq1rbIUPoRijD-yWDueX3rF3xHWNppJ9aFA8zQU7LGs2LR0FH7XyZmVgn8vF-a8fP2cUb8pO5u_ZlCIAKyIz8BVDxMxmDZEtY2Iyr7_O8TGzGoflF78Dp-O3n94cxcvjGmIr02QUa-VQ6twlLjFBuKDNiHs1ylKT6WFivHNCIl5QA4kOMbEuk9JmmeOZ8tbgRE08gs2iLPwTYHjHBq6cCEKgkQnGyjDEqVBIjeZB8Qjilbhyu-QypyM1FnnHwsxz6se878cIXvXlv3UsHreW3F1JP19qc4W5kvYzEYpF8KLPRj2kzRVd-LKhMoKwGs43I3jcjZr-VXyk0OkkMgLeyv4vbchn08mkv3r6L5WewR1Kd5GZu7BZf2_8c0RPtdlrNeQKqlQTGA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BcgAOvB-BBYyExCm7ie067RGxlAJJEXRXglMUv6DaboJoctkT_4F_yC9hJmkCBSEkuCV-JI7H4_lsT74BeMRFIQvhdOjQuoXS4zxYCC0QyMW4ZlHWjNqjmGyuZkfy5btR701I_8J0_BDDhhtpRjtfk4LThvT-D9bQ9cmKzg7icRsa7yyco7DeRJ9_8HZgkBJovtr4Kmi1QqLe6nkbI76_XX_bLv0GNrexa2t8ppdB983ufE6O95pa75nTXxgd_-u7rsClDTRlT7qxdBXOuPIaXPyJsPA6lFM0g93u4fLUWfac6K5xtmRvGpRQc8IOqppllSX_o1bkrPLsfbU6_vbl64JcTtl8-Zpl5AS4Jj4Dt2YImtmiIb5lvEiX9cclPmZR48j84G7A0fTZ4dNZuInYEBoZR5OwUBYFz21kI-2F9YWecKcmSayTYhxpZ62QCBnUSKJNjIxNpDRJYnminNG4VhM3YaesSncbGKYYz5UVXgicZ7w20o9xNeRjXXCveABhL6_cbOjMKarGKu-ImHlO_ZgP_RjA46H8p47I448ld3vx5xuFXmOupCNNRGMBPByyURXpfKUoXdVQGUFwDZecAdzqhs3wKj5RaHciGQBvhf-XNuSLLE2Huzv_UukBnJ8dZmmevpi_ugsXKL1z1NyFnfpz4-4hmKr1_VZdvgPQ6Rc0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAcKK-W0AJGQuKUNrG9zuaIWJYCu8tjqdSeIju2YdVtUrHJpSf-A_-QX8JMshu6IIQEt8SPxPF4PJ_tyTcAT7jQUgtnQofWLZQe50EtjEAgF-OaRdm81xzFjCfq4FC-PuodXfiLv-WH6DbcSDOa-ZoU_Mz6_Z-koYvTOR0dxP0mMt5luCJVlFLwhsGHjkBKoPVqwqug0QqJeWtF2xjx_fX662bpN6y5Dl0b2zPcBL1qdetycrJXV2YvP_-F0PF_Pusm3FgCU_asHUm34JIrbsP1C3SFd6AYohFs9w5n586yl0R2jXMle1-jfOpTNigrNi4teR81AmelZ8fl_OT7129Tcjhlk9lbNiYXwAWxGbgFQ8jMpjWxLePFaFZ9nuFjphWOy0_uLhwOX3x8fhAu4zWEuYyjNNTKoti5jWxkvLBem5Q7lSaxSXQ_Ms5aIREwqJ5EixjlNpEyTxLLE-Vygys1sQUbRVm4e8AwJfdcWeGFwFnGm1z6Pq6FfGw094oHEK7EleVLMnOKqTHPWhpmnlE_Zl0_BvC0K3_W0nj8seTuSvrZUp0XmCvpQBOxWACPu2xURDpd0YUrayojCKzhgjOA7XbUdK_iqUKrE8kAeCP7v7Qhm45Ho-7u_r9UegRX3w2G2ejV5M0OXKPk1ktzFzaqL7V7gEiqMg8bZfkBePYV4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functionalized+Graphene+Quantum+Dot+Modification+of+Yolk-Shell+NiO+Microspheres+for+Superior+Lithium+Storage&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Yin%2C+Xiaojie&rft.au=Chen%2C+Hengqiao&rft.au=Zhi%2C+Chuanwei&rft.au=Sun%2C+Weiwei&rft.date=2018-05-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=14&rft.issue=22&rft.spage=e1800589&rft_id=info:doi/10.1002%2Fsmll.201800589&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon