Functionalized Graphene Quantum Dot Modification of Yolk–Shell NiO Microspheres for Superior Lithium Storage
Yolk–shell NiO microspheres are modified by two types of functionalized graphene quantum dots (denoted as NiO/GQDs) via a facile solvothermal treatment. The modification of GQDs on the surface of NiO greatly boosts the stability of the NiO/GQD electrode during long‐term cycling. Specifically, the Ni...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 22; pp. e1800589 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Yolk–shell NiO microspheres are modified by two types of functionalized graphene quantum dots (denoted as NiO/GQDs) via a facile solvothermal treatment. The modification of GQDs on the surface of NiO greatly boosts the stability of the NiO/GQD electrode during long‐term cycling. Specifically, the NiO with carboxyl‐functionalized GQDs (NiO/GQDsCOOH) exhibits better performances than NiO with amino‐functionalized GQDs (NiO/GQDsNH2). It delivers a capacity of ≈1081 mAh g−1 (NiO contribution: ≈1182 mAh g−1) after 250 cycles at 0.1 A g−1. In comparison, NiO/GQDsNH2 electrode holds ≈834 mAh g−1 of capacity, while the bald NiO exhibits an obvious decline in capacity with ≈396 mAh g−1 retained after cycling. Except for the yolk–shell and mesoporous merits, the superior performances of the NiO/GQD electrode are mainly ascribed to the assistance of GQDs. The GQD modification can support as a buffer alleviating the volume change, improve the electronic conductivity, and act as a reservoir for electrolytes to facilitate the transportation of Li+. Moreover, the enrichment of carboxyl/amino groups on GQDs can further donate more active sites for the diffusion of Li+ and facilitate the electrochemical redox kinetics of the electrode, thus together leading to the superior lithium storage performance.
Metal–organic frameworks–derived yolk–shell NiO microspheres are modified by two types of functionalized graphene quantum dots (NiO/GQDs) via a facile solvothermal treatment. The modification of GQDs on the surface of NiO greatly boosts the stability of the NiO/GQD electrode with a superior lithium storage performance during long‐term cycling. |
---|---|
AbstractList | Yolk-shell NiO microspheres are modified by two types of functionalized graphene quantum dots (denoted as NiO/GQDs) via a facile solvothermal treatment. The modification of GQDs on the surface of NiO greatly boosts the stability of the NiO/GQD electrode during long-term cycling. Specifically, the NiO with carboxyl-functionalized GQDs (NiO/GQDsCOOH) exhibits better performances than NiO with amino-functionalized GQDs (NiO/GQDsNH
). It delivers a capacity of ≈1081 mAh g
(NiO contribution: ≈1182 mAh g
) after 250 cycles at 0.1 A g
. In comparison, NiO/GQDsNH
electrode holds ≈834 mAh g
of capacity, while the bald NiO exhibits an obvious decline in capacity with ≈396 mAh g
retained after cycling. Except for the yolk-shell and mesoporous merits, the superior performances of the NiO/GQD electrode are mainly ascribed to the assistance of GQDs. The GQD modification can support as a buffer alleviating the volume change, improve the electronic conductivity, and act as a reservoir for electrolytes to facilitate the transportation of Li
. Moreover, the enrichment of carboxyl/amino groups on GQDs can further donate more active sites for the diffusion of Li
and facilitate the electrochemical redox kinetics of the electrode, thus together leading to the superior lithium storage performance. Yolk–shell NiO microspheres are modified by two types of functionalized graphene quantum dots (denoted as NiO/GQDs) via a facile solvothermal treatment. The modification of GQDs on the surface of NiO greatly boosts the stability of the NiO/GQD electrode during long‐term cycling. Specifically, the NiO with carboxyl‐functionalized GQDs (NiO/GQDsCOOH) exhibits better performances than NiO with amino‐functionalized GQDs (NiO/GQDsNH2). It delivers a capacity of ≈1081 mAh g−1 (NiO contribution: ≈1182 mAh g−1) after 250 cycles at 0.1 A g−1. In comparison, NiO/GQDsNH2 electrode holds ≈834 mAh g−1 of capacity, while the bald NiO exhibits an obvious decline in capacity with ≈396 mAh g−1 retained after cycling. Except for the yolk–shell and mesoporous merits, the superior performances of the NiO/GQD electrode are mainly ascribed to the assistance of GQDs. The GQD modification can support as a buffer alleviating the volume change, improve the electronic conductivity, and act as a reservoir for electrolytes to facilitate the transportation of Li+. Moreover, the enrichment of carboxyl/amino groups on GQDs can further donate more active sites for the diffusion of Li+ and facilitate the electrochemical redox kinetics of the electrode, thus together leading to the superior lithium storage performance. Metal–organic frameworks–derived yolk–shell NiO microspheres are modified by two types of functionalized graphene quantum dots (NiO/GQDs) via a facile solvothermal treatment. The modification of GQDs on the surface of NiO greatly boosts the stability of the NiO/GQD electrode with a superior lithium storage performance during long‐term cycling. Yolk-shell NiO microspheres are modified by two types of functionalized graphene quantum dots (denoted as NiO/GQDs) via a facile solvothermal treatment. The modification of GQDs on the surface of NiO greatly boosts the stability of the NiO/GQD electrode during long-term cycling. Specifically, the NiO with carboxyl-functionalized GQDs (NiO/GQDsCOOH) exhibits better performances than NiO with amino-functionalized GQDs (NiO/GQDsNH2 ). It delivers a capacity of ≈1081 mAh g-1 (NiO contribution: ≈1182 mAh g-1 ) after 250 cycles at 0.1 A g-1 . In comparison, NiO/GQDsNH2 electrode holds ≈834 mAh g-1 of capacity, while the bald NiO exhibits an obvious decline in capacity with ≈396 mAh g-1 retained after cycling. Except for the yolk-shell and mesoporous merits, the superior performances of the NiO/GQD electrode are mainly ascribed to the assistance of GQDs. The GQD modification can support as a buffer alleviating the volume change, improve the electronic conductivity, and act as a reservoir for electrolytes to facilitate the transportation of Li+ . Moreover, the enrichment of carboxyl/amino groups on GQDs can further donate more active sites for the diffusion of Li+ and facilitate the electrochemical redox kinetics of the electrode, thus together leading to the superior lithium storage performance.Yolk-shell NiO microspheres are modified by two types of functionalized graphene quantum dots (denoted as NiO/GQDs) via a facile solvothermal treatment. The modification of GQDs on the surface of NiO greatly boosts the stability of the NiO/GQD electrode during long-term cycling. Specifically, the NiO with carboxyl-functionalized GQDs (NiO/GQDsCOOH) exhibits better performances than NiO with amino-functionalized GQDs (NiO/GQDsNH2 ). It delivers a capacity of ≈1081 mAh g-1 (NiO contribution: ≈1182 mAh g-1 ) after 250 cycles at 0.1 A g-1 . In comparison, NiO/GQDsNH2 electrode holds ≈834 mAh g-1 of capacity, while the bald NiO exhibits an obvious decline in capacity with ≈396 mAh g-1 retained after cycling. Except for the yolk-shell and mesoporous merits, the superior performances of the NiO/GQD electrode are mainly ascribed to the assistance of GQDs. The GQD modification can support as a buffer alleviating the volume change, improve the electronic conductivity, and act as a reservoir for electrolytes to facilitate the transportation of Li+ . Moreover, the enrichment of carboxyl/amino groups on GQDs can further donate more active sites for the diffusion of Li+ and facilitate the electrochemical redox kinetics of the electrode, thus together leading to the superior lithium storage performance. Yolk–shell NiO microspheres are modified by two types of functionalized graphene quantum dots (denoted as NiO/GQDs) via a facile solvothermal treatment. The modification of GQDs on the surface of NiO greatly boosts the stability of the NiO/GQD electrode during long‐term cycling. Specifically, the NiO with carboxyl‐functionalized GQDs (NiO/GQDsCOOH) exhibits better performances than NiO with amino‐functionalized GQDs (NiO/GQDsNH 2 ). It delivers a capacity of ≈1081 mAh g −1 (NiO contribution: ≈1182 mAh g −1 ) after 250 cycles at 0.1 A g −1 . In comparison, NiO/GQDsNH 2 electrode holds ≈834 mAh g −1 of capacity, while the bald NiO exhibits an obvious decline in capacity with ≈396 mAh g −1 retained after cycling. Except for the yolk–shell and mesoporous merits, the superior performances of the NiO/GQD electrode are mainly ascribed to the assistance of GQDs. The GQD modification can support as a buffer alleviating the volume change, improve the electronic conductivity, and act as a reservoir for electrolytes to facilitate the transportation of Li + . Moreover, the enrichment of carboxyl/amino groups on GQDs can further donate more active sites for the diffusion of Li + and facilitate the electrochemical redox kinetics of the electrode, thus together leading to the superior lithium storage performance. Yolk–shell NiO microspheres are modified by two types of functionalized graphene quantum dots (denoted as NiO/GQDs) via a facile solvothermal treatment. The modification of GQDs on the surface of NiO greatly boosts the stability of the NiO/GQD electrode during long‐term cycling. Specifically, the NiO with carboxyl‐functionalized GQDs (NiO/GQDsCOOH) exhibits better performances than NiO with amino‐functionalized GQDs (NiO/GQDsNH2). It delivers a capacity of ≈1081 mAh g−1 (NiO contribution: ≈1182 mAh g−1) after 250 cycles at 0.1 A g−1. In comparison, NiO/GQDsNH2 electrode holds ≈834 mAh g−1 of capacity, while the bald NiO exhibits an obvious decline in capacity with ≈396 mAh g−1 retained after cycling. Except for the yolk–shell and mesoporous merits, the superior performances of the NiO/GQD electrode are mainly ascribed to the assistance of GQDs. The GQD modification can support as a buffer alleviating the volume change, improve the electronic conductivity, and act as a reservoir for electrolytes to facilitate the transportation of Li+. Moreover, the enrichment of carboxyl/amino groups on GQDs can further donate more active sites for the diffusion of Li+ and facilitate the electrochemical redox kinetics of the electrode, thus together leading to the superior lithium storage performance. |
Author | Chen, Hengqiao Lv, Li‐Ping Zhi, Chuanwei Yin, Xiaojie Wang, Yong Sun, Weiwei |
Author_xml | – sequence: 1 givenname: Xiaojie surname: Yin fullname: Yin, Xiaojie organization: Shanghai University – sequence: 2 givenname: Hengqiao surname: Chen fullname: Chen, Hengqiao organization: Shanghai University – sequence: 3 givenname: Chuanwei surname: Zhi fullname: Zhi, Chuanwei organization: Shanghai University – sequence: 4 givenname: Weiwei surname: Sun fullname: Sun, Weiwei organization: Shanghai University – sequence: 5 givenname: Li‐Ping surname: Lv fullname: Lv, Li‐Ping email: liping_lv@shu.edu.cn organization: Shanghai University – sequence: 6 givenname: Yong orcidid: 0000-0003-3489-7672 surname: Wang fullname: Wang, Yong email: yongwang@shu.edu.cn organization: Shanghai University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29687604$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUha2qqH902yWyxIbNDLbjieMlKrQgZaiqgQUry7FvGLdOPLUTobLiHXhDngSHaYtUqerKd_F9R9Y5h2i3Dz0gdELJnBLC3qbO-zkjtCJkUckddEBLWszKisndh5uSfXSY0hUhBWVc7KF9JstKlIQfoP5s7M3gQq-9-wkWn0e9WUMP-HLU_TB2-H0Y8DJY1zqjJw6HFn8L_vrPr9-rNXiPP7sLvHQmhpTFCAm3IeLVuIHo8lG7Ye1yzGoIUX-Hl-hFq32C47v3CH09-_Dl9OOsvjj_dPqunhlOiZzp0uoCmCWWNG1hW91IBqUUtBG6Ig1YW3DGabngXFBirODcCGGZKME0lMviCL3Z5m5iuBkhDapzyeTv6h7CmBTLVRBWcbnI6OtH6FUYY-5jorgo5CKDmXp1R41NB1Ztout0vFX3TWaAb4GpiRShVcYN_xobonZeUaKmwdQ0mHoYLGvzR9p98pOC3Ao_nIfbZ2i1Wtb1f_cvlTaqPw |
CitedBy_id | crossref_primary_10_1039_C9QM00328B crossref_primary_10_1002_adfm_202101199 crossref_primary_10_1063_5_0049183 crossref_primary_10_1016_j_nanoen_2019_104373 crossref_primary_10_1039_D0TA07674K crossref_primary_10_1016_j_apsusc_2023_157124 crossref_primary_10_1016_j_jallcom_2022_165693 crossref_primary_10_1016_j_est_2024_112111 crossref_primary_10_1039_D3TA07253C crossref_primary_10_1016_j_matchemphys_2019_05_007 crossref_primary_10_1002_celc_202000747 crossref_primary_10_3389_fchem_2018_00654 crossref_primary_10_1126_sciadv_add6596 crossref_primary_10_1021_acs_inorgchem_4c04811 crossref_primary_10_1016_j_electacta_2019_134625 crossref_primary_10_1016_j_partic_2023_03_007 crossref_primary_10_1021_acsanm_8b01398 crossref_primary_10_1007_s11581_020_03610_9 crossref_primary_10_1002_smll_201803043 crossref_primary_10_1039_C9TA05632G crossref_primary_10_1016_j_jallcom_2018_12_373 crossref_primary_10_1002_smll_202204121 crossref_primary_10_1016_j_cej_2019_05_038 crossref_primary_10_3390_ma15227888 crossref_primary_10_1016_j_jallcom_2019_05_357 crossref_primary_10_1016_j_ccr_2020_213434 crossref_primary_10_1016_j_compositesb_2021_109083 crossref_primary_10_1039_C8NR09893J crossref_primary_10_1016_j_apsusc_2019_144525 crossref_primary_10_1039_C9TA04235K crossref_primary_10_1016_j_fuel_2018_12_030 crossref_primary_10_3389_fchem_2019_00521 crossref_primary_10_1016_j_diamond_2022_108979 crossref_primary_10_1016_j_ensm_2019_11_006 crossref_primary_10_1016_j_ceramint_2024_09_142 crossref_primary_10_1039_C8NR08611G crossref_primary_10_1002_aenm_201803690 crossref_primary_10_1002_cnma_202300242 crossref_primary_10_1149_2_1251915jes crossref_primary_10_1002_aenm_202001275 crossref_primary_10_1016_j_jcis_2023_11_098 crossref_primary_10_1016_j_surfin_2025_105965 crossref_primary_10_1007_s10008_019_04281_x crossref_primary_10_1016_j_cej_2019_05_100 crossref_primary_10_1021_acsnano_0c10624 crossref_primary_10_1002_cssc_202100837 crossref_primary_10_1039_D1TA06747H crossref_primary_10_1016_j_jcis_2023_03_132 crossref_primary_10_1021_acscentsci_0c01306 crossref_primary_10_1039_C9NJ02626F crossref_primary_10_1039_D4DT01162G crossref_primary_10_3390_pr12071422 crossref_primary_10_1002_eem2_12167 crossref_primary_10_1039_D3NR05334B crossref_primary_10_1002_smll_201900069 crossref_primary_10_1039_C8CC08968J crossref_primary_10_1016_j_flatc_2023_100516 crossref_primary_10_1016_j_apmt_2022_101452 crossref_primary_10_1002_smll_201801479 crossref_primary_10_1016_j_colsurfa_2024_135931 crossref_primary_10_1016_j_jallcom_2019_151854 crossref_primary_10_1016_j_fuproc_2020_106714 crossref_primary_10_1016_j_jcis_2023_07_111 crossref_primary_10_1016_j_ensm_2022_08_003 crossref_primary_10_1016_j_mtener_2020_100478 crossref_primary_10_1016_j_cej_2019_123111 crossref_primary_10_1016_j_mtener_2021_100734 crossref_primary_10_3390_molecules28031098 crossref_primary_10_1002_smll_201804158 crossref_primary_10_1039_C8TA11982A crossref_primary_10_1016_j_ensm_2021_01_020 crossref_primary_10_1002_smll_201900015 crossref_primary_10_1002_smll_201901343 crossref_primary_10_1007_s11082_023_05427_y crossref_primary_10_1016_j_micromeso_2022_111719 crossref_primary_10_1016_j_apsusc_2018_08_247 crossref_primary_10_1016_j_jallcom_2020_155888 crossref_primary_10_1039_D2TA05746H crossref_primary_10_1002_celc_202300573 crossref_primary_10_1007_s10854_024_12560_1 crossref_primary_10_1039_D0QM00598C crossref_primary_10_1016_j_colsurfa_2022_130459 crossref_primary_10_1016_j_jpowsour_2019_227026 crossref_primary_10_1007_s10853_019_03939_1 crossref_primary_10_1016_j_electacta_2020_136138 crossref_primary_10_1016_j_jallcom_2020_157264 |
Cites_doi | 10.1021/acsnano.5b05610 10.1039/C7TA02789C 10.1016/j.electacta.2016.03.034 10.1002/aenm.201602733 10.1021/am404232x 10.1039/C7TA02956J 10.1039/C4CC03807J 10.1039/C6RA15257K 10.1016/j.cej.2016.08.132 10.1002/smll.201700521 10.1021/acsnano.7b01152 10.1021/ja3091438 10.1002/adma.201604898 10.1021/ja206030c 10.1021/acssuschemeng.5b00771 10.1016/j.nanoen.2015.01.003 10.1039/C7TA05759H 10.1002/admi.201400499 10.1016/j.electacta.2016.07.094 10.1016/j.nanoen.2015.09.013 10.1002/aenm.201601424 10.1021/acsami.6b01958 10.1016/j.electacta.2016.06.163 10.1016/j.nanoen.2017.09.002 10.1038/srep37752 10.1002/adma.201200469 10.1039/C6TA09060E 10.1016/j.matlet.2013.08.058 10.1039/C4NR02999B 10.1016/j.materresbull.2016.12.005 10.1002/aenm.201601906 10.1016/j.electacta.2017.01.189 10.1016/j.jpowsour.2014.04.103 10.1021/acsnano.6b05566 10.1016/j.jallcom.2016.05.264 10.1002/adfm.201601631 10.1039/C6TA00592F 10.1088/1361-6528/aa53f3 10.1039/C6TA07936A 10.1016/j.cej.2016.09.061 10.1021/acssuschemeng.5b00556 10.1002/adma.201202146 10.1016/j.cej.2017.06.009 10.1039/C4TA04809A 10.1021/acsami.6b10143 10.1002/adma.201703614 10.1016/j.elecom.2017.09.019 10.1039/C7TA05283A 10.1039/C6TA07991A 10.1007/s10853-017-0885-0 10.1016/j.cej.2017.03.146 10.1002/advs.201500185 10.1016/j.jpowsour.2016.12.095 10.1016/j.est.2016.08.008 10.1016/j.electacta.2015.08.018 10.1002/anie.201707647 10.1016/j.cej.2017.09.070 10.1002/adfm.201504312 10.1039/C7TA07272D 10.1016/j.electacta.2017.06.039 10.1016/j.optlastec.2017.11.012 10.1021/acsami.6b05592 10.1038/ncomms6357 10.1021/nl504038s |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201800589 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 29687604 10_1002_smll_201800589 SMLL201800589 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: The National Natural Science Foundation of China funderid: 51603119 – fundername: Shanghai Municipal Science and Technology Commission funderid: 15520720600; 16YF1404200; 17010500300 – fundername: Shanghai Municipal Education Commission funderid: ZZSD15114; QD2016027; 16CG46 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4109-a6da3e2d0d0bf3dfab92e6971b7a80bedd342416544710cd744c77d276ecb1493 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 03:52:49 EDT 2025 Fri Jul 25 12:15:18 EDT 2025 Wed Feb 19 02:34:51 EST 2025 Tue Jul 01 02:10:35 EDT 2025 Thu Apr 24 22:56:52 EDT 2025 Wed Jan 22 16:21:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | nickel oxide lithium storage yolk-shell graphene quantum dots |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4109-a6da3e2d0d0bf3dfab92e6971b7a80bedd342416544710cd744c77d276ecb1493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3489-7672 |
PMID | 29687604 |
PQID | 2047395028 |
PQPubID | 1046358 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2031028495 proquest_journals_2047395028 pubmed_primary_29687604 crossref_citationtrail_10_1002_smll_201800589 crossref_primary_10_1002_smll_201800589 wiley_primary_10_1002_smll_201800589_SMLL201800589 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-May |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-May |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2015; 2 2017; 40 2017; 84 2015; 12 2017; 7 2015; 15 2015; 18 2015; 3 2017; 28 2016; 306 2017; 87 2018; 101 2016; 685 2016; 10 2017; 29 2017; 230 2015; 9 2017; 9 2016; 4 2017; 307 2017; 308 2016; 6 2017; 52 2014; 5 2012; 134 2014; 2 2016; 3 2017; 11 2015; 178 2018; 332 2017; 13 2017; 56 2013; 111 2013; 135 2016; 198 2016; 213 2017; 342 2014; 264 2017; 321 2012; 24 2017; 245 2014; 50 2016; 26 2014; 6 2016; 8 2017; 326 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 Wang B. (e_1_2_7_37_1) 2016; 306 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 264 start-page: 161 year: 2014 publication-title: J. Power Sources – volume: 84 start-page: 80 year: 2017 publication-title: Electrochem. Commun. – volume: 3 start-page: 1500185 year: 2016 publication-title: Adv. Sci. – volume: 40 start-page: 576 year: 2017 publication-title: Nano Energy – volume: 5 start-page: 1687 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 start-page: 76344 year: 2016 publication-title: RSC Adv. – volume: 230 start-page: 98 year: 2017 publication-title: Electrochim. Acta – volume: 2 start-page: 20022 year: 2014 publication-title: J. Mater. Chem. A – volume: 5 start-page: 13469 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 start-page: 11528 year: 2014 publication-title: Nanoscale – volume: 24 start-page: 5166 year: 2012 publication-title: Adv. Mater. – volume: 9 start-page: 11462 year: 2015 publication-title: ACS Nano – volume: 12 start-page: 437 year: 2015 publication-title: Nano Energy – volume: 26 start-page: 1098 year: 2016 publication-title: Adv. Funct. Mater. – volume: 332 start-page: 49 year: 2018 publication-title: Chem. Eng. J. – volume: 4 start-page: 4783 year: 2016 publication-title: J. Mater. Chem. A – volume: 52 start-page: 6498 year: 2017 publication-title: J. Mater. Sci. – volume: 135 start-page: 1167 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 11507 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 21994 year: 2017 publication-title: J. Mater. Chem. A – volume: 308 start-page: 240 year: 2017 publication-title: Chem. Eng. J. – volume: 306 start-page: 1193 year: 2016 publication-title: Chem. ‐ Eur. J. – volume: 10 start-page: 10211 year: 2016 publication-title: ACS Nano – volume: 11 start-page: 4198 year: 2017 publication-title: ACS Nano – volume: 5 start-page: 17777 year: 2017 publication-title: J. Mater. Chem. A – volume: 7 start-page: 1601424 year: 2017 publication-title: Adv. Energy Mater. – volume: 18 start-page: 47 year: 2015 publication-title: Nano Energy – volume: 178 start-page: 303 year: 2015 publication-title: Electrochim. Acta – volume: 321 start-page: 495 year: 2017 publication-title: Chem. Eng. J. – volume: 8 start-page: 198 year: 2016 publication-title: J. Energy Storage – volume: 5 start-page: 14996 year: 2017 publication-title: J. Mater. Chem. A – volume: 26 start-page: 8345 year: 2016 publication-title: Adv. Funct. Mater. – volume: 87 start-page: 224 year: 2017 publication-title: Mater. Res. Bull. – volume: 213 start-page: 351 year: 2016 publication-title: Electrochim. Acta – volume: 6 start-page: 2312 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 19179 year: 2016 publication-title: J. Mater. Chem. A – volume: 50 start-page: 9485 year: 2014 publication-title: Chem. Commun. – volume: 28 start-page: 075603 year: 2017 publication-title: Nanotechnology – volume: 24 start-page: 1903 year: 2012 publication-title: Adv. Mater. – volume: 342 start-page: 495 year: 2017 publication-title: J. Power Sources – volume: 8 start-page: 19484 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 685 start-page: 8 year: 2016 publication-title: J. Alloys Compd. – volume: 198 start-page: 144 year: 2016 publication-title: Electrochim. Acta – volume: 245 start-page: 941 year: 2017 publication-title: Electrochim. Acta – volume: 5 start-page: 5357 year: 2014 publication-title: Nat. Commun. – volume: 29 start-page: 1604898 year: 2017 publication-title: Adv. Mater. – volume: 29 start-page: 1703614 year: 2017 publication-title: Adv. Mater. – volume: 56 start-page: 12649 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 213 start-page: 75 year: 2016 publication-title: Electrochim. Acta – volume: 326 start-page: 680 year: 2017 publication-title: Chem. Eng. J. – volume: 307 start-page: 583 year: 2017 publication-title: Chem. Eng. J. – volume: 9 start-page: 311 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 101 start-page: 91 year: 2018 publication-title: Opt. Laser Technol. – volume: 15 start-page: 565 year: 2015 publication-title: Nano Lett. – volume: 13 start-page: 1700521 year: 2017 publication-title: Small – volume: 111 start-page: 1 year: 2013 publication-title: Mater. Lett. – volume: 134 start-page: 15 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1400499 year: 2015 publication-title: Adv. Mater. Interfaces – volume: 5 start-page: 19521 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 start-page: 37752 year: 2016 publication-title: Sci. Rep. – volume: 7 start-page: 1601906 year: 2017 publication-title: Adv. Energy Mater. – volume: 5 start-page: 874 year: 2017 publication-title: J. Mater. Chem. A – volume: 7 start-page: 1602733 year: 2017 publication-title: Adv. Energy Mater. – volume: 3 start-page: 1830 year: 2015 publication-title: ACS Sustainable Chem. Eng. – volume: 3 start-page: 2405 year: 2015 publication-title: ACS Sustainable Chem. Eng. – ident: e_1_2_7_27_1 doi: 10.1021/acsnano.5b05610 – ident: e_1_2_7_10_1 doi: 10.1039/C7TA02789C – ident: e_1_2_7_51_1 doi: 10.1016/j.electacta.2016.03.034 – ident: e_1_2_7_2_1 doi: 10.1002/aenm.201602733 – ident: e_1_2_7_28_1 doi: 10.1021/am404232x – ident: e_1_2_7_8_1 doi: 10.1039/C7TA02956J – ident: e_1_2_7_29_1 doi: 10.1039/C4CC03807J – ident: e_1_2_7_54_1 doi: 10.1039/C6RA15257K – ident: e_1_2_7_13_1 doi: 10.1016/j.cej.2016.08.132 – ident: e_1_2_7_31_1 doi: 10.1002/smll.201700521 – ident: e_1_2_7_36_1 doi: 10.1021/acsnano.7b01152 – ident: e_1_2_7_4_1 doi: 10.1021/ja3091438 – ident: e_1_2_7_30_1 doi: 10.1002/adma.201604898 – ident: e_1_2_7_47_1 doi: 10.1021/ja206030c – ident: e_1_2_7_48_1 doi: 10.1021/acssuschemeng.5b00771 – ident: e_1_2_7_9_1 doi: 10.1016/j.nanoen.2015.01.003 – ident: e_1_2_7_44_1 doi: 10.1039/C7TA05759H – ident: e_1_2_7_50_1 doi: 10.1002/admi.201400499 – ident: e_1_2_7_40_1 doi: 10.1016/j.electacta.2016.07.094 – ident: e_1_2_7_19_1 doi: 10.1016/j.nanoen.2015.09.013 – ident: e_1_2_7_1_1 doi: 10.1002/aenm.201601424 – ident: e_1_2_7_43_1 doi: 10.1021/acsami.6b01958 – ident: e_1_2_7_15_1 doi: 10.1016/j.electacta.2016.06.163 – ident: e_1_2_7_55_1 doi: 10.1016/j.nanoen.2017.09.002 – ident: e_1_2_7_39_1 doi: 10.1038/srep37752 – ident: e_1_2_7_57_1 doi: 10.1002/adma.201200469 – ident: e_1_2_7_32_1 doi: 10.1039/C6TA09060E – ident: e_1_2_7_18_1 doi: 10.1016/j.matlet.2013.08.058 – ident: e_1_2_7_45_1 doi: 10.1039/C4NR02999B – ident: e_1_2_7_26_1 doi: 10.1016/j.materresbull.2016.12.005 – ident: e_1_2_7_7_1 doi: 10.1002/aenm.201601906 – ident: e_1_2_7_14_1 doi: 10.1016/j.electacta.2017.01.189 – ident: e_1_2_7_21_1 doi: 10.1016/j.jpowsour.2014.04.103 – ident: e_1_2_7_63_1 doi: 10.1021/acsnano.6b05566 – ident: e_1_2_7_25_1 doi: 10.1016/j.jallcom.2016.05.264 – ident: e_1_2_7_5_1 doi: 10.1002/adfm.201601631 – ident: e_1_2_7_53_1 doi: 10.1039/C6TA00592F – ident: e_1_2_7_22_1 doi: 10.1088/1361-6528/aa53f3 – ident: e_1_2_7_41_1 doi: 10.1039/C6TA07936A – ident: e_1_2_7_12_1 doi: 10.1016/j.cej.2016.09.061 – ident: e_1_2_7_24_1 doi: 10.1021/acssuschemeng.5b00556 – ident: e_1_2_7_61_1 doi: 10.1002/adma.201202146 – ident: e_1_2_7_64_1 doi: 10.1016/j.cej.2017.06.009 – ident: e_1_2_7_17_1 doi: 10.1039/C4TA04809A – ident: e_1_2_7_62_1 doi: 10.1021/acsami.6b10143 – ident: e_1_2_7_33_1 doi: 10.1002/adma.201703614 – ident: e_1_2_7_58_1 doi: 10.1016/j.elecom.2017.09.019 – ident: e_1_2_7_6_1 doi: 10.1039/C7TA05283A – ident: e_1_2_7_3_1 doi: 10.1039/C6TA07991A – ident: e_1_2_7_23_1 doi: 10.1007/s10853-017-0885-0 – ident: e_1_2_7_38_1 doi: 10.1016/j.cej.2017.03.146 – ident: e_1_2_7_34_1 doi: 10.1002/advs.201500185 – ident: e_1_2_7_11_1 doi: 10.1016/j.jpowsour.2016.12.095 – ident: e_1_2_7_42_1 doi: 10.1016/j.est.2016.08.008 – ident: e_1_2_7_52_1 doi: 10.1016/j.electacta.2015.08.018 – ident: e_1_2_7_59_1 doi: 10.1002/anie.201707647 – ident: e_1_2_7_65_1 doi: 10.1016/j.cej.2017.09.070 – ident: e_1_2_7_35_1 doi: 10.1002/adfm.201504312 – ident: e_1_2_7_60_1 doi: 10.1039/C7TA07272D – ident: e_1_2_7_16_1 doi: 10.1016/j.electacta.2017.06.039 – ident: e_1_2_7_56_1 doi: 10.1016/j.optlastec.2017.11.012 – ident: e_1_2_7_20_1 doi: 10.1021/acsami.6b05592 – volume: 306 start-page: 1193 year: 2016 ident: e_1_2_7_37_1 publication-title: Chem. ‐ Eur. J. – ident: e_1_2_7_46_1 doi: 10.1038/ncomms6357 – ident: e_1_2_7_49_1 doi: 10.1021/nl504038s |
SSID | ssj0031247 |
Score | 2.5392008 |
Snippet | Yolk–shell NiO microspheres are modified by two types of functionalized graphene quantum dots (denoted as NiO/GQDs) via a facile solvothermal treatment. The... Yolk-shell NiO microspheres are modified by two types of functionalized graphene quantum dots (denoted as NiO/GQDs) via a facile solvothermal treatment. The... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1800589 |
SubjectTerms | Electrodes Graphene graphene quantum dots Lithium lithium storage Microspheres Nanotechnology nickel oxide Nickel oxides Quantum dots Surface stability yolk–shell |
Title | Functionalized Graphene Quantum Dot Modification of Yolk–Shell NiO Microspheres for Superior Lithium Storage |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201800589 https://www.ncbi.nlm.nih.gov/pubmed/29687604 https://www.proquest.com/docview/2047395028 https://www.proquest.com/docview/2031028495 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5VPdEDP6VAoFRGQuKUNrG9zu4RUZaq2i2CpVI5Rf6FVbcJIsmlJ96BN-RJOpPshm5RhQQ3J7YTx-OZ-WxPPgO85EJLLbyJPXq3WAa0g1oYgUAuxTmLcnbQbsVMT9TRqTw-G5xd-4u_44foF9xIM1p7TQquTXXwmzS0uljQ1kE6bE_GQyNMAVuEij72_FECnVd7ugr6rJiIt1asjQk_WK--7pX-gJrryLV1PeN7oFeN7iJOzveb2uzbyxt8jv_zVffh7hKXstfdQHoAG77Yhq1rbIUPoRijD-yWDueX3rF3xHWNppJ9aFA8zQU7LGs2LR0FH7XyZmVgn8vF-a8fP2cUb8pO5u_ZlCIAKyIz8BVDxMxmDZEtY2Iyr7_O8TGzGoflF78Dp-O3n94cxcvjGmIr02QUa-VQ6twlLjFBuKDNiHs1ylKT6WFivHNCIl5QA4kOMbEuk9JmmeOZ8tbgRE08gs2iLPwTYHjHBq6cCEKgkQnGyjDEqVBIjeZB8Qjilbhyu-QypyM1FnnHwsxz6se878cIXvXlv3UsHreW3F1JP19qc4W5kvYzEYpF8KLPRj2kzRVd-LKhMoKwGs43I3jcjZr-VXyk0OkkMgLeyv4vbchn08mkv3r6L5WewR1Kd5GZu7BZf2_8c0RPtdlrNeQKqlQTGA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BcgAOvB-BBYyExCm7ie067RGxlAJJEXRXglMUv6DaboJoctkT_4F_yC9hJmkCBSEkuCV-JI7H4_lsT74BeMRFIQvhdOjQuoXS4zxYCC0QyMW4ZlHWjNqjmGyuZkfy5btR701I_8J0_BDDhhtpRjtfk4LThvT-D9bQ9cmKzg7icRsa7yyco7DeRJ9_8HZgkBJovtr4Kmi1QqLe6nkbI76_XX_bLv0GNrexa2t8ppdB983ufE6O95pa75nTXxgd_-u7rsClDTRlT7qxdBXOuPIaXPyJsPA6lFM0g93u4fLUWfac6K5xtmRvGpRQc8IOqppllSX_o1bkrPLsfbU6_vbl64JcTtl8-Zpl5AS4Jj4Dt2YImtmiIb5lvEiX9cclPmZR48j84G7A0fTZ4dNZuInYEBoZR5OwUBYFz21kI-2F9YWecKcmSayTYhxpZ62QCBnUSKJNjIxNpDRJYnminNG4VhM3YaesSncbGKYYz5UVXgicZ7w20o9xNeRjXXCveABhL6_cbOjMKarGKu-ImHlO_ZgP_RjA46H8p47I448ld3vx5xuFXmOupCNNRGMBPByyURXpfKUoXdVQGUFwDZecAdzqhs3wKj5RaHciGQBvhf-XNuSLLE2Huzv_UukBnJ8dZmmevpi_ugsXKL1z1NyFnfpz4-4hmKr1_VZdvgPQ6Rc0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAcKK-W0AJGQuKUNrG9zuaIWJYCu8tjqdSeIju2YdVtUrHJpSf-A_-QX8JMshu6IIQEt8SPxPF4PJ_tyTcAT7jQUgtnQofWLZQe50EtjEAgF-OaRdm81xzFjCfq4FC-PuodXfiLv-WH6DbcSDOa-ZoU_Mz6_Z-koYvTOR0dxP0mMt5luCJVlFLwhsGHjkBKoPVqwqug0QqJeWtF2xjx_fX662bpN6y5Dl0b2zPcBL1qdetycrJXV2YvP_-F0PF_Pusm3FgCU_asHUm34JIrbsP1C3SFd6AYohFs9w5n586yl0R2jXMle1-jfOpTNigrNi4teR81AmelZ8fl_OT7129Tcjhlk9lbNiYXwAWxGbgFQ8jMpjWxLePFaFZ9nuFjphWOy0_uLhwOX3x8fhAu4zWEuYyjNNTKoti5jWxkvLBem5Q7lSaxSXQ_Ms5aIREwqJ5EixjlNpEyTxLLE-Vygys1sQUbRVm4e8AwJfdcWeGFwFnGm1z6Pq6FfGw094oHEK7EleVLMnOKqTHPWhpmnlE_Zl0_BvC0K3_W0nj8seTuSvrZUp0XmCvpQBOxWACPu2xURDpd0YUrayojCKzhgjOA7XbUdK_iqUKrE8kAeCP7v7Qhm45Ho-7u_r9UegRX3w2G2ejV5M0OXKPk1ktzFzaqL7V7gEiqMg8bZfkBePYV4w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functionalized+Graphene+Quantum+Dot+Modification+of+Yolk-Shell+NiO+Microspheres+for+Superior+Lithium+Storage&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Yin%2C+Xiaojie&rft.au=Chen%2C+Hengqiao&rft.au=Zhi%2C+Chuanwei&rft.au=Sun%2C+Weiwei&rft.date=2018-05-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=14&rft.issue=22&rft.spage=e1800589&rft_id=info:doi/10.1002%2Fsmll.201800589&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |