An Adjustable‐Porosity Plastic Crystal Electrolyte Enables High‐Performance All‐Solid‐State Lithium‐Oxygen Batteries
The limited triple‐phase boundaries (TPBs) in solid‐state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of high‐performance all‐solid‐state lithium‐oxygen (ASS Li‐O2) batteries a challenge. Herein, an adjustable‐porosity plastic crystal electrolyte (PCE...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 24; pp. 9382 - 9387 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
08.06.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The limited triple‐phase boundaries (TPBs) in solid‐state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of high‐performance all‐solid‐state lithium‐oxygen (ASS Li‐O2) batteries a challenge. Herein, an adjustable‐porosity plastic crystal electrolyte (PCE) has been fabricated by employing a thermally induced phase separation (TIPS) technique to overcome the above tricky issues. The SSC produced through the in‐situ introduction of the porous PCE on the surface of the active material, facilitates the simultaneous transfer of Li+/e−, as well as ensures fast flow of O2, forming continuous and abundant TPBs. The high Li+ conductivity, softness, and adhesion of the dense PCE significantly reduce the battery resistance to 115 Ω. As a result, the ASS Li‐O2 battery based on this adjustable‐porosity PCE exhibits superior performances with high specific capacity (5963 mAh g−1), good rate capability, and stable cycling life up to 130 cycles at 32 °C. This novel design and exciting results could open a new avenue for ASS Li‐O2 batteries.
Holey cathodes, Battman! An adjustable‐porosity plastic crystal electrolyte (PCE) has been fabricated to solve the problems of high resistance and limited triple‐phase boundaries in all‐solid‐state lithium‐oxygen (ASS Li‐O2) batteries. The ASS Li‐O2 battery with dense PCE and porous PCE‐based solid‐state cathode shows ultra‐low resistance (115 Ω), large capacity (5963 mAh g−1), good rate capability, and long cycle life (130 cycles) at 32 °C. |
---|---|
AbstractList | The limited triple‐phase boundaries (TPBs) in solid‐state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of high‐performance all‐solid‐state lithium‐oxygen (ASS Li‐O2) batteries a challenge. Herein, an adjustable‐porosity plastic crystal electrolyte (PCE) has been fabricated by employing a thermally induced phase separation (TIPS) technique to overcome the above tricky issues. The SSC produced through the in‐situ introduction of the porous PCE on the surface of the active material, facilitates the simultaneous transfer of Li+/e−, as well as ensures fast flow of O2, forming continuous and abundant TPBs. The high Li+ conductivity, softness, and adhesion of the dense PCE significantly reduce the battery resistance to 115 Ω. As a result, the ASS Li‐O2 battery based on this adjustable‐porosity PCE exhibits superior performances with high specific capacity (5963 mAh g−1), good rate capability, and stable cycling life up to 130 cycles at 32 °C. This novel design and exciting results could open a new avenue for ASS Li‐O2 batteries.
Holey cathodes, Battman! An adjustable‐porosity plastic crystal electrolyte (PCE) has been fabricated to solve the problems of high resistance and limited triple‐phase boundaries in all‐solid‐state lithium‐oxygen (ASS Li‐O2) batteries. The ASS Li‐O2 battery with dense PCE and porous PCE‐based solid‐state cathode shows ultra‐low resistance (115 Ω), large capacity (5963 mAh g−1), good rate capability, and long cycle life (130 cycles) at 32 °C. The limited triple‐phase boundaries (TPBs) in solid‐state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of high‐performance all‐solid‐state lithium‐oxygen (ASS Li‐O2) batteries a challenge. Herein, an adjustable‐porosity plastic crystal electrolyte (PCE) has been fabricated by employing a thermally induced phase separation (TIPS) technique to overcome the above tricky issues. The SSC produced through the in‐situ introduction of the porous PCE on the surface of the active material, facilitates the simultaneous transfer of Li+/e−, as well as ensures fast flow of O2, forming continuous and abundant TPBs. The high Li+ conductivity, softness, and adhesion of the dense PCE significantly reduce the battery resistance to 115 Ω. As a result, the ASS Li‐O2 battery based on this adjustable‐porosity PCE exhibits superior performances with high specific capacity (5963 mAh g−1), good rate capability, and stable cycling life up to 130 cycles at 32 °C. This novel design and exciting results could open a new avenue for ASS Li‐O2 batteries. The limited triple‐phase boundaries (TPBs) in solid‐state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of high‐performance all‐solid‐state lithium‐oxygen (ASS Li‐O 2 ) batteries a challenge. Herein, an adjustable‐porosity plastic crystal electrolyte (PCE) has been fabricated by employing a thermally induced phase separation (TIPS) technique to overcome the above tricky issues. The SSC produced through the in‐situ introduction of the porous PCE on the surface of the active material, facilitates the simultaneous transfer of Li + /e − , as well as ensures fast flow of O 2 , forming continuous and abundant TPBs. The high Li + conductivity, softness, and adhesion of the dense PCE significantly reduce the battery resistance to 115 Ω. As a result, the ASS Li‐O 2 battery based on this adjustable‐porosity PCE exhibits superior performances with high specific capacity (5963 mAh g −1 ), good rate capability, and stable cycling life up to 130 cycles at 32 °C. This novel design and exciting results could open a new avenue for ASS Li‐O 2 batteries. The limited triple-phase boundaries (TPBs) in solid-state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of high-performance all-solid-state lithium-oxygen (ASS Li-O2 ) batteries a challenge. Herein, an adjustable-porosity plastic crystal electrolyte (PCE) has been fabricated by employing a thermally induced phase separation (TIPS) technique to overcome the above tricky issues. The SSC produced through the in-situ introduction of the porous PCE on the surface of the active material, facilitates the simultaneous transfer of Li+ /e- , as well as ensures fast flow of O2 , forming continuous and abundant TPBs. The high Li+ conductivity, softness, and adhesion of the dense PCE significantly reduce the battery resistance to 115 Ω. As a result, the ASS Li-O2 battery based on this adjustable-porosity PCE exhibits superior performances with high specific capacity (5963 mAh g-1 ), good rate capability, and stable cycling life up to 130 cycles at 32 °C. This novel design and exciting results could open a new avenue for ASS Li-O2 batteries.The limited triple-phase boundaries (TPBs) in solid-state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of high-performance all-solid-state lithium-oxygen (ASS Li-O2 ) batteries a challenge. Herein, an adjustable-porosity plastic crystal electrolyte (PCE) has been fabricated by employing a thermally induced phase separation (TIPS) technique to overcome the above tricky issues. The SSC produced through the in-situ introduction of the porous PCE on the surface of the active material, facilitates the simultaneous transfer of Li+ /e- , as well as ensures fast flow of O2 , forming continuous and abundant TPBs. The high Li+ conductivity, softness, and adhesion of the dense PCE significantly reduce the battery resistance to 115 Ω. As a result, the ASS Li-O2 battery based on this adjustable-porosity PCE exhibits superior performances with high specific capacity (5963 mAh g-1 ), good rate capability, and stable cycling life up to 130 cycles at 32 °C. This novel design and exciting results could open a new avenue for ASS Li-O2 batteries. The limited triple-phase boundaries (TPBs) in solid-state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of high-performance all-solid-state lithium-oxygen (ASS Li-O ) batteries a challenge. Herein, an adjustable-porosity plastic crystal electrolyte (PCE) has been fabricated by employing a thermally induced phase separation (TIPS) technique to overcome the above tricky issues. The SSC produced through the in-situ introduction of the porous PCE on the surface of the active material, facilitates the simultaneous transfer of Li /e , as well as ensures fast flow of O , forming continuous and abundant TPBs. The high Li conductivity, softness, and adhesion of the dense PCE significantly reduce the battery resistance to 115 Ω. As a result, the ASS Li-O battery based on this adjustable-porosity PCE exhibits superior performances with high specific capacity (5963 mAh g ), good rate capability, and stable cycling life up to 130 cycles at 32 °C. This novel design and exciting results could open a new avenue for ASS Li-O batteries. |
Author | Wang, Jin Chen, Kai Zhang, Xin‐Bo Huang, Gang |
Author_xml | – sequence: 1 givenname: Jin surname: Wang fullname: Wang, Jin organization: Ministry of Education – sequence: 2 givenname: Gang surname: Huang fullname: Huang, Gang organization: King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Kai surname: Chen fullname: Chen, Kai organization: Chinese Academy of Sciences – sequence: 4 givenname: Xin‐Bo orcidid: 0000-0002-5806-159X surname: Zhang fullname: Zhang, Xin‐Bo email: xbzhang@ciac.ac.cn organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32175643$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi1URC-wZYkisWGTqa9xsgyjgVYatZWAdeQkJ61Hjl1sRyUbxCPwjDwJjqYUqVLV1Tm2v8-2_nOMDqyzgNBbglcEY3qqrIYVxTT1DFcv0BERlORMSnaQes5YLktBDtFxCLvElCUuXqFDRokUBWdH6Gdts7rfTSGq1sCfX7-vnHdBxzm7MipE3WVrP6dDk20MdNE7M0fINnahQ3amr28WB_zg_KhsB1ltTNr54ozulxpVwrc63uhpTOvLH_M12OyjihG8hvAavRyUCfDmvp6gb582X9dn-fby8_m63uYdJ7jKJcVAlFAlJy0XGGgpADNR8aKnvKoGqSiXQ1u0QEU_FH1btlh1sh9A9OXAgJ2gD_t7b737PkGIzahDB8YoC24KDU2JFaXATCb0_SN05yZv0-8aynEpqBRVlah399TUjtA3t16Pys_Nv2QTsNoDXcozeBgeEIKbZXTNMrrmYXRJ4I-ETqf0tLPRK22e1qq9dqcNzM880tQX55v_7l9JVrOH |
CitedBy_id | crossref_primary_10_1002_ange_202116635 crossref_primary_10_1002_anie_202319529 crossref_primary_10_1002_adfm_202307150 crossref_primary_10_1002_adfm_202101636 crossref_primary_10_1016_j_cej_2025_159351 crossref_primary_10_1016_j_chempr_2022_09_027 crossref_primary_10_1016_j_jpowsour_2024_234813 crossref_primary_10_1002_adma_202206228 crossref_primary_10_1002_cey2_276 crossref_primary_10_1002_aenm_202400766 crossref_primary_10_1002_er_6020 crossref_primary_10_1126_sciadv_abq6261 crossref_primary_10_1007_s11426_023_1908_9 crossref_primary_10_3390_batteries9070380 crossref_primary_10_1021_acsnano_4c17836 crossref_primary_10_1002_ange_202101537 crossref_primary_10_1016_j_cej_2023_141382 crossref_primary_10_1002_anie_202116635 crossref_primary_10_1002_EXP_20220051 crossref_primary_10_1016_j_est_2022_105790 crossref_primary_10_1021_acsami_3c02155 crossref_primary_10_1002_adma_202110423 crossref_primary_10_1002_adfm_202304981 crossref_primary_10_1016_j_pmatsci_2024_101337 crossref_primary_10_1002_anie_202213026 crossref_primary_10_1149_1945_7111_ac7356 crossref_primary_10_1002_smm2_1205 crossref_primary_10_1039_D1TA03569J crossref_primary_10_1021_acsaem_4c02391 crossref_primary_10_1002_adfm_202011151 crossref_primary_10_1149_1945_7111_ad9a0a crossref_primary_10_1016_j_ensm_2022_10_007 crossref_primary_10_1021_acsami_2c13807 crossref_primary_10_1016_j_scib_2022_11_027 crossref_primary_10_1002_batt_202300230 crossref_primary_10_1021_acs_accounts_0c00772 crossref_primary_10_1002_adfm_202113235 crossref_primary_10_1002_adfm_202301583 crossref_primary_10_1002_ange_202213026 crossref_primary_10_1016_j_gee_2023_02_010 crossref_primary_10_1016_j_mtnano_2023_100321 crossref_primary_10_1016_j_ensm_2021_04_022 crossref_primary_10_1016_j_nanoen_2022_107248 crossref_primary_10_1021_acsaem_3c01183 crossref_primary_10_1002_bte2_20220014 crossref_primary_10_1007_s12274_022_4183_z crossref_primary_10_1002_ange_202319529 crossref_primary_10_1002_batt_202300267 crossref_primary_10_1016_j_est_2024_114806 crossref_primary_10_1002_smsc_202200005 crossref_primary_10_1021_acs_nanolett_4c03874 crossref_primary_10_1002_adfm_202213211 crossref_primary_10_1002_inf2_12247 crossref_primary_10_1149_1945_7111_ac5794 crossref_primary_10_1002_batt_202400625 crossref_primary_10_1021_acs_energyfuels_1c00635 crossref_primary_10_1021_acsaem_2c02718 crossref_primary_10_1002_aenm_202203660 crossref_primary_10_1039_D4CC00805G crossref_primary_10_1016_j_cej_2025_160694 crossref_primary_10_1002_aenm_202302388 crossref_primary_10_1002_anie_202101537 |
Cites_doi | 10.1016/j.jpowsour.2019.227230 10.1038/nature25984 10.1016/j.ensm.2018.08.021 10.1002/aenm.201701602 10.1038/nmat1158 10.1149/1.3256129 10.1038/srep41217 10.1002/anie.201702003 10.1002/aenm.201500353 10.1016/0376-7388(93)85015-O 10.1002/ange.201408008 10.1063/1.2200353 10.1038/s41929-019-0362-z 10.1002/anie.201903459 10.1038/nnano.2017.27 10.1039/c2ee03025j 10.1002/adfm.200601070 10.1021/acsami.5b04409 10.1126/science.aas9343 10.1038/s41467-019-08422-8 10.1002/ange.201702003 10.1002/adfm.201301345 10.1039/C8SC05178J 10.1111/1541-4337.12121 10.1016/j.jpowsour.2018.05.080 10.1021/acsami.7b09119 10.1038/s41565-019-0465-3 10.1039/c2ee22381c 10.1002/ange.201804115 10.1002/ange.201903459 10.1039/C8TA10771H 10.1039/C8TA08095J 10.1007/s12598-018-1036-8 10.1038/s41560-018-0312-z 10.1002/adfm.201900392 10.1002/aenm.201100789 10.1038/s41563-019-0431-3 10.1038/nmat4821 10.1016/S0376-7388(00)85130-3 10.1002/anie.201804115 10.1038/nenergy.2017.118 10.1016/j.ensm.2017.10.002 10.1039/C8EE00540K 10.1007/s11581-018-2580-9 10.1016/j.eurpolymj.2011.10.005 10.1016/j.ssi.2011.01.010 10.1016/j.nanoen.2017.12.037 10.1007/s13233-018-6061-9 10.1021/jacs.7b10864 10.1002/aenm.201702657 10.1002/anie.201408008 10.1016/j.elecom.2017.04.020 10.1039/C9EE01548E 10.1016/j.chempr.2018.12.002 10.1021/acsnano.9b08803 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202002309 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 9387 |
ExternalDocumentID | 32175643 10_1002_anie_202002309 ANIE202002309 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: K. C. Wong Education Foundation funderid: GJTD-2018-09 – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences funderid: XDA21010210 – fundername: Jilin Province Capital Construction Funds Project funderid: 2020C026-1 – fundername: National Natural Science Foundation of China funderid: 21725103, 21905269 – fundername: National Key R&D Program of China funderid: 2017YFA0206700 – fundername: Jilin Province Science and Technology Development Plan Funding Project funderid: 20180101203JC – fundername: Changchun Science and Technology Development Plan Funding Project funderid: 19SS010, 18DY012 – fundername: National Key R&D Program of China grantid: 2017YFA0206700 – fundername: Jilin Province Capital Construction Funds Project grantid: 2020C026-1 – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences grantid: XDA21010210 – fundername: Jilin Province Science and Technology Development Plan Funding Project grantid: 20180101203JC – fundername: Changchun Science and Technology Development Plan Funding Project grantid: 19SS010, 18DY012 – fundername: National Natural Science Foundation of China grantid: 21725103, 21905269 – fundername: K. C. Wong Education Foundation grantid: GJTD-2018-09 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4109-720e1a5a841b450e285e035946d2499f7a247fb6be25df6db8b0ac7dfe5d8f3e3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 05:46:43 EDT 2025 Fri Jul 25 10:36:42 EDT 2025 Wed Feb 19 02:29:47 EST 2025 Thu Apr 24 23:03:42 EDT 2025 Tue Jul 01 01:17:36 EDT 2025 Wed Jan 22 16:35:38 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | lithium-oxygen batteries succinonitrile all-solid-state plastic crystal electrolytes solid electrolytes |
Language | English |
License | 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4109-720e1a5a841b450e285e035946d2499f7a247fb6be25df6db8b0ac7dfe5d8f3e3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5806-159X |
PMID | 32175643 |
PQID | 2408527599 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2377685037 proquest_journals_2408527599 pubmed_primary_32175643 crossref_primary_10_1002_anie_202002309 crossref_citationtrail_10_1002_anie_202002309 wiley_primary_10_1002_anie_202002309_ANIE202002309 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 8, 2020 |
PublicationDateYYYYMMDD | 2020-06-08 |
PublicationDate_xml | – month: 06 year: 2020 text: June 8, 2020 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 17 2018; 361 2019; 7 1990; 52 2017; 7 2015; 14 2019; 4 2015; 5 2017; 2 2018; 140 2019; 5 2019; 2 2019; 10 2019; 13 2019; 12 2019; 14 2020 2020; 59 132 2004; 3 2019; 18 2014; 24 2017 2017; 56 129 2016; 16 2015; 7 2017; 9 2019; 442 2018; 26 2018; 25 2018; 46 2018; 395 2018; 6 1993; 79 2018; 8 2012; 2 2020 2018 2018; 57 130 2018; 555 2017; 79 2017; 12 2010; 157 2019 2015 2015; 54 127 2019; 29 2011; 47 2018; 11 2012; 5 2018; 37 2011; 186 2006; 124 e_1_2_2_4_1 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_49_2 e_1_2_2_6_2 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_41_1 e_1_2_2_62_1 e_1_2_2_64_2 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_43_2 e_1_2_2_66_2 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_8_3 e_1_2_2_45_3 e_1_2_2_68_1 Yu W. (e_1_2_2_40_2) 2019 e_1_2_2_60_2 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_59_2 e_1_2_2_38_2 e_1_2_2_11_1 e_1_2_2_51_2 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_53_2 e_1_2_2_32_2 e_1_2_2_17_1 e_1_2_2_34_1 e_1_2_2_55_1 e_1_2_2_15_2 e_1_2_2_57_2 Jiang T. L. (e_1_2_2_48_2) 2020 e_1_2_2_3_2 e_1_2_2_5_2 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_63_1 e_1_2_2_42_1 e_1_2_2_29_1 e_1_2_2_65_3 e_1_2_2_67_1 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_65_2 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_46_2 e_1_2_2_61_1 e_1_2_2_14_1 e_1_2_2_35_3 e_1_2_2_37_1 e_1_2_2_12_2 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_52_2 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_54_2 e_1_2_2_58_1 e_1_2_2_35_2 e_1_2_2_56_2 e_1_2_2_50_1 |
References_xml | – volume: 57 130 start-page: 10864 11030 year: 2018 2018 end-page: 10867 11033 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 16 start-page: 572 year: 2016 end-page: 579 publication-title: Nat. Mater. – volume: 395 start-page: 439 year: 2018 end-page: 443 publication-title: J. Power Sources – volume: 3 start-page: 476 year: 2004 end-page: 481 publication-title: Nat. Mater. – volume: 10 start-page: 602 year: 2019 publication-title: Nat. Commun. – volume: 14 start-page: 67 year: 2015 end-page: 80 publication-title: Compr. Rev. Food Sci. Food Saf. – volume: 2 start-page: 1035 year: 2019 end-page: 1044 publication-title: Nat. Catal. – volume: 13 start-page: 14549 year: 2019 end-page: 14556 publication-title: ACS Nano – volume: 12 start-page: 2957 year: 2019 end-page: 2975 publication-title: Energy Environ. Sci. – volume: 2 start-page: 17118 year: 2017 publication-title: Nat. Energy – volume: 124 year: 2006 publication-title: J. Chem. Phys. – volume: 54 127 start-page: 436 446 year: 2015 2015 end-page: 440 450 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 2974 2994 year: 2020 2020 end-page: 2997 3019 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2020 publication-title: Adv. Energy Mater. – volume: 18 start-page: 1278 year: 2019 end-page: 1291 publication-title: Nat. Mater. – volume: 11 start-page: 170 year: 2018 end-page: 175 publication-title: Energy Storage Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 1803 year: 2018 end-page: 1810 publication-title: Energy Environ. Sci. – volume: 6 start-page: 21248 year: 2018 end-page: 21254 publication-title: J. Mater. Chem. A – volume: 17 start-page: 2800 year: 2007 end-page: 2807 publication-title: Adv. Funct. Mater. – volume: 47 start-page: 2442 year: 2011 end-page: 2450 publication-title: Eur. Polym. J. – year: 2019 publication-title: Energy Storage Mater. – volume: 5 start-page: 9077 year: 2012 end-page: 9084 publication-title: Energy Environ. Sci. – volume: 52 start-page: 239 year: 1990 end-page: 261 publication-title: J. Membr. Sci. – volume: 140 start-page: 82 year: 2018 end-page: 85 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 4306 year: 2019 end-page: 4312 publication-title: Chem. Sci. – volume: 18 start-page: 311 year: 2019 end-page: 319 publication-title: Energy Storage Mater. – volume: 56 129 start-page: 5541 5633 year: 2017 2017 end-page: 5545 5637 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 41217 year: 2017 publication-title: Sci. Rep. – volume: 26 start-page: 459 year: 2018 end-page: 465 publication-title: Macromol. Res. – volume: 79 start-page: 27 year: 1993 end-page: 34 publication-title: J. Membr. Sci. – volume: 7 start-page: 17307 year: 2015 end-page: 17310 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 74 year: 2019 end-page: 96 publication-title: Chem – volume: 361 start-page: 777 year: 2018 end-page: 781 publication-title: Science – volume: 7 start-page: 3150 year: 2019 end-page: 3160 publication-title: J. Mater. Chem. A – volume: 157 start-page: A50 year: 2010 end-page: A54 publication-title: J. Electrochem. Soc. – volume: 442 year: 2019 publication-title: J. Power Sources – volume: 555 start-page: 502 year: 2018 end-page: 506 publication-title: Nature – volume: 12 start-page: 535 year: 2017 end-page: 539 publication-title: Nat. Nanotechnol. – volume: 4 start-page: 187 year: 2019 end-page: 196 publication-title: Nat. Energy – volume: 24 start-page: 44 year: 2014 end-page: 52 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 889 year: 2012 end-page: 894 publication-title: Adv. Energy Mater. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 46 start-page: 176 year: 2018 end-page: 184 publication-title: Nano Energy – volume: 5 start-page: 6491 year: 2012 end-page: 6499 publication-title: Energy Environ. Sci. – volume: 9 start-page: 29820 year: 2017 end-page: 29828 publication-title: ACS Appl. Mater. Interfaces – volume: 79 start-page: 68 year: 2017 end-page: 72 publication-title: Electrochem. Commun. – volume: 37 start-page: 459 year: 2018 end-page: 472 publication-title: Rare Met. – volume: 14 start-page: 705 year: 2019 end-page: 711 publication-title: Nat. Nanotechnol. – volume: 25 start-page: 25 year: 2018 end-page: 33 publication-title: Ionics – volume: 186 start-page: 1 year: 2011 end-page: 6 publication-title: Solid State Ionics – ident: e_1_2_2_27_2 doi: 10.1016/j.jpowsour.2019.227230 – ident: e_1_2_2_2_2 doi: 10.1038/nature25984 – ident: e_1_2_2_44_2 doi: 10.1016/j.ensm.2018.08.021 – ident: e_1_2_2_12_2 doi: 10.1002/aenm.201701602 – ident: e_1_2_2_41_1 doi: 10.1038/nmat1158 – ident: e_1_2_2_13_2 doi: 10.1149/1.3256129 – ident: e_1_2_2_16_2 doi: 10.1038/srep41217 – ident: e_1_2_2_45_2 doi: 10.1002/anie.201702003 – ident: e_1_2_2_37_1 – ident: e_1_2_2_52_2 doi: 10.1002/aenm.201500353 – ident: e_1_2_2_56_2 doi: 10.1016/0376-7388(93)85015-O – ident: e_1_2_2_35_3 doi: 10.1002/ange.201408008 – ident: e_1_2_2_23_1 – ident: e_1_2_2_68_1 doi: 10.1063/1.2200353 – ident: e_1_2_2_5_2 doi: 10.1038/s41929-019-0362-z – ident: e_1_2_2_8_2 doi: 10.1002/anie.201903459 – ident: e_1_2_2_29_1 – ident: e_1_2_2_10_2 doi: 10.1038/nnano.2017.27 – year: 2020 ident: e_1_2_2_48_2 publication-title: Adv. Energy Mater. – ident: e_1_2_2_4_1 – ident: e_1_2_2_11_1 – ident: e_1_2_2_53_2 doi: 10.1039/c2ee03025j – ident: e_1_2_2_49_2 doi: 10.1002/adfm.200601070 – ident: e_1_2_2_20_2 doi: 10.1021/acsami.5b04409 – ident: e_1_2_2_3_2 doi: 10.1126/science.aas9343 – ident: e_1_2_2_6_2 doi: 10.1038/s41467-019-08422-8 – ident: e_1_2_2_45_3 doi: 10.1002/ange.201702003 – ident: e_1_2_2_51_2 doi: 10.1002/adfm.201301345 – ident: e_1_2_2_17_1 – ident: e_1_2_2_43_2 doi: 10.1039/C8SC05178J – ident: e_1_2_2_14_1 – ident: e_1_2_2_60_2 doi: 10.1111/1541-4337.12121 – ident: e_1_2_2_19_2 doi: 10.1016/j.jpowsour.2018.05.080 – ident: e_1_2_2_64_2 doi: 10.1021/acsami.7b09119 – ident: e_1_2_2_58_1 – ident: e_1_2_2_55_1 – ident: e_1_2_2_36_2 doi: 10.1038/s41565-019-0465-3 – ident: e_1_2_2_21_2 doi: 10.1039/c2ee22381c – ident: e_1_2_2_65_3 doi: 10.1002/ange.201804115 – ident: e_1_2_2_8_3 doi: 10.1002/ange.201903459 – ident: e_1_2_2_63_1 – ident: e_1_2_2_39_2 doi: 10.1039/C8TA10771H – year: 2019 ident: e_1_2_2_40_2 publication-title: Energy Storage Mater. – ident: e_1_2_2_15_2 doi: 10.1039/C8TA08095J – ident: e_1_2_2_9_2 doi: 10.1007/s12598-018-1036-8 – ident: e_1_2_2_32_2 doi: 10.1038/s41560-018-0312-z – ident: e_1_2_2_7_1 – ident: e_1_2_2_1_1 – ident: e_1_2_2_66_2 doi: 10.1002/adfm.201900392 – ident: e_1_2_2_18_2 doi: 10.1002/aenm.201100789 – ident: e_1_2_2_24_2 doi: 10.1038/s41563-019-0431-3 – ident: e_1_2_2_30_2 doi: 10.1038/nmat4821 – ident: e_1_2_2_57_2 doi: 10.1016/S0376-7388(00)85130-3 – ident: e_1_2_2_42_1 – ident: e_1_2_2_65_2 doi: 10.1002/anie.201804115 – ident: e_1_2_2_67_1 doi: 10.1038/nenergy.2017.118 – ident: e_1_2_2_34_1 – ident: e_1_2_2_47_2 doi: 10.1016/j.ensm.2017.10.002 – ident: e_1_2_2_50_1 – ident: e_1_2_2_26_2 doi: 10.1039/C8EE00540K – ident: e_1_2_2_38_2 doi: 10.1007/s11581-018-2580-9 – ident: e_1_2_2_61_1 doi: 10.1016/j.eurpolymj.2011.10.005 – ident: e_1_2_2_54_2 doi: 10.1016/j.ssi.2011.01.010 – ident: e_1_2_2_28_2 doi: 10.1016/j.nanoen.2017.12.037 – ident: e_1_2_2_46_2 doi: 10.1007/s13233-018-6061-9 – ident: e_1_2_2_62_1 doi: 10.1021/jacs.7b10864 – ident: e_1_2_2_22_1 doi: 10.1002/aenm.201702657 – ident: e_1_2_2_35_2 doi: 10.1002/anie.201408008 – ident: e_1_2_2_59_2 doi: 10.1016/j.elecom.2017.04.020 – ident: e_1_2_2_25_2 doi: 10.1039/C9EE01548E – ident: e_1_2_2_31_2 doi: 10.1016/j.chempr.2018.12.002 – ident: e_1_2_2_33_2 doi: 10.1021/acsnano.9b08803 |
SSID | ssj0028806 |
Score | 2.543348 |
Snippet | The limited triple‐phase boundaries (TPBs) in solid‐state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of... The limited triple-phase boundaries (TPBs) in solid-state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9382 |
SubjectTerms | all-solid-state Cathodes Electrolytes High resistance Lithium lithium-oxygen batteries Molten salt electrolytes Oxygen Phase separation plastic crystal electrolytes Porosity Softness Solid electrolytes Specific capacity succinonitrile |
Title | An Adjustable‐Porosity Plastic Crystal Electrolyte Enables High‐Performance All‐Solid‐State Lithium‐Oxygen Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202002309 https://www.ncbi.nlm.nih.gov/pubmed/32175643 https://www.proquest.com/docview/2408527599 https://www.proquest.com/docview/2377685037 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQL3CB_vCztFSuhNRT2sSJE-cYrbYqCNoKWqm3KI7HYkvIot2sxHKoeASekSdhJt6k3SJUCU6JY1tx7Jn4m2TmG8ZeByZJNUIJr4wADRRRKk8LW3qWqEUoKWQcUKDw-5P4-CJ6eykvb0XxO36I_oMbaUb7viYFL_Ts8IY0lCKw0b4TLYqmCD5y2CJU9KHnjxIonC68KAw9ykLfsTb64nC1--qu9AfUXEWu7dZz9IQV3aCdx8nng3mjD8rvd_gc_-ep1tnjJS7lmROkDfYA6k32cNilg9ti11nNM3NF8Va6gl8_fp5NpuTwteBnCMCxFx9OF1hZ8ZHLrFMtGuCjNjRrxsmdhPrchCnwrKrwysdJNTZ0JNDL342bT-P5FyyfflugaHNH_4nW_FN2cTQ6Hx57y-QNuOqBn3qJ8CEoZKGiQEfSB6EkEF1gFBu0-FKbFCJKrI41CGlsbLTSflEmxoI0yoYQPmNr9aSGF4wbqyJpNMo80Sdaq5SMITUAviwCC-WAed3i5eWS2ZwSbFS542QWOc1q3s_qgO337b86To-_ttzpZCFf6vYsb0nhRCJTrN7rq3E16FdLUcNkjm3CBO046YfJgD13MtTfKkQrUCIQHDDRSsI9Y8izkzejvvTyXzpts0d03nq4qR221kzn8AqxVKN3W335DbYyG7U |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3o-FAkYCcUqbOHEeBw7Rdqtdul0qaKXe0ji2xbYhi_YhWA6In8Bf4a_wE_glzORVLQghIfXAKXJsJ45nxp5xZr4BeOqoIJKoSliZp9FA4VloSW4yyxC0CCWF9B0KFN4f-f0j7-WxOF6Db00sTIUP0R64kWSU6zUJOB1Ib5-jhlIINhp4vFSjo9qvck8vP6DVNnsx2EESP-N8t3fY7Vt1YgEckWNHVsBt7aQiDT1HesLWPBSaoOw8X6E1Epkg5V5gpC81F8r4SobSTrNAGS1UaFzt4nMvwWVKI05w_TuvW8QqjuJQBTS5rkV57xucSJtvr453dR_8Tbld1ZXLzW73GnxvpqnycTnbWszlVvbpFwTJ_2oer8PVWvVmcSUrN2BNFzdho9tkvLsFn-OCxeqUQspkrn98-XowmZJP25IdoI2BvVh3usTKnPWq5EH5cq5Zr4w-mzHymKE-55EYLM5zvPNmko8VXUmvZ8Px_O148Q7Lrz4uUXpZhXA61rPbcHQhn38H1otJoe8BUyb0hJIo1oQQaUwYCl9HSmtbpI7RWQeshluSrAZvpxwieVLBTvOEqJi0VOzA87b9-wq25I8tNxvmS-rla5aUuHc8EBFWP2mrkRr0Nykt9GSBbdwATVVhu0EH7lZM277KRUNXoK7bAV6y3l_GkMSjQa8t3f-XTo9ho3-4P0yGg9HeA7hC90uHvnAT1ufThX6IquNcPiqFlcHJRXP1T-UYeic |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FIAEX9mUgQCOBODmx224vBw7WLMqQMIyASLkZt7tbmWA80SwCc0B8Ap_Cr_ALfAlV9tjRgBASUg6crN7sdldVd5Vd9QrgsaOCSKIqYWWeRgOFZ6ElucksQ9AilBTSdyhQ-MXI3z3wnh-Kww341sTC1PgQ7Qc3koxqvyYBP1Fm5xQ0lCKw0b7jlRYdrdwq93T5AY22-bNhDyn8hPNB_01311rlFcAJOXZkBdzWTirS0HOkJ2zNQ6EJyc7zFRojkQlS7gVG-lJzoYyvZCjtNAuU0UKFxtUu3vccnPd8O6JkEb1XLWAVR2mo45lc16K09w1MpM131ue7fgz-ptuuq8rVWTe4At-bVapdXN5tLxdyO_v0C4Dk_7SMV-HySvFmcS0p12BDF9fhYrfJd3cDPscFi9UxBZTJXP_48nU8nZFHW8nGaGHgKNadldiYs36dOigvF5r1q9izOSN_GRpzGofB4jzHmtfTfKLoSlo9258sjibL91h--bFE2WU1vulEz2_CwZm8_i3YLKaFvgNMmdATSqJQEz6kMWEofB0prW2ROkZnHbAaZkmyFXQ7ZRDJkxp0midExaSlYgeetv1PatCSP_bcangvWW1e86RCveOBiLD5UduM1KB_SWmhp0vs4wZoqArbDTpwu-bZ9lEumrkCNd0O8Irz_jKHJB4N-23p7r8MeggXxr1Bsj8c7d2DS1RdefOFW7C5mC31fdQbF_JBJaoM3p41U_8E8wV41g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adjustable%E2%80%90Porosity+Plastic+Crystal+Electrolyte+Enables+High%E2%80%90Performance+All%E2%80%90Solid%E2%80%90State+Lithium%E2%80%90Oxygen+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Jin&rft.au=Huang%2C+Gang&rft.au=Chen%2C+Kai&rft.au=Zhang%2C+Xin%E2%80%90Bo&rft.date=2020-06-08&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=24&rft.spage=9382&rft.epage=9387&rft_id=info:doi/10.1002%2Fanie.202002309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202002309 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |