An Adjustable‐Porosity Plastic Crystal Electrolyte Enables High‐Performance All‐Solid‐State Lithium‐Oxygen Batteries

The limited triple‐phase boundaries (TPBs) in solid‐state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of high‐performance all‐solid‐state lithium‐oxygen (ASS Li‐O2) batteries a challenge. Herein, an adjustable‐porosity plastic crystal electrolyte (PCE...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 24; pp. 9382 - 9387
Main Authors Wang, Jin, Huang, Gang, Chen, Kai, Zhang, Xin‐Bo
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 08.06.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The limited triple‐phase boundaries (TPBs) in solid‐state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of high‐performance all‐solid‐state lithium‐oxygen (ASS Li‐O2) batteries a challenge. Herein, an adjustable‐porosity plastic crystal electrolyte (PCE) has been fabricated by employing a thermally induced phase separation (TIPS) technique to overcome the above tricky issues. The SSC produced through the in‐situ introduction of the porous PCE on the surface of the active material, facilitates the simultaneous transfer of Li+/e−, as well as ensures fast flow of O2, forming continuous and abundant TPBs. The high Li+ conductivity, softness, and adhesion of the dense PCE significantly reduce the battery resistance to 115 Ω. As a result, the ASS Li‐O2 battery based on this adjustable‐porosity PCE exhibits superior performances with high specific capacity (5963 mAh g−1), good rate capability, and stable cycling life up to 130 cycles at 32 °C. This novel design and exciting results could open a new avenue for ASS Li‐O2 batteries. Holey cathodes, Battman! An adjustable‐porosity plastic crystal electrolyte (PCE) has been fabricated to solve the problems of high resistance and limited triple‐phase boundaries in all‐solid‐state lithium‐oxygen (ASS Li‐O2) batteries. The ASS Li‐O2 battery with dense PCE and porous PCE‐based solid‐state cathode shows ultra‐low resistance (115 Ω), large capacity (5963 mAh g−1), good rate capability, and long cycle life (130 cycles) at 32 °C.
AbstractList The limited triple‐phase boundaries (TPBs) in solid‐state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of high‐performance all‐solid‐state lithium‐oxygen (ASS Li‐O2) batteries a challenge. Herein, an adjustable‐porosity plastic crystal electrolyte (PCE) has been fabricated by employing a thermally induced phase separation (TIPS) technique to overcome the above tricky issues. The SSC produced through the in‐situ introduction of the porous PCE on the surface of the active material, facilitates the simultaneous transfer of Li+/e−, as well as ensures fast flow of O2, forming continuous and abundant TPBs. The high Li+ conductivity, softness, and adhesion of the dense PCE significantly reduce the battery resistance to 115 Ω. As a result, the ASS Li‐O2 battery based on this adjustable‐porosity PCE exhibits superior performances with high specific capacity (5963 mAh g−1), good rate capability, and stable cycling life up to 130 cycles at 32 °C. This novel design and exciting results could open a new avenue for ASS Li‐O2 batteries. Holey cathodes, Battman! An adjustable‐porosity plastic crystal electrolyte (PCE) has been fabricated to solve the problems of high resistance and limited triple‐phase boundaries in all‐solid‐state lithium‐oxygen (ASS Li‐O2) batteries. The ASS Li‐O2 battery with dense PCE and porous PCE‐based solid‐state cathode shows ultra‐low resistance (115 Ω), large capacity (5963 mAh g−1), good rate capability, and long cycle life (130 cycles) at 32 °C.
The limited triple‐phase boundaries (TPBs) in solid‐state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of high‐performance all‐solid‐state lithium‐oxygen (ASS Li‐O2) batteries a challenge. Herein, an adjustable‐porosity plastic crystal electrolyte (PCE) has been fabricated by employing a thermally induced phase separation (TIPS) technique to overcome the above tricky issues. The SSC produced through the in‐situ introduction of the porous PCE on the surface of the active material, facilitates the simultaneous transfer of Li+/e−, as well as ensures fast flow of O2, forming continuous and abundant TPBs. The high Li+ conductivity, softness, and adhesion of the dense PCE significantly reduce the battery resistance to 115 Ω. As a result, the ASS Li‐O2 battery based on this adjustable‐porosity PCE exhibits superior performances with high specific capacity (5963 mAh g−1), good rate capability, and stable cycling life up to 130 cycles at 32 °C. This novel design and exciting results could open a new avenue for ASS Li‐O2 batteries.
The limited triple‐phase boundaries (TPBs) in solid‐state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of high‐performance all‐solid‐state lithium‐oxygen (ASS Li‐O 2 ) batteries a challenge. Herein, an adjustable‐porosity plastic crystal electrolyte (PCE) has been fabricated by employing a thermally induced phase separation (TIPS) technique to overcome the above tricky issues. The SSC produced through the in‐situ introduction of the porous PCE on the surface of the active material, facilitates the simultaneous transfer of Li + /e − , as well as ensures fast flow of O 2 , forming continuous and abundant TPBs. The high Li + conductivity, softness, and adhesion of the dense PCE significantly reduce the battery resistance to 115 Ω. As a result, the ASS Li‐O 2 battery based on this adjustable‐porosity PCE exhibits superior performances with high specific capacity (5963 mAh g −1 ), good rate capability, and stable cycling life up to 130 cycles at 32 °C. This novel design and exciting results could open a new avenue for ASS Li‐O 2 batteries.
The limited triple-phase boundaries (TPBs) in solid-state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of high-performance all-solid-state lithium-oxygen (ASS Li-O2 ) batteries a challenge. Herein, an adjustable-porosity plastic crystal electrolyte (PCE) has been fabricated by employing a thermally induced phase separation (TIPS) technique to overcome the above tricky issues. The SSC produced through the in-situ introduction of the porous PCE on the surface of the active material, facilitates the simultaneous transfer of Li+ /e- , as well as ensures fast flow of O2 , forming continuous and abundant TPBs. The high Li+ conductivity, softness, and adhesion of the dense PCE significantly reduce the battery resistance to 115 Ω. As a result, the ASS Li-O2 battery based on this adjustable-porosity PCE exhibits superior performances with high specific capacity (5963 mAh g-1 ), good rate capability, and stable cycling life up to 130 cycles at 32 °C. This novel design and exciting results could open a new avenue for ASS Li-O2 batteries.The limited triple-phase boundaries (TPBs) in solid-state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of high-performance all-solid-state lithium-oxygen (ASS Li-O2 ) batteries a challenge. Herein, an adjustable-porosity plastic crystal electrolyte (PCE) has been fabricated by employing a thermally induced phase separation (TIPS) technique to overcome the above tricky issues. The SSC produced through the in-situ introduction of the porous PCE on the surface of the active material, facilitates the simultaneous transfer of Li+ /e- , as well as ensures fast flow of O2 , forming continuous and abundant TPBs. The high Li+ conductivity, softness, and adhesion of the dense PCE significantly reduce the battery resistance to 115 Ω. As a result, the ASS Li-O2 battery based on this adjustable-porosity PCE exhibits superior performances with high specific capacity (5963 mAh g-1 ), good rate capability, and stable cycling life up to 130 cycles at 32 °C. This novel design and exciting results could open a new avenue for ASS Li-O2 batteries.
The limited triple-phase boundaries (TPBs) in solid-state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of high-performance all-solid-state lithium-oxygen (ASS Li-O ) batteries a challenge. Herein, an adjustable-porosity plastic crystal electrolyte (PCE) has been fabricated by employing a thermally induced phase separation (TIPS) technique to overcome the above tricky issues. The SSC produced through the in-situ introduction of the porous PCE on the surface of the active material, facilitates the simultaneous transfer of Li /e , as well as ensures fast flow of O , forming continuous and abundant TPBs. The high Li conductivity, softness, and adhesion of the dense PCE significantly reduce the battery resistance to 115 Ω. As a result, the ASS Li-O battery based on this adjustable-porosity PCE exhibits superior performances with high specific capacity (5963 mAh g ), good rate capability, and stable cycling life up to 130 cycles at 32 °C. This novel design and exciting results could open a new avenue for ASS Li-O batteries.
Author Wang, Jin
Chen, Kai
Zhang, Xin‐Bo
Huang, Gang
Author_xml – sequence: 1
  givenname: Jin
  surname: Wang
  fullname: Wang, Jin
  organization: Ministry of Education
– sequence: 2
  givenname: Gang
  surname: Huang
  fullname: Huang, Gang
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Kai
  surname: Chen
  fullname: Chen, Kai
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Xin‐Bo
  orcidid: 0000-0002-5806-159X
  surname: Zhang
  fullname: Zhang, Xin‐Bo
  email: xbzhang@ciac.ac.cn
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32175643$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URC-wZYkisWGTqa9xsgyjgVYatZWAdeQkJ61Hjl1sRyUbxCPwjDwJjqYUqVLV1Tm2v8-2_nOMDqyzgNBbglcEY3qqrIYVxTT1DFcv0BERlORMSnaQes5YLktBDtFxCLvElCUuXqFDRokUBWdH6Gdts7rfTSGq1sCfX7-vnHdBxzm7MipE3WVrP6dDk20MdNE7M0fINnahQ3amr28WB_zg_KhsB1ltTNr54ozulxpVwrc63uhpTOvLH_M12OyjihG8hvAavRyUCfDmvp6gb582X9dn-fby8_m63uYdJ7jKJcVAlFAlJy0XGGgpADNR8aKnvKoGqSiXQ1u0QEU_FH1btlh1sh9A9OXAgJ2gD_t7b737PkGIzahDB8YoC24KDU2JFaXATCb0_SN05yZv0-8aynEpqBRVlah399TUjtA3t16Pys_Nv2QTsNoDXcozeBgeEIKbZXTNMrrmYXRJ4I-ETqf0tLPRK22e1qq9dqcNzM880tQX55v_7l9JVrOH
CitedBy_id crossref_primary_10_1002_ange_202116635
crossref_primary_10_1002_anie_202319529
crossref_primary_10_1002_adfm_202307150
crossref_primary_10_1002_adfm_202101636
crossref_primary_10_1016_j_cej_2025_159351
crossref_primary_10_1016_j_chempr_2022_09_027
crossref_primary_10_1016_j_jpowsour_2024_234813
crossref_primary_10_1002_adma_202206228
crossref_primary_10_1002_cey2_276
crossref_primary_10_1002_aenm_202400766
crossref_primary_10_1002_er_6020
crossref_primary_10_1126_sciadv_abq6261
crossref_primary_10_1007_s11426_023_1908_9
crossref_primary_10_3390_batteries9070380
crossref_primary_10_1021_acsnano_4c17836
crossref_primary_10_1002_ange_202101537
crossref_primary_10_1016_j_cej_2023_141382
crossref_primary_10_1002_anie_202116635
crossref_primary_10_1002_EXP_20220051
crossref_primary_10_1016_j_est_2022_105790
crossref_primary_10_1021_acsami_3c02155
crossref_primary_10_1002_adma_202110423
crossref_primary_10_1002_adfm_202304981
crossref_primary_10_1016_j_pmatsci_2024_101337
crossref_primary_10_1002_anie_202213026
crossref_primary_10_1149_1945_7111_ac7356
crossref_primary_10_1002_smm2_1205
crossref_primary_10_1039_D1TA03569J
crossref_primary_10_1021_acsaem_4c02391
crossref_primary_10_1002_adfm_202011151
crossref_primary_10_1149_1945_7111_ad9a0a
crossref_primary_10_1016_j_ensm_2022_10_007
crossref_primary_10_1021_acsami_2c13807
crossref_primary_10_1016_j_scib_2022_11_027
crossref_primary_10_1002_batt_202300230
crossref_primary_10_1021_acs_accounts_0c00772
crossref_primary_10_1002_adfm_202113235
crossref_primary_10_1002_adfm_202301583
crossref_primary_10_1002_ange_202213026
crossref_primary_10_1016_j_gee_2023_02_010
crossref_primary_10_1016_j_mtnano_2023_100321
crossref_primary_10_1016_j_ensm_2021_04_022
crossref_primary_10_1016_j_nanoen_2022_107248
crossref_primary_10_1021_acsaem_3c01183
crossref_primary_10_1002_bte2_20220014
crossref_primary_10_1007_s12274_022_4183_z
crossref_primary_10_1002_ange_202319529
crossref_primary_10_1002_batt_202300267
crossref_primary_10_1016_j_est_2024_114806
crossref_primary_10_1002_smsc_202200005
crossref_primary_10_1021_acs_nanolett_4c03874
crossref_primary_10_1002_adfm_202213211
crossref_primary_10_1002_inf2_12247
crossref_primary_10_1149_1945_7111_ac5794
crossref_primary_10_1002_batt_202400625
crossref_primary_10_1021_acs_energyfuels_1c00635
crossref_primary_10_1021_acsaem_2c02718
crossref_primary_10_1002_aenm_202203660
crossref_primary_10_1039_D4CC00805G
crossref_primary_10_1016_j_cej_2025_160694
crossref_primary_10_1002_aenm_202302388
crossref_primary_10_1002_anie_202101537
Cites_doi 10.1016/j.jpowsour.2019.227230
10.1038/nature25984
10.1016/j.ensm.2018.08.021
10.1002/aenm.201701602
10.1038/nmat1158
10.1149/1.3256129
10.1038/srep41217
10.1002/anie.201702003
10.1002/aenm.201500353
10.1016/0376-7388(93)85015-O
10.1002/ange.201408008
10.1063/1.2200353
10.1038/s41929-019-0362-z
10.1002/anie.201903459
10.1038/nnano.2017.27
10.1039/c2ee03025j
10.1002/adfm.200601070
10.1021/acsami.5b04409
10.1126/science.aas9343
10.1038/s41467-019-08422-8
10.1002/ange.201702003
10.1002/adfm.201301345
10.1039/C8SC05178J
10.1111/1541-4337.12121
10.1016/j.jpowsour.2018.05.080
10.1021/acsami.7b09119
10.1038/s41565-019-0465-3
10.1039/c2ee22381c
10.1002/ange.201804115
10.1002/ange.201903459
10.1039/C8TA10771H
10.1039/C8TA08095J
10.1007/s12598-018-1036-8
10.1038/s41560-018-0312-z
10.1002/adfm.201900392
10.1002/aenm.201100789
10.1038/s41563-019-0431-3
10.1038/nmat4821
10.1016/S0376-7388(00)85130-3
10.1002/anie.201804115
10.1038/nenergy.2017.118
10.1016/j.ensm.2017.10.002
10.1039/C8EE00540K
10.1007/s11581-018-2580-9
10.1016/j.eurpolymj.2011.10.005
10.1016/j.ssi.2011.01.010
10.1016/j.nanoen.2017.12.037
10.1007/s13233-018-6061-9
10.1021/jacs.7b10864
10.1002/aenm.201702657
10.1002/anie.201408008
10.1016/j.elecom.2017.04.020
10.1039/C9EE01548E
10.1016/j.chempr.2018.12.002
10.1021/acsnano.9b08803
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202002309
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 9387
ExternalDocumentID 32175643
10_1002_anie_202002309
ANIE202002309
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: K. C. Wong Education Foundation
  funderid: GJTD-2018-09
– fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  funderid: XDA21010210
– fundername: Jilin Province Capital Construction Funds Project
  funderid: 2020C026-1
– fundername: National Natural Science Foundation of China
  funderid: 21725103, 21905269
– fundername: National Key R&D Program of China
  funderid: 2017YFA0206700
– fundername: Jilin Province Science and Technology Development Plan Funding Project
  funderid: 20180101203JC
– fundername: Changchun Science and Technology Development Plan Funding Project
  funderid: 19SS010, 18DY012
– fundername: National Key R&D Program of China
  grantid: 2017YFA0206700
– fundername: Jilin Province Capital Construction Funds Project
  grantid: 2020C026-1
– fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  grantid: XDA21010210
– fundername: Jilin Province Science and Technology Development Plan Funding Project
  grantid: 20180101203JC
– fundername: Changchun Science and Technology Development Plan Funding Project
  grantid: 19SS010, 18DY012
– fundername: National Natural Science Foundation of China
  grantid: 21725103, 21905269
– fundername: K. C. Wong Education Foundation
  grantid: GJTD-2018-09
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4109-720e1a5a841b450e285e035946d2499f7a247fb6be25df6db8b0ac7dfe5d8f3e3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 05:46:43 EDT 2025
Fri Jul 25 10:36:42 EDT 2025
Wed Feb 19 02:29:47 EST 2025
Thu Apr 24 23:03:42 EDT 2025
Tue Jul 01 01:17:36 EDT 2025
Wed Jan 22 16:35:38 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords lithium-oxygen batteries
succinonitrile
all-solid-state
plastic crystal electrolytes
solid electrolytes
Language English
License 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4109-720e1a5a841b450e285e035946d2499f7a247fb6be25df6db8b0ac7dfe5d8f3e3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5806-159X
PMID 32175643
PQID 2408527599
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2377685037
proquest_journals_2408527599
pubmed_primary_32175643
crossref_primary_10_1002_anie_202002309
crossref_citationtrail_10_1002_anie_202002309
wiley_primary_10_1002_anie_202002309_ANIE202002309
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 8, 2020
PublicationDateYYYYMMDD 2020-06-08
PublicationDate_xml – month: 06
  year: 2020
  text: June 8, 2020
  day: 08
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 17
2018; 361
2019; 7
1990; 52
2017; 7
2015; 14
2019; 4
2015; 5
2017; 2
2018; 140
2019; 5
2019; 2
2019; 10
2019; 13
2019; 12
2019; 14
2020 2020; 59 132
2004; 3
2019; 18
2014; 24
2017 2017; 56 129
2016; 16
2015; 7
2017; 9
2019; 442
2018; 26
2018; 25
2018; 46
2018; 395
2018; 6
1993; 79
2018; 8
2012; 2
2020
2018 2018; 57 130
2018; 555
2017; 79
2017; 12
2010; 157
2019
2015 2015; 54 127
2019; 29
2011; 47
2018; 11
2012; 5
2018; 37
2011; 186
2006; 124
e_1_2_2_4_1
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_49_2
e_1_2_2_6_2
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_41_1
e_1_2_2_62_1
e_1_2_2_64_2
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_66_2
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_8_3
e_1_2_2_45_3
e_1_2_2_68_1
Yu W. (e_1_2_2_40_2) 2019
e_1_2_2_60_2
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_59_2
e_1_2_2_38_2
e_1_2_2_11_1
e_1_2_2_51_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_53_2
e_1_2_2_32_2
e_1_2_2_17_1
e_1_2_2_34_1
e_1_2_2_55_1
e_1_2_2_15_2
e_1_2_2_57_2
Jiang T. L. (e_1_2_2_48_2) 2020
e_1_2_2_3_2
e_1_2_2_5_2
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_63_1
e_1_2_2_42_1
e_1_2_2_29_1
e_1_2_2_65_3
e_1_2_2_67_1
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_65_2
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_46_2
e_1_2_2_61_1
e_1_2_2_14_1
e_1_2_2_35_3
e_1_2_2_37_1
e_1_2_2_12_2
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_52_2
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_54_2
e_1_2_2_58_1
e_1_2_2_35_2
e_1_2_2_56_2
e_1_2_2_50_1
References_xml – volume: 57 130
  start-page: 10864 11030
  year: 2018 2018
  end-page: 10867 11033
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 16
  start-page: 572
  year: 2016
  end-page: 579
  publication-title: Nat. Mater.
– volume: 395
  start-page: 439
  year: 2018
  end-page: 443
  publication-title: J. Power Sources
– volume: 3
  start-page: 476
  year: 2004
  end-page: 481
  publication-title: Nat. Mater.
– volume: 10
  start-page: 602
  year: 2019
  publication-title: Nat. Commun.
– volume: 14
  start-page: 67
  year: 2015
  end-page: 80
  publication-title: Compr. Rev. Food Sci. Food Saf.
– volume: 2
  start-page: 1035
  year: 2019
  end-page: 1044
  publication-title: Nat. Catal.
– volume: 13
  start-page: 14549
  year: 2019
  end-page: 14556
  publication-title: ACS Nano
– volume: 12
  start-page: 2957
  year: 2019
  end-page: 2975
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 17118
  year: 2017
  publication-title: Nat. Energy
– volume: 124
  year: 2006
  publication-title: J. Chem. Phys.
– volume: 54 127
  start-page: 436 446
  year: 2015 2015
  end-page: 440 450
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 2974 2994
  year: 2020 2020
  end-page: 2997 3019
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 2020
  publication-title: Adv. Energy Mater.
– volume: 18
  start-page: 1278
  year: 2019
  end-page: 1291
  publication-title: Nat. Mater.
– volume: 11
  start-page: 170
  year: 2018
  end-page: 175
  publication-title: Energy Storage Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 1803
  year: 2018
  end-page: 1810
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 21248
  year: 2018
  end-page: 21254
  publication-title: J. Mater. Chem. A
– volume: 17
  start-page: 2800
  year: 2007
  end-page: 2807
  publication-title: Adv. Funct. Mater.
– volume: 47
  start-page: 2442
  year: 2011
  end-page: 2450
  publication-title: Eur. Polym. J.
– year: 2019
  publication-title: Energy Storage Mater.
– volume: 5
  start-page: 9077
  year: 2012
  end-page: 9084
  publication-title: Energy Environ. Sci.
– volume: 52
  start-page: 239
  year: 1990
  end-page: 261
  publication-title: J. Membr. Sci.
– volume: 140
  start-page: 82
  year: 2018
  end-page: 85
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 4306
  year: 2019
  end-page: 4312
  publication-title: Chem. Sci.
– volume: 18
  start-page: 311
  year: 2019
  end-page: 319
  publication-title: Energy Storage Mater.
– volume: 56 129
  start-page: 5541 5633
  year: 2017 2017
  end-page: 5545 5637
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 41217
  year: 2017
  publication-title: Sci. Rep.
– volume: 26
  start-page: 459
  year: 2018
  end-page: 465
  publication-title: Macromol. Res.
– volume: 79
  start-page: 27
  year: 1993
  end-page: 34
  publication-title: J. Membr. Sci.
– volume: 7
  start-page: 17307
  year: 2015
  end-page: 17310
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 74
  year: 2019
  end-page: 96
  publication-title: Chem
– volume: 361
  start-page: 777
  year: 2018
  end-page: 781
  publication-title: Science
– volume: 7
  start-page: 3150
  year: 2019
  end-page: 3160
  publication-title: J. Mater. Chem. A
– volume: 157
  start-page: A50
  year: 2010
  end-page: A54
  publication-title: J. Electrochem. Soc.
– volume: 442
  year: 2019
  publication-title: J. Power Sources
– volume: 555
  start-page: 502
  year: 2018
  end-page: 506
  publication-title: Nature
– volume: 12
  start-page: 535
  year: 2017
  end-page: 539
  publication-title: Nat. Nanotechnol.
– volume: 4
  start-page: 187
  year: 2019
  end-page: 196
  publication-title: Nat. Energy
– volume: 24
  start-page: 44
  year: 2014
  end-page: 52
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 889
  year: 2012
  end-page: 894
  publication-title: Adv. Energy Mater.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 46
  start-page: 176
  year: 2018
  end-page: 184
  publication-title: Nano Energy
– volume: 5
  start-page: 6491
  year: 2012
  end-page: 6499
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 29820
  year: 2017
  end-page: 29828
  publication-title: ACS Appl. Mater. Interfaces
– volume: 79
  start-page: 68
  year: 2017
  end-page: 72
  publication-title: Electrochem. Commun.
– volume: 37
  start-page: 459
  year: 2018
  end-page: 472
  publication-title: Rare Met.
– volume: 14
  start-page: 705
  year: 2019
  end-page: 711
  publication-title: Nat. Nanotechnol.
– volume: 25
  start-page: 25
  year: 2018
  end-page: 33
  publication-title: Ionics
– volume: 186
  start-page: 1
  year: 2011
  end-page: 6
  publication-title: Solid State Ionics
– ident: e_1_2_2_27_2
  doi: 10.1016/j.jpowsour.2019.227230
– ident: e_1_2_2_2_2
  doi: 10.1038/nature25984
– ident: e_1_2_2_44_2
  doi: 10.1016/j.ensm.2018.08.021
– ident: e_1_2_2_12_2
  doi: 10.1002/aenm.201701602
– ident: e_1_2_2_41_1
  doi: 10.1038/nmat1158
– ident: e_1_2_2_13_2
  doi: 10.1149/1.3256129
– ident: e_1_2_2_16_2
  doi: 10.1038/srep41217
– ident: e_1_2_2_45_2
  doi: 10.1002/anie.201702003
– ident: e_1_2_2_37_1
– ident: e_1_2_2_52_2
  doi: 10.1002/aenm.201500353
– ident: e_1_2_2_56_2
  doi: 10.1016/0376-7388(93)85015-O
– ident: e_1_2_2_35_3
  doi: 10.1002/ange.201408008
– ident: e_1_2_2_23_1
– ident: e_1_2_2_68_1
  doi: 10.1063/1.2200353
– ident: e_1_2_2_5_2
  doi: 10.1038/s41929-019-0362-z
– ident: e_1_2_2_8_2
  doi: 10.1002/anie.201903459
– ident: e_1_2_2_29_1
– ident: e_1_2_2_10_2
  doi: 10.1038/nnano.2017.27
– year: 2020
  ident: e_1_2_2_48_2
  publication-title: Adv. Energy Mater.
– ident: e_1_2_2_4_1
– ident: e_1_2_2_11_1
– ident: e_1_2_2_53_2
  doi: 10.1039/c2ee03025j
– ident: e_1_2_2_49_2
  doi: 10.1002/adfm.200601070
– ident: e_1_2_2_20_2
  doi: 10.1021/acsami.5b04409
– ident: e_1_2_2_3_2
  doi: 10.1126/science.aas9343
– ident: e_1_2_2_6_2
  doi: 10.1038/s41467-019-08422-8
– ident: e_1_2_2_45_3
  doi: 10.1002/ange.201702003
– ident: e_1_2_2_51_2
  doi: 10.1002/adfm.201301345
– ident: e_1_2_2_17_1
– ident: e_1_2_2_43_2
  doi: 10.1039/C8SC05178J
– ident: e_1_2_2_14_1
– ident: e_1_2_2_60_2
  doi: 10.1111/1541-4337.12121
– ident: e_1_2_2_19_2
  doi: 10.1016/j.jpowsour.2018.05.080
– ident: e_1_2_2_64_2
  doi: 10.1021/acsami.7b09119
– ident: e_1_2_2_58_1
– ident: e_1_2_2_55_1
– ident: e_1_2_2_36_2
  doi: 10.1038/s41565-019-0465-3
– ident: e_1_2_2_21_2
  doi: 10.1039/c2ee22381c
– ident: e_1_2_2_65_3
  doi: 10.1002/ange.201804115
– ident: e_1_2_2_8_3
  doi: 10.1002/ange.201903459
– ident: e_1_2_2_63_1
– ident: e_1_2_2_39_2
  doi: 10.1039/C8TA10771H
– year: 2019
  ident: e_1_2_2_40_2
  publication-title: Energy Storage Mater.
– ident: e_1_2_2_15_2
  doi: 10.1039/C8TA08095J
– ident: e_1_2_2_9_2
  doi: 10.1007/s12598-018-1036-8
– ident: e_1_2_2_32_2
  doi: 10.1038/s41560-018-0312-z
– ident: e_1_2_2_7_1
– ident: e_1_2_2_1_1
– ident: e_1_2_2_66_2
  doi: 10.1002/adfm.201900392
– ident: e_1_2_2_18_2
  doi: 10.1002/aenm.201100789
– ident: e_1_2_2_24_2
  doi: 10.1038/s41563-019-0431-3
– ident: e_1_2_2_30_2
  doi: 10.1038/nmat4821
– ident: e_1_2_2_57_2
  doi: 10.1016/S0376-7388(00)85130-3
– ident: e_1_2_2_42_1
– ident: e_1_2_2_65_2
  doi: 10.1002/anie.201804115
– ident: e_1_2_2_67_1
  doi: 10.1038/nenergy.2017.118
– ident: e_1_2_2_34_1
– ident: e_1_2_2_47_2
  doi: 10.1016/j.ensm.2017.10.002
– ident: e_1_2_2_50_1
– ident: e_1_2_2_26_2
  doi: 10.1039/C8EE00540K
– ident: e_1_2_2_38_2
  doi: 10.1007/s11581-018-2580-9
– ident: e_1_2_2_61_1
  doi: 10.1016/j.eurpolymj.2011.10.005
– ident: e_1_2_2_54_2
  doi: 10.1016/j.ssi.2011.01.010
– ident: e_1_2_2_28_2
  doi: 10.1016/j.nanoen.2017.12.037
– ident: e_1_2_2_46_2
  doi: 10.1007/s13233-018-6061-9
– ident: e_1_2_2_62_1
  doi: 10.1021/jacs.7b10864
– ident: e_1_2_2_22_1
  doi: 10.1002/aenm.201702657
– ident: e_1_2_2_35_2
  doi: 10.1002/anie.201408008
– ident: e_1_2_2_59_2
  doi: 10.1016/j.elecom.2017.04.020
– ident: e_1_2_2_25_2
  doi: 10.1039/C9EE01548E
– ident: e_1_2_2_31_2
  doi: 10.1016/j.chempr.2018.12.002
– ident: e_1_2_2_33_2
  doi: 10.1021/acsnano.9b08803
SSID ssj0028806
Score 2.543348
Snippet The limited triple‐phase boundaries (TPBs) in solid‐state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of...
The limited triple-phase boundaries (TPBs) in solid-state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9382
SubjectTerms all-solid-state
Cathodes
Electrolytes
High resistance
Lithium
lithium-oxygen batteries
Molten salt electrolytes
Oxygen
Phase separation
plastic crystal electrolytes
Porosity
Softness
Solid electrolytes
Specific capacity
succinonitrile
Title An Adjustable‐Porosity Plastic Crystal Electrolyte Enables High‐Performance All‐Solid‐State Lithium‐Oxygen Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202002309
https://www.ncbi.nlm.nih.gov/pubmed/32175643
https://www.proquest.com/docview/2408527599
https://www.proquest.com/docview/2377685037
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQL3CB_vCztFSuhNRT2sSJE-cYrbYqCNoKWqm3KI7HYkvIot2sxHKoeASekSdhJt6k3SJUCU6JY1tx7Jn4m2TmG8ZeByZJNUIJr4wADRRRKk8LW3qWqEUoKWQcUKDw-5P4-CJ6eykvb0XxO36I_oMbaUb7viYFL_Ts8IY0lCKw0b4TLYqmCD5y2CJU9KHnjxIonC68KAw9ykLfsTb64nC1--qu9AfUXEWu7dZz9IQV3aCdx8nng3mjD8rvd_gc_-ep1tnjJS7lmROkDfYA6k32cNilg9ti11nNM3NF8Va6gl8_fp5NpuTwteBnCMCxFx9OF1hZ8ZHLrFMtGuCjNjRrxsmdhPrchCnwrKrwysdJNTZ0JNDL342bT-P5FyyfflugaHNH_4nW_FN2cTQ6Hx57y-QNuOqBn3qJ8CEoZKGiQEfSB6EkEF1gFBu0-FKbFCJKrI41CGlsbLTSflEmxoI0yoYQPmNr9aSGF4wbqyJpNMo80Sdaq5SMITUAviwCC-WAed3i5eWS2ZwSbFS542QWOc1q3s_qgO337b86To-_ttzpZCFf6vYsb0nhRCJTrN7rq3E16FdLUcNkjm3CBO046YfJgD13MtTfKkQrUCIQHDDRSsI9Y8izkzejvvTyXzpts0d03nq4qR221kzn8AqxVKN3W335DbYyG7U
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3o-FAkYCcUqbOHEeBw7Rdqtdul0qaKXe0ji2xbYhi_YhWA6In8Bf4a_wE_glzORVLQghIfXAKXJsJ45nxp5xZr4BeOqoIJKoSliZp9FA4VloSW4yyxC0CCWF9B0KFN4f-f0j7-WxOF6Db00sTIUP0R64kWSU6zUJOB1Ib5-jhlIINhp4vFSjo9qvck8vP6DVNnsx2EESP-N8t3fY7Vt1YgEckWNHVsBt7aQiDT1HesLWPBSaoOw8X6E1Epkg5V5gpC81F8r4SobSTrNAGS1UaFzt4nMvwWVKI05w_TuvW8QqjuJQBTS5rkV57xucSJtvr453dR_8Tbld1ZXLzW73GnxvpqnycTnbWszlVvbpFwTJ_2oer8PVWvVmcSUrN2BNFzdho9tkvLsFn-OCxeqUQspkrn98-XowmZJP25IdoI2BvVh3usTKnPWq5EH5cq5Zr4w-mzHymKE-55EYLM5zvPNmko8VXUmvZ8Px_O148Q7Lrz4uUXpZhXA61rPbcHQhn38H1otJoe8BUyb0hJIo1oQQaUwYCl9HSmtbpI7RWQeshluSrAZvpxwieVLBTvOEqJi0VOzA87b9-wq25I8tNxvmS-rla5aUuHc8EBFWP2mrkRr0Nykt9GSBbdwATVVhu0EH7lZM277KRUNXoK7bAV6y3l_GkMSjQa8t3f-XTo9ho3-4P0yGg9HeA7hC90uHvnAT1ufThX6IquNcPiqFlcHJRXP1T-UYeic
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FIAEX9mUgQCOBODmx224vBw7WLMqQMIyASLkZt7tbmWA80SwCc0B8Ap_Cr_ALfAlV9tjRgBASUg6crN7sdldVd5Vd9QrgsaOCSKIqYWWeRgOFZ6ElucksQ9AilBTSdyhQ-MXI3z3wnh-Kww341sTC1PgQ7Qc3koxqvyYBP1Fm5xQ0lCKw0b7jlRYdrdwq93T5AY22-bNhDyn8hPNB_01311rlFcAJOXZkBdzWTirS0HOkJ2zNQ6EJyc7zFRojkQlS7gVG-lJzoYyvZCjtNAuU0UKFxtUu3vccnPd8O6JkEb1XLWAVR2mo45lc16K09w1MpM131ue7fgz-ptuuq8rVWTe4At-bVapdXN5tLxdyO_v0C4Dk_7SMV-HySvFmcS0p12BDF9fhYrfJd3cDPscFi9UxBZTJXP_48nU8nZFHW8nGaGHgKNadldiYs36dOigvF5r1q9izOSN_GRpzGofB4jzHmtfTfKLoSlo9258sjibL91h--bFE2WU1vulEz2_CwZm8_i3YLKaFvgNMmdATSqJQEz6kMWEofB0prW2ROkZnHbAaZkmyFXQ7ZRDJkxp0midExaSlYgeetv1PatCSP_bcangvWW1e86RCveOBiLD5UduM1KB_SWmhp0vs4wZoqArbDTpwu-bZ9lEumrkCNd0O8Irz_jKHJB4N-23p7r8MeggXxr1Bsj8c7d2DS1RdefOFW7C5mC31fdQbF_JBJaoM3p41U_8E8wV41g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adjustable%E2%80%90Porosity+Plastic+Crystal+Electrolyte+Enables+High%E2%80%90Performance+All%E2%80%90Solid%E2%80%90State+Lithium%E2%80%90Oxygen+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Jin&rft.au=Huang%2C+Gang&rft.au=Chen%2C+Kai&rft.au=Zhang%2C+Xin%E2%80%90Bo&rft.date=2020-06-08&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=24&rft.spage=9382&rft.epage=9387&rft_id=info:doi/10.1002%2Fanie.202002309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202002309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon